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BAYESIAN MODELING LONGITUDINAL DYADIC DATA WITH
NONIGNORABLE DROPOUT, WITH APPLICATION TO A BREAST

CANCER STUDY

BY GUANGYU ZHANG AND YING YUAN1

University of Maryland and University of Texas MD Anderson Cancer Center

Dyadic data are common in the social and behavioral sciences, in
which members of dyads are correlated due to the interdependence struc-
ture within dyads. The analysis of longitudinal dyadic data becomes complex
when nonignorable dropouts occur. We propose a fully Bayesian selection-
model-based approach to analyze longitudinal dyadic data with nonignorable
dropouts. We model repeated measures on subjects by a transition model and
account for within-dyad correlations by random effects. In the model, we al-
low subject’s outcome to depend on his/her own characteristics and measure
history, as well as those of the other member in the dyad. We further ac-
count for the nonignorable missing data mechanism using a selection model
in which the probability of dropout depends on the missing outcome. We
propose a Gibbs sampler algorithm to fit the model. Simulation studies show
that the proposed method effectively addresses the problem of nonignorable
dropouts. We illustrate our methodology using a longitudinal breast cancer
study.

1. Introduction. Dyadic data are common in psychosocial and behavioral
studies [Kenny, Kashy and Cook (2006)]. Many social phenomena, such as dating
and marital relationships, are interpersonal by definition, and, as a result, related
observations do not refer to a single person but rather to both persons involved
in the dyadic relationship. Members of dyads often influence each other’s cogni-
tions, emotions and behaviors, which leads to interdependence in a relationship.
For example, a husband’s (or wife’s) drinking behavior may lead to lowered mari-
tal satisfaction for the wife (or husband). A consequence of interdependence is that
observations of the two individuals are correlated. For example, the marital satis-
faction scores of husbands and wives tend to be positively correlated. One of the
primary objectives of relationship research is to understand the interdependence of
individuals within dyads and how the attributes and behaviors of one dyad member
impact the outcome of the other dyad member.

In many studies, dyadic outcomes are measured over time, resulting in longitu-
dinal dyadic data. Repeatedly measuring dyads brings in two complications. First,
in addition to the within-dyad correlation, repeated measures on each subject are

Received January 2011; revised September 2011.
1Supported in part by National Cancer Institute Grant R01CA154591.
Key words and phrases. Dyadic data, missing data, nonignorable dropout, selection model.

753

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/11-AOAS515
http://www.imstat.org


754 G. ZHANG AND Y. YUAN

also correlated, that is, within-subject correlation. When analyzing longitudinal
dyadic data, it is important to account for these two types of correlations simulta-
neously; otherwise, the analysis results may be invalid. The second complication
is that longitudinal dyadic data are prone to the missing data problem caused by
dropout, whereby subjects are lost to follow-up and their responses are not ob-
served thereafter. In psychosocial dyadic studies, the dropouts are often nonignor-
able or informative in the sense that the dropout depends on missing values. In the
presence of the nonignorable dropouts, conventional statistical methods may be
invalid and lead to severely biased estimates [Little and Rubin (2002)].

There is extensive literature on statistical modeling of nonignorable dropouts in
longitudinal studies. Based on different factorizations of the likelihood of the out-
come process and the dropout process, Little (1995) identified two broad classes of
likelihood-based nonignorable models: selection models [Wu and Carroll (1988);
Diggle and Kenward (1994); Follman and Wu (1995); Glynn, Laird and Ru-
bin (1986)] and pattern mixture models [Wu and Bailey (1989); Little (1993,
1994); Hogan and Laird (1997); Roy (2003); Hogan, Lin and Herman (2004)].
Other likelihood-based approaches that do not directly belong to this classifica-
tion have also been proposed in the literature, for example, the mixed-effects
hybrid model by Yuan and Little (2009) and a class of nonignorable models by
Tsonaka et al. (2010). Another general approach for dealing with nonignorable
dropouts is based on estimation equations and includes Robins, Rotnitzky and
Zhao (1995), Rotnitzky, Robins and Scharfstein (1998), Scharfstein, Rotnitzky and
Robins (1999) and Farewell (2010). Recent reviews of methods handling nonig-
norable dropouts in longitudinal data can be found in Verbeke and Molenberghs
(2000), Molenberghs and Kenward (2007), Little (2009), Ibrahim and Molen-
berghs (2009) and Daniels and Hogan (2008). In spite of the rich body of literature
noted above, to the best of our knowledge, the nonignorable dropout problem has
not been addressed in the context of longitudinal dyadic data. The interdependence
structure within dyads brings new challenges to this missing data problem. For ex-
ample, within dyads, one member’s outcome often depends on his/her covariates,
as well as the other member’s outcome and covariates. Thus, the dropout of the
other member in the dyad causes not only a missing (outcome) data problem for
that member, but also a missing (covariate) data problem for the member who
remains in the study.

We propose a fully Bayesian approach to deal with longitudinal dyadic data
with nonignorable dropouts based on a selection model. Specifically, we model
each subject’s longitudinal measurement process using a transition model, which
includes both the patient’s and spouse’s characteristics as covariates in order to
capture the interdependence between patients and their spouses. We account for
the within-dyad correlation by introducing dyad-specific random effects into the
transition model. To accommodate the nonignorable dropouts, we take the selec-
tion model approach by directly modeling the relationship between the dropout
process and missing outcomes using a discrete time survival model.
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The remainder of the article is organized as follows. In Section 2 we describe
our motivating data collected from a longitudinal dyadic breast cancer study. In
Section 3 we propose a Bayesian selection-model-based approach for longitudi-
nal dyad data with informative nonresponse, and provide estimation procedures
using a Gibbs sampler in Section 4. In Section 5 we present simulation studies
to evaluate the performance of the proposed method. In Section 6 we illustrate
our method by analyzing a breast cancer data set and we provide conclusions in
Section 7.

