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Abstract. We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a
convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of
non-convex potentials: the uniqueness of ergodic component for V¢-Gibbs measures, the decay of covariances, the scaling limit
and the strict convexity of the surface tension.

Résumé. Nous considérons un modele d’interfaces de type gradient indexé par le réseau avec une interaction donnée par la
pertubation non convexe d’un potentiel convexe. En utilisant une technique qui découple les sites pairs et impairs, nous démontrons
pour une classe de potentiels non convexes I’unicité de la composante ergodique, de la mesure de Gibbs du gradient, la décroissance
des covariances, la loi limite centrale et la stricte convexité de la tension superficielle.
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1. Introduction
1.1. The setup

Phase separation in R4*! can be described by effective interface models, where interfaces are sharp boundaries which
separate the different regions of space occupied by different phases. In this class of models, the interface is modeled
as the graph of a random function from Z? to Z or R (discrete or continuous effective interface models). For more on
interface models, see the reviews by Funaki [20] or Velenik [27]. In this setting we ignore overhangs and for x € Z4,
we denote by ¢ (x) € R the height of the interface above or below the site x. Let A be a finite set in Z¢ with boundary

d
9A:={x¢ A, |x—y|=1forsomeye A}, where|x—y|=>)|x—yforx,yeZ (1)
i=1

and with given boundary condition ¥ such that ¢ (x) = ¥ (x) for x € 3 A; a special case of boundary conditions are
the tilted boundary conditions, with ¥ (x) = x - u for all x € 9 A, and where u € RY is fixed. Let A := AU A and let
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dpps =[], dé(x) be the Lebesgue measure over R4 For a finite region A C Z¢, the finite volume Gibbs measure
VA, On RZ! with boundary condition  for the field of height variables (¢ (x)),cza over A is defined by

VA (dp) = exp{—BHA,y(®)} dpady (ddza\ ) )

Zay

with
Zpy= /de exp{—BHa .y (9)} dpady (deza\ 4),

and where 8y, (d ¢Zd\ A=I1 xeZd\ A 3y (x)(d¢(x)) and determines the boundary condition. Thus, v 4 y is characterized
by the inverse temperature 8 > 0 and the Hamiltonian H,4 4 on A, which we assume to be of gradient type:

Hay@ =) Y UVpw)+2> Y  U(Vigx), 3)

iel x,x+eeA iel xeA,x+e;jcdA

where the sum inside A is over ordered nearest neighbours pairs (x, x + ¢;). We denoted by

I={-d,—d+1,...,d}\ {0}
and we introduced for each x € Z¢ and each i € I, the discrete gradient

Vig(x) = (x +e) — ¢p(x),
that is, the interaction depends only on the differences of neighboring heights. Note that ¢;,i =1, 2, ..., d, denote the
unit vectors and e_; = —e;. A model with such a Hamiltonian as defined in (3), is called a massless model with a
continuous symmetry (see [20]). The potential U € C*(R) is a symmetric function with quadratic growth at infinity:

U =An*> -~ B, neR, (A0)

for some A > 0, B € R.
1.2. General definitions and notation

1.2.1. ¢-Gibbs measures
For A C Z%, we shall denote by F the o-field generated by {¢ (x): x € A}.

Definition 1.1 (¢-Gibbs measure on Z%). The probability measure v € P (IRZd) is called a Gibbs measure for the
¢-field with given Hamiltonian H := (Hp y) <RZ4 (¢-Gibbs measure for short), if its conditional probability
of F pc satisfies the DLR equation

AcCZd

VE|Fa)W) =vay (), v-ae P,

for every finite A C 7.

It is known that the ¢-Gibbs measures exist under condition (A0Q) when the dimension d > 3, but not ford =1, 2,
where the field “delocalizes” as A 7 Z¢ (see [15]). An infinite volume limit (thermodynamic limit) for v4 4 when
A 7 74 exists only when d > 3.
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1.2.2. V¢-Gibbs measures
Notation for the bond variables on 7Z¢. Let

(Zd)* = {b = (Xp, Yb) | Xp, Vb € Zd, llxp — ypll = 1, b directed from x; to yb};
note that each undirected bond appears twice in (Z9)*. Let

A* = (2)" N (A x A), IA* = {b=(xp, ) | xp € ZU\ A, yp € A, x5 — ypll = 1}
and

A* = {b = (xp, Vp) € (Zd)* | xp € Aorype A}.

For ¢ = (¢ (X)) cze and b = (xp, yp) € (Z%)*, we define the height differences V¢ (b) := ¢ (yp) — ¢ (xp). The
height variables ¢ = {¢(x); x € 74} on 74 automatically determines a field of height differences V¢p = {V(b); b €
(Z)*}. One can therefore consider the distribution 1 of V¢-field under the ¢-Gibbs measure v. We shall call x the
V¢-Gibbs measure. In fact, it is possible to define the V¢-Gibbs measures directly by means of the DLR equations
and, in this sense, V¢-Gibbs measures exist for all dimensions d > 1.

A sequence of bonds C = {b(l), @, ..., b(”)} is called a chain connecting x and y, x,y € 74 if Xpy =X, Ypi) =
xpi+1 for 1 <i <n —1 and y,m = y. The chain is called a closed loop if y,m = x,0). A plaquette is a closed loop
A= (D, b b3 p®) such that {x,),i =1,...,4} consists of 4 different points.

The field n = {n(b)} € RZD" b € (Z)*, is said to satisfy the plaquette conditions if

n(b) = —n(=b) forallbe (z%)" and Z n(b) =0 for all plaquettes A in Z, )
be A

where —b denotes the reversed bond of b. Let
x = {n e R%Y" which satisfy the plaquette condition} (5)
and let L%, r >0, be the set of all € R(Zd)* such that

2 _
=Y [n®]e >l <oo.
be(zd)*

We denote x, = x N L% equipped with the norm | - |. For ¢ = (¢(x)) <z« and b € (Z%)*, we define n? (b) := V¢ (b).
Then V¢ = {V¢ (b)) satisfies the plaquette condition. Conversely, the heights ¢™7¢© ¢ RZ’ can be constructed from
height differences 1 and the height variable ¢ (0) at x =0 as

¢ O x) = Y nb)+¢(0), 6)

bECO.x
where Cp x is an arbitrary chain connecting 0 and x. Note that d"?O is well-defined if n = {n(b)} € x.

Definition of V¢-Gibbs measures. We next define the finite volume V¢-Gibbs measures. For every & € x and finite
A C Z¢ the space of all possible configurations of height differences on A* for given boundary condition & is defined
as

Xaee ={n1=(0®) ez 1V EE X},

where 1 V € € yx is determined by (n Vv §)(b) = n(b) for b A* and = £(b) for b ¢ A*,
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Remark 1.2. Note that when 7% \ A is connected, X7+ s an affine space such that dim Xz ¢ =14l Indeed, fixing
a point xo ¢ A, we consider the map X7z = RA, such that n — ¢ = {¢p(x)} € R4, with ¢ (x) defined by

pr)= Y (VED)

beCXO'X

for a chain Cy  connecting xo and x € A. This map then well-defined and an invertible linear transformation.

Definition 1.3 (Finite volume V ¢-Gibbs measure). The finite volume V ¢-Gibbs measure in A (or more precisely, in
A*) with given Hamiltonian H := (HA ) pc7d gey, and with boundary condition § is defined by

mag(dn) = exp{—ﬁ Z U(’?(b))} dnae € P(xz+ ¢,

1
Z
A8 beA*

where dn 4 ¢ denotes the Lebesgue measure on the affine space X £ and Z 4 ¢ is the normalization constant.

Let P(x) be the set of all probability measures on y and let P>(x) be those u € P(yx) satisfying E*[|n(b) 12] < o0
for each b € (Z9)*.

Remark 1.4. For every & € x and a € R, let = ¢ be defined by (6) and consider the measure vA,y. Then
M A.g is the image measure of v 4 y under the map {¢(x)}xea — {n(b) :== V(¢ V V) (D)}, 7z~ and where we defined
(DdVY)(x):=¢(x)forx € Aand (¢ V) (x) := ¥ (x) for x ¢ A. Note that the image measure is determined only by
& and is independent of the choice of a. Let KX Hd ()} xeza = (MDY pezays with n(b) := V(¢ vV ¥) (D).

Definition 1.5 (V¢-Gibbs measure on (Z¢)*). The probability measure ju € P(x) is called a Gibbs measure for the
height differences with given Hamiltonian H := (Ha ) pc7d gc, (V@-Gibbs measure for short), if it satisfies the DLR
equation

M('f(zd)*\Z*)(E) =MHAk ()5 n-a.e. g’ (7)

for every finite A C Z%, where f(Zd)*\Z* stands for the o -field of x generated by {n(b), b € (Z%)* \ A*}.

Remark 1.6. Proving the DLR equation (7) is equivalent to proving that for every finite A C Z¢ and for all F € Cp(x)
we have

/ n(dé)
X XA*,

(For a proof of this equivalence, see Remark 1.24 from [21].)

ma,g(dn) F(n) =/ p(dn) F (). (®)
i3 X

With the notations from (3) and Definition 1.3, let

Gp(H) = {M € Py(x): p is V¢-Gibbs measure on (Zd)* with given Hamiltonian H}.

Remark 1.7. Throughout the rest of the paper, we will use the notation ¢, to denote height variables and n, & to
denote height differences.

Shift-invariance and ergodicity. For x € 7Z¢, we define the shift operators: o ‘RZ' — RZ’ for the heights by
o d () =¢(y —x) for ye Z¢ and ¢ € de, and oy RED* L RED* for the bonds by (o:n)(b) = n(b — x), for
b e (Z4* and n € x. Then shift-invariance and ergodicity for yu (with respect to o, for all x € Z¢) is defined in
the usual way (see for example p. 122 in [20]). We say that the shift-invariant i € P>(x) has a given tilt u € R? if
E, (n(b)) = (u, y» — xp) for all bonds b = (xp, yp) € (Z9)*.
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1.3. Results

Our state space RZ! being unbounded, gradient interface models experience delocalization in lower dimensions d =
1, 2, and no infinite volume Gibbs state exists in these dimensions (see [15]). Instead of looking at the Gibbs measures
of the (¢(x)), 74, Funaki and Spohn proposed to consider the distribution of the gradients (V;¢(x));c; 74 under
v (see Definition 1.5) in the gradient Gibbs measures |1, which in view of the Hamiltonian (3), can also be given in
terms of a Dobrushin-Landford—Ruelle (DLR) description. Note that infinite volume gradient Gibbs measures exist
in all dimensions, in particular for dimensions 1 and 2, which is one of the reasons that Funaki and Spohn introduced
them. For a good background source on these models, see Funaki [20].
Assuming strict convexity of U:

O<C1§U”§C2<OO, 9)

Funaki and Spohn showed in [19] the existence and uniqueness of ergodic gradient Gibbs measures for every fixed
tilt u € RY, that is, if E, (Vi¢(x)) = u; for all nearest-neighbour pairs (x, x + ¢;) (see also [10,26]). Moreover, they
also proved that the corresponding free energy, or surface tension, o (1) € C' (R?) is convex in u; the surface tension,
defined in Section 7 of our paper, physically describes the macroscopic energy of a surface with tilt «, i.e., a d-
dimensional hyperplane located in R¢*! with normal vector (—u, 1) € R¥*!. Both these results (ergodic component
and convexity of surface tension) were used in [19] for the derivation of the hydrodynamical limit of the Ginzburg—
Landau model.

