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CONTROLLED STOCHASTIC NETWORKS IN HEAVY TRAFFIC:
CONVERGENCE OF VALUE FUNCTIONS
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University of North Carolina and Iowa State University

Scheduling control problems for a family of unitary networks under
heavy traffic with general interarrival and service times, probabilistic rout-
ing and an infinite horizon discounted linear holding cost are studied. Diffu-
sion control problems, that have been proposed as approximate models for
the study of these critically loaded controlled stochastic networks, can be re-
garded as formal scaling limits of such stochastic systems. However, to date,
a rigorous limit theory that justifies the use of such approximations for a gen-
eral family of controlled networks has been lacking. It is shown that, under
broad conditions, the value function of the suitably scaled network control
problem converges to that of the associated diffusion control problem. This
scaling limit result, in addition to giving a precise mathematical basis for the
above approximation approach, suggests a general strategy for constructing
near optimal controls for the physical stochastic networks by solving the as-
sociated diffusion control problem.

1. Introduction. As an approximation to control problems for critically-
loaded stochastic networks, Harrison (in [16], see also [18, 20]) has formulated
a stochastic control problem in which the state process is driven by a multidimen-
sional Brownian motion along with an additive control that satisfies certain feasi-
bility and nonnegativity constraints. This control problem, that is, usually referred
to as the Brownian Control Problem (BCP) has been one of the key developments
in the heavy traffic theory of controlled stochastic processing networks (SPN).
BCPs can be regarded as formal scaling limits for a broad range of scheduling
and sequencing control problems for multiclass queuing networks. Finding opti-
mal (or even near-optimal) control policies for such networks—which may have
quite general non-Markovian primitives, multiple server capabilities and rather
complex routing geometry—is in general prohibitive. In that regard, BCPs that
provide significantly more tractable approximate models are very useful. In this
diffusion approximation approach to policy synthesis, one first finds an optimal (or
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near-optimal) control for the BCP which is then suitably interpreted to construct a
scheduling policy for the underlying physical network. In recent years there have
been many works [1, 3, 4, 8, 11, 12, 26, 28] that consider specific network models
for which the associated BCP is explicitly solvable (i.e., an optimal control pro-
cess can be written as a known function of the driving Brownian motions) and, by
suitably adapting the solution to the underlying network, construct control policies
that are asymptotically (in the heavy traffic limit) optimal. The paper [25] also car-
ries out a similar program for the crisscross network where the state–space is three
dimensional, although an explicit solution for the BCP here is not available.

Although now there are several papers which establish a rigorous connection
between a network control problem and its associated BCP by exploiting the ex-
plicit form of the solution of the latter, a systematic theory which justifies the use of
BCPs as approximate models has been missing. In a recent work [9] it was shown
that for a large family of Unitary Networks (following terminology of [7], these are
networks with a structure as described in Section 2), with general interarrival and
service times, probabilistic routing and an infinite horizon discounted linear hold-
ing cost, the cost associated with any admissible control policy for the network
is asymptotically, in the heavy traffic limit, bounded below by the value function
of the BCP. This inequality, which provides a useful bound on the best achiev-
able asymptotic performance for an admissible control policy, was a key step in
developing a rigorous general theory relating BCPs with SPN in heavy traffic.

The current paper is devoted to the proof of the reverse inequality. The net-
work model is required to satisfy assumptions made in [9] (these are summarized
above Theorem 2.10). In addition, we impose a nondegeneracy condition (As-
sumption 2.12), a condition on the underlying renewal processes regarding proba-
bilities of deviations from the mean (Assumption 2.13) and regularity of a certain
Skorohod map (Assumption 2.15) (see next paragraph for a discussion of these
conditions). Under these assumptions we prove that the value function of the BCP
is bounded below by the heavy traffic limit (limsup) of the value functions of the
network control problem (Theorem 2.16). Combining this with the result obtained
in [9] (see Theorem 2.10), we obtain the main result of the paper (Theorem 2.18).
This theorem says that, under broad conditions, the value function of the network
control problem converges to that of the BCP. This result provides, under general
conditions, a rigorous basis for regarding BCPs as approximate models for criti-
cally loaded stochastic networks.

Conditions imposed in this paper allow for a wide range of SPN models. Some
such models, whose description is taken from [7], are discussed in detail in Exam-
ples 1(a)–(c). We note that our approach does not require the BCP to be explicitly
solvable and the result covers many settings where explicit solutions are unavail-
able. Most of the conditions that we impose are quite standard and we only com-
ment here on three of them: Assumptions 2.5, 2.6 and 2.15. Assumption 2.5 says
that each buffer is processed by at least one basic activity (see Remark 2.4). This
condition, which was introduced in [7], is fundamental for our analysis. In fact,
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[7] has shown that without this assumption even the existence of a nonnegative
workload matrix may fail. Assumption 2.6 is a natural condition on the geometry
of the underlying network. Roughly speaking, it says that a nonzero control action
leads to a nonzero state displacement. Assumption 2.15 is the third key require-
ment in this work. It says that the Skorohod problem associated with a certain
reflection matrix D [see equation (2.43) for the definition of D] is well posed and
the associated Skorohod map is Lipschitz continuous. As Example 1 discusses,
this condition holds for a broad family of networks (including all multiclass open
queuing networks, as well as a large family of parallel server networks and job-
shop networks).

The papers [1, 3, 4, 8, 12, 28] noted earlier, that treat the setting of explicitly
solvable BCP, do much more than establish convergence of value functions. In
particular, these works give an explicit implementable control policy for the un-
derlying network that is asymptotically optimal in the heavy traffic limit. In the
generality treated in the current work, giving explicit recipes (e.g., threshold type
policies) is unfeasible, however, the policy sequence constructed in Section 4.1
suggests a general approach for building near asymptotically optimal policies for
the network given a near optimal control for the BCP. Obtaining near optimal con-
trols for the BCP in general requires numerical approaches (see, e.g., [23, 24, 27]),
discussion of which is beyond the scope of the current work.

We now briefly describe some of the ideas in the proof of the main result—
Theorem 2.16. We begin by choosing, for an arbitrary ε > 0, a suitable ε-optimal
control Ỹ for the BCP and then, using Ỹ , construct a sequence of control poli-
cies {T r}r≥1 for the network model such that the (suitably scaled) cost associated
with T r converges to that associated with Ỹ , as r → ∞. This yields the desired
reverse inequality. One of the key difficulties is in the translation of a given con-
trol for the BCP to that for the physical network. Indeed, a (near) optimal control
for the BCP can be a very general adapted process with RCLL paths. Without
additional information on such a stochastic process, it is not at all clear how one
adapts and applies it to a given network model. A control policy for the network
needs to specify how each server distributes its effort among various job classes at
any given time instant. By a series of approximations we show that one can find
a rather simple ε-optimal control for the BCP, that is, easy to interpret and imple-
ment on a network control problem. As a first step, using PDE characterization
results for general singular control problems with state constraints from [2] (these,
in particular, make use of the nondegeneracy assumption—Assumption 2.12), one
can argue that a near-optimal control can be taken to be adapted to the driving
Brownian motion and be further assumed to have moments that are subexponen-
tial in the time variable (see Lemma 3.10). Using results from [10], one can perturb
this control so that it has continuous sample paths without significantly affecting
the cost. Next, using ideas developed by Kushner and Martins [25] in the context
of a two-dimensional BCP, one can further approximate such a control by a pro-
cess with a fixed (nonrandom) finite number of jumps that take values in a finite
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set. Two main requirements (in addition to the usual adaptedness condition) for
such a process to be an admissible control of a BCP (see Definition 2.9) are the
nonnegativity constraints (2.39) and state constraints (2.38). It is relatively easy
to construct a pure jump process that satisfies the first requirement of admissibil-
ity, namely, the nonnegativity constraints, however, the nondegenerate Brownian
motion in the dynamics rules out the satisfaction of the second requirement, that
is, state constraints, without additional modifications. This is where the regularity
assumption on a certain Skorohod map (Assumption 2.15) is used. The pure jump
control is modified in a manner such that in between successive jumps one uses
the Skorohod map to employ minimal control needed in order to respect state con-
straints. Regularity of the Skorohod problem ensures that this modification does
not change the associated cost much. The Skorohod map also plays a key role in
the weak convergence arguments used to prove convergence of costs. The above
construction is the essential content of Theorem 3.5. The ε-optimal control that
we use for the construction of the policy sequence requires two additional modifi-
cations [see part (iii) of Theorem 3.5 and below (3.14)] which facilitate adapting
such a control for the underlying physical network and in some weak convergence
proofs, but we leave that discussion for later in Section 3 (see Remark 3.6 and
above Theorem 3.8).

Using a near-optimal control Ỹ of the form given in Section 3 (cf. Theorem 3.8),
we then proceed to construct a sequence of policies {T r} for the underlying net-
work. The key relation that enables translation of Ỹ into {T r} is (2.16) using which
one can loosely interpret Ỹ (t) as the asymptotic deviation, with suitable scaling,
of T r(t) from the nominal allocation x∗t (see Definition 2.2 for the definition of
nominal allocation vector). Recall that Ỹ is constructed by modifying, through a
Skorohod constraining mechanism, a pure jump process (say, Ỹ0). In particular,
Ỹ has sample paths that are, in general, discontinuous. On the other hand, note that
an admissible policy T r is required to be a Lipschitz function (see Remark 2.8).
This suggests the following construction for T r . Over time periods (say, �t) of
constancy of Ỹ0 one should use the nominal allocation (i.e., x∗�t), while jump-
instants should be stretched into periods of length of order r (note that in the scaled
network, time is accelerated by a factor of r2 and so such periods translate to in-
tervals of length 1/r in the scaled evolution and thus are negligible) over which a
nontrivial control action is employed as dictated by the jump vector (see Figure 4
for a more complete description). This is analogous to the idea of a discrete re-
view policy proposed by Harrison [17] (see also [1] and references therein). There
are some obvious difficulties with the above prescription, for example, a nomi-
nal allocation corresponds to the average behavior of the system and for a given
realization is feasible only when the buffers are nonempty. Thus, one needs to
modify the above construction to incorporate idleness, that is, caused due to empty
buffers. The effect of such a modification is, of course, very similar to that of a
Skorohod constraining mechanism and it is tempting to hope that the deviation
process corresponding to this modified policy converges to Ỹ (in an appropriate
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sense), as r → ∞. However, without further modifications, it is not obvious that
the reflection terms that are produced from the idling periods under this policy
are asymptotically consistent with those obtained from the Skorohod constrain-
ing mechanism applied to (the state process corresponding to) Ỹ0. The additional
modification [see (4.8)] that we make roughly says that jobs are processed from a
given buffer over a small interval �, only if at the beginning of this interval there
are a “sufficient” number of jobs in the buffer. This idea of safety stocks is not new
and has been used in previous works (see, e.g., [1, 3, 4, 8, 27]). The modification,
of course, introduces a somewhat nonintuitive idleness even when there are jobs
that require processing. However, the analysis of Section 4 shows that this idleness
does not significantly affect the asymptotic cost. The above very rough sketch of
construction of T r is made precise in Section 4.1.

The rest of the paper is devoted to showing that the cost associated with T r

converges to that associated with Ỹ . It is unreasonable to expect convergence of
controls (e.g., with the usual Skorohod topology)—in particular, note that T r has
Lipschitz paths for every r while Ỹ is a (modification of) a pure jump process –
however, one finds that the convergence of costs holds. This convergence proof,
and the related weak convergence analysis, is carried out in Sections 4.2 and 4.3.

The paper is organized as follows. Section 2 describes the network structure,
all the associated stochastic processes and the heavy-traffic assumptions as well
as the other assumptions of the paper. The section also presents the SPN control
problem, that is, considered here, along with the main result of the paper (Theo-
rem 2.18). Section 3 constructs (see Theorem 3.8) a near-optimal control policy
for the BCP which can be suitably adapted to the network control problem. In Sec-
tion 4 the near-optimal control policy from Section 3 is used to obtain a sequence
of admissible control policies for the scaled SPN. The main result of the section
is Theorem 4.5, which establishes weak convergence of various scaled processes.
Convergence of costs (i.e., Theorem 2.17) is an immediate consequence of this
weak convergence result. Theorem 2.18 then follows on combining Theorem 2.17
with results of [9] (stated as Theorem 2.10 in the current work). Finally, the Ap-
pendix collects proofs of some auxiliary results.

The following notation will be used. The space of reals (nonnegative reals), pos-
itive (nonnegative) integers will be denoted by R (R+), N (N0), respectively. For
m≥ 1 and θ ∈ (0,∞), Cm[Cmθ ] will denote the space of continuous functions from
[0,∞) (resp. [0, θ ]) to Rm with the topology of uniform convergence on compacts
(resp. uniform convergence). Also, Dm[Dm

θ ] will denote the space of right continu-
ous functions with left limits, from [0,∞) (resp. [0, θ ]) to Rm with the usual Sko-
rohod topology. For y ∈ Dm and t, δ > 0, we write sup0≤s≤t |y(s)| = |y|∞,t and
sup0≤s1≤s2≤t,|s1−s2|≤δ |y(s1)− y(s2)| =�t

y(δ), where for z= (z1, . . . , zm)
′ ∈ Rm,

|z|2 = ∑m
i=1 |zi |2. All vector inequalities are to be interpreted component-wise.

We will call a function f ∈ Dm nonnegative if f (t) ≥ 0 for all t ∈ R+. A func-
tion f ∈ Dm is called nondecreasing if it is nondecreasing in each component. All
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(stochastic) processes in this work will have sample paths that are right continu-
ous and have left limits, and thus can be regarded as Dm-valued random variables
with a suitable m. For a Polish space E , B(E) will denote the corresponding Borel
sigma-field. Weak convergence of (E,B(E)) valued random variables Zn to Z will
be denoted as Zn ⇒ Z. Sequence of processes {Zn} is tight if and only if the
measures induced by Zn’s on (Dm,B(Dm)) form a tight sequence. A sequence of
processes with paths in Dm (m ≥ 1) is called C -tight if it is tight in Dm and any
weak limit point of the sequence has paths in Cm almost surely (a.s.). For processes
{Zn}, Z defined on a common probability space, we say that Zn converge to Z,
uniformly on compact time intervals (u.o.c.), in probability (a.s.) if for all t > 0,
sup0≤s≤t |Zn(s)− Z(s)| converges to zero in probability (resp. a.s.). To ease the
notational burden, standard notation (that follow [6, 7]) for different processes are
used (e.g., Q for queue-length, I for idle time, W for workload process etc.). We
also use standard notation, for example, W̄ , Ŵ , to denote fluid scaled, respectively,
diffusion scaled, versions of various processes of interest [see (2.21) and (2.22)].
All vectors will be column vectors. Anm-dimensional vector with all entries 1 will
be denoted by 1m. For a vector a, diag(a) will denote the diagonal matrix such that
the vector of its diagonal entries is a. M ′ will denote the transpose of a matrix M .
Also, Ci, i = 0,1,2, . . . , will denote generic constants whose values may change
from one proof to the next.