2. A motivating example. Our research is motivated by a single-arm dyadic
study focusing on physiological and psychosocial aspects of pain among pa-
tients with breast cancer and their spouses [Badr et al. (2010)]. For individuals
with breast cancer, spouses are most commonly reported as being the primary
sources of support [Kilpatrick et al. (1998)], and spousal support is associated with
lower emotional distress and depressive symptoms in these patients [Roberts et al.
(1994)]. One specific aim of the study is to characterize the depression experience
due to metastatic breast cancer from both patients’ and spouses’ perspectives, and
examine the dyadic interaction and interdependence of patients and spouses over
time regarding their depression. The results will be used to guide the design of
an efficient prevention program to decrease depression among patients. For ex-
ample, conventional prevention programs typically apply interventions to patients
directly. However, if we find that the patient’s depression depends on both her
own and spouse’s previous depression history and chronic pain, when designing
a prevention program to improve the depression management and pain relief, we
may achieve better outcomes by targeting both patients and spouses simultane-
ously rather than targeting patients only. In this study, female patients who had
initiated metastatic breast cancer treatment were approached by the project staff.
Patients meeting the eligibility criteria (e.g., speak English, experience pain due
to the breast cancer, having a male spouse or significant other, be able to carry
on pre-disease performance, be able to provide informed consent) were asked to
participate the study on a voluntary basis. The participation of the study would not
affect their treatment in any way.

Depression in patients and spouse was measured at three time points (base-
line, 3 months and 6 months) using the Center for Epidemiologic Studies De-
pression Scale (CESD) questionnaires. However, a substantial number of dropouts
occurred. Baseline CESD measurements were collected from 191 couples; how-
ever, at 3 months, 101 couples (105 patients and 107 spouses) completed ques-
tionnaires, and at 6 months, 73 couples (76 patients and 79 spouses) completed
questionnaires. The missingness of the CESD measurements is likely related to
the current depression levels of the patients or spouses, thus an nonignorable miss-
ing data mechanism is assumed for this study. Consequently, it is important to
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account for the nonignorable dropouts in this data analysis; otherwise, the results
may be biased, as we will show in Section 6.

3. Models. Consider a longitudinal dyadic study designed to collect J re-
peated measurements of a response Y and a vector of covariates X for each of
n dyads. Let Ykij , Xkij and Hkij = (yki,j−1, . . . , yki1)

T denote the outcome, p × 1
covariate vector and outcome history, respectively, for the member k of dyad i at
the j th measurement time with k = 1,2; i = 1, . . . , n; j = 1, . . . , J . We assume
that X is fully observed (e.g., is external or fixed by study design), but Y is sub-
ject to missingness due to dropout. The random variable Dki , taking values from
2 to J + 1, indicates the time the member k of the ith dyad drops out, where
Dki = J + 1 if the subject completes the study, and Dki = j if the subject drops
out between the (j − 1)th and j th measurement time, that is, {yki1, . . . , yki,j−1}
are observed and {ykij , . . . , ykiJ } are missing. We assume at least 1 observation
for each subject, as subjects without any observations have no information and are
often excluded from the analysis.

When modeling longitudinal dyadic data, we need to consider two types of
correlations: the within-subject correlation due to repeated measures on a subject,
and the within-dyad correlation due to the dyadic structure. We account for the
first type of correlation by a transition model, and the second type of correlation
by dyad-specific random effects bi , as follows:

Y1ij |bi = bi + α1 + HT
1ijβ1 + HT

2ijγ 1 + XT
1ij β̃1 + XT

2ij γ̃ 1 + e1ij ,

Y2ij |bi = bi + α2 + HT
2ijβ2 + HT

1ijγ 2 + XT
2ij β̃2 + XT

1ij γ̃ 2 + e2ij ,(3.1)

bi ∼ N(0, τ 2
b ).

Regression parameters in this random-effects transition model have intuitive inter-
pretations similar to those of the actor–partner interdependence model, a concep-
tual framework proposed by Cook and Kenny (2005) to study dyadic relationships
in the social sciences and behavior research fields. Specifically, β̃1 and β1 repre-
sent the “actor” effects of the patient, which indicate how the covariates and the
outcome history of the patient (i.e., X1ij and H1ij ) affect her own current outcome,
whereas γ̃ 1 and γ 1 represent the “partner” effects for the patient, which indicate
how the covariates and the outcome history of the spouse (i.e., X2ij and H2ij ) af-
fect the outcome of the patient. Similarly, β̃2 and β2 characterize the actor effects
and γ̃ 2 and γ 2 characterize the partner effects for the spouse of the patient. Es-
timates of the actor and partner effects provide important information about the
interdependence within dyads. We assume that residuals e1ij and e2ij are inde-
pendent and follow normal distributions N(0, σ 2

1 ) and N(0, σ 2
2 ), respectively; and

e1ij and e2ij are independent of random effects bi ’s. The parameters α1 and α2 are
intercepts for the patients and spouses, respectively.
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In many situations, the conditional distribution of Ykij given Hkij and Xkij de-
pends only on the q prior outcomes yki,j−1, . . . , yki,j−q and Xkij . If this is the
case, we obtain the so-called qth-order transition model, a type of transition model
that is most useful in practice [Diggle et al. (2002)]. The choice of the model order
q depends on subject matters. In many applications, it is often reasonable to set
q = 1 when the current outcome depends on only the last observed previous out-
come, leading to commonly used Markov models. The likelihood ratio test can be
used to assess whether a specific value of q is appropriate [Kalbfleisch and Law-
less (1985)]. Auto-correlation analysis of the outcome history also can provide
useful information to determine the value of q [Gottman (1981); Kendall and Ord
(1990)].

Define Yki = (Yki1, . . . , Ykidki
) and Xki = (Xki1, . . . ,Xkidki

) for k = 1,2. Given
{X1i ,X2i} and the random effect bi , the joint log likelihood of (Y1i ,Y2i) for the
ith dyad under the qth-order (random-effects) transition model is given by

�i(Y1i ,Y2i |X1i ,X2i , bi)

=
d1i∑

j=q+1

�ij (Y1ij |X1ij ,X2ij ,H1ij ,H2ij , bi) + �i(Y1i1, . . . , Y1iq |X1i ,X2i)

+
d2i∑

j=q+1

�ij (Y2ij |X1ij ,X2ij ,H1ij ,H2ij , bi) + �i(Y2i1, . . . , Y2iq |X1i ,X2i),

where �ij (Ykij |X1ij ,X2ij ,H1ij ,H2ij , bi) is the likelihood corresponding to model
(3.1), and �i(Yki1, . . . , Y1iq |X1i ,X2i) is assumed free of ηk = (αk,βk, β̃k,γ k, γ̃ k),
for k = 1,2.

