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In this paper we propose a Bayesian approach for inference about depen-
dence of high throughput gene expression. Our goals are to use prior knowl-
edge about pathways to anchor inference about dependence among genes;
to account for this dependence while making inferences about differences in
mean expression across phenotypes; and to explore differences in the depen-
dence itself across phenotypes. Useful features of the proposed approach are
a model-based parsimonious representation of expression as an ordinal out-
come, a novel and flexible representation of prior information on the nature
of dependencies, and the use of a coherent probability model over both the
structure and strength of the dependencies of interest. We evaluate our ap-
proach through simulations and in the analysis of data on expression of genes
in the Complement and Coagulation Cascade pathway in ovarian cancer.

1. Introduction. Inferring patterns of dependence from high throughput ge-
neomic data poses significant challenges. Statistically, the problem is one of learn-
ing about dependence structures in high dimension, with relatively low signal.
A promising direction for strengthening this inference is the explicit considera-
tion of information from known “pathways”—biochemical processes described in
terms of a series of relationships among genes and their products.

In this paper we take this perspective, and propose a Bayesian approach to
achieve three related goals in the context of gene expression analysis: to use prior
knowledge about pathways to anchor inference about dependence among genes;
to account for this dependence while making inferences about differences in mean
expression across phenotypes; and to explore differences in the dependence itself
across phenotypes. The proposed model builds on the POE model (Parmigiani
et al. 2002) and integrates inference about probability of differential expression
with inference about dependence between genes through the formulation of a co-
herent probability model. Our proposed inferences are local in the sense that the
model is centered around a specific pathway. Formally, variable selection is used
to remove and add structure relative to the centering pathway. This is in contrast
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to approaches aimed at learning dependence structures de novo from expression
data, without guidance by a prior pathway structure.

Some of the existing approaches for probabilistic modeling of dependence
structures attempt to explore the space of all possible graphical models, often re-
stricted to Directed Acyclic Graphs (DAGs) or Bayesian networks (BN) (Lauritzen
1996) and decomposable models (Dawid and Lauritzen 1993). A comprehensive
review of statistical methodology for network data is provided in Kolaczyk (2009).
Recent literature includes the application of BN and dynamic BN to microarray
data (Murphy and Mian 1999, Friedman et al. 2000), with applications and exten-
sions of this methodology reported in Ong, Glasner and Page (2002) and Beal et al.
(2005), among others. Although appealing, these techniques have computational
and methodological limitations related to modeling conditional independence un-
der the “large p, small n” paradigm and the difficult specification of consistent
prior models across dimensions (Dobra et al. 2004). Other authors (Scott and Car-
valho 2008, Jones et al. 2005) have reported difficulties with the performance of
standard trans-dimensional MCMC methods (Giudici and Green 1999) in the ex-
ploration of the model space, and suggested alternative stochastic search schemes.
For a decision theoretic perspective on graphical model selection see Sebastiani
and Ramoni (2005).

To overcome these problems, we focus on variations of a baseline model that
represents known dependence structures. The centering anchors the model space
to a prior path diagram elicited from sets of molecular interactions derived by
previous experiments.

Our idea is similar to the modeling approaches described in Wei and Li (2007)
and Wei and Li (2008), who introduced conditional independence between genes,
via a Markov random field defined over binary hidden states of differential expres-
sion. These authors propose to consider a fixed Markov random field mirroring ex-
actly the topology of a prior pathway and ignoring the directionality of the edges.
The construction of dependence patterns based on hidden Markov random fields
had also been previously explored by Broët and Richardson (2006) in the anal-
ysis of CGH microarrays. We contrast the approach of Wei and Li (2007, 2008)
in three fundamental ways. First, we provide an alternative interpretation of the
connections encoded into a prior pathway. We develop a prior model for the de-
pendence structure, that is, based on the reciprocal graphs (Koster 1996). This
class of graphical models takes account of the directionality of the edges included
in the pathway and allows for the Markovian characterization of cycles, which
often arise in biological depictions of genetic interactions. Also, recognizing that
a known pathway is often summarizing results obtained under different experi-
mental conditions, we allow for significant deviations from the prior dependence
structure. This extension requires explicit consideration of a model determination
strategy, but enables inference on the model parameters as well as inference on
the dependence structure between genes. Finally, our focus is on identifying sig-
nificant interactions between genes in a prior pathway, as opposed to identifying
differentially expressed genes in a given pathway.
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The proposed methodology finds motivation in the analysis of gene expression
of Epithelial Ovarian Cancer (EOC) patients. In this setting, the complement and
coagulation cascade pathway (Figure 2) represents a key study target, as disease
progression is thought to be highly linked to inflammation and vascularization
processes [Wang, Wang and Kavanagh (2005)].

The rest of this article is organized as follows. In Section 2 we introduce the
proposed model. Section 3 discusses estimation and inferential details associated
with the proposed model. We validate our approach with a simulation study in Sec-
tion 4. Section 5 employs the model for the analysis of epithelial ovarian cancer
expression data, to derive inference about active genetic interactions. In the ex-
ample, a well-known molecular pathway provides prior information on the depen-
dence structure. A final section concludes with a critical discussion of limitations
and possible extensions.