2. Multiclass queueing networks and the control problem. Let (�,F ,P)
be a probability space. All the random variables associated with the network model
described below are assumed to be defined on this probability space. The expecta-
tion operation under P will be denoted by E.

Network structure. We begin by introducing the family of stochastic process-
ing network models that will be considered in this work. We closely follow the
terminology and notation used in [4, 6, 7, 16, 18, 20]. The network has I infinite ca-
pacity buffers (to store I many different classes of jobs) and K nonidentical servers
for processing jobs. Arrivals of jobs, given in terms of suitable renewal processes,
can be from outside the system and/or from the internal rerouting of jobs that have
already been processed by some server. Several different servers may process jobs
from a particular buffer. Service from a given buffer i by a given server k is called
an activity. Once a job starts being processed by an activity, it must complete its
service with that activity, even if its service is interrupted for some time (e.g., for
preemption by a job from another buffer). When service of a partially completed
job is resumed, it is resumed from the point of preemption—that is, the job needs
only the remaining service time from the server to get completed (preemptive-
resume policy). Also, an activity must complete service of any job that it started
before starting another job from the same buffer. An activity always selects the
oldest job in the buffer that has not yet been served, when starting a new service
[i.e., First In First Out (FIFO) within class]. There are J activities [at most one
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FIG. 1. A network with I buffers, J activities, K servers and probabilistic routing (given by the
matrix P ).

activity for a server-buffer pair (i, k), so that J ≤ I · K]. Here the integers I,J,K
are strictly positive. Figure 1 gives a schematic for such a model.

Let I = {1, . . . , I}, J = {1, . . . ,J} and K = {1, . . . ,K}. The correspondence be-
tween the activities and buffers, and activities and servers are described by two
matrices C and A respectively. C is an I × J matrix with Cij = 1 if the j th
activity processes jobs from buffer i, and Cij = 0 otherwise. The matrix A is
K × J with Akj = 1 if the kth server is associated with the j th activity, and
Akj = 0 otherwise. Each activity associates one buffer and one server, and so each
column of C has exactly one 1 (and similarly, every column of A has exactly
one 1). We will further assume that each row of C (and A) has at least one 1,
that is, each buffer is processed by (server is processing, resp.) at least one activ-
ity. For j ∈ J, let σ(j) ≡ (σ1(j), σ2(j)) = (i, k), if activity j corresponds to the
kth server processing class i jobs. Let, for k ∈ K, J(k)

.= {j ∈ J :σ2(j) = k} and
I(k)

.= {σ1(j) : j ∈ J(k)}. Thus, for the kth server, J(k) denotes the set of activities
that the server can perform, and I(k) represents the corresponding buffers from
which the jobs can be processed.

Stochastic primitives. We are interested in the study of networks that are nearly
critically loaded. Mathematically, this is modeled by considering a sequence of
networks {N r} that “approach heavy traffic,” as r → ∞, in the sense of Defini-
tion 2.2 below. Each network in the sequence has identical structure, except for the
rate parameters that may depend on r . Here r ∈ S ⊆ R+, where S is a countable
set: {r1, r2, . . .} with 1 ≤ r1 < r2 < · · · and rn → ∞, as n→ ∞. One thinks of
the physical network of interest as the r th network embedded in this sequence, for
a fixed large value of r . For notational simplicity, throughout the paper, we will
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write the limit along the sequence rn as n→ ∞ simply as “r → ∞.” Also, r will
always be taken to be an element of S and, thus, hereafter the qualifier r ∈ S will
not be stated explicitly.

The r th network N r is described as follows. If the ith class (i ∈ I) has exoge-
nous job arrivals, the interarrival times of such jobs are given by a sequence of
nonnegative random variables {uri (n) :n≥ 1} that are i.i.d with mean and standard
deviation 1/αri , σ

u,r
i ∈ (0,∞) respectively. Let, by relabeling if needed, the buffers

with exogenous arrivals correspond to i ∈ {1, . . . , I′} := I′, where I′ ≤ I. We set
αri , σ

u,r
i = 0 and uri (n) = ∞, n ≥ 1, for i ∈ I \ I′. Service times for the j th type

of activity (for j ∈ J) are given by a sequence of nonnegative random variables
{vrj (n) :n≥ 1} that are i.i.d. with mean and standard deviation 1/βrj , σ

v,r
j ∈ (0,∞)

respectively. We will assume that the above random variables are in fact strictly
positive, that is,

for all i ∈ I, j ∈ J, P
(
uri (1) > 0

)= P
(
vrj (1) > 0

)= 1.(2.1)

We will further impose the following uniform integrability condition:

the collection {(uri (1))2, (vrj (1))2; r ≥ 1, j ∈ J, i ∈ I′}
is uniformly integrable.

(2.2)

Rerouting of jobs completed by the j th activity is specified by a sequence of
(I + 1)-dimensional vector {(φj,r0 (n),φj,r (n))′, n≥ 1}, where φj,r (n)= (φj,ri (n) :

i ∈ I). For each j ∈ J and i ∈ I ∪ {0}, φj,ri (n) = 1 if the nth completed job by
activity j gets rerouted to buffer i, and takes the value zero otherwise, where
i = 0 represents jobs leaving the system. It is assumed that for each fixed r ,
{(φj,r0 (n),φj,r (n)), n ≥ 1}, j ∈ J, are (mutually) independent sequences of i.i.d

Multinomial(I+1)(1, (p
j
0 ,p

j )), where pj = (p
j
i : i = 1, . . . , I). That, in particu-

lar, means, for j ∈ J, n≥ 1,
∑I
i=0 φ

j,r
i (n)=

∑I
i=0p

j
i = 1. Furthermore, for fixed

j ∈ J, i1, i2 ∈ I,

Cov(φj,ri1 (n),φ
j,r
i2
(n))= σφji1i2 = −pji1p

j
i2

+ pji1δi1,i2,(2.3)

where δi1,i2 is 1 if i1 = i2 and 0 otherwise. We also assume that, for each r , the
random variables

{uri (n), vrj (n),φj,r0 (n),φj,r (n), n ≥ 1, i ∈ I, j ∈ J}
are mutually independent.

(2.4)

Next we introduce the primitive renewal processes, (Er, Sr), that describe the
state dynamics. The process (Er1, . . . ,E

r
I′) is the I′-dimensional exogenous arrival

process, that is, for each i ∈ I′, Eri (t) is a renewal process which denotes the num-
ber of jobs that have arrived to buffer i from outside the system over the interval
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[0, t]. For class i to which there are no exogenous arrivals (i.e., i ∈ I \ I′), we
set Eri (t) = 0 for all t ≥ 0. We will denote the process (Er1, . . . ,E

r
I )

′ by Er . For
each activity j ∈ J, Srj (t) denotes the number of complete jobs that could be pro-
cessed by activity j in [0, t] if the associated server worked continuously and
exclusively on jobs from the associated buffer in [0, t] and the buffer had an infi-
nite reservoir of jobs. The vector (Sr1, . . . , S

r
J)

′ is denoted by Sr . More precisely,
for i ∈ I, j ∈ J,m≥ 1, let

ξ ri (m)
.=
m∑
n=1

uri (n), ηrj (m)
.=
m∑
n=1

vrj (n).(2.5)

We set ξ ri (0)= 0, ηrj (0)= 0. Then Eri , Srj are renewal processes given as follows.
For t ≥ 0,

Eri (t)= max{m≥ 0 : ξ ri (m)≤ t}, Srj (t)= max{m≥ 1 :ηrj (m)≤ t}.(2.6)

Finally, we introduce the routing sequences. Let �
j,r
i (n) denote the number of jobs

that are routed to the ith buffer, among the first n jobs completed by activity j .
Thus, for i ∈ I, j ∈ J,

�
j,r
i (n)=

n∑
m=1

φ
j,r
i (m), n= 1,2, . . . .(2.7)

We will denote the I-dimensional sequence {(�j,r1 (n), . . . ,�
j,r
I (n))′} correspond-

ing to routing of jobs completed by the j th activity by {�j,r (n)}. Also, �r (n) will
denote the I × J matrix (�1,r (n),�2,r (n), . . . ,�J,r (n)).

Control. A Scheduling policy or control for the r th SPN is specified by a non-
negative, nondecreasing J-dimensional process T r = {(T r1 (t), . . . , T rJ (t))′, t ≥ 0}.
For any j ∈ J, t ≥ 0, T rj (t) represents the cumulative amount of time spent on
the j th activity up to time t . For a control T r to be admissible, it must satisfy
additional properties which are specified below in Definition 2.7.

State processes. For a given scheduling policy T r , the state processes of the
network are the associated I-dimensional queue length process Qr and the K-
dimensional idle time process I r . For each t ≥ 0, i ∈ I,Qri (t) represents the queue-
length at the ith buffer at time t (including the jobs that are in service at that time),
and for k = 1, . . . ,K, I rk (t) is the total amount of time the kth server has idled
up to time t . Let qr =Qr(0) ∈ NI be the I-dimensional vector of queue-lengths
at time 0. Note that, for j ∈ J, t ≥ 0, Srj (T

r
j (t)) is the total number of services

completed by the j th activity up to time t . The total number of completed jobs
(by activity j ) up to time t that get rerouted to buffer i equals �

j,r
i (S

r
j (T

r
j (t))).
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Recalling the definition of matrices C and A, the state of the system at time t ≥ 0
can be described by the following equations:

Qri (t)= qr +Eri (t)−
J∑
j=1

CijS
r
j (T

r
j (t))+

J∑
j=1

�
j,r
i (S

r
j (T

r
j (t))), i ∈ I,(2.8)

I rk (t)= t −
J∑
j=1

AkjT
r
j (t), k ∈ K.(2.9)

Heavy traffic. We now describe the main heavy traffic assumption[18, 20]. We
begin with a condition on the convergence of various parameters in the sequence
of networks {N r}.

ASSUMPTION 2.1. There are q,α,σu ∈ RI+, β, σ v ∈ R
J+, θ1 ∈ RI, θ2 ∈ RJ

such that β > 0, σ v > 0, αi, σui = 0 if and only if i ∈ I \ I′, and, as r → ∞,

θr1
.= r(αr − α)→ θ1, θr2

.= r(βr − β)→ θ2,
(2.10)

σu,r → σu, σ v,r → σv, q̂r
.= qr

r
→ q.

The definition of heavy traffic, for the sequence {N r}, as introduced in [20]
(also see [6, 7, 18]), is as follows.

DEFINITION 2.2 [Heavy traffic]. Define I × J matrices P ′,R, such that P ′
ij

.=
p
j
i , for i ∈ I, j ∈ J, and

R
.= (C − P ′)diag(β).(2.11)

We say that the sequence {N r} approaches heavy traffic as r → ∞ if, in addition
to Assumption 2.1, the following two conditions hold:

(i) There is a unique optimal solution (x∗, ρ∗) to the following linear program
(LP):

minimize ρ such that Rx = α and Ax ≤ ρ1K for all x ≥ 0.(2.12)

(ii) The pair (x∗, ρ∗) satisfies

ρ∗ = 1 and Ax∗ = 1K.(2.13)

ASSUMPTION 2.3. The sequence of networks {N r} approaches heavy traffic
as r → ∞.
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REMARK 2.4. From Assumption 2.3, x∗ given in (i) of Definition 2.2 is the
unique J-dimensional nonnegative vector satisfying

Rx∗ = α, Ax∗ = 1K.(2.14)

Following [20], assume without loss of generality (by relabeling activities, if nec-
essary), that the first B components of x∗ are strictly positive (corresponding ac-
tivities are referred to as basic) and the rest are zero (nonbasic activities). For later
use, we partition the following matrices and vectors in terms of basic and nonbasic
components:

x∗ =
[
x∗
b

0

]
, T r =

[
T rb
T rn

]
, A= [B :N ], R = [H :M],(2.15)

where T r is some control policy, 0 is a (J − B)-dimensional vector of zeros,
B,N,H,M are K × B, K × (J − B), I × B and I × (J − B) matrices, respec-
tively.

The following assumption (see [7]) says that for each buffer there is an associated
basic activity.

ASSUMPTION 2.5. For every i ∈ I, there is a j ∈ J such that Rij > 0 and
x∗
j > 0.

Other processes. Components of the vector x∗ defined above can be inter-
preted as the nominal allocation rates for the J activities. Given a control policy T r ,
define the deviation process Y r as the difference between T r and the nominal al-
location:

Y r(t)
.= x∗t − T r(t), t ≥ 0.(2.16)

It follows from (2.9) and (2.14) that the idle-time process I r has the following
representation:

I r(t)=AYr(t), t ≥ 0.

Let N .= K + J − B. Next we define a N × J matrix K and N-dimensional process
Ur as follows:

K
.=
[
B N

0 −I

]
, Ur(t)

.=KYr(t), t ≥ 0,(2.17)

where I denotes a (J−B)× (J−B) identity matrix. Note that, with T rn as in (2.15),

Ur(t)=
[
I r(t)

T rn (t)

]
, t ≥ 0.(2.18)

Finally, we introduce the workload processWr which is defined as a certain linear
transformation of the queue-length process and is of dimension no greater than of
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the latter. More precisely,Wr is an L-dimensional process (L = I+K−B, see [7])
defined as

Wr(t)=�Qr(t), t ≥ 0,(2.19)

where� is a L× I-dimensional matrix with rank L and nonnegative entries, called
the workload matrix. We will not give a complete description of � since that re-
quires additional notation; and we refer the reader to [7, 18] for details. The key
fact that will be used in our analysis is that there is a L × N matrix G with non-
negative entries (see (3.11) and (3.12) in [18]) such that

�R =GK.(2.20)

We will impose the following additional assumption on G which says that each of
its columns has at least one strictly positive entry. The assumption is needed in the
proof of Lemma 3.10 [see (3.36)].