An important feature of model (3.1) that distinguishes it from the standard tran-
sition model is that the current value of the outcome Y depends on not only the
subject’s outcome history, but also the spouse’s outcome history. Such a “partner”
effect is of particular interest in dyadic studies because it reflects the interdepen-
dence between the patients and spouses. This interdependence within dyads also
makes the missing data problem more challenging. Consider a dyad consisting of
subjects A and B and that B drops out prematurely. Because the outcome history
of B is used as a covariate in the transition model of A, when B drops out, we
face not only the missing outcome (for B) but also missing covariates (for A). We
address this dual missing data problem using the data augmentation approach, as
described in Section 4.

To account for nonignorable dropouts, we employ the discrete time survival
model [Agresti (2002)] to jointly model the missing data mechanism. Specifi-
cally, we assume that the distribution of Dki depends on both the past history
of the longitudinal process and the current outcome Ykij , but not on future obser-
vations. Define the discrete hazard rate λkij (Hkij , Ykij ,Xkij ) = Pr(Dki = j |Dki >

j − 1,Hkij , Ykij ,Xkij ). It follows that the probability of dropout for the member



758 G. ZHANG AND Y. YUAN

k in the ith dyad is given by

Pr(Dki = d|Hkij , Ykij ,Xkij )

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d−1∏
j=2

{1 − λkij (Hkij , Ykij ,Xkij )}λkid(Hkid, Ykid,Xkid), if d ≤ J ,

J∏
j=2

{1 − λkij (Hkij , Ykij Xkij )}, if d = J + 1.

We specify the discrete hazard rate λkij (Hkij , Ykij ,Xkij ) using the logistic re-
gression model:

Logit(λ1ij (H1ij , Y1ij ,X1ij )) = ci + ξ1 + XT
1ijψ1 + HT

1ijδ1 + φ1Y1ij ,

Logit(λ2ij (H2ij , Y2ij ,X2ij )) = ci + ξ2 + XT
2ijψ2 + HT

2ijδ2 + φ2Y2ij ,(3.2)

ci ∼ N(0, τ 2
c ),

where ci is the random effect accounting for the within-dyadic correlation, and
ξk,ψk, δk and φk, k = 1,2, are unknown parameters. In this dropout model, we
assume that, conditioning on the random effects, a subject’s covariates, past his-
tory and current (unobserved) outcome, the dropout probability of this subject is
independent of the characteristics and outcomes of the other member in the dyad.
The spouse may indirectly affect the dropout rate of the patient through influencing
the patient’s depression status; however, when conditional on the patient’s depres-
sion score, the dropout of the patient does not depend on her spouse’s depression
score.

In practice, we often expect that, given Ykij and Yki,j−1, the conditional de-
pendence of Dki on Yki,j−2, . . . , Yki,1 will be negligible because, temporally, the
patient’s (current) decision of dropout is mostly driven by his (or her) current and
the most recent outcome statuses. Using the breast cancer study as an example, we
do not expect that the early history of depression plays an important role for the
patient’s current decision of dropout; instead, the patient drops out typically be-
cause she is currently experiencing or most recently experienced high depression.
The early history may influence the dropout but mainly through its effects on the
current depression status. Once conditioning on the current and the most recent
depression statuses, the influence from the early history is essentially negligible.
Thus, we use a simpler form of the discrete hazard model

Logit(λkij (Hkij , Ykij ,Xkij )) = ci + ξk + XT
kijψk + δkYki,j−1 + φkYkij ,

k = 1,2.
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4. Estimation. Under the Bayesian paradigm, we assign the following vague
priors to the unknown parameters and fit the proposed model using a Gibbs sam-
pler:

αk,βk, β̃k,γ k, γ̃ k, ξk,ψk, δk and φk ∼ constant, k = 1,2;
σ 2

k ∼ IG(a, b), k = 1,2;
τ 2
b ∼ IG(a, b);

τ 2
c ∼ IG(a, b);

where IG(a, b) denote an inverse gamma distribution with a shape parameter a and
a scale parameter b. We set a and b at smaller values, such as 0.1, so that the data
dominate the prior information. Let yobs and ymis denote the observed and missing
part of the data, respectively. Considering the kth iteration of the Gibbs sampler,
the first step of the iteration is “data augmentation” [Tanner and Wong (1987)],
in which the missing data ymis are generated from their full conditional distribu-
tions. Without loss of generality, suppose for the ith dyad, member 2 drops out
of the study no later than member 1, that is, d1i ≥ d2i , and let di = max(d1i , d2i).
Assuming a first-order (q = 1) transition model (or Markov model) and letting θ
denote a generic symbol that represents the values of all other model parameters,
the data augmentation consists of the following 3 steps:

(1) For j = d2i , . . . , di − 1, draw y2ij from the conditional distribution

y2ij |yobs, θ ∝ N

(
σ−2

2 μ∗
1 + β2σ

−2
2 μ∗

2 + γ1σ
−2
1 μ∗

3

σ−2
2 + β2

2σ−2
2 + γ 2

1 σ−2
1

,
1

σ−2
2 + β2

2σ−2
2 + γ 2

1 σ−2
1

)

× λ2id2i
(H2id2i

, y2id2i
,X2id2i

)I (j=d2i ),

where

μ∗
1 = bi + β2y2i,j−1 + γ2y1i,j−1 + α2 + XT

2ij β̃2 + XT
1ij γ̃ 2,

μ∗
2 = y2i,j+1 − bi − γ2y1ij − α2 − XT

2i,j+1β̃2 − XT
1i,j+1γ̃ 2,

μ∗
3 = y1i,j+1 − bi − β1y1ij − α1 − XT

1i,j+1β̃1 − XT
2i,j+1γ̃ 1.

(2) Draw y2i,di
from the conditional distribution

y2i,di
|yobs, θ ∼ N(bi + y2i,di−1β2 + y1i,di−1γ2 + α2 + XT

2idi
β̃2 + XT

1idi
γ̃ 2, σ

2
2 ).

(3) Draw y1i,di
from the conditional distribution

y1i,di
|yobs, θ ∝ N(bi + y1i,di−1β1 + y2i,di−1γ1 + α1 + XT

1idi
β̃1 + XT

2idi
γ̃ 1, σ

2
1 )

×λ1id1i
(H1idi

, y1idi
,X1idi

).