2. Dependent probability of expression. In Section 2.1, we discuss graph-
ical models and notation, and in Section 2.2, we review the POE (Probability of
Expression) model Parmigiani et al. (2002), which defines biological events via
latent three-way indicators of relevant biological states. The original POE model
assumes independence across genes, conditional on hyperparameters. We extend
the original model by formalizing more complex relationships among variables via
a cascade of conditional dependences, guided by a predefined interaction map. The
predefined interaction map is formally represented as a graph. In Section 2.3 we
introduce a prior probability model on this graph.

2.1. Representing dependence through graphical models. Networks of rela-
tionships among expression levels can be represented as graphs that describe how
genes influence each other [for an example in ovarian cancer see Wang, Wang and
Kavanagh (2005)]. More formally, a graph is often characterized as an algebraic
structure G = {V,E}, composed of a set of nodes V , in our case genes, and a set
of edges E ⊆ {(vi1, vi2), vi ∈ V } ∪ {{vi1, vi2}, vi ∈ V }. Here (vi, vj ) denotes a di-
rected edge from vi to vj , and {vi, vj } denotes an undirected edge. A graph G
defines the Markov properties of a statistical model in a graphical fashion, via the
specification of a set of conditional dependencies.

Biochemical networks often include the presence of cycles and feedback rela-
tionships. This requires some care when trying to characterize a coherent prob-
abilistic model that accurately portrays prior biochemical knowledge. For this
purpose, we focus on a class of graphical models known as reciprocal graphs
[Koster (1996)]. Reciprocal graph are defined as a natural generalization of other
well-known classes, including directed acyclic graphs (DAG) and Markov random
fields, among others. Reciprocal graphs are defined through the coherent proba-
bilistic interpretation of directed a(→ b), undirected (a − b) and reciprocal edges
(a � b). Here, for simplicity, we consider a subset of the reciprocal graph fam-
ily excluding undirected edges. The restriction to only directed edges will later be
important to facilitate the mapping of G to a simultaneous equation model.
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FIG. 1. (Example) moralization of a reciprocal graph.

The proposed model and inference is based on the directed graph G . But some-
times it is of interest to describe the implied conditional independence structure,
that is, the Markov properties. When desired, the Markov properties of our model
are defined in terms of an undirected graph Gm = {V,Em} elicited via moraliza-
tion [Koster (1996), Lauritzen (1996)] of a graph G . In substance, the moralization
procedure consists in adding an undirected edge between parents of a common
child and replacing the remaining directed edges with undirected ones. In Gm,
standard Markov field properties hold, in the sense that two genes i and j are dis-
connected when they are conditionally independent, given the rest of the genes
[Besag (1974)]. For example, consider the reciprocal graph G represented in Fig-
ure 1. The class of Markov equivalent models spanned by G may be represented
with the moral (undirected) graph Gm, for which the following Markov property
holds: 1 ⊥ 2|3,4, that is, P(1,3|2,4) = P(1|2,4)P (3|2,4). The correspondence
between G and Gm is not 1-to-1 as Gm could arise from the moralization of an entire
class of Markov equivalent reciprocal graphs. Further details about moralization in
reciprocal graphs and covariance equivalence are discussed in Koster (1996) and
Spirtes et al. (1998). Here, our inference will be based on G only, and the direc-
tionality will be based on prior knowledge. The undirected graph Gm provides a
convenient summary of the conditional independence structure if desired.

2.2. Dependent gene expression and hidden systems of simultaneous equations.
Following Parmigiani et al. (2002), we consider data in the form of an (p × n)

expression matrix Y, with the generic element yij denoting the observed gene
expression for gene i in sample j , i = 1, . . . , p and j = 1, . . . n. We introduce
latent variables eij ∈ {−1,0,1} indexing three possible expression categories for
each entry in Y. For example, if Y represents ratios of expression level relative
to a normal reference, they can be interpreted as high, normal and low. Given eij ,
for each gene i and each sample j we assume a mixture parameterized with θ =
(αj ,μi, κ

−
i , κ+

i ) as follows:

p
(
yij − (αj + μi)|eij

) = fij (yij ) with

⎧⎪⎨
⎪⎩

f−1i = U(−κ−
i ,0),

f0i = N(0, σ 2
i ),

f1i = U(0, κ+
i ).

(1)

In words, we assume that the observed expressions arise from a mixture of a
Gaussian distribution and two uniform distributions designed to capture a broad
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range of departures relative to the Gaussian. The interpretation of the Gaussian
component varies depending on the experimental design and sampling scheme,
and can be trained in a supervised way if data are available (Garrett and Parmi-
giani 2004). When the technology used for measuring expression has an internal
reference, as in Section 5, the high (low) class can be interpreted as over- (under)
expression compared to the reference. The upcoming definition of a dependence
structure will focus on the latent eij and define dependence at the level of these in-
dicators. In other words, the proposed model could be characterized as a boolean
network on the latent eij .