ASSUMPTION 2.6. There exists a c > 0 such that for every u ∈ RN+, |Gu| ≥
c|u|.

Rescaled processes. We now introduce two types of scalings. The first is the
so-called fluid scaling, corresponding to a law of large numbers, and the second is
the standard diffusion scaling, corresponding to a central limit theorem.

Fluid Scaled Process: This is obtained from the original process by accelerating
time by a factor of r2 and scaling down space by the same factor. The following
fluid scaled processes will play a role in our analysis. For t ≥ 0,

Ēr (t)
.= r−2Er(r2t), S̄r (t)

.= r−2Sr(r2t),

�̄
r
(t)

.= r−2�r (
r2t�), T̄ r (t)
.= r−2T r(r2t),(2.21)

Ī r (t)
.= r−2I r(r2t), Q̄r (t)

.= r−2Qr(r2t).

Here for x ∈ R+, 
x� denotes its integer part, that is, the greatest integer bounded
by x.

Diffusion Scaled Process: This is obtained from the original process by accel-
erating time by a factor of r2 and, after appropriate centering, scaling down space
by r . Some diffusion scaled processes that will be used are as follows. For t ≥ 0,

Êr (t)
.= (Er(r2t)− αrr2t)

r
, Ŝr (t)

.= (Sr(r2t)− βrr2t)

r
,

�̂
r
(t)

.= (�r (
r2t�])− 
r2t�P ′)
r

,

(2.22)
Û r (t)

.= r−1Ur(r2t), Q̂r (t)
.= r−1Qr(r2t),

Ŵ r (t)
.= r−1Wr(r2t), Ŷ r (t)

.= r−1Y r(r2t).
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The processes Ur,Qr,Wr are not centered, as one finds (see Lemma 3.3 of [9])
that, with any reasonable control policy, their fluid scaled versions converge to zero
as r → ∞. Define for t ≥ 0,

X̂ri (t)
.= Êri (t)−

J∑
j=1

(Cij − pji )Ŝrj (T̄ rj (t))
(2.23)

−
J∑
j=1

�̂
j,r

i (S̄
r
j (T̄

r
j (t))), i ∈ I.

Recall θri and q̂r from Assumption 2.1. Using (2.8), (2.9), (2.14) and (2.17),
one has the following relationships between the various scaled quantities defined
above. For all t ≥ 0,

Q̂r(t)= ζ̂ r (t)+RŶ r(t), Û r (t)=KŶ r(t),
where

ζ̂ r (t)= q̂r + X̂r (t)+ [θr1 t − (C − P ′)diag(θr2 )T̄
r (t)].(2.24)

Also, using (2.19), (2.20) and (2.24), for all t ≥ 0,

Ŵ r(t)=�q̂r +�X̂r(t)+�[θr1 t − (C −P ′)diag(θr2 )T̄
r (t)] +GÛr(t).(2.25)

Admissibility of control policies. The definition of admissible policies (Defi-
nition 2.7), given below, incorporates appropriate nonanticipativity requirements
and ensures feasibility by requiring that the associated queue-length and idle-time
processes (Qr, I r ) are nonnegative.

For m= (m1, . . . ,mI) ∈ NI, n= (n1, . . . , nJ) ∈ NJ we define the multiparame-
ter filtration generated by interarrival and service times and routing variables as

F̄ r ((m,n))
(2.26)

= σ {uri (m′
i ), v

r
j (n

′
j ), φ

j,r
i (n

′
j ) :m′

i ≤mi,n′
j ≤ nj ; i ∈ I, j ∈ J}.

Then {F̄ r ((m,n)) :m ∈ NI, n ∈ NJ} is a multiparameter filtration with the follow-
ing (partial) ordering:

(m1, n1)≤ (m2, n2) if and only if m1
i ≤m2

i , n
1
j ≤ n2

j ; i ∈ I, j ∈ J.

We refer the reader to Section 2.8 of [15] for basic definitions and properties of
multiparameter filtrations, stopping times and martingales. Let

F̄ r .= ∨
(m,n)∈NI+J

F̄ r ((m,n)).(2.27)

For all (m,n) ∈ {0,1}I+J, we define F̄ r ((m,n))= F̄ r ((1,1)) where 1 denotes the
vector of 1’s. It will be convenient to allow for extra randomness, than that captured
by F̄ r , in formulating the class of admissible policies. Let G be a σ -field indepen-
dent of F̄ r . For m ∈ NI, n ∈ NJ, let F r ((m,n))≡ F r

G(m,n)
.= F̄ r ((m,n))∨ G .
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DEFINITION 2.7. For a fixed r and qr ∈ RI+, a scheduling policy T r =
{(T r1 (t), . . . , T rJ (t)) : t ≥ 0} is called admissible for N r with initial condition qr

if for some G independent of F̄ r , the following conditions hold:

(i) T rj is nondecreasing, nonnegative and satisfies T rj (0)= 0 for j ∈ J.
(ii) I rk defined by (2.9) is nondecreasing, nonnegative and satisfies I rk (0) = 0

for k = 1, . . . ,K.
(iii) Qri defined in (2.8) is nonnegative for i ∈ I.
(iv) Define for each r, t ≥ 0,

σ r0 (t)= (σ r,E0 (t), σ
r,S
0 (t))

(2.28) .= (
Eri (r

2t)+ 1 : i ∈ I;Srj (T rj (r2t))+ 1 : j ∈ J
)
.

Then, for each t ≥ 0,

σ r0 (t) is a {F r ((m,n)) :m ∈ N
I, n ∈ N

J} stopping time.(2.29)

Define the filtration {F r
1 (t) : t ≥ 0} as

F r
1 (t)

.= F r (σ r0 (t))
(2.30)

= σ {A ∈ F r :A∩ {σ r0 (t)≤ (m,n)} ∈ F r ((m,n)),m ∈ N
I, n ∈ N

J}.
Then

Û r is {F r
1 (t)}-adapted.(2.31)

Denote by Ar (qr) the collection of all admissible policies for N r with initial con-
dition qr .

REMARK 2.8. (i) and (ii) in Definition 2.7 imply, in view of (2.9) and proper-
ties of the matrix A, that

0 ≤ T rj (t)− T rj (s)≤ t − s, j ∈ J for all 0 ≤ s ≤ t <∞.(2.32)

In particular, T rj is a process with Lipschitz continuous paths. Condition (iv) in
Definition 2.7 can be interpreted as a nonanticipativity condition. Proposition 2.8
and Theorem 5.4 of [9] give general sufficient conditions under which this property
holds (see also Proposition 4.1 of the current work).

Cost function. For the network N r , we consider an expected infinite horizon
discounted (linear) holding cost associated with a scheduling policy T r and initial
queue length vector qr :

J r(qr , T r)
.= E

(∫ ∞
0
e−γ th · Q̂r(t) dt

)
+ E

(∫ ∞
0
e−γ tp · dÛ r(t)

)
.(2.33)

Here, γ ∈ (0,∞) is the “discount factor” and h, an I-dimensional vector with each
component hi ∈ (0,∞), i ∈ I, is the vector of “holding costs” for the I buffers.
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In the second term, p ≥ 0 is an N-dimensional vector. The first K block of U
corresponds to the idleness process I , and, thus, the second term in the cost, in
particular, captures the idleness cost. The last J − B components of U correspond
to the time spent on nonbasic activities. Thus, this formulation of the cost allows, in
addition to the idleness cost, the user to put a penalty for using nonbasic activities.

The formulation of the cost function considered in our work goes back to the
original work of Harrison et al. [16, 20].

The scheduling control problem for N r is to find an admissible control pol-
icy T r that minimizes the cost J r . The value function V r for this control problem
is defined as

V r(qr)
.= inf
T r∈Ar (qr )

J r(qr , T r), qr ∈ N
I
0.(2.34)

Brownian control problem. The goal of this work is to characterize the limit
of value functions V r as r → ∞, as the value function of a suitable diffusion
control problem. In order to see the form of the diffusion control problem, we
will like to send r → ∞ in (2.24). Using the functional central limit theorem for
renewal processes, it is easily seen that, for all reasonable control policies (see
again Lemma 3.3 of [9]), when q̂r converges to some q ∈ RI+, ζ̂ r defined in (2.24)
converges weakly to

ζ̃ = q + X̃+ θ i ,(2.35)

where

θ
.= θ1 − (C − P ′)diag(θ2)x

∗.(2.36)

Here i(s)= s, s ≥ 0 is the identity map and X̃ is a Brownian motion with drift 0
and covariance matrix

�
.=�u + (C − P ′)�v diag(x∗)(C − P ′)′ +

J∑
j=1

βjx
∗
j �

φj ,(2.37)

where�u is a I×I diagonal matrix with diagonal entries (σui )
2, i ∈ I,�v is a J×J

diagonal matrix with diagonal entries (σ vj )
2, j ∈ J and�φ

j
s are I×I matrices with

entries σφ
j

i1i2
, i1, i2 ∈ I [see (2.3)]. Although the process Ŷ r in (2.24), for a general

policy sequence {T r}, need not converge, upon formally taking limit as r → ∞,
one is led to the following diffusion control problem.

DEFINITION 2.9 [Brownian Control Problem (BCP)]. A J-dimensional
adapted process Ỹ , defined on some filtered probability space (�̃, F̃, P̃, {F̃(t)})
which supports an I-dimensional {F̃(t)}-Brownian motion X̃ with drift 0 and co-
variance matrix� given by (2.37), is called an admissible control for the Brownian
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control problem with the initial condition q ∈ RI+ iff the following two properties
hold P̃-a.s.:

Q̃(t)
.= ζ̃ (t)+RỸ (t)≥ 0 where ζ̃ (t)= q + X̃(t)+ θt, t ≥ 0,(2.38)

Ũ
.=KỸ is nondecreasing and Ũ (0)≥ 0,(2.39)

where ζ̃ and θ are as in (2.35) and (2.36) respectively. We refer to � =
(�̃, F̃, P̃, {F̃(t)}, X̃) as a system. We denote the class of all such admissible con-
trols by Ã(q). The Brownian control problem is to

infimize J̃ (q, Ỹ ) .= Ẽ

[∫ ∞
0
e−γ th · Q̃(t) dt +

∫
[0,∞)

e−γ tp · dŨ(t)
]
,(2.40)

over all admissible controls Ỹ ∈ Ã(q). Define the value function

J̃ ∗(q)= inf
Ỹ∈Ã(q)

J̃ (q, Ỹ ).(2.41)

Recall our standing assumptions (2.1), (2.2), (2.4), Assumptions 2.1, 2.3, 2.5
and 2.6. The following is the main result of [9].

THEOREM 2.10 (Budhiraja and Ghosh [9], Theorem 3.1, Corollary 3.2). Fix
q ∈ RI+ and for r > 0, qr ∈ NI such that q̂r → q as r → ∞. Then

lim inf
r→∞ V r(qr)≥ J̃ ∗(q).

REMARK 2.11. The proof in [9] is presented for the case where in the defini-
tion of V r(qr) [see (2.34)], Ar (qr) is replaced by the smaller family Ār (qr)which
consists of all T r ∈ Ar (qr) that satisfy (iv) of Definition 2.7 with F r ((m,n)) re-
placed by F̄ r ((m,n)). Proof for the slightly more general setting considered in the
current paper requires only minor modifications and, thus, we omit the details.

For the main result of this work, we will need additional assumptions.

ASSUMPTION 2.12. The matrix � is positive definite.

We will make the following assumption on the probabilities of deviations from the
mean for the underlying renewal processes. Similar conditions have been used in
previous works on construction of asymptotically optimal control policies [1, 3, 4,
8, 12].

ASSUMPTION 2.13. There exists m > 2 and, for each δ > 0, some ς(δ) ∈
(0,∞) such that, for j ∈ J, i ∈ I, r ≥ 1, t ∈ (1,∞),

P
(|Srj (t)− βrj t | ≥ δt)≤ ς(δ)

tm
,
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P
(|Eri (t)− αri t | ≥ δt)≤ ς(δ)

tm
,

P
(|�j,ri (Srj (t))− pji βrj t | ≥ δt)≤ ς(δ)

tm
.

The third inequality above is a consequence of the first two, but we note it ex-
plicitly here for future use. The assumption is clearly satisfied when Ei and Sj
are Poisson processes. For general renewal processes, such inequalities hold un-
der suitable moment conditions on the interarrival and service time distributions.
Indeed, if for some m> 1

E

[
sup
r

[uri (1)]2m
]
<∞,

(2.42)
E

[
sup
r

[vrj (1)]2m
]
<∞ for all i ∈ I, j ∈ J,

then, from Theorem 4 of [21], Assumption 2.13 is satisfied.
We now introduce an assumption on the regularity properties of a certain Skoro-

hod map. This map plays a crucial role in our analysis; see proofs of Theorems 3.5
and 4.5 [see in particular, (3.13), (3.39), discussion below (3.45) and the proof of
Theorem 3.8]. Let DI+

.= {x ∈ DI :x(0)≥ 0} and

D = (C − P ′)diag(β)diag(x∗)C′.(2.43)

DEFINITION 2.14. Given x ∈ DI+, we say (z, y) ∈ DI × DI solve the Skoro-
hod Problem (SP) for (x,D) if: (i) z(0)= x(0), (ii) z= x +Dy, (iii) y is nonde-
creasing and y(0)≥ 0, (iv) z(t)≥ 0 for all t ≥ 0, and (v)

∫
[0,∞) 1{xi(t)>0} dyi(t)= 0

for all i ∈ I.

Denoting by D0 the set of x ∈ DI+ such that there is a unique solution to the SP
for (x,D), we define maps � : D0 → DI, �̂ : D0 → DI as �(x) = z, �̂(x) = y if
(z, y) solve the SP for (x,D).