In fact under the strict convexity assumption (9) of U, much more is known for the gradient field. At large scales it
behaves much like the harmonic crystal or gradient free fields which is a Gaussian field with quadratic U . In particular,
Brydges and Yau [7] (in the case of small analytic perturbations of quadratic potentials), Naddaf and Spencer [25] (in
the case of strictly convex potentials and tilt # = 0) and Giacomin, Olla and Spohn [22] (in the case of strictly convex
potentials and arbitrary tilt #) showed that the rescaled gradient field converges weakly as ¢ \ 0 to a continuous
homogeneous Gaussian field, that is

Se(£)=e"2 3" 3 (Vig(x) —ui) fi(ex) > N(0. Z2(f)) ase— 0, f € Cg°(R"; RY), (10)

xezd iel

where the convergence takes place under ergodic p with tilt # (see Theorem 2.1 in Giacomin, Olla and Spohn [22] for
an explicit expression of 23( f) in (10) in the case with arbitrary tilt and see Biskup and Spohn [3] for similar results
in the non-convex case). This central limit theorem derived at standard scaling £/2, is far from trivial since as shown
in Delmotte and Deuschel [11], the gradient field has slowly decaying, non-absolutely summable covariances of the
algebraic order

C

[cove (Vi (). Vi ¢ )| ~ T

an
All the above-mentioned results are proved under the essential assumption of strict convexity of the potential U, which
assumption is necessary for the application of the Brascamp—Lieb inequality and of the Helffer—Sjostrand random
walk representation (see [20] for a detailed review of these methods and results). While strict convexity is crucial for
the proofs, one would expect some of these results to be valid under more general circumstances, in particular also
for some classes of non-convex potentials. However, so far there have been very few results on non-convex potentials.
This is where the focus of this paper comes in, which is to extend the results known for strictly convex potentials to
some classes of non-convex potentials.

We will briefly summarize next the state of affairs regarding results for non-convex potentials, in the different
regimes at inverse temperature 8. At low temperature (i.e. large ) using the renormalization group techniques devel-
oped by Brydges [6], Adams et al. [1] show in on-going work for a class of non-convex potentials, the strict convexity
of the surface tension for small tilt #. At moderate temperature (8 = 1), Biskup and Kotecky [2] give an example of
a non-convex potential U for which uniqueness of the ergodic gradient Gibbs measures u fails. The potential U can
be described as the mixture of two Gaussians with two different variances. For this particular case of U, [2] prove
co-existence of two ergodic gradient Gibbs measures at tilt u = 0 (see also Fig. 4 and example (a) in Section 3.2). See
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also the work of Frohlich and Spencer [17,18] in relation to the Coulomb gas, and the theory based on the infrared-
bound (e.g. Frohlich, Simon and Spencer [16]). For high temperature (i.e. small 8), we have proved in a previous
paper with S. Mueller [8] strict convexity of the surface tension in a regime similar to (A2) below. Our potentials are
of the form

U(Vig(x)) =V (Vi) + g(Vig (x)),
where V, g € C2Z(R) are such that
Ci<V’'<(Cy, 0<Ci<Cy and —Cy fg//ﬁ() with Co > C».

Specifically, we assumed in [8] that

%(udcﬂ/%/ﬂcl Cil le"ll iy < % where C = max<g—‘l), % —1, 1).
The method used in [8], based on two scale decomposition of the free field, gives less sharp estimates for the tem-
perature than our current paper as the estimates also depend on Cy. However, at this point it is not clear whether the
method introduced in [8] could yield any other result of interest than the strict convexity of the surface tension.

The aim of our current paper is to use an alternative technique from the one we used in [8] and relax the strict
convexity assumption (9) to obtain much more than just strict convexity of the surface tension; more precisely, we
also prove uniqueness of the ergodic component at every tilt u € R?, central limit theorem of form as given in (10) and
decay of covariances as in (11). As stated above, the hydrodynamical limit for the corresponding Ginzburg—Landau
model should then essentially follow from our results. Our main results are proven under the assumption that

CI<V'<Cy, 0<Ci<Cy and —o0o<g’'<0 (A1)

and that the inverse temperature f is sufficiently small, that is if

B1CD || - ()2 for some g > 1 (A2)
L2(R) 2C§q+1)/(2q) 2d)1/Ca) -
or if
3/2
340 (C1)
p ||g ” [2R) = 2(C2)5/*(2d)3 % (a3)

The condition (A1) with g” < 0 may look a bit artificial, but as we elaborate in Remark 3.12 in Section 3 below, any
perturbation g € C? with compact support can be substituted for the g” < 0 assumption in (A1). Note that in contrast
to the condition in our previous paper [8], ||g” || o (r) can be arbitrarily large as long as ||g”||z4(r) is small. Note also
that using an obvious rescaling argument (see Remark 3.8), we can always reduce our assumption (A1) to the case
B = C| = 1; then (A2), respectively (A3), states that our condition is satisfied whenever the perturbation g” is small
in the L9 (R), respectively g’ is small in the L2(R) sense.

Our main result is the following

Theorem 1.8 (Uniqueness of an ergodic 11,). Let U =V + g, where U satisfy (AO) and V and g satisfy (Al) and
(A2) or (A1) and (A3). Then for every u € R, there exists at most one ergodic, shift-invariant |1, € Gg(H) with a
given tilt u e RY.

Let F € C,; (xr), where C,; (xr) denotes the set of differentiable functions depending on finitely many coordinates
with bounded derivatives and where x, was defined in Section 1.2.2. For n, ' € x, let

i
e—>0 &

m F(n+en')— F(n) :<DF(77)777/>: Z ol(b)r//(b).

be(Z4y*
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We denote by

WF() :=a() and [3,F |le =sup|dpF(n)|. (12)
nex

Another result we prove for our class of non-convex potentials is

Theorem 1.9 (Decay of covariances). Let u € R?. Assume U =V + g, where U satisfies (AO) and V and g satisfy
(A1) and (A2) or (Al) and (A3). Let F, G € Cg (xr). Then there exists C > 0 such that

195 F | oo 10 G ll 0o
L+ llxp —xp |47

|cov,,, (F(m), G(p)| <€ Z

b,b'e(Z4)*

13)

where b = (xp, yp) and b’ = (xp, yp).
We also prove

Theorem 1.10 (Central limit theorem). Ler u € RY. Assume U =V + g, where U satisfies (AO) and V and g satisfy
(A1) and (A2) or (A1) and (A3). Set

Se(£) =61 3" 3" (Vig(x) — ui) fi(ex),

xezd iel

where f € C°(RY; RY). Then
Se(f) = N(0, Ef(f)) ase— 0,

where Z’g(f) can be identified explicitly as in Theorem 2.1 in [22], Elf(f) # 0 for f # 0, and = signifies convergence
in distribution.

Moreover, we extend in Theorem 7.3 the results of strict convexity of the surface tension from [14] and [19] to the
family of non-convex potentials satisfying (A0), (A1) and (A2).

Even though our results are obtained for the high temperature case, previously only our results in [8] were known
for the non-convex case. Also, the proofs of this paper require some crucial observations not made before. Moreover,
in our main result Theorem 1.8, we prove uniqueness of ergodic gradient Gibbs measures p with a given arbitrary tilt
u € R? for the class of non-convex potentials satisfying (A0), (A1) and (A2). To the best of our knowledge, this is the
first result where uniqueness of ergodic gradient Gibbs measures w is proved for a class of non-convex potentials U.
For potentials that are mixtures of Gaussians as considered in Biskup and Kotecky [2], they prove non-uniqueness of
ergodic gradient Gibbs measures for tilt ¥ = 0 in the 8 = 1 regime. For the same example, we prove uniqueness of
ergodic gradient Gibbs measures for given arbitrary tilt # in the high temperature regime. Therefore, our result also
highlights the existence of phase transition for these models in different temperature regimes.

The basic idea relies on a one-step coarse graining procedure, in which we consider the marginal distribution of
the gradient field restricted to the even sites, which is also a gradient Gibbs field. The corresponding Hamiltonian,
although no longer a two-body Hamiltonian, is then obtained via integrating out the field at the odds sites. We can
integrate out the field ¢ at all odd sites, using the fact that they are independent conditional on the field ¢ at even sites,
which is a consequence of the bi-partiteness of the graph Z¢ with nearest-neighbor bonds. The crucial step, which is
similar to the idea of our previous paper [8], is that strict convexity can be gained via integration at sufficiently high
temperature (see also Brascamp et al. [5] for previous use of the even/odd representation). The essential observation
is that we can formulate a condition for this multi-body potential, which we call the random walk representation
condition, which allows us to obtain a strictly convex Hamiltonian, and implies the random walk representation,
permitting us to apply the techniques of Helffer and Sjostrand [23] or Deuschel [13]. The random walk representation
condition, and implicitly the strict convexity of the new Hamiltonian, can be verified under our assumptions as in
(A0), (A1) and (A2). Note that the method in [8] is more general and could be applied to non-bipartite graphs.
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A natural question to ask is whether we can iterate the coarse graining procedure in our current paper and find a
scheme which could possibly lower the temperature towards the critical 8., which marks the transition from a unique
gradient Gibbs measure p (as proved in Theorem 1.8 in our paper for arbitrary tilt ) to multiple gradient Gibbs
measures (¢ (as proved in [2] for tilt u = 0). Note that iterating the coarse graining scheme is an interesting open
problem. One of the main difficulties is that, after iteration, the bond structure on the even sites of 74 changes, and
we no longer have a bi-partite graph. Currently, we could use our method as detailed in Sections 2 and 3, to keep
integrating out lattice points so that the new Hamiltonian at each step, always of gradient type, can be separated into a
strictly convex part and a non-convex perturbation; however, at this point, our technique for estimation of covariances
as given in Section 3, is not robust enough to allow us to keep coarse graining the lattice points for more than a finite
number of steps, before we stop being able to improve the assumptions on our initial perturbation g.

The rest of the paper is organized as follows: In Section 2 we present the odd/even characterization of the gra-
dient field. In Section 3 we give the formulation of the random walk representation condition, which is verified in
Theorem 3.4 under conditions (AQ), (A1) and (A2). Section 3 also presents a few examples, in particular we show
that our criteria gets close to the Biskup—Kotecky phase co-existence regime, both for the case of the zero and the
non-zero tilt u# (see example (a) in Section 3.2). In Section 4 we prove Theorem 1.8, our main result on uniqueness of
ergodic gradient Gibbs measure with given tilt #, which is based on adaptations of [19], assuming the random walk
representation condition. Section 5 deals with the decay of covariances and the proof is based on the random walk
representation for the field at the even sites which allows us to use the result of [11]. Section 6 shows the central
limit theorem, here again we focus on the field at even sites and apply the random walk representation idea of [22].
Section 7 proves the strict convexity of the surface tension, or free energy, which follows from the convexity of the
Hamiltonian for the gradient field restricted to the even sites. Finally, the Appendix provides explicit computations
for our one-step coarse graining procedure in the special case of potentials considered by [2] (see also example (a) in
Section 3.2).

2. Even/odd representation

There are two key results in this section. The first one is Lemma 2.10, where we are restricting the height differences
to the even sites, which induces a V¢ measure on the even lattice with a different bond structure. The second main
result of this section is Lemma 2.11, where we give a formula for the conditional of a V¢-Gibbs measure on the height
differences between even sites. These two results will be essential for the proof for one of our main results, that is for
the proof of the uniqueness of ergodic component of Theorem 1.8.

In Section 2.1 we introduce the notation for the bond variables on the even subset of Z, in Section 2.2 we define
the ¢-Gibbs measure and the V¢-Gibbs measure corresponding to the even subset of Z¢ and in Section 2.3 we present
the relationship between the V¢-Gibbs measures for the bonds on Z¢ and the V¢ for the bonds on even subset of Z4,
when their corresponding finite volume ¢-Gibbs measures are related by restriction.