In (1), αj is a sample-specific effect, included to adjust for systematic variation
across samples; μi is a gene-specific effect, modeling the overall abundance of
each gene, and κ−

i and κ+
i parameterize the limits of variation in the tails. Finally,

σ 2
i is the variance of the normal component of the distribution of gene i. We follow

Parmigiani et al. (2002) in defining a conditionally conjugate prior for μi , σ 2
i and

κ−
i and κ+

i . Let Ga(a, b) denote a Gamma distribution with expectation a/b:

p(μi |mμ, τμ) = N(mμ, τμ), p(1/σ 2
i |γσ ,λσ ) = Ga(γσ , λσ ),

p(1/κ−
i |γ −

κ , λ−
κ ) = Ga(γ −

κ , λ−
κ ), p(1/κ+

i |γ +
κ , λ+

κ ) = Ga(γ +
κ , λ+

κ );
where min(κ+

i , κ−
i ) > κ0σi and κ0 = 5. The restriction on κ−

i and κ+
i ensures that

the gene-specific mixture distribution has heavier tails than its normal component,
preserving interpretability of the three-way latent classes. For the sample-specific
effect αj , we impose an identifiability constraint αj ∼ N(0, τ 2

α) with
∑n

j=0 αt = 0.
Specifying a prior model for eij , we deviate from Parmigiani et al. (2002), defin-

ing the model in terms of latent normal variables [Albert and Chib (1993)]. For
each gene and sample we introduce a latent Gaussian variable zij , and define

eij =
⎧⎪⎨
⎪⎩

1, if zij > 1 high expression,

0, if − 1 < zij ≤ 1 normal expression,

−1, if zij ≤ −1 low expression,

(2)

where the distribution of zij is defined by the following simultaneous equations
model (SEM):

zij = mij + ∑
k 	=i

βik(zkj − mkj ) + εij , i = 1, . . . , p, j = 1, . . . , n,(3)

with εij ∼ N(0, s2
i ). Let Zj = (z1j , . . . , zpj )

′ denote the p-dimensional vector of
latent probit scores associated with sample j . Also, let B be the (p × p) matrix
whose diagonal elements are unity and whose off-diagonal (i, k) components are
−βik . Provided B is nonsingular, the process above defines a proper joint proba-
bility density function [Besag (1974)]. More precisely, defining the marginal pre-
cision matrix Hz = diag(1/s1, . . . ,1/sp) and � = B′HzB, we have

P(Zj |mj ,�) = |�|1/2

(2π)1/2 exp
{
−1

2
(Zj − mj )

′�(Zj − mj )

}
,(4)
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where mj = (m1j , . . . ,mpj )
′.

If ej = (e1j , . . . , epj )
′, the implied probabilities for the indicators eij are

P(ej |mj ,�) =
∫
Apj

· · ·
∫
A1j

P (Zj |mj ,�) dZj ,(5)

where Aij is the interval (−∞,−1] if eij = −1, (−1,1] if eij = 0 and (1,∞)

if eij = 1. We use notation π+
ij = p(zij > 1|y), π−

ij = p(zij < −1|y) and p�
ij =

π+
ij − π−

ij .
In the context of this SEM, we propose to use a reciprocal graph, G = {V,E},

to describe a dependence structure among the three-way indicators eij that reflects
a priori knowledge about a pathway. Relationships between genes are captured
via a set of conditional independences over the joint distribution of the classes
ej = (eij , i = 1, . . . , p). This is implemented by structuring the matrix B so that
the off-diagonal element (i, k) is null (βik = 0), if and only if the edge k → i is not
in {E} [Spirtes et al. (1998)]. The resulting concentration matrix � = BT HzB will
have zero off-diagonal elements (ωik = 0) structured compatibly with the Markov
properties encoded in the moral graph Gm = {V,Em} [Koster (1996)]. In sum-
mary, we use the SEM to define a probability model that matches the conditional
independence structure given by G . The coefficients B of the SEM index a family
of probability models that adhere to a given independence structure G , including
an interpretation of the edge directions.

For each gene and sample, the mean mij may be modeled as a linear func-
tion (mij = x′

j bi ) of, say, a design vector xj . This allows for comparisons across
groups. For example, if xj = 1 and −1 for samples under two different biologic
conditions, then the posterior distribution for bi formalizes inference on the differ-
ential expression of gene i under the two conditions, adjusting for the dependence
among the genes.

Finally, the autoregressive scheme in (3) implicitly assumes that genetic inter-
actions are invariant across all the cross-sample biological variation represented in
the study. Relaxing this assumption is important and can be achieved by including
an interaction term relating the covariate or phenotype information in xt with the
neighboring probit scores zkj in (3).

In summary, we assume a mixture model for the observed gene expressions yij .
The noisy data yij is reduced to latent trinary indicators which are used to define
the dependence structure. Because of the nonlinear shrinkage induced by the mix-
ture model, the yij do not come from a multivariate normal, and the patterns of
dependence could be more complex.