Now, with the augmented complete data y = {yobs,ymis}, the parameters are
drawn alternatively as follows:
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(4) For i = 1, . . . , n, draw random effects bi from the conditional distribution

bi |y, θ = N

(∑di

j=2(y1ij − μ1ij )σ
2
2 τ 2

b + ∑di

j=2(y2ij − μ2ij )σ
2
1 τ 2

b

(di − 1)σ 2
1 τ 2

b + (di − 1)σ 2
2 τ 2

b + σ 2
1 σ 2

2

,

σ 2
1 σ 2

2 τ 2
b

(di − 1)σ 2
1 τ 2

b + (di − 1)σ 2
2 τ 2

b + σ 2
1 σ 2

2

)
,

where

μ1ij = y1i,j−1β1 + y2i,j−1γ1 + α1 + XT
1ij β̃1 + XT

2ij γ̃ 1,

μ2ij = y2i,j−1β2 + y1i,j−1γ2 + α2 + XT
2ij β̃2 + XT

1ij γ̃ 2.

(5) Draw σ 2
k from the conditional distribution

σ 2
k |y, θ = IG

(
a +

∑n
i=1(di − 1)

2
, b +

∑n
i=1

∑di

j=2(ykij − ukij )
2

2

)
,

where

u1ij = bi + y1i,j−1β1 + y2i,j−1γ1 + α1 + XT
1ij β̃1 + XT

2ij γ̃ 1,

u2ij = bi + y2i,j−1β2 + y1i,j−1γ2 + α2 + XT
2ij β̃2 + XT

1ij γ̃ 2.

(6) Draw τ 2
b from the conditional distribution

τ 2
b |y, θ = IG

(
a + n

2
, b +

∑n
i=1 b2

i

2

)
.

(7) Draw η1 = (α1, β1, γ1, β̃1, γ̃ 1) from the normal distribution

η1|y, θ = N
(
(ZT

1 Z1)
−1ZT

1 (y1 − bi), (ZT
1 Z1)

−1σ 2
1
)
,

where y1 = (y11,2, . . . , y11,d1, . . . , y1i,2, . . . , y1i,di
, . . . , y1n,2, . . . , y1n,dn)

T and

Z1 =

⎛
⎜⎜⎜⎜⎝

1 · · · 1 · · · 1 · · · 1 · · ·
y11,1 · · · y11,di−1 · · · y1i,1 · · · y1i,di−1 · · ·
y21,1 · · · y21,di−1 · · · y2i,1 · · · y2i,di−1 · · ·
X11,2 · · · X11,d1 · · · X1i,2 · · · X1i,di

· · ·
X21,2 · · · X21,d1 · · · X2i,2 · · · X2i,di

· · ·

⎞
⎟⎟⎟⎟⎠

T

.

(8) Similarly, draw η2 = (α2, β2, γ2, β̃2, γ̃ 2) from the conditional distribution

η2|y, θ = N
(
(ZT

2 Z2)
−1ZT

2 (y2 − bi), (ZT
2 Z2)

−1σ 2
2
)
,

where Z2 and y2 are defined in a similar way to Z1 and y1.
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(9) Draw � 1 = (ξ1,ψ1, δ1, φ1) and � 2 = (ξ2,ψ2, δ2, φ2) from the condi-
tional distributions

� 1|y, θ ∝
n∏

i=1

d1i−1∏
j=2

(1 − λ1ij )λ1id1i
,

� 2|y, θ ∝
n∏

i=1

d2i−1∏
j=2

(1 − λ2ij )λ2id2i
.

(10) Draw random effects ci from the conditional distribution

ci |y, θ ∝ N(0, τ 2
c )

d1i−1∏
j=2

(1 − λ1ij )λ1id1i

d2i−1∏
j=2

(1 − λ2ij )λ2id2i
.

(11) Draw τ 2
c from the conditional distribution

τ 2
c |y, θ = IG

(
a + n

2
, b +

∑n
i=1 c2

i

2

)
.

5. Simulation studies. We conducted two simulation studies (A and B). Sim-
ulation A consists of 500 data sets, each with 200 dyads and three repeated mea-
sures. For the ith dyad, we generated the first measurements, Y1i1 and Y2i1, from
normal distributions N(5,1) and N(7,1), respectively, and generated the second
and third measurements based on the following random-effects transition model:

Y1ij |bi ∼ N(bi + β1Y1i,j−1 + γ1Y2i,j−1 + β̃1X1 + γ̃1X2,1), j = 2,3,

Y2ij |bi ∼ N(bi + β2Y2i,j−1 + γ2Y1i,j−1 + β̃2X2 + γ̃2X1,1), j = 2,3,

bi ∼ N(0,1),

where β1 = γ1 = 0.5, β2 = γ2 = 0.6, β̃1 = γ̃1 = β̃2 = γ̃2 = 1, and covariates X1
and X2 were generated independently from N(0,1). We assumed that the baseline
(first) measurements Y1i1 and Y2i1 were observed for all subjects, and the hazard
of dropout at the second and third measurement times depended on the current and
last observed values of Y , that is,

logit(λ1ij |ci) = ci − Y1ij − 0.5Y1i,j−1 − 6, j = 2,3,

logit(λ2ij |ci) = ci − Y2ij − 0.5Y2i,j−1 − 6, j = 2,3,

ci ∼ N(0,1).

Under this dropout model, on average, 24% (12% of member 1 and 13% of mem-
ber 2) of the dyads dropped out at the second time point and 45% (26% of mem-
ber 1 and 30% of member 2) dropped out at the third measurement time. We
applied the proposed method to the simulated data sets. We used 1,000 itera-
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TABLE 1
Bias, standard error (SE) and coverage rate of 95% credible intervals under different methods for

simulation A

Complete-case analysis Available-case analysis Proposed method

Parameter Bias SE Coverage Bias SE Coverage Bias SE Coverage

β1 −0.03 0.06 0.93 −0.01 0.05 0.94 −0.01 0.05 0.95
γ1 −0.06 0.05 0.81 −0.03 0.04 0.88 0.07 0.04 0.96
β̃1 −0.16 0.12 0.72 −0.10 0.10 0.81 0.05 0.08 0.94
γ̃1 −0.17 0.12 0.75 −0.10 0.10 0.78 0.02 0.09 0.97

β2 −0.06 0.06 0.89 −0.06 0.05 0.84 0.08 0.05 0.97
γ2 −0.04 0.05 0.87 −0.00 0.04 0.95 −0.04 0.06 0.96
β̃2 −0.17 0.12 0.73 −0.10 0.10 0.84 −0.01 0.12 0.95
γ̃2 −0.17 0.12 0.72 −0.10 0.10 0.81 0.01 0.09 0.97

tions to burn in and made inference based on 10,000 posterior draws. For com-
parison purposes, we also conducted complete-case and available-case analyses.
The complete-case analysis was based on the data from dyads who completed the
follow-up, and the available-case analysis was based on all observed data (without
considering the missing data mechanism).