ASSUMPTION 2.15. D0 = DI+ and the maps �, �̂ are Lipschitz, namely, there
exists L ∈ (0,∞) such that for all x1, x2 ∈ DI+,

sup
0≤t<∞

{|�(x1)(t)− �(x2)(t)| + |�̂(x1)(t)− �̂(x2)(t)|} ≤ L sup
0≤t<∞

|x1(t)− x2(t)|.

We refer the reader to [13, 14] and [19] for sufficient conditions under which the
above regularity property of the Skorohod map holds. See also Example 1 be-
low. For later use we introduce the notation �̄(x) = diag(x∗)C′�̂(x) for x ∈ DI+.
Since A has nonnegative entries and x∗

j = 0 for j = B + 1, . . . ,J, we see from the
definition of K [see (2.17)] that

if y = �̄(x), then Ky ≥ 0.(2.44)
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For rest of the paper, in addition to the assumptions listed above Theorem 2.10,
Assumptions 2.12, 2.13 and 2.15 will be in force. The main result of the paper is
the following.

THEOREM 2.16. Fix q ∈ RI+. Let for r > 0, qr ∈ NI
0 be such that q̂r → q as

r → ∞. Then

lim sup
r→∞

V r(qr)≤ J̃ ∗(q).

The theorem is an immediate consequence of Theorem 2.17 below which is
proved in Section 4. For ε > 0, we say Y ∈ Ã(q) is ε-optimal for the BCP with
initial value q if

J̃ (q, Y )≤ J̃ ∗(q)+ ε.
When clear from the context, we will omit the phrase “for the BCP with initial
value q” and merely say that Y is ε-optimal.

THEOREM 2.17. Fix q ∈ RI+. For r > 0, let qr ∈ NI
0 be such that q̂r → q

as r → ∞. For every ε > 0, there exists Ỹ ∈ Ã(q), which is ε-optimal, and a
sequence T r ∈ Ar (qr), r ≥ 1 such that

J r(qr , T r)→ J̃ (q, Ỹ ) as r → ∞.

Combining Theorems 2.10 and 2.16, the following is immediate.

THEOREM 2.18. Fix q ∈ RI+. For r > 0, let qr ∈ NI
0 be such that q̂r → q as

r → ∞. Then, as r → ∞, V r(qr)→ J̃ ∗(q).

Assumptions made in this work can loosely be divided into two categories: As-
sumptions on the underlying stochastic primitives, which include, in particular,
the heavy traffic conditions (Assumptions 2.1, 2.3, 2.12 and 2.13), and assump-
tions made on the network structure (Assumptions 2.5, 2.6 and 2.15). Below we
discuss the validity of these structural assumptions for some basic families of SPN
models.

EXAMPLE 1. The following examples have been described in detail in [7]. We
will assume here, without loss of generality, that βj > 0 for all j ∈ J (an activity j
for which βj = 0 can simply be deleted from the network description). Further-
more, for all three settings considered below, Assumption 2.5 can be made without
loss of generality, since otherwise one can consider a reduced system obtained by
omitting the buffers that are not processed by any basic activity. Assumption 2.6
states that the matrix G can be chosen in a manner such that it has no columns
that are identically zero. Roughly speaking, it says that a nonzero control action



752 A. BUDHIRAJA AND A. P. GHOSH

FIG. 2. Open multiclass network (left) and parallel-server system (right).

leads to a nonzero state displacement. Although this appears to be a very natural
geometric condition and is trivially satisfied for networks in part (a) below, it is not
clear that it holds always for examples in parts (b) and (c) below. We will assume
this condition to hold without further comment.

Thus, in discussion below, we will focus only on Assumption 2.15.

(a) Open multiclass queueing networks: These correspond to a setting where
each buffer is processed by exactly one activity and, consequently, there is a one-
to-one correspondence between activities and buffers, that is, J = I (see left figure
in Figure 2 for an example). For such networks, R is an I × I-matrix of the form
R = (I − P ′)diag(β) where P is a nonnegative matrix with spectral radius less
than 1. In particular, R is nonsingular, K is a K × J matrix with full row rank and
one can take�=KR−1 andG= I. HereD = (I−P ′)diag(β)diag(x∗) and from
[19] it is known that for such D Assumption 2.15 is satisfied.

(b) Parallel server networks: For such SPN, a buffer can be served by more
than one activity, however, each job gets processed exactly once before leav-
ing the system (i.e., there is no rerouting). See right figure in Figure 2 for an
example. In particular, P = 0 and, hence, R = C diag(β). In this case, D =
C diag(β)diag(x∗)C′ ≡ diag(γ ∗), where γ ∗

i = ∑
j : σ1(j)=i βj x

∗
j , for i ∈ I. From

Assumption 2.5 (which, as was noted above, can be made without loss of gener-
ality) we have that γ ∗ > 0 and, thus, D is a diagonal matrix with strictly positive
diagonal entries. Assumption 2.15 is clearly satisfied for such matrices.

(c) Job-shop networks: This subclass of networks combines features of both
(a) and (b): A buffer can be processed by more than one activity and jobs, once
served, can get rerouted to another buffer for additional processing. See Figure 3
for an example. Following specific examples considered in [22] (see also [7]), we
define job-shop networks as those which satisfy the following property: If for some
j, j ′ ∈ J, and i ∈ I, σ1(j)= σ1(j

′)= i, then pji′ = pj ′i′ for all i ′ ∈ I. Namely, jobs
corresponding to any two activities that process the same buffer i have an identi-
cal (probabilistic) routing structure, following their completion by the respective
servers. It is easily checked that in this case D = (I − P̃ ′)diag(γ ∗), where γ ∗ is
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FIG. 3. A Job-shop network. Here p61 = p51, p62 = p52, p33 = p43.

as introduced in (b) and P̃ is an I × I-dimensional matrix with entries p̃i,i′ = pj,i′
where j ∈ J is such that σ1(j)= i. Under the condition that P̃ has spectral radius
less than 1, it follows from [19] that Assumption 2.15 is satisfied.

3. Near-optimal controls for BCP. The rest of the paper is devoted to the
proof of Theorem 2.17. Toward that goal, in this section we construct near-optimal
controls for the BCP with certain desirable features. This construction is achieved
in Theorem 3.8, which is the main result of this section.

Since an admissible control is not required to be of bounded variation, the BCP
is a somewhat nonstandard diffusion control problem and is difficult to analyze
directly. However, as shown in [20], under assumptions made in this paper, one
can replace this control problem by an equivalent problem of Singular Control with
State Constraints (SCSC). This control problem, also referred to as the Equivalent
Workload Formulation (EWF) of the BCP, is given below. We begin by introducing
the cost function, that is, optimized in this equivalent control problem.

Effective cost function: Recall the definition of the workload matrix � intro-
duced in (2.19). Let W .= {�z : z ∈ RI+}. For each w ∈ W , define

ĥ(w)
.= inf{h · q :�q =w,q ≥ 0}.(3.1)

Since h > 0, the infimum is attained for all w ∈ W . It is well known (see Theo-
rem 2 of [5]) that one can take a continuous selection of the minimizer in the above
linear program. That is, there is a continuous map q̃∗ : W → RI+ such that

q̃∗(w) ∈ argmin
q

{h · q :�q =w,q ≥ 0}.(3.2)
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Thus, in particular, ĥ is continuous. One can check that ĥ satisfies linear lower and
upper bounds. In order to see this, define

q∗(w)= q̃∗(w)1{|w|≤1} + |w|q̃∗
(
w

|w|
)

1{|w|>1}.(3.3)

Then (3.2) holds with q̃∗ replaced by q∗. Since ĥ(w) = h · q∗(w) and h > 0, we
have from the above display that

b1|w| − b2 ≤ |ĥ(w)| ≤ b3(1 + |w|), w ∈ W(3.4)

for some b1, b2, b3 ∈ (0,∞). Also, uniform continuity of q∗ on {w ∈ W : |w| ≤ 1}
shows that

|ĥ(w1)− ĥ(w2)| ≤ m̂(δ)(1 + |w1| + |w2|),
(3.5)

w1,w2 ∈ W, |w1 −w2| ≤ δ.
Here m̂ is a modulus, that is, a nondecreasing function from [0,∞) → [0,∞)
satisfying m̂(0+)= 0. Inequalities (3.4) and (3.5) will be used in order to appeal
to some results from [2, 10] (see Remark 3.4 below). Define

K .= {u ∈ R
N|u=Ky,y ∈ R

J}.(3.6)

The Equivalent Workload Formulation (EWF) and the associated control problem
are defined as follows.

DEFINITION 3.1 [Equivalent Workload Formulation (EWF)]. An
N-dimensional adapted process Ũ , defined on some filtered probability space
(�̃, F̃, P̃, {F̃(t)}) which supports an I-dimensional {F(t)}-Brownian motion X̃
with drift 0 and covariance matrix � defined in (2.37), is called an admissible
control for the EWF with initial condition w ∈ W iff the following two properties
hold P̃-a.s.:

Ũ is nondecreasing, Ũ (0)≥ 0, Ũ (t) ∈ K for all t ≥ 0,
(3.7)

W̃ (t)
.=w+�θt +�X̃(t)+GŨ(t) ∈ W for all t ≥ 0,

where θ is as in (2.36). We denote the class of all such admissible controls by
Ã0(w). The control problem for the EWF is to

infimize J̃0(w, Ũ)
.= Ẽ

∫ ∞
0
e−γ t ĥ(W̃ (t)) dt + Ẽ

∫
[0,∞)

e−γ tp · dŨ(t),(3.8)

over all admissible controls Ũ ∈ Ã0(w). Define the value function

J̃ ∗
0 (w)= inf

Ũ∈Ã0(w)

J̃0(w, Ũ).(3.9)
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From Theorem 2 of [20] it follows that for all w ∈ W, q ∈ RI+ satisfying w =�q ,

J̃ ∗(q)= J̃ ∗
0 (w).(3.10)

The following lemma will be used in order to appeal to some results from [2, 10].
The proof is based on arguments in [7]. Let K+ = K ∩ RN+.

LEMMA 3.2. The cones K+ and GK+ have nonempty interiors and Wo ∩
GK+ �= ∅.

PROOF. From [7] (see above Corollary 7.4 therein) it follows that H has full
row rank and so there is a B× I matrixH † such thatHH † = I. Let xb =H †1I and
let ε0 ∈ (0,∞) be sufficiently small such that for all ε ∈ (0, ε0], xεb = x∗

b +εxb > 0.
Let α0 = α + ε01I and x0 = [xε0

b ,0]′ ∈ RJ. Then Rx0 = α0. We will now argue
that ϑ =�α0 ∈ Wo ∩ (GK+)o. Since the rows of � are linearly independent, we
can find an I × L matrix �† such that ��† = I. Fix δ = ε

2|�†| . Then, whenever

ϑ̃ ∈ RL, |ϑ̃ | < δ, we have α0 +�†ϑ̃ ∈ RI+ and so ϑ + ϑ̃ = �(α0 +�†ϑ̃) ∈ W .
This shows that ϑ ∈ Wo. Next note that ϑ =�α0 =�Rx0 =GKx0. SinceKx0 =
Bx

ε0
b and xε0

b > 0, we have that Kx0 ∈ K+ and so ϑ = GKx0 ∈ GK+. Since
x
ε0
b > 0, we can find ε1 ∈ (0,∞) such that whenever x̃b ∈ RB is such that |x̃b| ≤ ε1,
x
ε0
b + x̃b > 0. Now fix δ1 = ε1

|H †||�†| . Then, for any ϑ̃ ∈ RL with |ϑ̃ | ≤ δ1 and

x̃ = [H †�†ϑ̃,0]′ ∈ RJ,

ϑ + ϑ̃ =�(α0 +�†ϑ̃)=�(Rx0 +HH †�†ϑ̃)=�(Rx0 +Rx̃)=G(K(x0 + x̃)).
Since |H †�†ϑ̃ | ≤ ε1, we have (x0 + x̃)j > 0 for all j = 1, . . . ,B. Also, (x0 + x̃)j =
0 for all j = B + 1, . . . ,J. Thus, K(x0 + x̃) ∈ K+ and, therefore, ϑ + ϑ̃ ∈GK+.
It follows that ϑ ∈ (GK+)o.

Finally, we show that Ko+ �= ∅. Since Ax∗ = 1K, every row of B must contain at
least one strictly positive entry. Thus, Bxε0

b > 0. Choose ε2 ∈ (0,∞) sufficiently
small such that Bxε0

b − ε2N1J−B > 0. Let x̄ = [xε0
b ,−ε21J−B]′ ∈ RJ. We now

argue that ū = Kx̄ ∈ (K+)o. Note that by construction ū > 0. Thus, we can find
ε3 > 0 such that ū+ ũ≥ 0 whenever ũ ∈ RN satisfies |ũ| ≤ ε3. Also, since K has
full row rank (see Corollary 6.2 of [7]), we can find a J × N matrix K† such that
KK† = I. Thus, ū+ ũ=K(x̄ +K†ũ) and, consequently, ū+ ũ ∈ K+. The result
follows. �

Note that the vector x0 constructed in the proof of the lemma above has the
property that Rx0 > 0 and Kx0 ≥ 0. Thus, we have shown the following:

COROLLARY 3.3. The set T = {y ∈ RJ :Ky ≥ 0,Ry > 0} is nonempty.

The above result will be used in the construction of a suitable near optimal
control policy for the BCP [see below (3.14)].
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REMARK 3.4. We will make use of some results from [2] and [10] that con-
cern a general family of singular control problems with state constraints. We note
below some properties of the model studied in the current paper that ensure that
the assumptions of [2] and [10] are satisfied:

(a) G has full row rank. This follows from the observation that K,� and R
have full row ranks and, therefore,

rank(G)= rank(GK)= rank(�R)= rank(�)= L.

(b) Wo ∩ (GK+)o �= ∅ and K+ has a nonempty interior (see Lemma 3.2).
(c) (Gu) ·1L ≥ |Gu|, u ·1N ≥ |u| for all u ∈ K+ andw ·1L ≥ |w| for allw ∈ W .

This is an immediate consequence of the fact that the entries of G and � are
nonnegative [see above (2.20)].

(d) Since � has full row rank and, by Assumption 2.12, � is positive definite,
we have that ���′ is positive definite.