2.1. Notation for the bond variables on the even subset of 7.

As Z4 is a bipartite graph, we will label the vertices of Z¢ as even and odd vertices, such that every even vertex has
only odd nearest neighbor vertices and vice-versa.
Let

d
Zg, = {a=(al,azw-7ad)€Zd‘Zai=2P,P€Z}

i=1

and

d
ng:: {a:(al,az,...,ad)eld’Zai:2p+1,peZ}.

i=1

(See also Fig. 1.)
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Fig. 1. The bonds of 0 in Z2,.

Let Ay C Z¢, finite. We will next define the bonds in Z¢, in a similar fashion to the definitions for bonds on Z?. Let

(Z2,)" := b= (xp, ) | X, Yo € Z2,, x5 — ypl = 2, b directed from x; to y, },
(Aey)™ = (Zedv)* N (Aey X Aey), (Aey)* 1= {b = (xp, yb) € (ZZV)* | xp € Aey O yp € Aev}y

I(Aey)* 1= {b= (xp. o) | xp € ZL\ Acv, ¥ € Acy, Ixp — yoll = 2}
and
I Aey = {y € ZE,\ Aeyllly — x|l =2 for some x € Ay}

Note that throughout the rest of the paper, we will refer to the bonds on (Z&)* as the even bonds.

An even plaquette is a closed loop Aey = {pD, 5P, ... b}, where bV € (Z2)*, n € (3, 4}, such that {x,w,i =
1,...,n} consists of n different points in ng. The field n = {n(b)} € RZ&)" is said to satisfy the even plaquette
condition if

*

nb)=—n(—b) forallbe (Z‘elv) and Z n(b) =0 for all even plaquettes in ZZV. (14)

beAey

Let xoy be the set of all n € RZ&)* which satisfy the even plaquette condition. For each b = (xp, yp) € (Z‘eiv)* we
define the even height differences ney(b) := Veyd (b) = ¢ (yp) — ¢ (x). The heights ¢"v?@ can be constructed from
the height differences ney and the height variable ¢ (0) at x =0 as

¢" PO (x) = D nev(b) + ¢(0), (15)

beCSfX

where x € ng and Cg", is an arbitrary path in ng connecting 0 and x. Note that "7¢© (x) is well-defined if 7ey =
{nev(D)} € xev. We also define xev,, similarly as we define x,. As on 74, let P(xev) be the set of all probability
measures on Xey and let P>(xey) be those u € P(xey) satisfying E “[lnev(b)lz] < oo foreach b € (ng)*. We denote
Xevr = X N L} equipped with the norm | - |,.

Remark 2.1. Let n € x. Using the plaquette condition property of n, we will define ney, the induced bond variables
on the even lattice, from n thus: if by = (x,x +¢;), by = (x +ej, x) and bey = (x + ¢, x + ¢;), we define Ney(bey) =
n(b1) + n(b2). Note that ney € Xey-

Remark 2.2. Throughout the rest of the paper, we will use the notation ey, Vey either for a stand alone configuration
on the even vertices, or in relation to the restriction of ¢ to the even vertices. ey, ey Will denote configurations on the
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even bonds. Similarly, Aey Will either be a stand alone subset of ng or will be used in relation to the restriction of a
set A CZ¢ to Z¢,. For A C Z4, we will denote Aog := Z N A

2.2. Definition of V¢-Gibbs measure on (Z V)"

For every &.y € xev and finite Aey C Zev, the space of all possible configurations of height differences on (Aey)* for
given boundary condition &, is defined as

X e = {Mev = (Mev (B)) iy Mev V v € Xev )

where ney V Eev € Yev is determined by (ey V &ev) (B) = Nev(D) for b € (Aey)* and = &ey (D) for b ¢ (Aey)*.

The ¢-Gibbs measure v* on Z<, and the V¢-Gibbs measure u® on (Z4,)* with given Hamiltonian H®¥ can be
defined similarly to the ¢-Gibbs measure and the V¢-Gibbs measure in Sections 2. 1 and 1.2.2. They are basically a
#-Gibbs and V¢-Gibbs measure on a different graph, with vertex and edge sets (Z¢, - (Z V). They are deﬁned via
the corresponding Hamiltonian H/e‘V o assumed of even gradient type, via the finite volume Gibbs measure V5 A Ve

on ng and the finite volume V-Gibbs measure 1) , on (Z V)
Let

ev .__ ev
H™ = (HAev»fev)ACVCZ‘SIWSCVEXCV

and let

Gev(H®) :={itev € Pa()ev): 1 is V-Gibbs measure on (ZZV)* with given Hamiltonian H®"}.

Remark 2.3. Similar to Remark 1.2, when Z v \ Aey is connected, XAy e is an affine space such that

dim X o) = | Aey|. Fixing a point xo ¢ Aey, we consider the map J g D Xev —> RZev such that ney — {¢ev(x)},
with

P)i= Y (e VEND), X € Aey,

beC&

X0, X

for a chain Cfé(‘)'ﬁ . connecting xo and x and for fixed ¢ (xo),

PO) =yt = 3" &y (b) + ¢ (x0), X ¢ Ay

beC,\-O.X

Remark 2.4. For every &e, € oy and a € R, let ey = ¢p5% be defined by (15) and consider the measure v ey, Yoy -

Then [La,,, ye, 1S the image measure of v, y., under the map {§(x)}ren,, —> {Nev(D) = V(Pey V wev)(b)}bem.
Note that the image measure is determined only by &., and is independent of the choice of a.

2.3. Induced V¢-Gibbs measure on (Z&,)*

Throughout this section, we will make the following notation conventions. For ¢, ¢ € RZd, we define ey 1=
(q&(x))xezgv, Yey i= (w(x))xezgv. For n, & € x, we define 1., and &, according to Remark 2.1.

Definition 2.5. Let Aey be a finite set in ng. We construct a finite set A C 74 associated to Aey as follows: if x € Aey,
thenx e Aandx +e; € Aforalli e I ={—n,—n+1,...,n}\ {0}. Note that by definition, 0 A = 3 Aey, Where the
boundary operations are performed in the graphs (74, (Zd) ) and (Zev, (ng)*), respectively (see Figs 2 and 3).

Lemma 2.6 (Induced finite volume ¢-Gibbs measure on Z v)- Let Aey C ng and let A be the associated set
in 72, as defined in Definition 2.5. Let v A,y be the finite volume Gibbs measure on A with boundary condition
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Fig. 2. The graph of Aey.

Fig. 3. The graph of A associated to Aey.

Y and with Hamiltonian H, y defined as in (3). We define the induced finite volume Gibbs measure on ng as
Vi ey = VA |F@dy- Then vy . has Hamiltonian HY' ., where

HS o @) = ) Fx((¢x +ed),.,) with

XE€Aod

(16)
Fx((¢()€ + 6;‘))1'@1) = —lOg/ e 2P Lict UVio ) d¢ (x).
R

Remark 2.7. Note that for any constant C € R, by using the change of variables ¢ (x) — ¢(x) + C in the integral
Sformula for F,,((¢(x + e;))icr) in (16), we have

Fe((¢Gx+e)), ) = Fe((¢(r +e) +C), )
In particular, this means that for any fixed k € 1
Fr((px+e)),) = Fr((px +e) —p(x +en)),;)- (17)

Therefore we are still dealing with a gradient system. However, it is in general no longer a two-body gradient system.
F.((¢(x +¢€i))icr), and consequently Hf\\;vﬂlfev’ are functions of the even gradients by (16) and (17).



830 C. Cotar and J.-D. Deuschel

Remark 2.8. We formulate next more explicitly the dependence of F, and H/‘E\Vev,wev on the even gradients. Let k € 1
be arbitrarily fixed. For any x € Z¢, let

B(x,k) = {(x +ex, x +e)}

iel’

For all Aey C ng, take the set A associated to Aey, as defined in Definition 2.5. We define here H®' =
(H/e‘\;VvEev)AevCng,%‘evg Jeo, a8 follows

HY e =Y Fuo((1ev®)yepirro)- (18)

X€Aod

Note that, via Remark 2.3, one can easily obtain the equivalence between the corresponding finite volume ¢-Gibbs
and V ¢-Gibbs measures.

Remark 2.9. By definition, Fy((¢(x + ¢;))icr) only depend on sites within distance 2 of x. Note that the new Hamil-
tonian H ., y., depends on B through the functions Fx((¢(x + e;))ier).

Proof of Lemma 2.6. The idea of this proof is just integrating out the height variables on the odd sites, conditioned
on the even sites. The Gibbs property and specific graph structure imply that the odd height variables are independent
conditional on the even sites.

Set

Ho(@) =) U(Vip()). (19)
iel

Let Aey be a finite set in Z¢, and let A € Z¢ be the associated set as defined in Definition 2.5. Note now that due to
the symmetry of the potential U, to the specific boundary conditions on A and by (3), we have

Hay(@)=) Hi(@)=2 ) H($). (20)
xeA XE€Aod
Let A € Fza C Fza, doa,, = erAev d¢(x) and d¢a , = erAnd de (x). Recall that A = A U d A and take Aey =
AN ng and Aog = AN ng. Then, by integrating out the odd height variables conditional on the even height variables,
due to the Gibbs property of v,y (see Definition 1.1) and to the fact that d A = 9 Ay, we have for every ¥ € RZ

1 _
vy = o /R 1a@)e™ I dg sy (dza )
. / da@re P Erean D ag a8y ddga )
ZA,,/, RA
1 -2
- / i / _ La@re P rreaa D ag, dp a8y Ay )
ZAJ/; RAev JRA0d
as AeF 4 1
Zev _2 X
= / EENC) ( / e P haeag M@ dm) d 4,8y (dpa 4)
ZA,x// RAev RAod
1 f _2BH
= _ 1A<¢)( f | d¢(x>> 2o, Sy (dpga, 4)
ZA’w RAev R%od XEAod XE€Aod
as 0 A=0 Aey Z /_ 14(¢) 1_[ </ e~ 2BHx(9) d¢)(x)) d‘b/\cv‘slﬂ(dd’zg’vmev)
Ay RAev xX€Aod R
1 _ NV
byélé) f e erAod Fy((p(x+ei))ier) d‘PAeV(Sw (d(ﬁzd \Aev) — VZV " (A), (21)
ZA,IP A ev evs Yev
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where for the last equality we used that Z4 y = Z 4,,.y.,, Which is due to the fact that d A = 9 Aey. O

Lemma 2.10 (Induced V¢-Gibbs measure on (ng)*). Let € Gg(H). We define the induced NV ¢-Gibbs measure
on (Z4))* as u® := I F g y+- Then p® € Gey(H™), where HY' . is defined as in Remark 2.8.

Proof. Let
Fgay =0 (n®),be(Z)") and Fgay =0 (nev(b). b e (Z4,)").

To prove the statement of the theorem, we need to prove that for all A € f(ng)*, u® satisfies
HE(AIF gyt Gev) = 1A, g, (A)-

In order to prove the above equality, we will first show that for all A € f(ng)* and for any Aey finite set in ng with
associated set A C Z4 as defined in Definition 2.5, we have

pae(A)=p ;. (A). (22)

Then using F, ( C f(Z")*\W’ the definition of the V¢-Gibbs measure and (22), we have

74,y \(AE )"
(AT g i) €) = B (B a1 F gy 9|1 F iz o) €) = M, e, (A)-

The key point in the above equation is that when we condition further, we get 114 ¢ where & is random and being
integrated over, and £’ all have &, as its restriction on the evens, and for all such £’, by (22) 4 ¢ all equal Milvev, £, (A).
To prove (22), first we start with the finite volume V¢-Gibbs measure 4 ¢. Then we construct a finite volume ¢-

Gibbs measure v4 y using the map K X defined in Remark 1.4. Next we restrict v4 y to the even vertices by means

of Lemma 2.6, and then we pass to the finite volume V¢-Gibbs measure “Xw £ by applying the map ije’f defined
in Remark 2.3.