Table 1 shows the bias, standard error (SE) and coverage rate of the 95% credi-
ble interval (CI) under different approaches. We can see that the proposed method
substantially outperformed the complete-case and available-case analyses. Our
method yielded estimates with smaller bias and coverage rates close to the 95%
nominal level. In contrast, the complete-case and available-case analyses often led
to larger bias and poor coverage rates. For example, the bias of the estimate of
β̃1 under the complete-case and available-case analyses were −0.16 and −0.10,
respectively, substantially larger than that under the proposed method (i.e., 0.05);
the coverage rate using the proposed method was about 94%, whereas those using
the complete-case and available-case analyses were under 82%.

The second simulation study (Simulation B) was designed to evaluate the per-
formance of the proposed method when the nonignorable missing data mechanism
is misspecified, for example, data actually are missing at random (MAR). We gen-
erated the first measurements, Y1i1 and Y2i1, from normal distribution N(3,1) in-
dependently, and generated the second and third measurements based on the same
transition model as in Simulation A. We assumed the hazard of dropout at the sec-
ond and third measurement times depended on the previous (observed) value of Y

quadratically, but not on the current (missing) value of Y , that is,

logit(λ1ij |ci) = ci + Y 2
1i,j−1 − 15, j = 2,3,

logit(λ2ij |ci) = ci + Y 2
2i,j−1 − 15, j = 2,3,(5.1)

ci ∼ N(0,1).
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Under this MAR dropout model, on average, 37% (21% of member 1 and 21%
of member 2) of the dyads dropped out at the second time point and 27% (24%
of member 1 and 33% of member 2) dropped out at the third measurement time.
To fit the simulated data, we considered two nonignorable models with different
specifications of the dropout (or selection) model. The first nonignorable model
assumed a flexible dropout model

logit(λkij |bi) = ci + ξk + δkY
2
ki,j−1 + φkYki,j ,

which included the true dropout process (5.1) as a specific case with φk = 0; and
the second nonignorable model took a misspecified dropout model of the form

logit(λkij |bi) = ci + ξk + δkYki,j−1 + φkYki,j .

Table 2 shows the bias, standard error and coverage rate of the 95% CI under
different approaches. When the missing data were MAR, the complete-case anal-
ysis was invalid and led to biased estimates and poor coverage rates because the
complete cases are not random samples from the original population. In contrast,
the available-case analysis yielded unbiased estimates and coverage rates close to
the 95% nominal level. For the nonignorable models, the one with the flexible
dropout model yielded unbiased estimates and reasonable coverage rates, whereas
the model with the misspecified dropout model led to biased estimates (e.g., β̂1 and
β̂2) and poor coverage rates. This result is not surprising because it is well known
that selection models are sensitive to the misspecification of the dropout model
[Little and Rubin (2002); Daniels and Hogan (2000)]. For nonignorable missing
data, the difficulty is that we cannot judge whether a specific dropout model is mis-
specified or not based solely on observed data because the observed data contain
no information about the (nonignorable) missing data mechanism. To address this
difficulty, one possible approach is to specify a flexible dropout model to decrease
the chance of model misspecification. Alternatively, maybe a better approach is
to conduct sensitivity analysis to evaluate how the results vary when the dropout
model varies. We will illustrate the latter approach in the next section.

6. Application. We applied our method to the longitudinal metastatic breast
cancer data. We used the first-order random-effects transition model for the lon-
gitudinal measurement process. In the model, we included 5 covariates: chronic
pain measured by the Multidimensional Pain Inventory (MPI) and previous CESD
scores from both the patients and spouses, and the patient’s stage of cancer. In
the discrete-time dropout model, we included the subject’s current and previous
CESD scores, MPI measurements and the patient’s stage of cancer as covariates.
Age was excluded from the models because its estimate was very close to 0 and
not significant. We used 5,000 iterations to burn in and made inference based on
5,000 posterior draws. We also conducted the complete-case and available-case
analyses for the purpose of comparison.

As shown in Table 3, the proposed method suggests significant “partner” ef-
fects for the patients. Specifically, the patient’s depression increases with her
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TABLE 2
Bias, standard error (SE) and coverage rate of 95% credible intervals under different methods for simulation B

Nonignorable model Nonignorable model
Complete-case analysis Available-case analysis (flexible dropout model) (misspecifed dropout model)

Parameter Bias SE Coverage Bias SE Coverage Bias SE Coverage Bias SE Coverage

β1 −0.06 0.08 0.86 0.00 0.06 0.95 −0.01 0.06 0.95 0.14 0.06 0.78
γ1 −0.09 0.08 0.82 0.00 0.05 0.96 0.07 0.05 0.97 −0.01 0.05 0.95
β̃1 −0.11 0.14 0.84 0.00 0.10 0.95 0.04 0.08 0.96 0.03 0.08 0.94
γ̃1 −0.13 0.14 0.84 0.00 0.10 0.96 0.02 0.09 0.97 0.02 0.09 0.98

β2 −0.07 0.08 0.87 0.00 0.06 0.96 0.02 0.06 0.97 0.12 0.06 0.79
γ2 −0.10 0.08 0.78 0.00 0.07 0.96 0.00 0.06 0.96 −0.08 0.06 0.93
β̃2 −0.14 0.14 0.82 0.00 0.10 0.96 0.01 0.12 0.94 0.01 0.12 0.95
γ̃2 −0.14 0.13 0.83 0.01 0.10 0.96 0.01 0.09 0.97 0.01 0.09 0.98
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TABLE 3
Parameter estimates and 95% credible intervals (shown in parentheses) for the patients’ and
spouses’ measurement models based on the complete-case, available-case analyses and the

proposed approach for the breast cancer data

Complete-case analysis Available-cases analysis Proposed method

Patients Intercept 2.53 (−1.71,6.77) 0.99 (−2.55,4.52) 5.10 (3.31,6.59)

Patient CESD 0.43 (0.29,0.58) 0.56 (0.44,0.68) 0.87 (0.80,0.93)

Spouse CESD 0.07 (−0.06,0.20) 0.06 (−0.06,0.17) 0.14 (0.09,0.19)

Patient MPI 0.94 (0.22,1.67) 0.82 (0.21,1.43) 1.24 (0.83,1.64)