The above properties along with Assumption 2.6, (3.4) and (3.5) ensure that
Assumptions of [2] and [10] are satisfied in our setting. In particular, Assump-
tion (2.1)–(2.2) and (2.8)–(2.10) of [2] hold in view of properties (b), (c) and (d)
and equations (3.4) and (3.5). Similarly, Assumptions (1), (5) and 2.2 of [10] hold
in our setting [from property (c), (3.4) and Assumption 2.6, resp.]. Henceforth,
when appealing to results from [2] and [10], we will not make an explicit refer-
ence to these conditions.

Recall ζ̃ (t) and the map �̄ introduced above (2.35) and (2.44), respectively. The
following is a key step in the construction of a near-optimal control with desirable
properties.

THEOREM 3.5. Fix q ∈ RI+. For each ε ∈ (0,∞), there exists Ỹ (1) ∈ Ã(q),
given on some system �, that is ε-optimal and has the following properties:

Ỹ (1) = Ỹ (1)0 + �̄(ζ̃ +RỸ (1)0

)
,(3.11)

where Ỹ (1)0 is an adapted process with sample paths in DJ satisfying the following:
For some T ,η,M ∈ (0,∞), p0, j0 ∈ N, with θ = T/p0 and κ = θ/j0,

(i) Ỹ (1)0 (t)= Ỹ (1)0 (nθ) for t ∈ [nθ, (n+ 1)θ), n= 0,1, . . . , p0 − 1 and Ỹ (1)0 (t)=
Ỹ
(1)
0 (p0θ) for t ≥ T = p0θ .

(ii) Letting SηM = {bη :b ∈ ZJ, |b|η ≤M,Kb≥ 0},
∂Ỹ

(1)
0 (n)

.= Ỹ (1)0 (nθ)− Ỹ (1)0

(
(n− 1)θ

) ∈ SηM,

for n= 1, . . . , p0 and ∂Ỹ (1)0 (0) .= Ỹ (1)0 (0)= 0.
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(iii) There is an i.i.d sequence of Uniform (over [0,1]) random variables {Ũn},
that is, independent of ζ̃ , and for each n = 1, . . . , p0 a measurable map
�n : RInj0 × [0,1] → SηM , n = 1, . . . , p0, such that the map x �→ �n(x, t)

is continuous, for a.e. t in [0,1], and

∂Ỹ
(1)
0 (n)=�n(X κ(n), Ũn),(3.12)

where X κ(n)= {X̃(�κ) :�= 1, . . . , nj0}, n= 0,1, . . . , p0.

Proof of Theorem 3.5 is given in Section 3.1.

REMARK 3.6. The above theorem provides an ε-optimal control Ỹ (1), which
is the “constrained”-version of a piecewise constant process Ỹ (1)0 . The value of

Ỹ
(1)
0 changes only at time-points that are integer multiples of θ and is constant

for t > T = p0θ . Also, the changes in (the value of) the process occur in jumps
with sizes that are integer multiples of some η > 0 and are bounded by M . The
third property in the theorem plays an important role in the weak convergence
proof [Theorem 4.5, see, e.g., (4.56)] and says that the jump-sizes of this piece-
wise constant process are determined by the Brownian motion X̃ sampled at dis-
crete instants {κ,2κ, . . .} and the independent random variable Ũn; furthermore,
the dependence on X̃ is continuous. The continuous dependence is ensured using
a mollification argument [see below (3.46)] that has previously been used in [25].

The following lemma is a straightforward consequence of the Lipschitz property
of the Skorohod map, the linearity of the cost and the state dynamics. Proof is given
in the Appendix.

LEMMA 3.7. There is a c1 ∈ (0,∞) such that, if q ∈ RI+, T ∈ (0,∞) and
Ỹ 1, Ỹ 2 ∈ Ã(q) defined on a common filtered probability space are such that

Ỹ i(T + ·)− Ỹ i(T )= �̄(Q̃i(T )+ ζ̃ (T + ·)− ζ̃ (T )), i = 1,2,

where Q̃i is defined by the right-hand side of (2.38) by replacing Ỹ there by Ỹ i ,
then

|J̃ (q, Y 1)− J̃ (q, Y 2)| ≤ c1E|Y 1 − Y 2|∞,T .

Define ϑ : RI+ × RJ → RJ as

ϑ(q0, y)= y + �̄(q0 +Ryi)(1), q0 ∈ R
I+, y ∈ R

J.

Note that ϑ is a Lipschitz map: that is, for some ϑlip ∈ (0,∞), we have for
(q0, y), (q̃0, ỹ) ∈ RI+ × RJ,

|ϑ(q0, y)− ϑ(q̃0, ỹ)| ≤ ϑlip(|q0 − q̃0| + |y − ỹ|).(3.13)



758 A. BUDHIRAJA AND A. P. GHOSH

Also, since ϑ(q0,0)= 0, we have for (q0, y) ∈ RI+ × RJ,

|ϑ(q0, y)| ≤ ϑlip|y|.(3.14)

We now present the near-optimal control that will be used in the proof of Theo-
rem 2.17. Recall the set T introduced in Corollary 3.3. Fix ε > 0, and a unit vector
y∗ ∈ T and define c2 ∈ [1,∞) as

c2 = max
{
2c1(p0 + 1)

(
1 +L|diag(x∗)C′|)|Ry∗|,1}.

Let Ỹ (1)0 , Ỹ (1) be as in Theorem 3.5 with ε = ε/2. Let ε0 = ε/c2 and define
ϑε0(x, y)= ϑ(x, y)+ε0y

∗. Define control process Ỹ ∈ Ã(q) with the correspond-
ing state process Q̃ [defined by the right-hand side of (2.38)] by the following
equations. For n= 0,1, . . . , p0,

Ỹ (nθ)− Ỹ (nθ−)= ϑε0(Q̃(nθ−), ∂Ỹ (1)0 (n)),(3.15)

and

Ỹ (t +nθ)− Ỹ (nθ)= �̄(Q̃(nθ)+ ζ̃ (·+nθ)− ζ̃ (nθ))(t), t ∈ [0, θ),(3.16)

with the conventions that for n = p0, [0, θ) is replaced by [0,∞) and for n =
0, Q̃(nθ−) = q . The control Ỹ evolves in a similar manner to Ỹ (1) at all time
points excepting nθ , n= 0,1, . . . , p0. Since y∗ ∈ T, for every q0 ∈ RI+ and y ∈ RJ,
q0 + Rϑε0(q0, y) > 0. This, along with the definition of the map �̄ (see below
Assumption 2.15), ensures that Q̃ is nonnegative over the time intervals (nθ, (n+
1)θ) and Q̃(nθ) > 0, for n = 0,1, . . . , p0. Furthermore, (2.44) and the property
Ky∗ > 0 (see definition of T in Corollary 3.3) ensure that KỸ is nondecreasing
and nonnegative. Thus, the process defined by relations (3.15) and (3.16) is indeed
an element of Ã(q). The strict positivity of Q̃ at time instants nθ , n≤ p0 will be
exploited in the weak convergence analysis of Section 4 [see equation (4.61) and
also below (4.44)].

THEOREM 3.8. The process Ỹ defined above is ε-optimal for the BCP with
initial value q .

PROOF. Since Ỹ (1) is ε/2 optimal, in view of Lemma 3.7, it suffices to show
that ∣∣Ỹ (1) − Ỹ ∣∣∞,T ≤ ε

2c1
.(3.17)

For this we will introduce a collection of J-dimensional processes Ỹ(n), n =
0,1, . . . , p0 + 1, such that Ỹ(0) = Ỹ (1) and Ỹ(p0+1) = Ỹ (1). These processes are
only used in the current proof and do not appear elsewhere in this work.
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Define, recursively, for n= 0,1, . . . , (p0 + 1), processes Ỹ(n) with correspond-
ing state processes Q̃(n), as follows:(

Q̃(0), Ỹ(0)
)= (

Q̃(1), Ỹ (1)
)
,

and for n≥ 0, t ≥ 0,

Q̃(n+1)(t)= Q̃(n)(t)1[0,nθ)(t)+ �(H̃ (n))(t − nθ)1[nθ,∞)(t),

Ỹ(n+1)(t)= Ỹ(n)(t)1[0,nθ)(t)+ [
Ỹ(n)(nθ−)+ ϑε0

(
Q̃(n)(nθ−), ∂Ỹ0(n)

)
+ �̄(H̃ (n))(t − nθ)]1[nθ,∞)(t),

where for all t ≥ 0,

H̃ (n)(t)= Q̃(n)(nθ−)+Rϑε0

(
Q̃(n)(nθ−), ∂Ỹ0(n)

)+ ζ̃ (t + nθ)− ζ̃ (nθ)
+R[Ỹ (t + nθ)− Ỹ (nθ)].

Note that for t ∈ [nθ,∞),
Ỹ(n)(t)= Ỹ(n)(nθ−)+ ϑ(Q̃(n)(nθ−), ∂Ỹ0(n)

)+ �̄(H(n))(t − nθ),
where for all t ≥ 0,

H(n)(t)= Q̃(n)(nθ−)+Rϑ(Q̃(n)(nθ−), ∂Ỹ0(n)
)+ ζ̃ (t + nθ)− ζ̃ (nθ)

+R[Ỹ (t + nθ)− Ỹ (nθ)].
Using the Lipschitz property of �̄, it follows that, for t ≥ 0,∣∣Ỹ(n+1)(t)− Ỹ(n)(t)

∣∣≤ ε0
(
1 +L|diag(x∗)C′|)|Ry∗|.

Thus, for t ≥ 0,∣∣Ỹ(p0+1)(t)− Ỹ(0)(t)
∣∣≤ (p0 + 1)ε0

(
1 +L|diag(x∗)C′|)|Ry∗| ≤ ε

2c1
.

The result follows on noting that Ỹ(0) = Ỹ (1) and Ỹ(p0+1) = Ỹ . �

3.1. Proof of Theorem 3.5. Throughout this section we fix q ∈ RI+ and ε ∈
(0,∞). We begin with some preparatory results. Let Ã0 be the class of all J-
dimensional adapted processes Y given on some filtered probability space such that
U =KY is nondecreasing, U(0) ≥ 0 and q + RY(0) ≥ 0. Note that Ã(q) ⊂ Ã0.
Also, a given Ỹ ∈ Ã0 is in Ã(q) if and only if (2.38) is satisfied.

Given an adapted process Y0, on some system �, with sample paths in DJ, and
satisfying q +RY(0)≥ 0, we will denote the process Y , defined by

Y = Y0 + �̄(ζ̃ +RY0),(3.18)

as ϒ(Y0). We claim that

if Y0 ∈ Ã0, then Ỹ =ϒ(Ỹ0) ∈ Ã(q).(3.19)
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Indeed, Q̃= ζ̃ +RỸ = �(ζ̃ +RỸ0)≥ 0. Also,KỸ =KỸ0 +K�̄(ζ̃ +RỸ0). Since
Y0 ∈ Ã0, KY0 is nondecreasing and KY0(0) ≥ 0. Also, for x ∈ DI+, K�̄(x) =
K diag(x∗)C′�̂(x), which is a nonnegative and nondecreasing function since �̂(x)
has these properties and the matrix

K diag(x∗)C′ =
[
Bx∗

n 0
0 0

]
C′

has nonnegative entries. Combining these observations, we see that the process
Ỹ =ϒ(Ỹ0) satisfies (2.38) and (2.39). The claim follows.

Next, from the Lipschitz property of � it follows that there is a L̄ ∈ (1,∞) such
that, if Ỹ (i)0 ∈ Ã0, i = 1,2, then for all T > 0,∣∣ϒ(Ỹ (1)0

)−ϒ(Ỹ (2)0

)∣∣∞,T ≤ L̄∣∣Ỹ (1)0 − Ỹ (2)0

∣∣∞,T .(3.20)

In what follows, we will denote σ {X̃s : 0 ≤ s ≤ t} by F X̃
t .

THEOREM 3.9. Let Y ∈ Ã(q) be a {F X̃
t }-adapted process with a.s. continuous

paths. Suppose further that for some m> 0,

E[|Y |m∞,t ]<∞ for all t > 0.(3.21)

Then for any ε1, T ∈ (0,∞), there are η,M ∈ (0,∞), p0 ∈ N and a Ỹ (1) ∈ Ã(q)
such that Ỹ (1) = ϒ(Ỹ

(1)
0 ) for some Ỹ (1)0 ∈ Ã0, that is, {F X̃

t }-adapted and satis-
fies (i) and (ii) of Theorem 3.5 with θ = T/p0 and

E
[∣∣Y − Ỹ (1)0

∣∣m∞,T ]< ε1.(3.22)

PROOF. The construction of Ỹ (1) proceeds by defining, successively, simpler
approximations of Y , denoted as Y (1), Y (2), Y (3), Y (4). The process Y (1) is given
in terms of a sequence {Yn} of J-dimensional processes, whereas the processes
Y (3) and Y (4) are given in terms of one parameter families of J-dimensional pro-
cesses {Y(θ, ·), θ > 0}, {Y ∗(M, ·),M > 0}, respectively. All the processes Y (i),
i = 1,2,3,4, and {Yn}, {Y(θ, ·)}, {Y ∗(M, ·)} are only used in this proof and do not
appear elsewhere in the paper.

Fix ε1, T ∈ (0,∞). Define Yn(t) = n ∫ t(t−1/n)+ Y (s) ds, n ≥ 1, t ≥ 0. Note that
for all t, t ′ ∈ [0, T ],

|Yn(t)− Yn(t ′)| ≤ 2n|t − t ′||Y |∞,T .
Hence, by (3.21), we have, for each n,

E

[
sup

t,t ′∈[0,T ]

∣∣∣∣Yn(t)− Yn(t
′)

t − t ′
∣∣∣∣
m]
<∞.(3.23)

Note that for t ∈ [1/n,T ], |Yn(t)−Y(t)| ≤�T
Y (1/n) and for t ∈ [0,1/n], |Yn(t)−

Y(t)| ≤ 2|Y |∞,1/n. Since Y is continuous and Y(0)= 0,�T
Y (1/n)+2|Y |∞,1/n →
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0 a.s. Combining this with (3.21) and the estimate |Yn−Y |∞,T ≤ 2|Y |∞,T , we now
have that, for some n0 ∈ N, Y (1) .= Yn0 satisfies

E
∣∣Y (1) − Y ∣∣m∞,T ≤ ε̃0,(3.24)

with ε̃0 = ε1/4. Also,

E

[
sup

t,t ′∈[0,T ]

∣∣∣∣Y
1(t)− Y 1(t ′)
t − t ′

∣∣∣∣
m]

.=C1 <∞.(3.25)

Note that

Y (1)(0)= 0 and Y (1) ∈ Ã0.(3.26)

Given p0 ∈ N and θ = T/p0, define

Y(θ, t)= Y 1
(⌊
t

θ

⌋
θ

)
1[0,T )(t)+ Y 1(T )1[T ,∞)(t).