The details in the derivation of (22) follow below.

Let & € x. Fixing ¢(0) € R, for all A € F 74/« we have by Remark 1.4 that

MA,S(A):EVA,UJ(lAOKX)7 with ¢ given as in (6) by ¥ (x) := Z E() + v (0), xeZ4 (23)
bECO.x

Forall B € Fzq4 and Aey finite sets in 7¢, with Z4, \ Ay connected, we have by Remark 2.3
Vi e B =Eu (1o J95), with &y (b) := VY (b), be (Z4,)". (24)

Let A e }"(ng)* C f(Zd)*; then by using Lemma 2.6, (23) and (24), we have for every & € x such that &, € ey (recall
Remark 2.1)

_ vy _ Py~ _ ev,§\ _
pag(A) =Ky, (laoKy)=vy o (K1) (4)= Eust e (I(KK)—I(A) o Jhn) = i (A, (25)
where for the last equality we used the fact that 1 T = 1. O

(K1(4) © Y A
The following statement is a consequence of the Markov property of the Gibbs measures.

Lemma 2.11 (Conditional of V¢-Gibbs measure on (ng)*). Let G be a F zay«-measurable and bounded function.
Then for all p € Gg(H) and all § € x, we have

E, (G| F g ))(6) = fR G TT ey (46 (0)8y (dzg ). (26)

d
X€ZLy
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where we use vy y to denote vz y with A = {x} and  is given by ¥ (x) := Zbecgv Eev (D) + ¥ (0), x € Z2, for a fixed
¥ (0) € R and with &y given as in Remark 2.1. )

Proof. It is enough to prove (26) for bounded functions G depending on finitely many coordinates. Fix such a G
arbitrarily. Note first that the right-hand side of (26) is f(Zg’V)* -measurable and depends only on the even gradients, as
proved in (30) in Corollary 2.12 below. Therefore, to show (26) we only need to prove that for any }'(ng)*—measurable

and bounded function F depending on finitely many coordinates in (Z v, we have

/ F(Vo)G(VP)(dVe) = / F(Wev)[ /HAQ L6 [ Vx,x/x(d¢(x))5w(d¢zgv)]ﬂ(dVW)-
X X

d
X€ZLy

Take now an arbitrarily fixed f(zgv)*—measurable and bounded F, depending on finitely many coordinates in (ng)*.
For n € N let Sd {x € Z%: |x|| <n)} such that F is F-=;—-measurable and let A, := S,‘f N ng. Then from (8) we
have

Sd)*

/F(nev)G(n)u(dn)=/ M(dé)/ HA,,e () FMey) G(n). 27)
X X X

(An)* &

Using Remark 1.2, we switch now from the finite V¢-Gibbs measure j4,¢ to the corresponding finite ¢-Gibbs
measure v 4, y. Then

J

KA, £ (A F (ey) G () :/ , F(Voe )G (V) 1_[ v,y (A (X)) 8y (dpza 4,)
RZ

(An)* & XEA,

= F(V¥,,) / GV [T ves (dd()8y @z ). (28)

XeA,

as F only depends on the even gradients. Since by the Kolmogorov extension theorem we have

/R GOV T vey(d00)dy(dggy) = lim / G(V$) [T vew(dp )8y (dgzi\4,),

eZ" XeA,
the statement of the theorem follows now from (27), (28) and Lebesgue’s dominated convergence theorem. ([l

In the next corollary, we reformulate Lemma 2.11 to remove the dependence on the height field v, and to make it
more explicit that everything in the formula for EM(Glf(ng)*)(é) depends only on the even gradients.

Corollary 2.12. Letk € I be an arbitrarily fixed element in I and let G be a F z4)«-measurable and bounded function.
Then for all € Gg(H) and all § € x, we have with the notations from Remarks 2.1 and 2.8

E, (G| Fzg ) () = / G((Eev®) = () pepiynezs) [T #he, (o)), (29)
ergd
where
Wy g, (dp () = exp( B D Ulbe(d) — (x))) dg (x), (30)
xSev beB(x,k)

and ij £ IS the normalizing constant.
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Proof. Note first that for alli € [ and all x € ng, Vie(x) =¢p(x +e) —p(x+er) —d(x)+ d(x + ex) = &ev(b) —
¢ (x) + ¢ (x + ex), with b € B(x, k). The statement of the corollary follows now immediately, by making in (26) the
change of variables ¢ (x) - ¢ (x) + ¢p(x +¢x) forall x € ng. ([l

3. Random walk representation condition

In this section, we prove that under suitable conditions on the perturbation g, the new Hamiltonian H® =
(Hj‘;v’wev) AerCZ8, ey €Zd, induced on ng and defined in (16), is strictly convex. More precisely, we will prove that
H® satisfies the so-called random walk representation condition (see Definition 3.1 below). This will allow us to
adapt results known for strictly convex potentials, such as uniqueness of ergodic component and decay of covariance,
to our non-convex setting.

Section 3.1 contains the main result of this section, Theorem 3.4, in which we prove that under assumption (A2)
on g, the Hamiltonian H® satisfies the random walk representation condition. Note that, in contrast to the condition
in our previous paper [8], ||g” || L (r) can be arbitrarily large as long as ||g”||z4(r) is small. In Section 3.2, we present
some examples of non-convex potentials which fulfill assumption (A2); our first example is the particular class of
potentials treated both in [2] and in [3].

3.1. Definition and main result

Fori eI, let

. a
DlFx(yls"‘9yd’y717"'7y7d) = 8_ny())19---9yd’y717”'7y7d)'
]

We will next formulate a condition on the multi-body potential, which we call the random walk representation con-
dition, such that F, satisfies this condition, and we will adapt earlier results known for strictly convex two-body
potentials to this setting.

Definition 3.1. We say that H® satisfies the random walk representation condition if there exist ¢, ¢ > 0 such that for
d ..
all x € Ly, for all (¢(x + e0))czd reg € R and alli, j € 1

Di'in((d’(x + ek))kel) == Z Di)jFx((¢(x + ek))kEI)’

JEL j#i

c<—DF((p(x+en),.,) <c fori#j.

Remark 3.2. Note that for each x € ng, if H® satisfies Definition 3.1, then F, is uniformly convex (with respect to

the even heights). More precisely, for all o = (a1, . . ., a2q) € R*? we have
¢ Y @—op’= Y we DV (@G e), ) e Y (@—ap”
i, jELi#] i,jel i,jel,i#j

Remark 3.3. Potentials satisfying the random walk representation condition fulfill the random walk representation
which is explained, for example, in [14] or [20]. For two-body gradient interactions which are uniformly convex with
respect to heights, the random walk representation gives an extremely useful representation of the covariance matrix,
with respect to the measure [L ¢, in terms of the Green function of a specific random walk.

The main result of this section is:

Theorem 3.4 (Random walk representation condition). Let U € C2(R) be such that it satisfies (A0). We also
assume that V, g € C*(R) satisfy (Al). Then, if for some q > 1, g" satisfies (A2), more precisely, if

(C1)*?
2C§‘1H)/2" (2d)1/ ) ’

pl/ e l&”| LIR) <



834 C. Cotar and J.-D. Deuschel
then there exist ¢, ¢ > 0 such that H® satisfies the random walk representation condition.

Remark 3.5. The main idea behind the proof of Theorem 3.4 is that one can gain convexity by one-step integration,
which is possible if |g" || La ) is sufficiently small compared to V" .

What is crucial as regards the bounds c, ¢, is that they are uniform in x € ng and that they are independent of
the possible values of ¢ey € fov. This is necessary for us to adapt the arguments known for uniformly strictly convex
potentials with two-body interaction to our setting of a generalized random walk representation condition for multi-
body potentials.

Note that we only need ||g"||Law) to be small for the lower bound c, as the upper bound T only requires the
perturbation to be finite, not small.

The first step in proving Theorem 3.4 is to prove the following lemma

Lemma 3.6. Suppose x € ng. Then for all j € I, we have

DjFx((¢(x+ek) ke] Z D' F (x+ek))kel)’
ieli#j
N 31
DHE((@G+e)) == D DIF((9(x+en))):
ieli#j
andforalliel,i#j
Di’jFx((¢(x + ek))kel) —48? covy, . (U/(V,-qb(X)), U’(de)(x))), (32)

where vy y, is as defined in Lemma 2.11, with boundary condition Y¢(y) := ¢ (y) for y # x, and va_% and COVuy 4,
are respectively the expectation and the covariance with respect to the measure vy y,,.

Proof. Leta = (aj,az, ..., ax) € R?. Since Fy(ay, ..., ay) = Fx(ay +1,...,aqg + 1) for all > 0, differentiating
with respect to 7 in it, gives the first identity in (31). The second assertion in (31) follows from the first, by differ-
entiation. By differentiating now with respect to ¢ (x + ¢;) and ¢ (x + ¢;) in the formula for F,, we have for all

ijeli#j
DM F (90 + e))p) = =487 cov, (U'(Vig (1), U' (V6 (). 4
(]

The next lemma follows by Taylor expansion and will be needed for the proof of Theorem 3.4:

Lemma 3.7 (Representation of covariances). For all L>-functions F, G € C'(R; R) with bounded derivatives and
for all measures v € P(R), we have

con(F, G) = 3 / / [F@®) — F)][G@) — G v dyv(dy)
-3 / / (6 — ) TF@, W][(6 — ¥)1G @, ¥)]v(d)u(dy),
where we denote by
IF(¢, ¥) := /01 F(y+1@—y)dt,  1G@,¥):= /01 G'(¥ +s(@—y))ds

Remark 3.8 (Scaling argument). A simple scaling argument shows that it suffices to prove Theorem 3.4 for

=1, Ci=1. (34)
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Indeed, suppose that the result is true for 8 =1 and C1 = 1. Given B8, V and g which satisfy (A1) and (A2), we define

U(s) = V(s)+&(s), whereV(s>=ﬂV(m) g(s) = ﬂg<m>

Then
== —@ =@ <0
1/4
H(g)//”Lq(R) ('Bcl)l/(zq) Hg L4(R)’ “ @) ||L2(R) (ﬁ /C1) ||g “LZ(R)

Hence V, g satisfy the assumptions of Theorem 3.4 with 8 = 1 and C1 = 1. On the other hand, the change of variables
¢(x) =/BCi¢(x) yields U(Vip(x)) = BU (Vi¢(x)) and thus

Fe((px+e)),.,) = —log/e*ZZfGIU(Vi‘i(x))dé(x)
R

1 C 1 C
- ng - —log / e 2ies VN0 () = — ng Lt Fe((p G+ en),e))-
R

Proof of Theorem 3.4. From Definition 3.1 and Lemma 3.6 it follows that, in order to prove that the random walk
representation condition holds for H¢, all we need is to show that there exist ¢;, ¢, > 0 such that forall i, j € I,i # j,
and uniformly in x and ¥

¢ <covy, , (U'(Vio(0), U'(Vj¢(x))) < cu. (35)

Recall that we have U =V + g, where 1 < V” < C, and therefore we can split the initial covariance term into four
resulting covariance terms. More precisely, we have

covu,, (U}, Uj) = covu, (V/ Vi) +covu, (V. 85) + covu, , (V). 87) +covu (85 87).
where for convenience of notation we denoted by

covy, , (Uf, Uj) :=covy, , (U'(Vig (1)), U' (V0 (x))),

COVUx z//(gl’ gj) - COVVr 11/( /(Vi¢(x))’ g'(quﬁ(x))).