2.3. Priors over graphical structures and dependence parameters. We define
a prior probability model for the dependence structure G . In words, the prior
is based on a pathway diagram that summarizes substantive prior information
about the pathway of interest. We interpret the pathway as a reciprocal graph
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G0 = {V,E0} (see example in Section 2.1). The prior on G is defined on the set
of all graphs that can be obtained by deleting edges from G0. More formally, we
define the model space generated by G0 as M(G0) = {G = (V ,E) : E ⊂ E0}. If E0
comprises a total number of K edges, then M(G0) includes D = 2K possible mod-
els.

The definition of the the prior p(G) can be seen as stating joint probabilities
for the multiple hypothesis testing problem implicitly defined by inclusion versus
exclusion of all possible edges. Following the standard Bayesian variable selec-
tion scheme [George and McCulloch (1993), Brown, Vannucci and Fearn (1998),
Dobra et al. (2004)], we can consider edge inclusions as exchangeable Bernoulli
trials with common inclusion probability ϕ. If kG is the number of edges included
in G , it follows that P(G|ϕ) = ϕkG (1 − ϕ)K−kG . When the inclusion probabil-
ity ϕ comes from the Beta family (ϕ ∼ B(aϕ, bϕ)), Scott and Berger (2006) and
Carvalho and Scott (2009) show that this class of prior model probabilities yield
a strong control over the number of “false” edges included in G . The associated
marginal prior on G becomes p(G) = �(κG +aϕ)�(K +bϕ −κG )/�(K +bϕ +κG ).

A key feature of the proposed prior is the restriction to subsets of G0. Inference
under the proposed model populates existing pathways with probabilistic informa-
tion associated with a biological system at a temporal cross section of its dynamic.
The restriction to M(G0) is important to keep MCMC posterior simulation across
the model space practicable. For global searches, without restriction to a focused
set of models, trans–dimensional MCMC becomes impracticable. Local focus does
not preclude some extensions beyond M(G0) to facilitate discovery of previously
unknown interactions. For example, consider an arbitrary graph G , without restric-
tion to M(G0), and let mG denote the number of deleted and added edges relative
to G0. One could replace kG in the prior by mG and allow for graphs beyond G0.
Little would change in the proposed inference. But centering on models close to
G0 is important. See also related comments in Section 6.

Our model is completed defining priors over the nonzero parameters βij ∼
N(0, σ 2

β ) (i, j = 1, . . . , p). This defines a conjugate prior for the normal model (3).
This formulation is derived as a natural characterization of the SEM in (3).

We recognize that assuming full exchangeability over the edges does not make
active use of potential prior information on inter-gene relationships, possibly avail-
able through public data-bases like KEGG or Gene Ontology. We note, however,
that fine scale prior information on individual interactions is easily included in
the proposed inferential framework defining partially exchangeable or indepen-
dent Bernoulli trials with interaction-specific inclusion probabilities, say, ϕij . If
desired, the model can be extended with Beta(aij , cij ) for ϕij , with hyperparam-
eters chosen to reflect interaction summaries perhaps elicited through available
tools like the R package GOSim. These elicitation processes are, however, still the
subject of active research [Fröhlich et al. (2007), Mistry and Pavlidis (2008)]. We
therefore limit our analysis to purely structural priors.
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3. Estimation and inference.

3.1. Model determination via RJ-MCMC. Let θ denote all population param-
eters and unknown quantities directly associated with the sampling model intro-
duced in (1). We implement posterior inference for (θ,B, G ) by setting up posterior
MCMC simulation. We define the current state x = (θ ,B, G) as the complete set of
unknowns and write π(dx) short for the target posterior distribution p(θ ,B, G|Y).

The MCMC is defined by the following transition probabilities: (a) Update the
parameter vector (θ,B); and (b) Update G , ensuring that the proposed graph G′ is
in the set M{G0}. This move usually involves changes to B as well.

The updates in (a) follow the usual Metropolis-within-Gibbs scheme. We sam-
ple components of θ directly from their conditional posterior distributions (Gibbs
sampling details are reported in the Appendix). We update the matrix B by row via
multivariate random-walk Metropolis–Hastings transition probabilities. Let pa(i)

denote the parent nodes of node i in the directed graph G . We define the ith row
of B as βi and propose a new state β ′

i |βpa(i) ∼ N|pa(i)|(βi |βpa(i);V ∗
β,i), where

V ∗
β,i = c(1/s2

i WT
i Wi + 1/σ 2

β I )−1. Here Wi is an (n × |pa(i)|) design matrix in-
cluding all mean adjusted probit scores for parents of gene i and c is a Metropolis–
Hastings tuning parameter. For each row, this proposal scheme changes B to B′,
defining a local approximation of a reciprocal graph by a directed acyclical graph.
Letting Z̃ denote a p × n matrix of mean-adjusted probit scores, the proposed
transition is accepted with probability

R(B,B′) = min
{

1; |B′|n
|B|n etr

[
−1

2
Z̃T (B′ − B)T Hz(B′ − B)Z̃

]}
.