Fix p0 large enough so that θ < (
ε̃0
C1
)1/m and set Y (2)(t) = Y(θ, t). Then,

from (3.25) we have

E
[∣∣Y (2)(t)− Y (1)(t)∣∣m∞,T ]

= E

[
max

n=0,...,p0−1

{
sup

t∈[nθ,(n+1)θ)

∣∣Y (1)(nθ)− Y (1)(t)∣∣m}]
(3.27)

≤ θmE

[
sup

n=0,1,...,p0−1

{
sup

t,t ′∈[nθ,(n+1)θ)

|Y (1)(t)− Y (1)(t ′)|
|t − t ′|

}m]

≤ θmC1 < ε̃0.

From (3.26) we have

Y (2)(0)= 0 and Y (2) ∈ Ã0.(3.28)

For x ∈ R, let �x� denote the smallest integer upper bound for x. For x ∈ RJ, let

�x� = (�x1�, . . . , �xJ�)′. Fix η ≤ ε̃
1/m
0
p0

√
J

and, with convention Y (2)(−θ)= 0, define

for t ≥ 0

Y (3)(t)=

t∧T /θ�∑
n=0

⌈
∂Y (2)(n)/η

⌉
η,

where for y ∈ DJ, ∂y(n) denotes y(nθ)− y((n− 1)θ). Note that for t ≤ T ,

Y (2)(t)=

t∧T /θ�∑
n=0

∂Y (2)(n).
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Observing that for x ∈ RJ, |x − 
x/η�η| ≤ η√J and recalling that T = p0θ , we
have that

E
[∣∣Y (3) − Y (2)∣∣m∞,T ]≤ (

p0η
√

J
)m ≤ ε̃0.(3.29)

Note that if y ∈ RJ satisfies Ky ≥ 0, then yj ≤ 0 for all j = B + 1, . . . ,J and,
consequently, for such j , �yj� ≤ 0. Combining this with the fact that A has non-
negative entries, we see that K�y� ≥ 0. From this observation, along with (3.28),
we have

Y (3)(0)= 0 and Y (3) ∈ Ã0.(3.30)

The process Y (3) constructed above is constant on [nθ, (n+ 1)θ) and the jumps
∂Y (3)(n) take value in the lattice {kη :k ∈ Z}, for n = 0, . . . , p0. Also, Y (3)(t) =
Y (3)(θp0)= Y (3)(T ) for t ≥ T .

For fixed M ∈ (0,∞), define

Y ∗(M, t)=

t/θ�∑
n=0

∂Y (3)(n)I{|∂Y (3)(n)|≤M}, t ≥ 0.

Then there exists C2 ∈ (0,∞) such that, for all M > 0,

E
[∣∣Y ∗(M, ·)− Y (3)∣∣m∞,T ]≤ C2

p0∑
n=0

E
[∣∣∂Y (3)(n)∣∣mI(|∂Y (3)(n)|>M)].(3.31)

Also, for some C3 ∈ (0,∞), we have from (3.21), (3.24), (3.27) and (3.29) that,
for n= 0,1, . . . , p0,

E
[∣∣∂Y (3)(n)∣∣m]≤ C3(E[|Y |m∞,T ] + 1) <∞.

FixM > 0 such that the right-hand side of (3.31) is bounded by ε̃0. Setting Y (4) =
Y ∗(M, ·), we now have that

E
[∣∣Y (4) − Y (3)∣∣m∞,T ]≤ ε̃0.(3.32)

Also,

Y (4)(0)= 0 and Y (4) ∈ Ã0.(3.33)

Combining (3.21), (3.24), (3.27), (3.29) and (3.32), we now have that Ỹ (1)0 = Y (4)
satisfies (3.22) as well as (i) and (ii) of Theorem 3.5. This completes the proof. �

LEMMA 3.10. For each ε1 > 0 there exists an ε1-optimal Y ∈ Ã(q), which is
{F X̃
t }-adapted, continuous a.s., and satisfies

lim sup
T→∞

e−γ TE|Y |m∞,T = 0 for every m> 0.(3.34)
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PROOF. Fix ε1 > 0 and let w = �q . Applying Theorem 2.1(iv) of [2], we
have that J̃ ∗

0 (w)= inf J̃0(w,U), where the infimum is taken over all {F X̃
t }-adapted

controlsU . Hence, using (3.10), we conclude that there is an N-dimensional {F X̃
t }-

adapted process U for which (3.7) holds and

J̃ ∗(q)= J̃ ∗
0 (w)≥ J̃0(w,U)− ε1.(3.35)

From Lemma 4.7 of [2] and following the construction of Proposition 3.3 of [10]
[cf. (12) and (14) of that paper], we can assume without loss of generality that U
has continuous sample paths and for all m> 0,

lim sup
T→∞

e−γ TE|GU |m∞,T = 0.

Hence, using properties of the G matrix (see Assumption 2.6 ), we have that

lim sup
T→∞

e−γ TE|U(T )|m ≤ c−m lim sup
T→∞

e−γ TE|GU |m∞,T = 0

(3.36)
for all m> 0.

We will now use a construction given in the proof of Theorem 1 of [20]. This
construction shows that there is a J × N matrix F1 and a J × I matrix F2 such that
letting

Y(t)= F1U(t)+ F2
(
q∗(W̃ (t))− q − X̃(t)), t > 0,(3.37)

we have that Y ∈ Ã(q) and J̃0(w,U) = J̃ (q, Y ). We refer the reader to equa-
tions (35) and (36) of [20] for definitions and constructions of these matrices.
From (3.35) we now have that Y is an ε1-optimal control, has continuous sam-
ple paths a.s. and is {FX

t }-adapted. Finally from (3.37), we have that for some
C2 ∈ (0,∞),

E|Y |m∞,T ≤ C2
(
1 + E|U(T )|m + T m + E|q∗(W̃ )|m∞,T

)
.

By combining (3.3) and (3.7), the fourth term on the right-hand side can be
bounded above by C3(1 + T m + E|U(T )|m) for some C3 > 0. The result then
follows on using (3.36). �

The following construction will be used in the proof of Theorem 3.5.

LEMMA 3.11. Fix Y ∈ Ã(q) such that J̃ (q, Y ) <∞ and (3.34) holds. For
T > 0, let Ỹ T0 (t) = Y(t ∧ T ), t > 0, and YT = ϒ(Ỹ T0 ). Then given ε1 > 0, there
exists T ∈ (0,∞) such that |J̃ (q, Y ) − J̃ (q, Y T )| < ε1 and (3.34) holds with Y
replaced by YT .

PROOF. Since J̃ (q, Y ) <∞, we have that

L(T ,Y )
.= E

∫ ∞
T
e−γ th · Q̃(t) dt + E

∫
(T ,∞)

e−γ tp · dU(t)→ 0 as T → ∞,
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where Q̃ is the state process corresponding to Y and U = KY . Choose T1 large
enough so that

L(T ,Y ) < ε1/2 for T ≥ T1.(3.38)

Using the Lipschitz property of � and �̂ (see Assumption 2.15), we can find C1 ∈
(0,∞) such that, for all T > 0,

|Q̃T (t)− Q̃(T )| + |YT (t)− Y(T )|
(3.39)

≤ C1 sup
T≤s≤t

|ζ̃ (s)− ζ̃ (T )|, t ≥ T ,

where Q̃T is the state process corresponding to YT . Thus, for some C2 ∈ (0,∞),

E

∫ ∞
T
e−γ th · Q̃T (t) dt ≤ h̄

γ
e−γ TE|Q̃(T )| +C2

∫ ∞
T
e−γ t (1 + t) dt,

where h̄= maxi∈I hi . Using (3.34), we can now choose T2 large enough so that

E

∫ ∞
T
e−γ th · Q̃T (t) dt ≤ ε1/4 for all T > T2.(3.40)

Next, letting UT =KYT , we have from (3.39) that for some C3 ∈ (0,∞),
E|UT (t)−U(T )| ≤ C3

(
1 + (t − T )) for 0< T < t.

Integration by parts now yields that for some T3 > 0,

E

∫
(T ,∞)

e−γ T p · dUT (t)≤ ε1/4 for T ≥ T3.(3.41)

Combining the estimates in (3.38), (3.40) and (3.41), we now have that for all
T ≥ max{T1, T2, T3},

|J̃ (q, Y )− J̃ (q, Y T )| ≤ L(T ,Y )+L(T ,Y T )≤ ε1/2 + ε1/4 + ε1/4 = ε1.

Finally, the fact that (3.34) holds with Y replaced by YT is an immediate conse-
quence of (3.39). �

We can now complete the proof of Theorem 3.5.

PROOF OF THEOREM 3.5. Using Lemma 3.10, one can find Y ∈ A(q) which
is ε/5-optimal, has continuous paths a.s., is {F X̃

t }-adapted and satisfies (3.34).
Using Lemma 3.11, we can find T ∈ (0,∞) such that YT =ϒ(Y(· ∧ T )) is 2ε/5-
optimal and (3.34) holds with Y replaced by YT . We will apply Theorem 3.9, with
m= 1, Y replaced with YT , ε1 replaced by ε/(5c1L̄) and denote the corresponding
processes obtained from Theorem 3.9, once again by Ỹ (1) and Ỹ (1)0 . In particular,

Ỹ (1) ∈ A(q) is such that Ỹ (1) = ϒ(Ỹ (1)0 ), where Ỹ0 is {F X̃
t }-adapted, satisfies (i)
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and (ii) of Theorem 3.5, for some η,M,θ ∈ (0,∞) and p0 ∈ N, and (3.22) holds
with m= 1, Y replaced by YT and where L̄ is as in (3.20). Then

E
[∣∣YT − Ỹ (1)∣∣∞,T ]≤ L̄E

[∣∣YT − Ỹ (1)0

∣∣∞,T ]≤ ε

5c1
.

Thus, from Lemma 3.7, Ỹ (1) is 3ε/5-optimal.
Processes Ỹ (1)0 , Ỹ (1) as in the statement of Theorem 3.5 will be constructed by

modifying the processes Ỹ (1)0 , Ỹ (1) above (but denoted once more by the same sym-

bols), by constructing successive approximations (Y (κ)0 , Y (κ)) and (Ỹ (γ )0 , Y (γ )).
These approximations are only used in the current proof and do not appear else-
where in the paper.

Consider κ > 0 such that θ/κ ∈ N. Let G(n)κ = σ {X κ(n)},G(n) = σ {X̃(s) : s ≤
nθ},G = σ {X̃(s) : s ≥ 0}, n ∈ N, κ > 0. Since G(n)κ ↑ G(n) as κ ↓ 0 and Ỹ (1)0 is

{F X̃
t }-adapted, we have for each fixed ς ∈ SηM ,

P
[
∂Ỹ

(1)
0 (n)= ς |G(n)κ

]→ P
[
∂Ỹ

(1)
0 (n)= ς |G(n)

]
(3.42)

= 1{∂Ỹ (1)0 (n)=ς} a.e., as κ ↓ 0.

Note that for fixed ς ∈ SηM and n= 1, . . . , p0,

P
[
∂Ỹ

(1)
0 (n)= ς |G(n)κ

]= pκn,ς (X κ(n)),

for some measurable map pκn,ς : Rnj0I → [0,1] satisfying

for all x ∈ R
Inj0

∑
ς∈SηM

pκn,ς (x)= 1.(3.43)

Using Lemma A.1 in the Appendix, we can construct, by suitably augmenting the
filtered probability space, an adapted process Y (κ)0 such that Y (κ)0 (0)= 0, Y (κ)0 (t)=
Y
(κ)
0 (
t/θ�θ) and ∂Y (κ)0 (n)

.= Y (κ)0 (nθ)− Y (κ)0 ((n− 1)θ) satisfies

P
[
∂Y

(κ)
0 (n)= ς |G ∨ Yn−1

0

]= pκn,ς (X κ(n)), 1 ≤ n≤ p0, ς ∈ SηM,(3.44)

where Yn
0 = σ {∂Y (κ)0 (j), j ≤ n}. Note that if f is a real bounded continuous map

on C I, then by successive conditioning and (3.42), as κ ↓ 0,

E

(
f (X̃)

p0∏
n=1

1{∂Y (κ)0 (n)=ςn}

)
= E

(
f (X̃)

p0∏
n=1

pκn,ςn(X κ(n))

)

→ E

(
f (X̃)

p0∏
n=1

1{∂Ỹ (1)0 (n)=ςn}

)
,
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for any fixed (ς1, . . . , ςp0). Thus, in particular,(
X̃, Y

(κ)
0

)⇒ (
X̃, Ỹ

(1)
0

)
as κ ↓ 0.(3.45)

Define Y (κ) =ϒ(Y (κ)0 ). Then Y (κ) ∈ A(q) and satisfies (i) and (ii) of Theorem 3.5.
Also, (3.45) along with the Lipschitz property of the Skorohod map yields that
J̃ (q, Y (κ))→ J̃ (q, Ỹ (1)) as κ ↓ 0. Fix κ sufficiently small so that Y (κ) is 4ε/5-
optimal and, suppressing κ , denote Y (κ)0 by Ỹ0, Y (κ) by Ỹ and the generating ker-
nels by pn,ς .