Spouse MPI 1.06 (0.29,1.82) 0.90 (0.31,1.48) 0.62 (0.40,0.84)

Cancer stage 0.39 (−0.81,1.60) 0.59 (−0.43,1.60) 0.10 (−0.47,0.66)

Spouses Intercept 3.68 (−0.55,7.92) 2.00 (−1.63,5.64) 8.16 (4.26,11.9)

Patient CESD −0.05 (−0.19,0.09) 0.01 (−0.11,0.13) 0.68 (0.63,0.74)

Spouse CESD 0.77 (0.64,0.90) 0.78 (0.66,0.89) 0.76 (0.71,0.81)

Patient MPI 0.43 (−0.29,1.15) 0.27 (−0.27,0.81) 0.53 (0.33,0.73)

Spouse MPI 0.55 (−0.22,1.31) 0.58 (−0.04,1.20) 0.36 (−0.64,1.15)

Cancer stage −0.42 (−1.63,0.79) −0.21 (−1.23,0.80) −0.50 (−0.92,0.09)

spouse’s MPI [estimate = 0.62 and 95% CI = (0.40,0.84)] and previous CESD
[estimate = 0.14 and 95% CI = (0.09,0.19)]. In addition, there are also signifi-
cant “actor” effects for the patients, that is, the patient’s depression is positively
correlated with her own MPI and previous CESD scores. For the spouses, we ob-
served similar significant “partner” effects: the spouse’s depression increases with
the patient’s MPI and previous CESD scores. However, the “actor” effects for the
spouses are different from those for the patients. The spouse’s depression corre-
lates with his previous CESD scores but not the MPI level, whereas the patient’s
depression is related to both variables. Based on these results, we can see that the
patients and spouses are highly interdependent and influence each other’s depres-
sion status. Therefore, when designing a prevention program to reduce depression
in patients, we may achieve better outcomes by targeting both patients and spouses
simultaneously.

As for the dropout process, the results in Table 4 suggest that the missing data
for the patients are nonignorable because the probability of dropout is significantly

TABLE 4
Parameter estimates and 95% credible intervals (shown in parentheses) of the dropout model for the

breast cancer data

Intercept Current CESD Previous CESD MPI Cancer stage

Patients −0.8 (−8.3,6.2) −1.6 (−4.2,−0.3) 0.6 (−0.3,1.6) 0.8 (−1.6,3.8) −0.4 (−0.9,2.4)

Spouses −15.6 (−25.6,−4.1) 0.8 (−0.2,1.6) −0.7 (−1.6,0.5) −0.2 (−2.1,1.4) 2.9 (−1.7,6.4)
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associated with the patient’s current (missing) CESD score. In contrast, the miss-
ing data for the spouse appears to be ignorable, as the probability of dropout does
not depend on the spouse’s current (missing) CESD score. For the variance compo-
nents, the estimates of residuals variances for patients and spouses are σ̂ 2

1 = 5.02
[95% CI = (2.98,7.01)] and σ̂ 2

2 = 6.12 [95% CI = (4.03,7.95)], respectively. The
estimates of the variances for the random effects bi and ci are τ̂ 2

b = 9.95 [95%
CI = (7.96,11.92)] and τ̂ 2

c = 7.97 [95% CI = (5.99,9.89)], respectively, suggest-
ing substantial variations across dyads.

Compared to the proposed approach, both the complete-case and available-
case analyses fail to detect some “partner” effects. For example, for spouses, the
complete-case and available-case analyses assert that the spouse’s CESD is cor-
related with his own previous CESD scores only, whereas the proposed method
suggested that the spouse’s CESD is related not only to his own CESD but also to
the patient’s CESD and MPI level. In addition, for patients, the “partner” effect of
the spouse’s CESD is not significant under the complete-case and available-case
analyses, but is significant under the proposed approach. These results suggest that
ignoring the nonignorable dropouts could lead to a failure to detect important co-
variate effects.

Nonidentifiability is a common problem when modeling nonignorable missing
data. In our approach, the observed data contain very limited information on the
parameters that link the missing outcome with the dropout process, that is, φ1 and
φ2 in the dropout model. The identification of these parameters is heavily driven
by the untestable model assumptions [Verbeke and Molenberghs (2000); Little
and Rubin (2002)]. In this case, a sensible strategy is to perform a sensitivity anal-
ysis to examine how the inference changes with respect to the values of φ1 and
φ2 [Daniels and Hogan (2000, 2008); Rotnitzky et al. (2001)]. We conducted a
Bayesian sensitivity analysis by assuming informative normal prior distributions
for φ1 and φ2 with a small variance of 0.01 and the mean fixed, successively,
at various values. Figures 1 and 2 show the parameter estimates of the measure-
ment models when the prior means of φ1 and φ2 vary from −3 to 3. In general,
the estimates were quite stable, except that the estimate of cancer stage in the
measurement model of patient (Figure 1) and the estimate of spouse’s MPI in the
measurement model of spouse (Figure 2) demonstrated some variations.

We conducted another sensitivity analysis on the prior distributions of σ 2
1 , σ 2

2 ,
τ 2
b and τ 2

c . We considered various inverse gamma priors, IG(a, b), by setting a =
b = 0.01,1 and 5. As shown in Table 5, the estimates of the measurement model
parameters were stable under different prior distributions, suggesting the proposed
method is not sensitive to the priors of these parameters.

7. Conclusion. We have developed a selection-model-based approach to an-
alyze longitudinal dyadic data with nonignorable dropouts. We model the longi-
tudinal outcome process using a transition model and account for the correlation
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FIG. 1. Sensitivity analysis of the proposed nonignorable model for the breast cancer data. The
figure shows the parameter estimates of the patients’ measurement model under informative normal
priors for φ1 and φ2 with a mean varying from −3 to 3 and a fixed variance of 0.01.