We will first show in (36), (37) and (38) below, by means of Lemma 3.7, that the resulting COVux,w(V/ , V]f) and
covy, , (g g}) terms are positive and that the resulting cov,, , (g;, ij) and covy, , (g}, V/) terms are negative. We
will then obtain lower and upper bound estimates for the cov,, , v/, V]f) terms, and upper bound estimates for the
CoVy, (g g}) and the —cov,, , (g ij ) and —covy, , (g}, V/) terms. These bounds will determine the conditions
on the perturbation g” such that (35) holds. To estimate an arbitrary cov,, , (V/, V]f ) term, we will bound it in (36)
from above and below by bounds proportional to cov,, , (¢, V,’) To estimate an arbitrary covvw(glf , g}) term, we
will bound the respective term in (37) from above by a bound proportional to covy, , (¢, ij ). To estimate an arbitrary
—covy, , (VJf , &) term, we will first express it in (40) in terms of cov,, , (¢, VJT) and Var,_, (g); the Var,_, (g;) term
will then also be bound in (41) from above by a bound proportional to covy, , (¢, VJf ). We will then proceed to find
upper and lower bounds for the cov,, " (o, V]f ) terms. The upper bound will be derived in (46) by means of (43), (44)
and (45), and the lower bound will be derived in (47) by means of (44). The explicit computations follow.
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Fix x € Z4 and i, j €l,i # j, arbitrarily. We will next check which covariance terms are positive and which are
negative. Using Lemma 3.7 for V/(V;¢(x)) and V'(V;¢(x)), we see that

1
covy, , (V/ (Vb (). V' (V6 ())) / / () — ¥ () foV”(<1—r>w(x>—¢<x+e,->+r¢(x))dr

X/o (1 =5)Y(x) = P (x +ej) +5¢(x)) dsva (dp)vx (d).

By comparing the above equality with the similar one for cov,, , (¢(x), V'(V;¢(x))) and with the bound 1 < V" <
C,, we have foralli, j el

covy, , (V/(Vig (), V' (Vi (x))) = cov, , (¢ (x), V/(V;¢(x))) = Var,, , (¢(x)) >0,

covy, , (V/(Vig (), V/(Vj(x))) < Cacovy, , (¢(x), V(V;9(x))). (0
Since —Cy < g” < 0, by similar reasoning

0 < cov, , (&' (Vi (x)), &'(V;6(x))) < Cj Var,, , (¢(x)) < Cgcovy, , (6(x), V' (V0 (x))) 37)
and

—Cocovy, , (). V/(V;$(x))) <covy, , (V' (V0(x)). g (Vig(x))) <O. (38)
Given (36), (37) and (38), we have the following upper and lower bounds for cov,, , (U’, U")

covy, , (9 (), V/(Vjp(x))) +cov, , (&' (Vip (), V' (Vie (x))) + covu, , (&' (Vid (1)), V'(V,;6(x)))

<covy,, (U'(Vig(x)), U'(V;9(x))) < (C2 + C§) cov, , (0 (x), V'(V;8(x))). (39)

Of more importance are the lower bound estimates, as they will determine the conditions on our perturbation g”
which give us convexity after the one-step integration. We will next get a lower bound for the cov,, (g ij ) terms
in (39), which shows that the upper and lower bounds in (39) are all in terms of covy, (@, V]f). Using (38), the
Cauchy—Schwarz inequality and (36), we have

0 < —covu, , (V(Vj6(0), g (Vi (x))) \/Varw (V56(0))y/ Var, , (' (Vi ()

< JCrcov,, , (6. V/(V,6))y/Var, , (¢ (Vid ). (40)
Let now g > 1 be arbitrarily fixed. By Lemma 3.7 and Jensen’s inequality, we get
Var,, ,, (8'(Vi¢ (x)))

2

1 2 ! "
:5//(¢(x)—1/f(x)) [/0 g (1/1()6)—¢(X+ei)+t(¢(x)—w(x)))dt:| Ve (dp) vy (dYr)
1
2

1 2-2/q ¢ () —¢(x+ei) Vo 2/q
=§/f}¢(x)—¢(x)| / @7 ds | ve(dyvndy)
Y (x)—d(x+e;)

1 2/q
/f(¢><x> — wm)z[ ; 8" (W (x) —p(x +e) +1(p(x) —w<x>))|"dr} vy (dg)vy (dyr)

=

1 _ 1 _
<5l lum / / ) = w7 v @) @) < 2718 ey [Vari (000)]

1 _
< 5172 18 2 [covuy (0. V/ (V0 0))] 777, (1)
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where for the second equality we made the change of variable s = ¥ (x) — ¢(x + ¢€;) + t(¢p(x) — ¥ (x)), in the
penultimate inequality we used Lemma 3.7 and for the last inequality we used (36). The lower bound in (39) becomes
by (41)

covy,, (U' (Vi (). U' (V¢ (x)))
> [cov,, (¢(0), V/(V;(x)))] 27~ "/0

x [[eovu,,, (9. V/(Vj90)) ] =200 0/CO/Coll" ] 1y ) | (42)

We now proceed to find upper and lower bounds for covy, (p(x), V/(V j®(x))). From (36), we have by repeated
application

1
covy, , (), V/(Vj¢))) = 57 covy (V/(de)(X)), > v/(vl«p(x))). (43)
iel

Recall now that

covy, , <V’(Vj¢(x)), Z V’(V,-d)(x)))

iel

1
=7 f V’(w(x))(Z v’(vi¢(x>)>e—2”x<"’> do (x)
X iel
/ (Z v’(v,-¢(x))>e—2Hx<¢) dep (x)],

iel

1
Zyy

- [ Zl / V/(Vig(x))e 2@ d¢(x)][
x4

where Z, y is the normalizing constant and H, (¢) has been defined in (19). Using integration by parts in the above,
we have

1
covy, , (V’(v,-¢>(x)), > v’(vl-qs(x))) =5Eu, (V' (Vi¢(x))) —covy, , (v’(v,-¢(x)), Zg’(v,»mx)))
iel iel

C
< 72 —covy, , (V’(Vj¢(x)), Zg’(viqﬁ(x))). 44

iel
From (41), (43) and (44), we now get the upper bound

Cy Vv C2

covy, , (P (x), V/(Vj9(x))) < e

Qg-1)/(24)
p M”g//”LQ(R)[COVVx,w(¢(x)’V/(vj¢(x)))] b,

which is equivalent to

[cova, , (¢(), V! (V6 0)))] %~ [covy, , (6, V! (V0 0)))]/?” —b] <a, (45)

where a = £ and b = %Ilg”ll Le®)- Depending on if [cov,, , (¢ (x), V/(V;¢(x)N]/?D < b or =b, (36)

combined with simple arithmetic in the above inequality gives

7, = Var, , (¢(x)) <cov,, , (¢(x). V'(V;6(x)))

2q 2q
< max qu L + b = L + b (46)
- "\ p2q—1)/(2q) b2q—1)/(2q) ’
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The upper bound on cov,, , (U "(Vig(x)), U'(Vj¢(x))) follows now from (39) and (46). To find a lower bound, note
now that from (36) we get

1 / /
OV <V (Vip(x)), Z 4 (Vi¢(x)))~

COVUX,I,// (¢(x)’ V/(V]¢(x))) z 2d
iel
By using (38) and (44), we have
1
CoVy, (qb(x), V’(qub(x))) > m (C9))

From (42) and (47), the lower bound becomes

covy, , (U'(Vig()), U'(V;¢(x))) =

1 1 2V C2 18" e wy
= (4dCy)2a-1/29) '

AdCcy)l/Co 21/

To summarize, we obtain the following upper and lower bounds, uniform with respect to x and

1 / /
| = GdCoE D <covy, , (U'(Vig (), U'(Vje(x)))
2q
<(C+C) (2 tb) =c (48)
= 0/\ pg—1)/@2q) u
2/Caig”
fore = 7 Czl)] o — —arEr 2 > 0 by (A2). O

Remark 3.9. Another possible condition, (A3), is obtained if we use Lemma 3.10 below to replace (41) by
Var,, , (' (Vi) < Eu,, (&' (Vio 0))’) < 2V/BdCo 8|2 s,

Lemma 3.10. Ifh € L' (R), then we have
|E,, , ()| <2V/dBCo |\ 11 -

Proof. Using integration by parts and Cauchy—Schwarz, we have

e (o) (o] )
< 28[8, (1)) B (( [ 00 d))]/

= V2B[E.,, (H!)]'" [Ew (/ "

E,,, ()| =

) 271/2
h(z)dz)] <2\/dBC 1 11 g-
o0

Note that we also used property (A1) in the above formula. (]

Remark 3.11. Note that if we consider the case where U is strictly convex with C; < U"” < C; (that is U =V and
g =0), inview of (36) and (45), the one step integration preserves the strict convexity of the induced Hamiltonian as

C2 2

’ , C
4alﬂlC2 <covy, , (U'(Vig(x)), U'(V;¢(x))) < 4dﬂ2C1‘
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Remark 3.12 (Perturbation with compact support). Note that we can extend the results from Theorem 3.4 to the
case where we have a perturbation g such that g’ has compact support (see also example (b) in Section 3.2 below).
More precisely, assume that U =Y + h, where U satisfies (A0), D1 <Y"” < Dy and —Dy < h” <0 on [a, b] and
0<h” <D3sonR\[a,bl,witha,beR and h" (a) = h'"'(b) = 0. Then we just need fto replace

Cy:= Dy, Cr:=Di+ Dy and g":=h"lyr<g.
A sketch of the argument follows next. Set
8(s) = h($)isera,p1) + [A(B) + 1 (B)(s = D) [ Lis=p) + [(@) + 1 (@)(s — @) ]15<q)
and
V($) =Y () + h(s) Lsgrapy — [R(D) + B (B)(s — b) | 152y — [hi (@) + 1 (@) (s — @)1 (s <a)-

Thus, we have V, g € C*(R), with —Dy < h''(s) = g"(s) <0 for s € [a, b] and g"(s) =0 for s € R\ [a, b] and
Dy < V"(s) =Y"(s) + h"(s)lis¢[a.p)y < D2 + D3. Note that this procedure can also be extended to the case where
h" changes sign more than once.

3.2. Examples
(a) Let pe (0,1) and 0 < kp < k. Let
U(Gs)= —log(pe_k'sz/2 + 1 - p)e_kzsz/z).

Take % > % in order that the potential U is non-convex. Let 8 =1, d =2 and k| > k. In this particular case,
as Christof Kiilske pointed out to us, we are dealing entirely with sums of Gaussian integrals, so we can compute
Covy, (U'(Vip(x)), U (V j$(x))) directly, which explicit computation is not possible in general; the random walk

representation condition holds then if % < O((%)l/ 2) (see the Appendix for a sketch of the explicit computations).

This particular example is of independent interest and has been the focus of two other papers in the area (see [2]
and [3]). For the case d =2 and g = 1, it was proved in [2] that at the critical point p := p., such that lf—;c = (%)1/4,
uniqueness of ergodic states is violated for this example of potential U and there are multiple ergodic, invariant V¢-
Gibbs measures with zero tilt; the same example is also treated in [3], where they prove CLT for the this particular
class of potentials in the case of V¢-Gibbs measures with zero tilt.

Note that we can use (A3) to show that the random walk representation condition holds if p < O((%)z/ 3). To show
this, take V and g even, with V (0) =0, g(0) = 0, and such that

pkle—k|s2/2 +1- p)kze_kzsz/z

" _
\%4 (S) - pefklsz/z + (] _ p)eik2s2/2
(49)
//(S)__ P(l_P)(kl _k2)252
g T plei—k)s?/2 4 2 p(1 — p) + (1 — p)Retki—ka)s?/2”
Then
ko <V <pki+ 0 =phka,  [&O ] 2 < 0(%@1 — k2)1/4),
3/2 3/2
14 1/4 (k2) ) ( (k2) )
—— (ki —k2) §O< =0l ——— ).
l—p (pk1 + (1 = p)kp)>/4 (pk1)3/4

b)) U(s)=s>+a —10g(s2+a),wher60<a <l.Let0< B <
it has two global minima.

a . - .
YN YR This example is interesting, as
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U(s)1

Fig. 4. Example (a).