Finally, in order to ensure property (iii) in the theorem, we mollify the kernels
pn,ς as follows. For γ > 0, and n= 1, . . . , p0, define

p̂γn,ς (x)
.=
∫

Rnj0I
pn,ς (x + z)

nj0∏
j=1

(φγ (zj ) dzj ), x ∈ R
nj0I, ς ∈ SηM,(3.46)

where φγ is the density function of an I-dimensional Normal random variable with
mean 0 and variance γ I . Note that the map x �→ p̂

γ
n,ς (x) is continuous for every

γ,n, ς and (3.43) is satisfied with pκn,ς (x) replaced with p̂γn,ς (x). From continuity
of the maps p̂γn,ς , we can find measurable maps (suppressing dependence on γ in
notation)�n : RInj0 ×[0,1] → SηM , n= 1, . . . , p0, such that�n(·, t) is continuous,
at every x ∈ RInj0 , for a.e. t in [0,1], and if U is a Uniform random variable on
[0,1], then

P
(
�n(x,U)= ς)= p̂γn,ς (x), x ∈ R

Inj0, ς ∈ SηM.

Let {Ũn} be an i.i.d sequence of Uniform random variables, that is, independent
of X̃. Now construct Ỹ (γ )0 such that Ỹ (γ )0 (0)= 0,

∂Ỹ
(γ )
0 (n)= Ỹ (γ )0 (nθ)− Ỹ (γ )0

(
(n− 1)θ

)=�n(X κ(n), Ũn), n≥ 1

and Ỹ (γ )0 (t)= Ỹ (γ )0 (θ
t/θ�). Note that

P
[
∂Ỹ

(γ )
0 (n)= ς |G ∨ Yn−1

0

]= p̂γn,ς (X κ(n)), n≥ 1, ς ∈ SηM.

Since p̂γn,ς → pn,ς pointwise, as γ → 0, we have for every real bounded map f
on C I,

E

(
f (X̃)

p0∏
n=1

1{∂Ỹ (γ )0 (n)=ςn}

)
= E

(
f (X̃)

p0∏
n=1

p̂γn,ςn(X κ(n))

)

→ E

(
f (X̃)

p0∏
n=1

pn,ςn(X κ(n))

)

= E

(
f (X̃)

p0∏
n=1

1{∂Ỹ0(n)=ςn}

)
,
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for every (ς1, . . . , ςp0), as γ → 0. Thus, (X̃, Ỹ (γ )0 ) ⇒ (X̃, Ỹ0), as γ → 0. Let

Ỹ (γ ) = ϒ(Ỹ
(γ )
0 ). Then Ỹ (γ ) ∈ A(q) and the above weak convergence and, once

more, the Lipschitz property of the Skorohod map yields that J̃ (q, Ỹ (γ )) →
J̃ (q, Ỹ ) as γ ↓ 0. Recall that Ỹ is 4ε/5-optimal. We now choose γ sufficiently
small so that Ỹ (γ ) is ε-optimal. By construction, Ỹ (1)0

.= Ỹ (γ )0 and Ỹ (1) .= Ỹ (γ ) sat-
isfy all the properties stated in the theorem. �

4. Asymptotically near-optimal controls for SPN. The goal of this section
is to prove Theorem 2.17. Fix q ∈ RI+ and ε ∈ (0,1). Let Ỹ ∈ Ã(q) be the ε-
optimal control introduced above Theorem 3.8. Fix qr ∈ NI

0, r > 0 such that
q̂r → q , as r → ∞. Section 4.1 below gives the construction of the sequence of
policies {T r}, T r ∈ Ar (qr), such that J r(qr , T r)→ J̃ (q, Ỹ ), yielding the proof of
Theorem 2.17. The latter convergence of costs is proved in Section 4.2. The main
ingredient in this proof is Theorem 4.5 whose proof is given in Section 4.3. For the
rest of this section Ỹ as in Theorem 3.8 and parameters T ,η,M,p0, j0, θ, κ that
specify Ỹ shall be fixed. In addition, let ρ ∈ (0,∞) and r0 ≥ 1 be such that

ρ
[

min
x∗
j �=0
x∗
j

]
>M(ϑlip + 1) and r0θ > ρ,(4.1)

where ϑlip is as in (3.13).

4.1. Construction of the policy sequence. We will only specify a T r ∈ Ar (qr)

for r ≥ r0 and so henceforth, without loss of generality, we assume r > r0.
In this section, since r ≥ r0 will be fixed, the superscript r will frequently be

suppressed from the notation. The following additional notation will be used. For
n≤ p0, define a(n)= nr2θ , b(n)= nr2θ + rρ, I(n)= [a(n), a(n+ 1)), I1(n)=
[a(n), b(n)) and I2(n) = [b(n), a(n + 1)), where we set a(p0 + 1) = ∞. Note
I(n)= I1(n)∪ I2(n), n≤ p0.

Recall m introduced in Assumption 2.13. Fix k ∈ (0,1) such that

k(1 + m)− 2 .= υ > 1.(4.2)

Fix d1 ∈ (0,∞) such that d1 > supr{βrj : j ∈ J} + 1. Define

�r
.= rk, �r(s)

.= d1r
k1(∪n≤p0 I2(n))(s) for s ≥ 0.(4.3)

Also define pr : [0,∞)→ [0,∞) as

pr (s)
.=
⎧⎨
⎩
s, if s ∈ I1(n), n= 0,1, . . . , p0,

b(n)+
⌊
s − b(n)
�

⌋
�, if s ∈ I2(n), n= 0,1, . . . , p0.

Thus, if s ∈ I2(n) for some n, �r(s)= d1�
r and pr (s) equals the left end point of

the �-subinterval in which s falls. Otherwise, if s ∈ I1(n) for some n, �r(s)= 0
and pr (s)= s.
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FIG. 4. The figure above shows the behavior, under T (1), of the kth server, that is, responsible for
the nk activities (j1, . . . , jnk ). The actual policy T is given as a certain modification of T (1) that
ensures feasibility and a strict positivity property.

Recall the probability space (�,F ,P) introduced in Section 2 which supports
all the random variables and stochastic processes introduced therein. Let {Ui : i ∈
N} be a sequence of Uniform random variables on [0,1] on this probability space
(constructed by augmenting the space if needed), independent of the σ -field F̄ r

defined in (2.27). This sequence will be used in the construction of the control
policy.

The policy T ≡ T r is constructed recursively over time intervals I(n), n =
0, . . . , p0, as follows. We will describe the effect of the policy on the kth server
(for each k ∈ K) at every time-instant s ≥ 0 (see Figure 4). Recall the set J(k) in-
troduced in Section 2. Let for k ∈ K, j1 < j2 < · · ·< jnk be the ordered elements
of J(k) (the set of activities that the kth server can perform).

Step 1: [T r(s) when s ∈ I(0)]. Let m0 = 
 r2θ
�

�. Recall that Ỹ (0)= ε0y
∗. Write

ν0 = ε0y
∗. For k ∈ K, let

∇1,k,0
�

.=
(
x∗
j�

− ν0
j�

ρ

)
�, ∇2,k,0

�

.= x∗
j�
�, �= 1, . . . , nk.(4.4)

Note that, by our choice of ρ, ∇1,k,0
� > 0 if jl is a basic activity. Also, if jl is

nonbasic, then x∗
jl

= 0, but since Kν0 ≥ 0, we have ν0
jl

≤ 0. Thus, ∇1,k,0
� ≥ 0 for

every l, k. Also, from Assumption 2.3 [see (2.14)] and recalling that Aν0 ≥ 0, we
get

nk∑
l=1

∇1,k,0
� =�

(
1 − 1

ρ
(Aν0)k

)
≤�,

nk∑
l=1

∇2,k,0
� =�, k ∈ K.(4.5)
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Let m1 ≡ mr1 .= 
 rρ
�

� and m2 ≡ mr2 .= 
 r2θ−rρ
�

�. Define, for each k ∈ K, and l =
1, . . . , nk,

Ṫ
(1)
jl
(s)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m1−1∑
m=0

1Em,0l
(s), s ∈ I1(0),

m2−1∑
m=0

1Êm,0l
(s), s ∈ I2(0),

where for m̃i = 0, . . . ,mi − 1, i = 1,2, l = 1, . . . , nk ,

E m̃1,0
l =

[
a(0)+ m̃1�+

l−1∑
i=0

∇1,k,0
i , a(0)+ m̃1�+

l∑
i=0

∇1,k,0
i

)
,(4.6)

Ê m̃2,0
l =

[
b(0)+ m̃2�+

l−1∑
i=0

∇2,k,0
i , b(0)+ m̃2�+

l∑
i=0

∇2,k,0
i

)
(4.7)

and, by convention, ∇ i,k,00 = 0, i = 1,2. Since {J(k), k ∈ K} gives a partition of J,
the above defines the J-dimensional process Ṫ (1)(s) for s ∈ [a(0), a(1)). We set

T (1)(s)=
∫ s

0
Ṫ (1)(s) ds, s ∈ I(0).

Next, define V(s)≡ Vr (s)= (Qr(s),Xr(s), T r(s)) for s ∈ I(0) by the system of
equations below:

Qr(s)= qr +Xr(s)+ r(θr1 s − (C − P ′)diag(r2θr2 )T̄
r (s/r2)

)
+R(x∗s − T r(s)),

(4.8)
Xr(s)= rX̂r(s/r2), X̂r defined by (2.23),

T rj (s)=
∫
[0,s]

1{Qrσ1(j)
(u−)>0}1{Qrσ1(j)

(pr (u))>�r(u)} dT r,(1)j (u), j ∈ J,

where (as introduced in Section 2), σ1(j) denotes the index of the buffer that the
j th activity is associated with. The above construction can be interpreted as fol-
lows. The policy T “attempts” to implement T (1) over I1(0), unless the corre-
sponding buffer is empty (in which case, it idles). Over I2(0), T has a similar
behavior, but, in addition, it idles when the corresponding buffer does not have at
least �—many jobs at the beginning of the �-subintervals. Processing jobs only
when there is a “safety-stock” at each buffer at the beginning of the �-subinterval
ensures that with “high probability” either all the activities associated with the
given buffer receive nominal time effort over the interval or all of them receive
zero effort. This, in particular, makes sure that the idling processes associated with
the policy are consistent with the reflection terms for the Skorohod map associated
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with the constraint matrix D [see (4.21)]. This property will be exploited in the
weak convergence arguments of Section 4.2 [see, e.g., arguments below (4.45)].

Let I r be defined by (2.9). By construction, T r(0)= 0, I r(0)= 0 and

Qr(s)≥ 0, T r(s)≥ 0, I r (s)≥ 0
(4.9)

for s ∈ I(0) and T r, I r are nondecreasing on I(0).
This completes the construction of the policy and the associated processes on I(0).

Step 2: [T r(s) for s ∈ I(n), for 1 ≤ n≤ p0]. Suppose now that the process V(s)
has been defined for s ∈ [a(0), a(n)), where 1 ≤ n ≤ p0. We now describe the
construction over the interval I(n)= [a(n), a(n+ 1)). Let χ̂ κ,r (n)= {X̂r (lκ) : l =
1, . . . , nj0}. Recall that nj0κ = nθ . Define

ν̄r,n
.=�n(χ̂κ,r (n),Un), νr,n

.= ϑε0(Q̂
r(nθ−), ν̄r,n),(4.10)

where, as in Section 2, Q̂r(t)=Qr(r2t)/r , t ≥ 0. We will suppress κ and r from
the notation and write (χ̂κ,r (n), ν̄r,n, νr,n)≡ (χ̂(n), ν̄n, νn). For each k ∈ K, define

∇1,k,n
�

.=
(
x∗
j�

− νnj�

ρ

)
�, ∇2,k,n

�

.= x∗
j�
�, �= 1, . . . , nk.(4.11)

As before, (4.5) (with ∇j,k,0� replaced by ∇j,k,n� ) is satisfied. Define, for each k ∈
K, and l = 1, . . . , nk,

Ṫ 1
jl
(s)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m1−1∑
m=0

1Em,nl
(s), s ∈ I1(n),

m2−1∑
m=0

1Êm,nl
(s), s ∈ I2(n),

(4.12)

where for m̃i = 0, . . . ,mi − 1, i = 1,2, l = 1, . . . , nk , E m̃1,n
l , Ê m̃2,n

l are defined by

the right-hand side of (4.6) and (4.7) respectively, with (a(0), b(0),∇1,k,0
i ,∇2,k,0

i )

replaced by (a(n), b(n),∇1,k,n
i ,∇2,k,n

i ) We set

T 1(s)= T (a(n))+
∫ s

a(n)
Ṫ 1(s) ds, s ∈ I(n)

and define V(s) for s ∈ I(n) by the system of equations in (4.8).
The above recursive procedure gives a construction for the process Vr (s) =

(Qr(s),Xr(s), T r(s)) for all s ∈ [0,∞).
The policy constructed above clearly satisfies parts (i), (ii) and (iii) of Defini-

tion 2.7. In fact, it also satisfies part (iv) of the definition and, consequently, we
have the following result. The proof is given in the Appendix.

PROPOSITION 4.1. For all r ≥ r0, T r ∈ Ar (qr).
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4.2. Convergence of costs. In this section we prove Theorem 2.17 by show-
ing that, with {T r} as in Section 4.1 and Ỹ as introduced above Theorem 3.8,
J r(qr , T r)→ J̃ (q, Ỹ ), as r → ∞. We begin with an elementary lemma.

LEMMA 4.2. Let gn ∈ DI, n ≥ 1, g ∈ C I be such that gn → g u.o.c. as
n→ ∞. Let εn ∈ (0,∞), n ≥ 1, be such that εn → 0 as n→ ∞. Let Bn,B be
I × I matrices such that Bn → B as n→ ∞. Suppose f n,hn ∈ DI and γ n ∈ D1

satisfy for all t ≥ 0:

(i) f n(t)≥ 0, γ n(t)≥ 0,
(ii) f n(t)= gn(t)+Bnhn(t), hni (t)=

∫
[0,t] 1{f ni (γ n(s))≤εn} ds, i ∈ I and

(iii) |γ n(t)− t | ≤ εn.

Then (f n, gn,hn, γ n) is precompact in D3I+1 and any limit point (f, g,h, γ ) sat-
isfies for all t ≥ 0, γ (t) = t ; f (t) = g(t) + Bh(t); h(t) = ∫

[0,t] h̃(s) ds, where

h̃ : [0,∞)→ [0,1]I is a measurable map such that∫
[0,t]

1{fi(s)>0}h̃i(s) ds = 0 for all t ≥ 0.