Some care is needed for the updates in (b), as they involve adding or deleting an
edge in G , therefore changing the dimension of the parameter space. We implement
a reversible jumps MCMC (RJ) [Green (1995)]:

(i) Draw an edge (k → i) at random from E0. If in the current state G , (k →
i) /∈ E, propose the birth of the new edge k → i. If (k → i) ∈ E, propose the death
of k → i.

(ii) If we propose the birth k → i, the structural matrix B gets populated with a
new element β ′

ik = u, where u ∼ q(u). If we propose the death of edge k → i, we
simply set β ′

ik = 0.

Steps (i) and (ii) generate a candidate x′ = (B′, G′). Let m = index the move pro-
posed in step (i), and let m′ index the reverse move. The acceptance probability is
[Green (1995)]

R(x, x′) = min
{

1,
π(dx′)
π(dx)

q(m′|x′)
q(m|x)q(u)

}
,(6)

where q(m|x) is the probability of proposing move m when the chain is in state x,
and q(u) is the density function of u. In general, R(x, x′) might include an addi-
tional factor involving the Jacobian of a possible (deterministic) transformation of
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(x, u) to define x′. The described RJ involves no such transformation. The move m

is generated in step (i) by a uniform draw from E0, implying q(m|x) = q(m′|x′).
Finally, q(u) is the proposal p.d.f. The acceptance probability of a birth Rb is then
defined as

Rb = min
{

1; p(x′|Y)

p(x|Y)
q(u)−1

}

= min
{

1; |B′|n
|B|n etr

[
−1

2
Z̃T (B′ − B)T Hz(B′ − B)Z̃

]
ϕ

(1 − ϕ)q(u)

}
.

Even though nonsingular matrices define a dense open set in R
p , if the proposed

element β ′
ik of B′ defines a a numerically singular matrix, � will not be positive

definite and we reject move m′ setting Rb to zero. Given this sampling scheme,
the probability of a deletion is simply defined as Rd = 1/Rb, with the roles of x′
and x as currently imputed and proposed state reversed.

3.2. Graphical model selection. The posterior probability p(G,B|Y) and the
corresponding MCMC posterior simulation characterize our knowledge about the
pathway in the light of the data. Based on this posterior probability, we may be
interested in selecting a representative graph G . The posterior only summarizes
the evidence for each G . It does not yet tell us which G s we should finally report.

This model selection problem has been discussed by different authors. Drton
and Perlman (2007) discuss graphical model selection from the frequentist per-
spective, under the assumption that n ≥ p + 1, while Jones et al. (2005) or
Meinshausen and Bühlmann (2006) describe selection techniques for problems
where the sample size n is small when compared to the number of variables p.
From a Bayesian perspective, Carvalho and Scott (2009) provide a comprehensive
discussion of Objective Bayesian model selection in Gaussian Graphical Models.

In the context of the model described in Section 2, graphical model selection can
be defined by removing elements (k → i) ∈ E0 specified by the prior graph G0 =
{V,E0}. This is equivalent to the vanishing of the structural parameters βik in the
matrix B, characterizing the joint distribution of latent probit scores Z [Ronning
and Kukuk (1996)]. If the edge set E0 has size |E0| = Q, graphical model selection
involves testing Q hypothesis

H 0
q : β(q) = 0 vs. H 1

q : β(q) 	= 0 for q = 1, . . . ,Q.

When testing a large number of hypotheses it is important to address possible mul-
tiplicity problems by controlling some predefined error rate. A popular choice is to
control the False Discovery Rate (FDR) [Benjamini and Hochberg (1995)]. Several
authors [Carvalho and Scott (2009), Scott and Carvalho (2008), Scott and Berger
(2006)] consider the shrinkage prior defined in Section 3.1 and report how in-
cluding edges with inclusion probability P(βik 	= 0) > 0.5 (median model) yields
strong control over the number of false positives.
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4. Simulation study. We validate and illustrate the proposed method with a
simulation study with p = 50 genes from n = 30 samples. We define Y as the
(p × n) matrix of simulated mRNA intensities and consider a balanced design
where 15 columns of Y are from “normal” samples and 15 columns of Y are
associated with “tumor” samples. Thus, xij = (1,0)′ if yij is a normal sample and
xij = (1,1)′ if yij is a tumor sample.

We generate simulated data Y as follows. Given a set of latent scores W ∼
M N (0,�z, IT ), where �z = �−1

z encodes a known conditional dependence
structure, and covariate effects bi ∼ N2(mi ,σ

2
bI2), we define zij = wij + x′

ij bi .
We then generate the intensity matrix Y from a three-way mixture of Gaussian
distributions:

yij |zij ≤ −1 ∼ N(−4,22),

yij |zij > 3 ∼ N(4,22),(7)

yij | − 1 < zij ≤ 3 ∼ N(0,1).

The precision matrix �z is defined as follows. First we obtain the p × p matrix B
by defining γij =d Ga(2,1), cij = {−1,1} with P(cij = 1) = 0.5 and δ0 a Dirac
mass at 0, so that Bii = 1 (for i = 1, . . . , p), and the off-diagonal elements Bij =
π0δ0 + (1 −π0)cij γij . The simulation truth is deliberately chosen differently from
the assumed analysis model (1).