U(s)
8-
6
4

(I
1
-4 -2 0 2 4

Fig. 5. Example (b).

Then, using the notation from Remark 3.12, take Y (s) = s2 and h(s) = —log(s2 + a). We have Y"(s) =2, so

Dy = Dy =2; also h”(s) = 2(;224_—_;)2’ with —% < h"(s) <0 for s € [—/a,+/a] and 0 < h"(s) < % otherwise.

Then Co = %, Ci=2,Cr=2+ % and ||g”(S)||L1(R) = % By using condition (A2) with ¢ = 1, the random walk
representation condition holds. (See also Fig. 5.)

4. Uniqueness of ergodic component

In this section, we extend the uniqueness of ergodic component result, proved for strictly convex potentials in [19],
to the class of non-convex potentials U = V + g which satisfy (AO) such V and g satisfy (Al) and (A2). Note that
existence of an ergodic p,, is guaranteed for our class of non-convex potentials by Theorem 4.6 below.

The proof of Theorem 1.8 will be done in two steps. First, in Section 4.1 we will prove the uniqueness of ergodic,
shift-invariant ' € Gey(H®') with a given tilt u € RY, when the potentials F, are of form as defined in (18) and
therefore H® satisfies the random walk representation condition. For that, we will be adapting earlier results for
two-body potentials under uniformly strictly convex condition, to multi-body potentials satisfying the random walk
representation condition. Then we will use this result combined with Lemma 2.11 in Section 4.2, to extend the result
(0 juu € Gp(H).

4.1. Step 1: Uniqueness of ergodic component for (ng)*

. d d * dye .

d , we define the even shift operators: o, : R%v — R%v and o, : R%)" — RZe)” similarly as for x € Z9.
Then shift-invariance and ergodicity for ©¥ (with respect to o, for all x € Zg’v) are defined similarly as for . The
main result in this section is:

d
For x € 74

Theorem 4.1. For every u € R4, there exists at most one wsY € Gey(H®), shift-invariant and ergodic with tilt u.



Uniqueness of ergodic component for V¢ systems 841

We will prove Theorem 4.1 by coupling techniques. We will follow the same line of argument as in [19], by
introducing dynamics on the gradient field which keeps the measure in Gey (H®) invariant. Suppose the dynamics of
the even height variables ¢; = {¢; ()} yezd, are generated by the family of SDEs

d
dp(y=— > W&((w+ei>)ie,)dr+\/§dwt(y>, yezZs, (50)

xeZd lx—yl=1

where for all x € ng, F are the functions defined in Lemma 2.6, satisfying the properties in Definition 3.1, and
{W:(y),y € ng} is a family of independent Brownian motions. Using standard SDE methods and due to the fact that
V" is bounded, one can show that equation (50) has a unique solution in L% for some r > 0.

We denote by Sey the class of all shift invariant ;& € P>(x.y) Which are stationary for the SDE (50) and by ext Sey
those ey € Sev Which are ergodic. For each u € R?, we denote by (extSey), the family of all u¢¥ € extSey such
that E v (nev (D)) = (u, yp — xp) for all bonds b = (xp, yp) € (ng)*. Note that all translation invariant measures in
Gey(H®) are stationary under the dynamics (see Proposition 3.1 in [19]).

The next theorem is a key result in the proof of Theorem 4.1.

Theorem 4.2. For every u € RY, there exists at most one ne € (extSey)y.

Theorem 4.1 now follows from Theorem 4.2 and Proposition 3.1 in [19], which shows that if u’ € Gey (H®) is
shift-invariant and ergodic, then &’ € ext Sey.

The proof of Theorem 4.2 is based on a coupling lemma, Lemma 4.4 below; a key ingredient for the coupling
lemma is a bound on the distance between two measures evolving under the same dynamics. The main ingredients
needed to prove it are Lemma 4.3 below and a non-standard ergodic theorem (see (58) below). The deduction of
Theorem 4.2 from the coupling lemma follows the same arguments as the proof of Theorem 2.1 in [19] and will be
omitted.

Dynamics
We will first derive a differential inequality for the difference of two solutions evolving under the same dynamics,
which will be a key ingredient in the proof of the coupling Lemma 4.4 below.

Lemma 4.3. Let ¢; and @ be two solutions for (50), coupled via the same Brownian motion in (50), and set ¢;(y) :=
& (¥) — i (y), where y € Zg\,. Then for every finite Aey C Z2,, we have

ev?

d ~ ~ .
S GO s Y [VEOT+2 Y 6w [Vao)|. (51)
! YEAey be(Aev)* bed(Aev)*

Proof. The proof of Lemma 4.3 is an adaptation of an earlier result by [19], where we replace the uniform strictly con-
vex condition on the two-body potential V with the random walk representation condition on a multi-body potential
of gradient type.

Let y € Aey. Then from (50), we have

9 -
g(@(ﬂ)z =-2 Z Fi((¢r(x + ei))iel)

xeAog [lx—y[I=1

9 5 ) )
e D), : 52
[305()’) 3 (y) ((@r(x+e ))zel)]¢t(y) (52)

By summing now in (52) over all y € Ay in (52), we get

0 - , . _ ~
o (Gm)Y=-23Y" {Z [D7Fe((¢r(x +e0),.,) — DI Fe((e(x +e)), ) ]di(x ). (53)
YEAey XEAod Jjel|

x+e;€Aey}
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where Agg = AN ng and A is the associated set to Aey, as defined in Definition 2.5. To prove (51), we expand now

DJ F, (¢ (x + ¢;))ier) around (¢; (x + ¢;))ies by the Mean Value Theorem to get

DIF((¢i(x +e)),.;) — DI Fe((ér(x +e)),;)

=Y dilx+ ek)/ D7RF (s (x +ei) + (1 — )i (x +€1)), ) ds.

kel

Plugging (54) in (53), we have

= (6 ()

yEAey

=23 Y D hGteadte)

xeloa {jel, kel
x+ej€Aey}

1
x_/ DIKFe((sepr(x +e) + (1 — )¢y (x + 7)), ) ds
0

1 PR -
=2 > [(qi(x +ep)’ /O DV F((s(x +€0) + (1= )y (x +€)) ;) ds

X€Aod {jel,
x+tej€Aeyv}

+ > ¢,<x+ek>¢,<x+e,)/ D7k (s¢>,(x+el>+<1—s)¢t(x+e,>)ie,)ds}.

kel k#j

Using now (31) for each term D7/ F, ((s¢; (x + ¢;) + (1 — 5)¢: (x + ¢€;))ics) in the above, we get

0 -
o 2 ()

YEAey

=2 Z Z Z [67(x +ej) — e (x + er)dr (x + )]
x€Aoa {jel, kel k#j
X+ej6Aev}

1
X/ Dj’kFX((S¢f(x+ei)+(1_S)(];t(x‘f‘ei))iel)ds
0
=2 Z Z [d;,Z(X—i—ej)—q5,(x+ek)¢§t(x+gj)]

xe€loa {J,k€l,jF#k,
x+ej,x+ep€Aev}

1
x/ DIFF((sr(x + ) + (1 — )y (x + ), ds
0

23 Y Y [FGte) —diatedixtep)]

x€Aoa {jel, {kel|
x+tej€Aev} xt+er€0 Aey)

1
x/ DI*E (s (x + e) + (1= ) (x +e)),,) ds.
0

(54)

(55)
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where for the second equality we differentiated between k € I such that x + e, € A.y and k € I such that x + ¢; €
d Aey. Taking account of the fact that D/ *k F. = D*J F, in the first sum in the last equality above, (55) becomes

el ~ 2
5 2 ()

YEAey

1 . -
=Y > MMﬁwﬂ—@@+qW/1NW&W@@+@+U—®@&+@%Q$
x€Aod  (jkel j#k| 0
xtej,xt+ex€ ey}

+2 > > [62(x +ej) — i (x + e (x +¢))]
x€Aod {jel, {kel|
x+tej€Aev} xter€0 Aey}

1
X f DIFF((spr(x +e) + (1 — $)py (x +ei));ep) ds
0

<—c Y [Va®]+2 > |6w)||Ve ). (56)

be(Aey)* bed(Aey)*

where we used Theorem 3.4 and Definition (3.1) in the equality in (56) to estimate the terms D/ KE((spy(x + ) +
(I =)t (x +€i))ier)- O

Coupling argument

Suppose that there exist 1" € (extSey)y and 1% € (extSey)y for u, v € RY. For r > 0, recall the definition of Xev.r
as given in Section 3.1. Let us construct two independent xey, -valued random variables 7ey = {nev(b)}be(zgv)* and
Ney = {ﬁev(b)}be(zgv)* on a common probability space (£2, F, P) in such a manner that ne, and 7y are distributed
by 1 and 1 respectively. We define ¢ = ¢"-? and ¢y = ¢"v° using the notation in (15). Let ¢; and ¢, be two
solutions of the SDE (50) with common Brownian motions having initial data ¢ and ¢. Let Nev.: and Ny ; be defined
by Ney.: (b) := V¢ (D) and fey (D) := Vo (b), forall b e (ng)*. Since u®, 4% € Sey, we conclude that ney ; and fey
are distributed by u® and 1®¥ respectively, for all > 0.

Change of basis
To adapt the coupling argument from Lemma 2.1 in [19] to the even bonds, we will use the generator set in ng
outlined below:

eq —ey, deven,

eevi=¢i+e+1, i=1,2,...,d—1, and eev’d:{ed—i-el 4 odd

Once we have defined this generator set, we can proceed with our arguments. We claim that:

Lemma 4.4. There exists a constant C > 0 independent of u, v € R? such that
— 1 _ 2
1m1—/1E:Eq@wﬂ%w)—%w@wﬂ)LHSCW—UV- (57)
0 *

Proof. To prove (57), we apply Lemma 4.3 to the differences (B¢ (x) := ¢ (x) — ¢;(x)} to bound, with the choice
Ay =[—N, N]¢, the term

U B g TR
AZ (¢ ()] dr.

XeEAN
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By using shift-invariance in the resulting inequality, we will obtain an upper bound for the term on the left of (57).
We will next use a special ergodic theorem for co-cycles (see for example Theorem 4 in [4]), which we can use in our
case because ZZV is a sub-algebra; we apply it to u® € (extSey), to obtain

1
lim  — o™ Ox) —x - ul ey =0- (58)

¥l —oo, {|x]]
xeZg,

This ergodic theorem will allow us to further estimate the upper bound we have obtained for the term on the left of
(57), and to obtain the statement of the lemma. The details of the proof, following the same arguments as Lemma 2.1
from [19], will be omitted and are left to an interested reader. O

4.2. Step 2: Uniqueness of ergodic component for (Z4)*

Proof of Theorem 1.8. Let u € RY. Suppose now that there exist 1, i € Gp(H) ergodic and shift-invariant such that
E,(n(b)) =Ez(n()) = (u, yp — xp) for all bonds b = (xp, yp) € (Z¢)*. Note now that Eev (1ey (b)) = E & (nev(b)) =
(u, yp — xp) for all bonds b = (xp, yp) € (Z&)*.