FIG. 2. Sensitivity analysis of the proposed nonignorable model for the breast cancer data. The
figure shows the parameter estimates of the spouses’ measurement model under informative normal
priors for φ1 and φ2 with a mean varying from −3 to 3 and a fixed variance of 0.01.
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TABLE 5
Parameter estimates and 95% credible intervals (show in parentheses) for the patient’s and

spouse’s measurement models by fixing a and b at 0.01, 1 and 5 for the inverse gamma prior
IG(a, b) on σ 2

1 , σ 2
2 , τ2

b and τ2
c

a = b = 0.01 a = b = 1 a = b = 5

Patients Intercept 4.72 (3.32,6.11) 5.00 (3.48,6.47) 5.02 (3.57,6.48)

Patient CESD 0.87 (0.81,0.93) 0.86 (0.80,0.92) 0.88 (0.83,0.94)

Spouse CESD 0.14 (0.09,0.19) 0.14 (0.08,0.19) 0.13 (0.08,0.18)

Patient MPI 1.27 (0.84,1.71) 1.12 (0.67,1.60) 1.20 (0.85,1.57)

Spouse MPI 0.71 (0.49,0.91) 0.68 (0.46,0.87) 0.61 (0.39,0.82)

Cancer stage −0.03 (−0.50,0.50) 0.18 (−0.31,0.65) −0.08 (−0.57,0.40)

Spouses Intercept 6.40 (4.39,8.41) 7.56 (5.35,9.93) 7.52 (5.43,9.55)

Patient CESD 0.67 (0.62,0.73) 0.67 (0.62,0.72) 0.69 (0.64,0.73)

Spouse CESD 0.76 (0.71,0.80) 0.75 (0.71,0.81) 0.75 (0.71,0.80)

Patient MPI 0.51 (0.32,0.71) 0.54 (0.35,0.73) 0.53 (0.34,0.72)

Spouse MPI 0.79 (−0.05,1.46) 0.54 (−0.03,1.06) 0.45 (−0.23,1.09)

Cancer stage −0.41 (−0.86,0.02) −0.38 (−0.81,0.03) −0.48 (−0.87,0.08)

within dyads using random effects. In the model, we allow a subject’s outcome to
depend on not only his/her own characteristics but also the characteristics of the
other member in the dyad. As a result, the parameters of the proposed model have
appealing interpretations as “actor” and “partner” effects, which greatly facilitates
the understanding of interdependence within a relationship and the design of more
efficient prevention programs. To account for the nonignorable dropout, we adopt
a discrete time survival model to link the dropout process with the longitudinal
measurement process. We used the data augment method to address the complex
missing data problem caused by dropout and interdependence within dyads. The
simulation study shows that the proposed method yields consistent estimates with
correct coverage rates. We apply our methodology to the longitudinal dyadic data
collected from a breast cancer study. Our method identifies more “partner” effects
than the methods that ignore the missing data, thereby providing extra insights into
the interdependence of the dyads. For example, the methods that ignore the miss-
ing data suggest that the spouse’s CESD related only to his own previous CESD
scores, whereas the proposed method suggested that the spouse’s CESD related
not only to his own CESD but also to the patient’s CESD and MPI level. This extra
information can be useful for the design of more efficient depression prevention
programs for breast cancer patients.

In the proposed dropout model (3.2), we assume that time-dependent covariates
Xkij and Ykij , k = 1,2, have captured all important time-dependent factors that in-
fluence dropout. However, this assumption may not be always true. A more flexible
approach is to include in the model a time-dependent random effect cij to repre-
sent all unmeasured time-variant factors that influence dropout. We can further
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put a hierarchical structure on cij to shrink it toward a dyad-level time-invariant
random effect ci to account for the effects of unmeasured time-invariance factors
on dropout. In addition, in (3.2), in order to allow members in a dyad to drop out
at different times, we specify separate dropout models for each dyadic member,
linked by a common random effect. Although the common random effect makes
the members in a dyad more likely to drop out at the same time, it may not be the
most effective modeling approach when dropout mostly occurs at the dyad level.
In this case, a more effective approach is that, in addition to the dyad-level random
effect, we further put hierarchical structure on the coefficients of common covari-
ates (in the two dropout models) to shrink toward a common value to reflect that
dropout is almost always at the dyad level.

Acknowledgments. We would like to thank the referees, Associate Editor and
Editor (Professor Susan Paddock) for very helpful comments that substantially
improved this paper.

REFERENCES

AGRESTI, A. (2002). Categorical Data Analysis, 2nd ed. Wiley, New York. MR1914507
BADR, H., CARMACK, C. L., KASHY, D. A., CRISTOFANILLI, M. and REVENSON, T. A. (2010).

Dyadic coping in metastatic breast cancer. Health Psychol. 29 169–180.
COOK, W. L. and KENNY, D. A. (2005). The actor partner interdependence model: A model of

bidirectional effects in developmental studies. International Journal of Behavioral Development
29 101–109.

DANIELS, M. J. and HOGAN, J. W. (2000). Reparameterizing the pattern mixture model for sensi-
tivity analyses under informative dropout. Biometrics 56 1241–1248. MR1815627

DANIELS, M. J. and HOGAN, J. W. (2008). Missing Data in Longitudinal Studies: Strategies for
Bayesian Modeling and Sensitivity Analysis. Monographs on Statistics and Applied Probability
109. Chapman & Hall/CRC, Boca Raton, FL. MR2459796

DIGGLE, P. and KENWARD, M. G. (1994). Informative drop-out in longitudinal data analysis. J. R.
Stat. Soc. Ser. C. Appl. Stat. 43 49–73.

DIGGLE, P. J., HEAGERTY, P. J., LIANG, K.-Y. and ZEGER, S. L. (2002). Analysis of Longitudinal
Data, 2nd ed. Oxford Statistical Science Series 25. Oxford Univ. Press, Oxford. MR2049007

FAREWELL, D. M. (2010). Marginal analyses of longitudinal data with an informative pattern of
observations. Biometrika 97 65–78. MR2594417

FOLLMANN, D. and WU, M. (1995). An approximate generalized linear model with random effects
for informative missing data. Biometrics 51 151–168. MR1341233

GLYNN, R. J., LAIRD, N. M. and RUBIN, D. B. (1986). Selection modelling versus mixture mod-
elling with nonignorable nonresponse. In Drawing Inferences from Self-selected Samples (H.
Wainer, ed.) 115–142. Springer, New York.

GOTTMAN, J. M. (1981). Time–Series Analysis: A Comprehensive Introduction for Social Scientists.
Cambridge Univ. Press, Cambridge.