We then generate �z by rescaling B′B to a correlation matrix. The simulation
model (7) is deliberately different from the assumed analysis model, but still in-
cludes a meaningful notion of true dependence structure and strength.

We use a prior Graph G0 = {V,E0} spanned by the set of edges E = E∗ ∪ Ẽ,
with E∗ spanning the simulation truth of nonzero elements in Bij (in our example
|E∗| = 50) and Ẽ serving as a random mispecification set including false edges (in
our example |Ẽ| = 87).

In Figure 3 we display the classification results for the expression measurements
generated under the dependence schemes just described. We calculated posterior
probabilities of over- and under-expression from 50,000 posterior samples (thinned
by 10), obtained after conservatively discarding 50,000 iterations. Our C++ imple-
mentation of the algorithm, described in Section 3.1, performed this simulation in
about 6 hours on a standard desktop (2.94 GHz processor).

Figure 3 (left panel) shows the simulation truths as indicators (eij ) of over-
(white), normal- (grey) and under-expression (black). The right panel reports a
unidimensional summary of the probabilities of over- or under-expression (p∗

ij =
π+

ij −π−
ij ). The elements p∗

ij are defined in the [−1,1] scale and may be compared
directly with the three-way indicators egt . We note that the p∗ scale provides im-
proved resolution over genes with signal and recovers well the generating truth.

Posterior inference includes a posterior distribution on the dependence struc-
ture. In Figure 4 (left panel) we report the number of edges included in the
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FIG. 2. Complement and coagulation cascades pathway [Wang, Wang and Kavanagh (2005)].

model by MCMC iteration, for two chains starting at opposite sides of the model
saturation spectrum. Despite the size of the mispecification set Ẽ, the trans-
dimensional Markov chains converge fairly rapidly toward models of size com-
parable to |E∗| = 50. In the same figure, marginalizing over all possible graphs
M{G0}, we report the posterior expected SEM coefficients E(βik|Y) and the edge
inclusion probabilities P(βik 	= 0|Y) (right panel). In this plot, we report the false

FIG. 3. Simulation study: (Left panel) Simulation signal eij . (Central panel) Simulated mRNA
abundance yij . (Right panel) DepPOE estimate of p∗

ij .
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FIG. 4. Simulation study: (Left panel) Number of edges included in the model by MCMC iteration,
for two chains with starting points at the two extremes of the saturation spectrum. (Right panel)
Posterior expected SEM coefficients E(βik |Y) vs. posterior inclusion probabilities P(βik 	= 0). False
edges are represented with a solid circle.

edges as solid circles. Most solid circles lie in the area below an inclusion prob-
ability of 0.5. This shows how the adopted probability scheme not only penalizes
for model complexity, but effectively controls the number of false discoveries, al-
lowing for a genuine recovery of the generating conditional dependence structure.

In our simulation experiments we found that selecting edges with posterior
inclusion probabilities greater than 0.5 tends to control the false discovery rate
at level 0.01. We compared our model to the (independence) PoE model of
Parmigiani et al. (2002) and found that including network inference as a new in-
ferential goal does not diminish the classification accuracy of under- and over-
expressed samples. For details see the Web-based supplement [Telesca et al.
(2011)]. Furthermore, comparison with standard global search algorithms based on
dynamic shrinkage of partial correlation estimates point to substantial inferential
gains associated with the proposed methodology (see Web-based supplementary
material, Section 3).

5. Case study. Wang, Wang and Kavanagh (2005) report a study of epithe-
lial ovarian cancer (EOC). The goal of the study is to characterize the role of
the tumor microenvironment in favoring the intra-peritoneal spread of EOC. To
this end, the investigators collected tissue samples from patients with benign (b)
and malignant (m) ovarian pathology. Specimens were collected, among other
sites, from peritoneum adjacent to the primary tumor. RNA was co-hybridized
with reference RNA to a custom made cDNA microarray including combina-
tion of the Research genetics RG_HsKG_031901 8k clone set and 9000 clones
selected from RG_Hs_seq_ver_070700. A complete list of genes is available at
http://nciarray.nci.nih.gov/gal_files/index.shtml, “custom printings.” See the array
labeled Hs_CCDTM–17.5k–1px.

In the following discussion we focus on the comparison of 10 peritoneal sam-
ples from patients with benign ovarian pathology (bPT) versus 14 samples from

http://nciarray.nci.nih.gov/gal_files/index.shtml
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patients with malignant ovarian pathology (mPT). The raw data was processed us-
ing BRB ArrayTool (http://linus.nci.nih.gov/BRB-ArrayTools.html). In particular,
spots with minimum intensity less than 300 in both fluorescence channels were ex-
cluded from further analysis. See Wang, Wang and Kavanagh (2005) for a detailed
description.

One subset of genes reported on the NIH custom microarray are 61 genes in the
coagulation and complement pathway from KEGG (http://www.genome.ad.jp),
shown in Figure 2. Genes on this pathway are of interest for their role in the in-
flammatory process. The arches in the pathway are interpreted as prior judgement
about (approximate) conditional dependence (Section 2.1). However, recognizing
that the pathway represents a protein system rather than gene expression, we allow
for significant deviation from this structure, explicitly including model determina-
tion in our analysis.