From Lemma 2.10 and with the same notation as there, we get that u®, ¢ € Gey(H®). As for all ney € Xev,
with ney(b) = ¢ (yp) — ¢ (xp), b = (xp, yp) € (Z&)*, we can write ey (b) = n(b1) + n(ba), by, by € (Z%)*, shift-
invariance and ergodicity under the even shifts for ", 1® follow immediately from the similar properties for w, fi.
Therefore u', i € (extSev)u, so we can apply Theorem 4.1 to get u®¥ = 1*". Then for any A € Fz4)«, we have
from Lemma 2.11 that E;, (14 |]—'(ng)*) =E;(14 |.7-'(ng)*) and we have

1(A) = By (14) = By (B (141 F g ) = B (B (14 Fz ) = B (B (Lal Fgg ) = Ep(A) = (). O
4.3. Existence of ergodic component on (Z%)*

Tightness of the family {11 4,£} 474 £c, 1s known for strictly convex potentials with quadratic growth at oo (see for
example Section 4.4 in [20]). Therefore a limiting measure exists in this case by taking | A| — oo along a suitable sub-
sequence. For non-convex potentials satisfying (A0) and such that U”(s) < C, for all s € R, tightness of the family
{ma,gtaczd gcy and existence of the limiting measure are shown in [9] in a more general situation (see Lemmas 3.6
and 3.7 and Proposition 3.8 from [9]).

To automatically ensure shift invariance, we will construct below shift-invariant Gibbs measures through the use
of periodic boundary conditions. For this reason, take N € N and let ’]Tflv = (Z/NZ)? be the lattice torus in Z<. As

before, ("]I‘?v)* denotes the set of directed bonds in 'I[“]iv and X4, denotes the set of all n € R(TH* which satisfy the
plaquette condition.

Lemma 4.5. Let U be such that it satisfies (AQ) and such that U" (s) < C, for all s € R. Then for every u € RY there
exists at least one shift-invariant w, € Gg(H) with a given tilt u € R4,

Proof. For the proof of existence of shift-invariant V¢-Gibbs measures we proceed as in the proof of Theorem 3.2
from [19]. To avoid that only the state with tilt # = 0 could be constructed, we note that boundary conditions with
definite tilt u are identical to boundary conditions # = 0 but with the shifted potential U (- 4 u;) for a bond directed
along e;,i € 1.

Fix u € RY and let

1
in.adi) = — exp(—ﬂ > U(ﬁ(b)+uh))dﬁN. (59)

be(T4)*

Here d7y is the uniform measure on the affine space Ve Zn  is the normalization and uj := u; for b = (x =
ei,x),x€Z i e{l,...,d}. The law of {n(b) := 71(b) + u}} under ANy is denoted by 4.
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Consider
1 . .
lim sup ——— IOgNN,u<eXp<V > (n(b))2>>, (60)
Ntoo |T%]

be(T4)*

where y > 0 will be chosen later. We will find next an upper bound for this expression.

[ exp(=B Y cirdy: UGB) +up) + ¥ D pcopd 1+ ([(5)?) dijy
ﬂNu<exp< 3 (<b>)2>> 2Ty bey) .

be (i [ exp(=B Y pexd - UGB + up)) dijy

Using the assumption on the potential, U (s) < Cas2 + U(0) and U(s) > As? — B, this expression is bounded from
above by

Jexp(=B Y pere AGID) + up)* +y 2 pet, (71(b))*) diln

oBB=UO)ITY| _ ~
Jexp(—B Z”E(T‘iﬂ* C2(7(b) + up)?) dijn

By Remark 1.4, we can express the uniform integration over gradient fields as an integration over the fields ¢ (x) =
¢ (x) —u - x, and the above expression is equal to

c(BB=BUO0)[T| _ ! - =
Jexp(=BC2 Y cerd i) @ () =G + i) +ui)?) ddrd \ () 80(dp(0))

fexp( AB Y (@) —dlx+en) +ui)

xer Jgel

+y Y (B0 —px+ e,-))z) dbra ()00 (d(0)). (61)

xe’]l'j{,,iel
But

—AB > <(¢3(x)—¢3(x+e,-)+u,~)2+y > (qS(x)—qS(x+ei))2>

xeTf\,,iel xe']l‘d Jgel

=—(AB-y) Y. (B —d(x+en)’ — ABT| D . (62)

d iel
xeTy,iel

Let y < AB be arbitrarily fixed. Plugging (61) and (62) in (60) and integrating out, we obtain for some
CB,A,Cru)>0

Z (ﬁ(b))2>> <C(B, A, Ca,u) <o0.

1
lim sup —— | log fin, u(exp(y
N be(Td))*

N1too

In particular, due to the shift-invariance of the family (fin ,)nen On ’H“fv, we get from the above for all bonds b

limsup jfin. ((7i(9))*) < C(B, A, Ca, 1) < o0,
Ntoo

which implies tightness of the family ({iy ) NeN. U
Theorem 4.6 (Existence of ergodic component on (Z%)*). Let U =V + g, where U satisfy (AO) and V and g satisfy

(A1) and (A2). Then for every u € R?, there exists at least one ergodic, shift-invariant [, € Gg(H) with a given tilt
ueR?,
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Proof. Existence of shift-invariant u € P>(x) with given tilt u € R is assured for our non-convex class of potentials
by Lemma 4.5; nevertheless, existence of an ergodic and shift-invariant 11, € P»(x) with given tilt u € R? is not
assured for non-convex potentials. However, due to the strict convexity of the F, potentials, we can use the Brascamp—
Lieb inequality and a similar reasoning to the one of Theorem 3.2 in [19], to easily show the existence, for every
u € R4, of at least one tu € Gg(H) ergodic and shift-invariant and with tilt u € R4, U

5. Decay of covariances

In this section, we extend the covariance estimates of [11] to the class of non-convex potentials U = V + g which
satisfy (AO) such V and g satisfy (A1) and (A2).

Recall that F € Cé (xr), where Cg(xr) denotes the set of differentiable functions depending on finitely many
coordinates with bounded derivatives and where x, was defined in Section 1.2.2. Using now 1, ' € ey in (12), we
define dp,, F and ||9p,, F || oo similarly for bey € (ngv)* as we did for b € (Zd)*. Before proving Theorem 1.9, we make
a remark which we will use in our proof.

Remark 5.1. Take bey = (x +e¢;,x +¢;) € (ng)*. In view of the definition, we have

196, Flloo = sup [dp F(D| < Y sup|dpF)| = D [185Flloo: (63)
€ Kev be(Zd): bobey |~ be(Zd)*: bbey

where b ~ bey are those b= (x, x +e5) € (Z)*, x € ng, such that s € {1, j}.
Proof of Theorem 1.9. We have

covy, (F(n). G(n) = By, [covy, (Fm). G| Fizg )]

+ covy, (Ep, [F () |]—"(ng)*], E,, [G(n)lf(zgv)*]), (64)

where by Corollary 2.12 and with the same notations, we have for a fixed k € 1

E,, (FIFzg,) () = / F((nev®) = 9)) e py ezs) [T #hne, (do@)):

ergd

a similar formula holds for G. Note that under p,, (- |.7-'(ng)*), the gradient vectors ((Vé; (x))ier), ezt are independent

for all x € Z‘;d. In view of this and of the above formula, under w,, (.|‘7-"(ng)*) the gradients (V¢;(x),i € I,x € ng)

are pairwise positive quadrant dependent. That means that for all x, y € ng, i,jel,witheither x #yori # j, we
have

Eu, (Lvgi0)>a;.Ve;(n>ap | Fzd <) ()
> Eu, Awgim>ap 1Fzd ) DEw, 1 ve;()>ap | Fzd )M, Vn € x andVa;,aj €R. (65)

To show this, note first that the inequality is true with equal sign for all x, y € ng, i,je€l,x+#y,due to the indepen-
dence of the gradient vectors. For the case with x =y € ng, i, j € I, the left-hand side of (65) becomes in view of
Lemma 2.12

Ep, (1vg;()>a;, Ve, »>ap | Fzd y+) (1)

k
=/1(¢(x+e,->—¢<x+ek>—¢<x>>a,-,¢(x+ej)—¢(x+ek)—¢(x)>a,->(¢(x)) [T #5,. (do@)

d
xX€ZLiy

k
= f Lg (o) <min{e (r--er)— (x-+er)—ai p e e~ e —a (D) [T 15, (A (1))

d
xX€Zgy
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:min</1(¢(x)<¢(x+e,-)—¢(x+ek)—ai)(¢(x)) 1_[ 1 o (A (),

d
X€ZLyy

f1(¢(x)<¢(x+e,-)—¢(x+ek>—aj)(¢(X)) I1 Mﬁ,nev(daﬁ(X)))

d
X€ZLgy

= min(Ey, (1,6 0 >an 1 F 74 ) ) (D), B, (1v;0000>ap | F ) (1)
= Eu, (Lvgi0>ap 1 Fzd y ) MEp, (1vg; (y>ap | Fzd ) (1),

so the inequality holds. Note now that Lemma 3.1 from [12] can be adapted to the case with pairwise positive quadrant
dependent random variables. The reason for this is that the main ingredient used in Lemma 3.1, Rosenthal’s inequality,
holds for the case with pairwise positive quadrant dependent random variables (see, for example, Corollary 1 from
[24] for a statement of Rosenthal’s theorem in this case). Given (64), the rest of the argument from Lemma 3.1 can be
easily adapted to our case; therefore, there exists ¢ > 0 such that

lcovie, (F). G| Fizg ) < ¢ 3 136F lloc 136G llow Vary, (Ve (0)| F iz, )
be(Z4)*

<t Y 10 FlloollOGlloo, (66)
be(Z4)*

where the first inequality is an application of the adaptation of Lemma 3.1 in [12], and for the second inequality we
used (46). Note that, due to the fact that the random walk representation holds, Theorem 6.2 from [11] can be adapted
to the case of the infinite even lattice with strictly convex potential; thus, a decay of covariance statement, similar to
the one in Theorem 1.9, holds for the even setting. In view of Lemma 2.10, there exists ¢’ > 0 such that

5 13be, £ 1101192, G ll oo

|cov,,, (F,G)| <¢” o (67)

1+ || xey — X2
bev,bly (72, ) eer = xey

where F =E,,, [F ()| F(z4,-] and G=E,, [G ()| Fz4 ). We need to estimate now dpe, F and 0y, G. But
Ope, ' = 5, By, [F(W)|f(zgv)*]

=Eyu, [0be, F ()| Fizg 1+ ] — cOVy, <F<n>, abw< XY U - ¢<x>)> \f(zgv>*>, (68)

d
XEZr)d heB(x,k)

from which, by using also (63)

COVy, (F(n), Z U/(nev(bev) - ¢(x)) ‘f(ZgV)*> ’ (69)
ergd,
beveB(x,k)

05 F1 < D" 185 Flloe +
b:b~bey

Applying (66) to the covariance in (69) and using |U”| < Cy + C; and (46), we get for some ¢ > 0

cov,, (F(ng),abev(z: > U(nev(b)—qb(x)))‘f(zgv)*)‘

d
xezd, beB(x.k)

<2d¢”(Co + C2) 19, Flloo Vaty, (10)|F g 1) < €19, Flloo- (70)

The statement of the theorem follows now from (63), (66), (67), (69) and (70). O
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6. Central limit theorem

We will extend next in Theorem 1.10 the scaling limit results from [22] to our class of potentials.
Proof of Theorem 1.10. It suffices to prove that for all i € /

Sei(f) =" fxe)(Vig(x) —u;) = N (0,07 ,(f)) ase— 0.

xeZd

Note that

Sei() =" fae)px+e) —p() —ui] =6 D" fxe)[p(x +2e) — $(x) — 2u;]

xeZ4 verd,
—gd/2 Z fae)[plx+2e) — p(x +e) —ui| +e/? Z Fe)px+e) —dx) —u;]
XEng ergd
=& 3" fxe)[p(x +2e) — p(x) — 2u;]
erg\,
+gd/? Z ((x+ee) — fxe)][d(x +2e) — P (x +ei) — u;]
xeZg,
=S¢ () + Re (/).