HOGAN, J. W. and LAIRD, N. M. (1997). Mixture models for the joint distribution of repeated
measures and event times. Stat. Med. 16 239–257.

http://www.ams.org/mathscinet-getitem?mr=1914507
http://www.ams.org/mathscinet-getitem?mr=1815627
http://www.ams.org/mathscinet-getitem?mr=2459796
http://www.ams.org/mathscinet-getitem?mr=2049007
http://www.ams.org/mathscinet-getitem?mr=2594417
http://www.ams.org/mathscinet-getitem?mr=1341233


770 G. ZHANG AND Y. YUAN

HOGAN, J. W., LIN, X. and HERMAN, B. (2004). Mixtures of varying coefficient models for
longitudinal data with discrete or continuous nonignorable dropout. Biometrics 60 854–864.
MR2133537

IBRAHIM, J. G. and MOLENBERGHS, G. (2009). Missing data methods in longitudinal studies:
A review. TEST 18 1–43. MR2495958

KALBFLEISCH, J. D. and LAWLESS, J. F. (1985). The analysis of panel data under a Markov as-
sumption. J. Amer. Statist. Assoc. 80 863–871. MR0819585

KENDALL, M. and ORD, J. K. (1990). Time Series, 3rd ed. Edward Arnold, London. MR1074771
KENNY, D. A., KASHY, D. A. and COOK, W. L. (2006). Dyadic Data Analysis. Guilford Press,

New York.
KILPATRICK, M. G., KRISTJANSON, L. J., TATARYN, D. J. and FRASER, V. H. (1998). Informa-

tion needs of husbands of women with breast cancer. Oncology Nursing Forum 25 1595–1601.
LITTLE, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. J. Amer. Statist.

Assoc. 88 125–134.
LITTLE, R. J. A. (1994). A class of pattern-mixture models for normal incomplete data. Biometrika

81 471–483. MR1311091
LITTLE, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. J. Amer.

Statist. Assoc. 90 1112–1121. MR1354029
LITTLE, R. (2009). Selection and pattern-mixture models. In Longitudinal Data Analysis (G. Fitz-

maurice, M. Davidian, G. Verbeke and G. Molenberghs, eds.) 409–431. CRC Press, Boca Raton,
FL. MR1500128

LITTLE, R. J. A. and RUBIN, D. B. (2002). Statistical Analysis with Missing Data, 2nd ed. Wiley,
Hoboken, NJ. MR1925014

MOLENBERGHS, G. and KENWARD, M. G. (2007). Missing Data in Clinical Studies. Wiley, New
York.

ROBERTS, C., COX, C., SHANNON, V. and WELLS, N. (1994). A closer look at social support as a
moderator of stress in breast cancer. Health Social Work 19 157–164.

ROBINS, J. M., ROTNITZKY, A. and ZHAO, L. P. (1995). Analysis of semiparametric regression
models for repeated outcomes in the presence of missing data. J. Amer. Statist. Assoc. 90 106–
121. MR1325118

ROTNITZKY, A., ROBINS, J. M. and SCHARFSTEIN, D. O. (1998). Semiparametric regression
for repeated outcomes with nonignorable nonresponse. J. Amer. Statist. Assoc. 93 1321–1339.
MR1666631

ROTNITZKY, A., SCHARFSTEIN, D., SU, T.-L. and ROBINS, J. (2001). Methods for conducting
sensitivity analysis of trials with potentially nonignorable competing causes of censoring. Bio-
metrics 57 103–113. MR1833295

ROY, J. (2003). Modeling longitudinal data with nonignorable dropouts using a latent dropout class
model. Biometrics 59 829–836. MR2025106

SCHARFSTEIN, D. O., ROTNITZKY, A. and ROBINS, J. M. (1999). Adjusting for nonignorable
drop-out using semiparametric nonresponse models. J. Amer. Statist. Assoc. 94 1096–1146.
MR1731478

TANNER, M. A. and WONG, W. H. (1987). The calculation of posterior distributions by data aug-
mentation. J. Amer. Statist. Assoc. 82 528–550. MR0898357

TSONAKA, R., RIZOPOULOS, D., VERBEKE, G. and LESAFFRE, E. (2010). Nonignorable
models for intermittently missing categorical longitudinal responses. Biometrics 66 834–844.
MR2758219

VERBEKE, G. and MOLENBERGHS, G. (2000). Linear Mixed Models for Longitudinal Data.
Springer, New York. MR1880596

WU, M. C. and BAILEY, K. R. (1989). Estimation and comparison of changes in the presence of
informative right censoring: Conditional linear model. Biometrics 45 939–955. MR1029611

http://www.ams.org/mathscinet-getitem?mr=2133537
http://www.ams.org/mathscinet-getitem?mr=2495958
http://www.ams.org/mathscinet-getitem?mr=0819585
http://www.ams.org/mathscinet-getitem?mr=1074771
http://www.ams.org/mathscinet-getitem?mr=1311091
http://www.ams.org/mathscinet-getitem?mr=1354029
http://www.ams.org/mathscinet-getitem?mr=1500128
http://www.ams.org/mathscinet-getitem?mr=1925014
http://www.ams.org/mathscinet-getitem?mr=1325118
http://www.ams.org/mathscinet-getitem?mr=1666631
http://www.ams.org/mathscinet-getitem?mr=1833295
http://www.ams.org/mathscinet-getitem?mr=2025106
http://www.ams.org/mathscinet-getitem?mr=1731478
http://www.ams.org/mathscinet-getitem?mr=0898357
http://www.ams.org/mathscinet-getitem?mr=2758219
http://www.ams.org/mathscinet-getitem?mr=1880596
http://www.ams.org/mathscinet-getitem?mr=1029611


LONGITUDINAL DYADIC DATA WITH NONIGNORABLE DROPOUT 771

WU, M. C. and CARROLL, R. J. (1988). Estimation and comparison of changes in the pres-
ence of informative right censoring by modeling the censoring process. Biometrics 44 175–188.
MR0931633

YUAN, Y. and LITTLE, R. J. A. (2009). Mixed-effect hybrid models for longitudinal data with
nonignorable dropout. Biometrics 65 478–486. MR2751471

DEPARTMENT OF EPIDEMIOLOGY

AND BIOSTATISTICS

UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND 20742
USA
E-MAIL: guangyuz@umd.edu

DEPARTMENT OF BIOSTATISTICS

UNIVERSITY OF TEXAS

MD ANDERSON CANCER CENTER

HOUSTON, TEXAS 77030
USA
E-MAIL: yyuan@mdanderson.org

http://www.ams.org/mathscinet-getitem?mr=0931633
http://www.ams.org/mathscinet-getitem?mr=2751471
mailto:guangyuz@umd.edu
mailto:yyuan@mdanderson.org

	Introduction
	A motivating example
	Models
	Estimation
	Simulation studies
	Application
	Conclusion
	Acknowledgments
	References
	Author's Addresses