We fit the model presented in Section 2 to this set of 61 genes. The prior set
of conditional dependences between genes is represented as a reciprocal graph in
Figure 2 and includes a set of 148 possible edges. Reported inference is based on
50,000 MCMC samples, thinned by 10, after discarding 50,000 observation for
burn–in.

Recording the number of times the sampler visits a particular edge, we calcu-
late the posterior probability vik = P(βik|Y), for each edge (k → i) in the prior
graph G0. In Figure 5 (Panel b) we show the set of selected genetic interactions
when we consider edges with inclusion probabilities greater than 0.5 (median
model). Edge directionality is inherited from G0 (Figure 2).

The posterior distribution on eg provides inference on differential expression,
appropriately adjusted for dependence. Starting from the Complement and Co-
agulation Cascade pathway, we identify a set of 24 genes exhibiting patterns of
dependence in their differential expression profiles across healthy and tumor tis-
sues.

To interpret our findings, we searched the scientific literature using the Informa-
tion Hyperlinked Over Protein (IHOP) tool implemented by Hoffman [Hoffman
and Valencia (2004)], available at: www.ihop-net.org. For example, our study
confirms the centrality of the peptide IL8 (Inteleukin-8) in the regulation of the
chemokine (CXC and CC motifs) genes. The protein encoded by this gene has been
reported by several authors to play an important role in the response to inflamma-
tory stimuli, resistance to apoptosis and tumoral angiogenesis. See Terranova and
Rice (1997) or Brat, Bellail and Erwin (2005) for comprehensive discussions on
IL8 and its receptors. One other example is the finding of dependent expression
profiles associated with the Thrombine pathway (F2 → F2R and F2 → THBD).
This pathway plays a central role in the coagulation cascade and has been reported
as a potential mediator of cellular function in the ovarian follicle [Roach et al.
(2002)].

http://linus.nci.nih.gov/BRB-ArrayTools.html
http://www.genome.ad.jp
http://www.ihop-net.org/UniPub/iHOP/
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(a)

(b)

FIG. 5. Case study. Panel (a): Posterior mean degree and associated 95% credible intervals by
gene. Panel (b): Posterior pathway obtained selecting edges with inclusion probabilities greater than
0.5 (Median model).

Posterior edge inclusion probabilities allow for the calculation of networks’
summaries at the gene level, which summarize the role played by individual genes
in the prior pathway. In Figure 5 (Panel a), we report the posterior distribution of
the degree of the node associated with each gene. This quantity is simply defined as
di = p(|ne(i)||Y), the posterior distribution of the number of neighbors associated
with each gene. This measure is often used in social science as a way to summarize
an individual’s centrality in a relational network [Sabidussi (1966)]. From a molec-
ular biology perspective, genes with a high degree may be interpreted as playing
active roles in the regulation of the pathway under study, in association with the
biological process of interest. Our analysis of the degree distribution in Figure 5
(Panel a) confirms what we observe in the selected posterior set of genetic interac-
tions (Panel b) and identifies important active components of the complement and



556 TELESCA, MÜLLER, PARMIGIANI AND FREEDMAN

coagulation pathway. For example, we confirm the central role of C3-convertase
in the promotion and progression of malignant ovarian cancer in humans, often re-
ported as a key activation component in mouse studies [Markiewski and Lambris
(2009)].

6. Discussion. We propose a probability model for the analysis of dependent
gene expression data. Dependence between genes is modeled via the explicit con-
sideration of prior information from pathways representing known biochemical
processes. We characterize a biochemical pathway as a reciprocal graph depicting
a coherent set of conditional dependence relationships between three-way classes
of gene under-, normal- and over-expression. Modeling dependence between la-
tent indicators of class membership is likely to represent a more sensible approach
for this kind of data, when compared with methods that model correlations be-
tween observables directly. Acknowledging that a known pathway represents only
prior information, we seek posterior inference for the model parameters as well as
for the pathway itself via an RJ-MCMC scheme. We showed, through simulation
studies, that our model enables the recovery of the true dependence structure, even
under a misspecified prior pathway.

Our model of mRNA abundance relies on the Probability of Expression (POE)
Model of Parmigiani et al. (2002), and assumes that the variability of expression
across tissue samples can be fully characterized by heavy tailed mixtures of Nor-
mal and Uniform random variables. While this is a simplification of reality, it con-
tributes to denoising data and is likely to provide useful summaries, allowing for
the investigation of the many aspects associated with expression data analysis,
from data normalization, to DE analysis, to the characterization of molecular pro-
files. The general framework presented in this article is also adaptable to other
models of gene expression analysis.