We can show the CLT for Sf.l.( f) since the summation is concentrated on the even sites; the proof uses the same
arguments as in [22] and is based on the random walk representation, as explained in Remark 3.3. Also, since by
Theorem 1.9

C

[eovi, (V¢ ). Vi¢ )| < e

we have

Var, (Rei () <& Y [Vif@e)||Vif (ve)|[covu, (d(x + ) — ¢ (x), (v +e) — (1))

x,y€Z4,

<e? Y |Vifxe)||Vif(ye)l

) d
x,yeZLg,

C
(llx =yl + D9

where V; f(xe) = f((x +e;)e) — f(xe). Expanding f((x + ¢;)¢) around x¢ by the Mean Value Theorem, we have
V, f(xe) = D' f(a)e, forsomea € RY. As f € C(‘)’O(Rd), there exist M, N > 0 such that for all x € R with |ex| < N
we have f(ex) <M, |D' f(ex)| < M and both functions equal to 0 for |ex| > N. Therefore

d+2M2C N/e N/e dxydx;--- dxg
Varﬂu (Rs,i(f)) =< Z d = d+2M2C Z / / 7
eaeze,  Ux=yi+D vezd, Ve Jenge (T b = il 4 DY

lex|<N,ley|<N |EY\SN
< eZC(d, N, M)log(l +2dN/e) <2dNC(d,N, M)e,

where C(d, N, M) is a positive constant depending on d, M and N. It follows that R, ;(f) — O in probability as
e— 0. O
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7. Surface tension

We will extend here the surface tension strict convexity results from [14] and [19] to the family of non-convex poten-
tials satisfying (A0), (A1) and (A2).

Take N € N and let T?’V =(Z/N Z)d be the lattice torus in Z¢ and let u € R?. Then, we define the surface tension
on the torus ’]1’7\, as

a0
1
oy (W)= log

. B _
|’]I‘ | Zﬁd © with ZT?‘V(u) —/RT% exp(—ﬂHchv(@u)) H de (x)

x€TY\{0}

and where HM] is given by

d
Hoyg (§.u) = > ZU (Vip) +ui)= D Y [V(Vig ) + i) + g (Vi () + i) ).
xe’]I‘d i=l1 xer i=1
We define u_; = —u; fori =1,2,...,d. Take now N to be even. Just as in the previous sections, let us label the

vertices of the torus as odd and even; let the set of odd vertices on the torus be T;iv od and the set of even vertices be
’I[“fv oy~ Then we can of course first integrate all the odd coordinates and:

Z = [ %(fR 4 PPy 0.0) H d¢<x>) [ dow

N od ET?’V ev\{o}

= fR w ep(-BHY @.w) [ dsw),

N,ev d
x€TY, o, \0}

where, similarly to (16)

Hy (@)= > FE((¢G+en),pou). I={—d.....d}\{0},

d
XETN,od

with
Fu(9 ) ) = —log [ & Der V0000 g,

Then, defining the even surface tension on T¢ Ny a8

Zﬁd ()
B 1 TN‘SV B ev
op () =—g—log with 28, = [, exp(-pHS @.w) [] dow.
N.ev | N ev| Z (O) N ev R N.ev N,ev "
’ N ev XETN,eV\{O}

we obtain the following result by integrating out the odds
Lemma 7.1.

B
GT‘,{, ev(u) 2 Td

(u).

We will next prove strict convexity for the even surface tension, uniformly in N even.
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Theorem 7.2 (Strict convexity of the even surface tension). Suppose that V, g € C*(R) such that they satisfy (A0),
(A1) and (A2). Then, for all N = 2k, we have
Dzagd () = 21)20{; () > 4dB%c;ld Vu e R4, (71)
N N.ev
where c; is given in (48). That is, the even surface tension is uniformly strictly convex in u € RY, uniformly in all N
even.

Proof. Since H®' fulfills the random walk representation condition by Theorem 3.4, Fy are uniformly convex and we

can apply Lemma 3.2 in [8] to 0,]’?3,\, (u), to get the statement of our theorem. (|

Note now that by the same reasoning as in [19], we can prove the existence of

Pw = lim o, ).
ITd |00 TN

Together with Theorem 7.2, this gives

Theorem 7.3 (Strict convexity of the surface tension). Suppose that V, g € C*(R) such that they satisfy (A0), (A1)
and (A2). Then the surface tension oP ) is strictly convex in u € R4,

Appendix

Due to the fact that example (a) in Section 3.2 has been the subject of two other papers in the area (see [2] and [3]), we
will provide here a sketch of the explicit computations for this example, which provide us with the % < O((%)l/ 2)
order. The explicit computations are worth separate consideration, as they don’t follow from Theorem 3.4. As before,
it is sufficient to estimate cov,, , (U'(Vi¢(x)), U'(V;¢(x))), for all x € ng andi,jel,i#j.

Denote by 6y :==¢(x +ex),k=1,...,4. Let & :={(0,@) | ¢ = («1,...,04),a = (1 —aq,..., 1 —aa)}, with
are{0,1},k=1,...,4.

Since U > ck; outside of a domain [—

i ¢ _c
defined as in (49) on [ N «/W]
(36), (37) and (38) from Theorem 3.4, we know that the terms cov,, , (V', V') and cov,, , (g’, 8') are positive terms,
while the terms cov,, , (V’, g') are negative terms. Using the same reasoning as in example (a) in Section 3.2, we get
that

ﬁ, ﬁ], for some ¢ > 0 and for some ¢ > 0, we take V, g to be
1—Kk2 1—Kk2
and V :=U, g := 0, on the complement set. By the same reasoning as in

covy, , (V/(Vig(0), V/(Vjo(x))) = cko. (72)

We will next try to bound from below the negative part of cov,,, (U "(Vi¢(x)), U'(Vjp(x))). Note first that, by a
reasoning similar to (44), we get for the negative part

covy, , (¢'(Vj(0)), V' (Vig(x))) = covy, ,, (g’(vj¢(x>), > V’(vk¢(x))>

kel

1 " / /

= B, (g"(Vi9 () —cows,, <g (View). D g (vkqs(x)))
kel

1

= B0, (¢" (Ve (). (73)
We next bound E,, , (—g"(V;#(x))) from above, where by (49)
p(1 = p) (ki — ko)?s? pky — kp)%s?

1
= — > —
8 2610572 1 2p(1 — p) + (1 — pyleti—k)s2/2 = (1 = petki—ks?/2
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¢ ¢ :
on [——-—=, —-~—1] and 0 otherwise. Therefore
[ Vki=ky’ Jki—ko ]
chkl (s — 0,)2e=ki—ka)s? /2= Ty Us=00) g

E, v, kg — k)2 :
W( ( ¢(x)))< ( 2) fRe*ZLlU(“gk)ds

where U (s) = — log(pe~%15°/2 + (1 — p)e—*25*/2). Then

E,. . (=8"(Vi¢ ()

p (k k )2 fji;/j;;{li(s — 9 )Qe*(/q k2)s2/2 l—[ (pe*k1(3*9k)2/2 - p)e*kz(sfek)z/z) N
T K1 —

IA

f Hk—l(pe_kl(s_ek)z/z + (- p)e—kz(s—Hk)z/Z) ds

vk — (k1 —kr)s2 _
P Zweu S (s = 0% MR 2y ke, @) s
A

e Ywayes S 1k, ko, o, @) ds

) 74)

where I (k, ko, o, @) 1= pZLI"‘k(l - p)z;::la‘ke_"‘1 Skt @k (s—600/2k2 Tkoy @(s—00°/2_ and where (74) is a sum of
sixteen Gaussian integrals. Define for (¢, @) € & arbitrary

p22=1ak(1 - p)22=1&k
(k1 Yogoy ok + ko Yy @)/

w e 12Ukt Xokog b ko Yooy a0 —(ky Yoy ewbhka Ydoy @607/ (kr Yooy ax+ka Yoy @)l

Z(a,a) =

which is the denominator in (74). Next, by the change of variables
_ 1 [r+ ki SF_ g anh + k2 Y0 awbi + (ky —kz)e,}’
\/kl Stk kY a4k — ko \/k1 St ikt Ytk — ko
in each of the sixteen ensuing Gaussian integrals of E,_, (— 8" (V¢ (x))), we obtain after integration

E, (=8 (Vi)

e > 1 p(1 = p) Lkt — k)2 pZini (1 — p)Tia @
kl 2 wares zZ (k Yhor ok ko Yooy dx ki — k)2

4 - 2
o (kl Sty o6k —0) + ko Yy k(B — 9j)> e~ —k)02—ky by w6k Yi_y @16}
ki 22=1 o + ko 22=1 o +ki— ko

X e(kl 22:1 apOc+ko 22:1 O +(ky 7k2)9j)2/(k1 szt:l ag+ko 22:1 ar+k1—ko) .

<p(—p)2nkiky + ———=

Using inside each of the sixteen (¢, @) sums the lower bound Z > Z(«, &), we get in the above

E,. . (=8"(Vi¢))

- - (et by o+ Yo ) /2
< p(l = p)2mkiky +Ep(1 — p) ' (ki —k2)*? )~ - L=t - Z_k’l =
wares kit kY ak + ki — k)l

5 <k1 S kB —6)) +ka Y4 @ (6 —65-))2
ky 22:1 oy + ko 22:1 or +ki1 — ko

o o t1—k)OF (ki Yoy anitha Yy @it (ki —k)6))* /(i Yy otk Yty @tk —ka)

e~ (k1 Xohoy anbitka Yl @b/ (ki Yoy etho Yokoy k) (75)
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Note now that

4 4 2
(kl Y bk Y b + (ki — k2)9j)

k=1 k=1

4 4 2
_ - 1 242
< (1 + M, oe)) <k1 k;ak@k + ky E ak0k> + (1 + e &))(k] —k2)705,

k=1
where we choose A(«, @) > 0 such that
1+ Ao, @) 1
3 i < 7 i
kl Zk=l ak+k22k:1 Olk-‘rkl _k2 kl Zk:l ak+k2 Zk=1 o

and
(k1 —k2)(1 + 1/A(a, @))
ky Zi:l o + ko Z;::l o +ki —kp

Then

< 1.

(k1 22:1 ot + ko 22:1 bk + (k1 — kz)Oj)2 B (k; Z;::] O + ko ZL] o2
ki 22=1 ok + k2 Z;“:l ki —k ki Zi:l ar + ko Zi:l o7
(14 1/M @) (ki — k2)*67
kl 22:1 ok + kZ 22:1 &k + k] — k2
n (1 + A, a)) (ky 22:1 arbr + ko 22:1 @ 0k)? (K 22:1 by + ko 2221 62
k1 22:1 ax + ko 22:1 o +ki—kp ki Zi:l o + ko 22:1 ay
(ki YF) b + ko b ax6r)?
ki 22:1 ax + ko Z::l o

for some 1 (o, @, k1, k), e2(e, &, k1, ko) > 0. Then (75) becomes

E,, , (=¢" (Vo))

i _ (k1 Y+ ko Yp_ a2
< p(1 = p)V2rkiky +Ep(1 = p) (ki = k)% Y~ k1 Y3 Z.Ezk-il—k 4 Zakik k)12
1 k=1 %k 2 k=1 % 1 — K2

—(ki — k2)07 +

< —(ki —k2)67 +

< —e1(a, @, k1, k2) (ki — k)] — (e, @, ki, k)

(v,a0)eZ

4 4 -
5 [2< ki Y gy kb + koY iy bk )2 N 2<4(k1 + ko) )292} o~ —k2)e ek k)67
ki Y b ok kY a4k — ko ki — ko J

w e e2(end ki ko) (ky foy anitha Yoy awb)/ (ki Yoy anth Yy @)

< p(1 = p)2rkiky + e3p(1 = p)~'Vki — ks (76)

for some 3 > 0 and where for the last inequality we have used xe™ < 1, with x > 0, to bound the exponential part.
Combining (72), (73) and (76), the conclusion follows.
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