In the construction of the dependent probability model, it is important to ac-
knowledge the limitations of the information provided in a biochemical network.
In fact, a pathway may not necessarily describe relations among transcript lev-
els, although it carries some information about it. The proposed methodology is
currently restricted to known biochemical pathways. Nevertheless, structural re-
strictions to one or more pathways of interest substantially simplifies computa-
tional tractability. The proposed model complexity is, in fact, only linear in the
number of genes and interactions included in the prior graph. In our simula-
tion example this provided substantially higher power in the detection of mean-
ingful interactions, when compared to standard global search strategies. Com-
putational scalability of the proposed methodology could, however, be an issue,
when considering highly saturated pathways including a large number of genes.
In these cases, methods based on simplifying assumptions and approximate infer-
ence may indeed prove more feasible as exploratory analytical tools [Dobra et al.
(2004)].



MODELING DEPENDENT GENE EXPRESSION 557

Our model could be extended to discover novel genetic interactions, by allow-
ing the adding of new edges between nodes in the prior graph G0. This extension
would, however, come at a substantial computational cost and would require a
challenging reformulation of the prior over graphs p(G), to penalize for model
complexity and, at the same time, to favor models closer to the structure of the
prior pathway G0. Initial progress in this direction was reported by Braun, Cope
and Parmigiani (2008) and, in the context of Bayesian Networks, by Mukherjee
and Speed (2008) and it is the subject of active research.

In this article we model dependence between three-way variables as depen-
dence between latent Gaussian quantities. This probability scheme is only a con-
venient restriction on the possible shapes of dependence characterizing a matrix
of ordinal random variables. Extensions of our model considering a richer class
of dependence structures are, in principle, appealing. However, these changes
would require a higher level of complexity and possible ad hock limitations
on the clique size contributing to the joint distribution of the three-way indica-
tors.

APPENDIX: FULL CONDITIONAL DISTRIBUTIONS

Sample-specific means αt . From Section 2.2 we have that p(αj |τ 2
α) ∝ exp{−α2

j /

(2τ 2
α)}. Using standard conjugate analysis, it is easy to show that αj |Yj , θ\αj

∼
N(α∗

j , v∗
αj )I (l∗j < αj < u∗

j ), where v∗
αj = {τ−2

α + ∑
i σ

−2
g I (eij = 0)}−1, α∗

j =
v∗
αj

∑
i{(yij − μi)/σ

2
i I (eij = 0)}, l∗j = max{g:eij=1}(yij − μi − k+

i ) and u∗
j =

min{i:eij=−1}(yij − μi + k−
i ).

Gene-specific means μi . From Section 2.2 we have that p(μi |mμ, τ 2
μ) ∝

exp{−(μ2
i − 2mμμi)/(2τ 2

μ)}. Using standard conjugate analysis, it is easy to show

that μi |Yi , θ\μi
∼ N(μ∗

i , v
∗
i )I (l∗i < μi < u∗

i ), where v∗
i = {τ−2

μ +σ−2
i

∑
j I (eij =

0)}−1, μ∗
i = v∗

i {mμ/τ 2
μ +σ−2

i

∑
j (yij −αj )I (eij=0)}, l∗i = max{j :eij=1}(yij −αj −

k+
i ) and u∗

i = min{j :eij=−1}(yij − αj + k−
i ).

Gene-specific variances σ 2
i . We introduced a conditionally conjugate Inverse

Gamma prior for σ 2
i in Section 2.2. For ease of notation we define hi = 1/σ 2

i , and
n0i = ∑

j I (eij = 0). It is easy to verify that hi |Yi , θ\hi
∼ Gamma(a∗

i , b∗
i )I {hi ≥

(κ0/min(k−
i , k+

i ))2}, where a∗
i = γσ + n0i/2 and b∗

i = λσ + ∑
j I (eij = 0)(yij −

μi − αj )
2/2.

Uniform bounds k−
i and k+

i . For ease of notation we define νi0 = 1/k−
i and

νi1 = 1/k+
i . We have p(νi�) ∝ ν

γk−1
i� e−λkνg� , (� = 0,1). The conditional posterior

distribution of these parameters is defined as νi�|Yi , θ\νi�
∼ Gamma(a∗

i�, b
∗
i�) ×

I (Si�), where a∗
i� = γk + ∑

j I (eij = 2� − 1), b∗
i� = λk and Si� = {νi� : νi� ≤

min[min{j :eij=2�−1}(yij − μi − αj ), (κ0σi)
−1]}.
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Probit score precisions 1/s2
i . For ease of notation we define hsi = 1/s2

i . Taking
advantage of conditional conjugacy with the distribution of probit scores, we define
p(hsi |as, bs) ∝ h

as−1
si exp{−bshsi}. Let z̃ij = zij − mij − ∑

k 	=i βik(zkj − mkj )
′. It

is easy to show that the conditional posterior density of hsi is then Gamma with
p(hsi |Yi , θ\hsi

) ∝ h
n/2+as−1
si exp{−hsi

∑
j (z̃

2
ij )/2}.

SUPPLEMENTARY MATERIAL

Convergence diagnostics and model comparisons (DOI: 10.1214/11-
AOAS525SUPP; .pdf). We provide an extended discussion of some aspects as-
sociated with the proposed model. In particular, we compare our results to the PoE
model of Parmigiani et al. (2002) as well as some current methods used to infer
networks.
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