The proof of the above lemma is given in the Appendix. Recall the definitions
of various scaled processes given in (2.21)–(2.25), and that i(t) = t for t ≥ 0. In
addition, we define T̄ r,1(t)= T r,1(r2t)/r2, T̂ r,1(t)= T r,1(r2t)/r , r > 0, t ≥ 0.

PROPOSITION 4.3. As r → ∞, T̄ r → x∗i , u.o.c. in probability.

PROOF. From the definition of T r,1 [see (4.12)], and the observation that the
interval Êm,nl has length x∗

jl
� [see (4.5) and (4.7)], we have that over each inter-

val [m�,(m + 1)�), that is, contained in I2(n) for some n ≤ p0, the Lebesgue
measure of the time instants s such that Ṫ 1

j (s) = 1 equals x∗
j �, j ∈ J. This is

equivalent to the statement that∫
[m�,(m+1)�)

d
(
T
r,1
j (s)− x∗

j s
)= 0

(4.13)
whenever

[
m�,(m+ 1)�

)⊂ I2(n) for some n≤ p0.

Also, noting that for j ∈ J, 0 ≤ Ṫ r,1j ≤ 1 and x∗
j ≤ 1, we have that for some C1 > 0,∫

[m�,(m+1)�)
d
(
T
r,(1)
j (s)+ x∗

j s
)
<C1�

(4.14)
whenever

[
m�,(m+ 1)�

)⊂ I(n) for some n≤ p0.

Fix j ∈ J and t > 0 such that r2t ∈ [a(n), a(n+ 1)) for some n≤ p0. Then

r2|x∗
j t − T̄ r,1j (t)|

≤
n∑

n0=0

2∑
�=1

∑
m : [m�,(m+1)�)∈I�(n0)

∫
[m�∧t,(m+1)�∧t)

d
(
T
r,1
j (s)− x∗

j s
)
.
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Using (4.13) and (4.14) and the fact that the number of � intervals in I1(n) is
bounded by rρ/�, we see that

r2|x∗
j t − T̄ r,1j (t)| ≤

(
rρ(p0 + 1)

�
+ 1

)
C1�.

Thus, for some � ∈ (0,∞),
sup

0≤t<∞
|x∗t − T̄ r,1(t)| ≤ �/r for all r ≥ r0.(4.15)

Also, since T̄ rj (t)≤ t for all t ≥ 0, j ∈ J, we get from (2.23) and standard estimates

for renewal processes (see, e.g., Lemma 3.5 of [9]) that X̄r .= X̂r/r converges to 0
u.o.c. in probability, as r → ∞. Combining this with Assumption 2.3 and (4.15),
we have

ζ̄ r
.= ζ̂ r/r converges to 0, u.o.c., in probability.(4.16)

Next, define p̄r (s)= pr (r2s)/r2, �̄r(s)=�r(r2s)/r2 and

Srj (t)=
{
s ∈ [0, t] : Q̄rσ1(j)

(s)= 0,or Q̄rσ1(j)
(p̄r (s))≤ �̄r(s)}

= {
s ∈ [0, t] : Q̄rσ1(j)

(p̄r (s))≤ �̄r(s)}
(4.17)

∪ {s ∈ [0, t] : Q̄rσ1(j)
(s)= 0, Q̄rσ1(j)

(p̄r (s)) > �̄r(s)
}

.= Sr,1j (t)∪ Sr,2j (t).

We will fix t > 0 for the rest of the proof and suppress t from the notation
when writing Sr,ij (t), unless there is scope for confusion. Using the above display
and (4.8), we have that

T̄
r,1
j (t)− T̄ rj (t)=

∫
[0,t]

1Srj (s) dT̄
r,1
j (s), j ∈ J, t ≥ 0.(4.18)

Using the fact that Q̄r(·)= Q̂r (·)
r

along with (2.24) and (4.18), we can write

Q̄r(t)= ζ̄ r (t)+RH̄ r(t)+RL̄r(t), t ≥ 0,(4.19)

where for j ∈ J,

H̄ rj (t)=
(
x∗
j t − T̄ r,1(t)

)+ ∫
[0,t]

1Sr,1j
(s) d

(
T̄
r,1
j (s)− x∗

j s
)

(4.20)
+
∫
[0,t]

1Sr,2j
(s) dT̄

r,1
j (s)

and

L̄rj (t)= x∗
j

∫
[0,t]

1Sr,1j
(s) ds = (diag(x∗)C′�̄r )j (t),
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where

�̄ri (t)=
∫
[0,t]

1{Q̄ri (p̄r (s))≤�̄r (s)} ds, t ≥ 0, i ∈ I.

Since D =R diag(x∗)C′ [see (2.11) and (2.43)], we have

Q̄r = ζ̄ r +RH̄ r +D�̄r .(4.21)

Next, letting m̂r0 = 
 r2t
�r

� + 1, we have from the choice of d1 [see above (4.3)] that

P(Sr,2j �= ∅)

≤
m̂r0∑
k=0

∑
i∈I

P
(
Qri (k�

r) > d1r
k,Qri (u)= 0 for some u ∈ [k�r, (k+ 1)�r

))

≤ I
m̂r0∑
k=0

∑
j∈J

P
(
Srj
(
T rj (k�

r)+�r)− Srj (T rj (k�r))≥ d1r
k)(4.22)

≤ m̂r0IJ
ς(1)

rkm

≤C2(t + 1)r2−k(1+m),

for some C2 ∈ (0,∞), where the next to last inequality makes use of Assump-
tion 2.13. Recalling [from (4.2)] that υ = k(1 + m)− 2> 1, we get that

P(Sr,2j �= ∅)≤ C2(t + 1)r−υ → 0 as r → ∞.(4.23)

We note that the above convergence only requires that υ > 0. The property υ > 1
will, however, be needed in the proof of Proposition 4.4 [see (4.28)]. Next, using
(4.13) and (4.14), we have for some �1 ∈ (0,∞),

sup
0≤u<∞

∣∣∣∣
∫
[0,u]

1Sr,1j
d
(
T̄
r,1
j (s)− x∗

j s
)∣∣∣∣≤ �1

r
→ 0 as r → ∞,(4.24)

for all j ∈ J. The above inequality follows from the fact that the integral can be
written as the sum of integrals over�-subintervals: When the subinterval is within
some I2(n), the integral is zero [using the definition of pr (s) in such intervals
and (4.13)] and when the subinterval is within some I1(n) [the number of such
intervals is (p0 + 1)mr1 which can be bounded by C3

rρ
�

for some C3], the integral
is bounded by C1�/r

2 from (4.14).
Now, combining (4.15), (4.23) and (4.24), we have that, for each j ∈ J, H̄ rj → 0,

u.o.c. in probability, as r → ∞. From (4.21), (4.16), Lemma 4.2 and unique solv-
ability of the Skorohod problem for (0,D), we now have that (Q̄r , �̄r )→ (0,0),
u.o.c. in probability, as r → ∞. Thus, L̄r converges to 0 as well. The result now
follows on noting that T̄ r = x∗i − H̄ r − L̄r . �

The following proposition gives a key estimate in the proof of Theorem 2.17.
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PROPOSITION 4.4. For some c2 ∈ (0,∞) and ῡ ∈ (1,∞),
E(|Q̂r |ῡ∞,t + |ζ̂ r |ῡ∞,t + |Ŷ r |ῡ∞,t )≤ c2(1 + t3) for all r ≥ r0, t ≥ 0.

PROOF. Using standard moment estimates for renewal processes (cf. Lem-
ma 3.5 of [9]), one can find C1 ∈ (0,∞) such that

E|ζ̂ r |2∞,t ≤ C1(1 + t2) for all r ≥ r0, t ≥ 0.(4.25)

From (4.19) and (4.21), we have

Q̂r(t)= ζ̂ r (t)+RĤ r(t)+RL̂r(t)= ζ̂ r (t)+RĤ r(t)+D�̂r(t), t ≥ 0,

where Ĥ r = rH̄ r , L̂r = rL̄r and �̂r = r�̄r . We rewrite the above display as

Q̂r(p̄r (t))= [Q̂r(p̄r (t))− Q̂r(t)] + ζ̂ r (t)+RĤ r(t)+D�̂r(t), t ≥ 0.

From Theorem 5.1 of [29], for some C2 ∈ (0,∞),
|�̂r |∞,t + |Q̂r |∞,t

(4.26)

≤ C2

(
q̂r + |ζ̂ r |∞,t + |Ĥ r |∞,t + |Q̂r(p̄r (·))− Q̂r |∞,t + d1r

k

r

)
.

Also, from (4.20), (4.15) and (4.24), for all t ≥ 0 and r ≥ r0,∣∣∣∣Ĥ rj (t)− r
∫
[0,t]

1Sr,2j
(s) dT̄

r,1
j (s)

∣∣∣∣≤ �+ �1.(4.27)

Next, using (4.23), we get, for some C3 ∈ (0,∞),

E

(
r sup

0≤u≤t

∫
[0,u]

1Sr,2j
(s) dT̄

r,1
j (s)

)υ∧2

≤ rυC3(t
3 + 1)r−υ

(4.28)
≤ C3(t

3 + 1).

Finally, for some C4 ∈ (1,∞), for all a ≥ 1,

P
(|Q̂r(p̄r (·))− Q̂r(·)|∞,t ≥ a)

(4.29)

≤ r2t

�r

(∑
i∈I

P

(
Ari (�

r)≥ ar

C4

)
+∑
j∈J

P

(
Srj (�

r)≥ ar

C4

))
.

Using moment estimates for renewal process once more (Lemma 3.5 of [9]), we
can find C5 ∈ (0,∞) such that

P
(|Q̂r(p̄r (·))− Q̂r(·)|∞,t ≥ a)≤ r2t

�r

C5�
r

(ar −C5�r)2

≤ 1

a2

C5r
2t

(r −C5�r/a)2
.
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Thus, there is an r1 ∈ (r0,∞) and C6 ∈ (0,∞) such that, for all r ≥ r1,

P
(|Q̂r(p̄r (·))− Q̂r(·)|∞,t ≥ a)≤ 1

a2C6(t + 1).(4.30)

This shows that for some υ1 ∈ (1,∞) and C7 ∈ (0,∞),
E|Q̂r(p̄r (·))− Q̂r(·)|υ1∞,t ≤ C7(1 + t), t ≥ 0.(4.31)

The result now follows on using (4.25), (4.27), (4.28) and (4.31) in (4.26) and
observing that Ŷ r = Ĥ r + diag(x∗)C′�̂r . �

In preparation for the proof of Theorem 2.17, we introduce the following nota-
tion. For n= 0, . . . , p0 − 1, we define processes q r,n, zr,n with paths in DI

θ and C J
θ ,

respectively, as

(q r,n(t), zr,n(t))=
{(
Q̂r(nθ + ρ/r),0), t ∈ [0, ρ/r),(
Q̂r(t + nθ), Ŷ r (t + nθ)− Ŷ r (nθ + ρ/r)), t ∈ [ρ/r, θ ].

We denote by q r,p0, zr,p0 the processes with paths in DI and C J, respectively, de-
fined by the right-hand side in the display above, by replacing n by p0 and [ρ/r, θ ]
with [ρ/r,∞). Then

q r .= (q r,∗, q r,p0) ∈ Dp0I
θ × DI a.s.,

where q r,∗ = (q r,0, . . . , q r,p0−1). Similarly, define the process zr with paths in

Cp0J
θ × C J. Recall ν̄r,n, νr,n introduced in (4.10). Denote ν̄r = (ν̄r,0, ν̄r,1, . . . , ν̄r,p0)

and νr = (νr,0, νr,1, . . . , νr,p0), where we set ν̄r,0 = 0 and νr,0 = ε0y
∗.

Next, for n= 0, . . . , p0 − 1, define processes q (n), z(n) with paths in C I
θ and C J

θ ,
respectively, as

(
q (n)(t), z(n)(t)

)=
{(
Q̃(t + nθ), Ỹ (t + nθ)− Ỹ (nθ)), t ∈ [0, θ),(
Q̃
(
(n+ 1)θ−), Ỹ ((n+ 1)θ−)− Ỹ (nθ)), t = θ.

Also, define q (p0), z(p0) by the first line of the above display by replacing θ by ∞.

Then q .= (q∗, q (p0)) ∈ Cp0I
θ × C I, a.s., where q∗ = (q (0), . . . , q (p0−1)). Similarly,

define the process z with paths in Cp0J
θ × C J. Also, let for n = 1, . . . , p0, ν̄(n) =

∂Ỹ
(1)
0 (n)= Ỹ (1)0 (nθ)− Ỹ (1)0 ((n− 1)θ), where Ỹ (1)0 is as above (3.15), and ν(n) =

Ỹ (nθ)− Ỹ (nθ−). Then

ν̄(n)
.=�n(χκ(n), Ũn), ν(n)

.= ϑε0

(
Q̃(nθ−), ν̄(n)).(4.32)

Define ν̄ = (ν̄(0), ν̄(1), . . . , ν̄(p0)) and ν = (ν(0), ν(1), . . . , ν(p0)), where ν̄(0) = 0
and ν(0) = ε0y

∗. Then ν̄r , ν̄ ∈ (SηM)⊗(p0+1) and νr, ν ∈ RJ(p0+1). Next, let

ν
r,n
0 = Ŷ r (nθ + ρ/r), ν

(n)
0 = Ỹ (nθ), n= 0,1, . . . , p0.
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Then νr0
.= (νr,00 , . . . , ν

r,p0
0 );ν0

.= (ν(0)0 , . . . , ν
(p0)
0 ) ∈ RJ(p0+1). Let

 = DI × (SηM)⊗(p0+1) × (
R

J(p0+1))× (
R

J(p0+1))× (Dp0I
θ × DI)× (Cp0J

θ × C J).

Note that J r .= (ζ̂ r , ν̄r , νr , νr0, q r , zr ), r ≥ 1 and J = (ζ̃ , ν̄, ν, ν0, q, z) are  -
valued random variables. The following is the main step in the proof of Theo-
rem 2.17.

THEOREM 4.5. As r → ∞, J r ⇒ J .

Proof of the above theorem is given in the next subsection. Using Theorem 4.5,
the proof of Theorem 2.17 is now completed as follows.

PROOF OF THEOREM 2.17. From proposition and integration by parts,

J r(qr , T r)=
p0∑
n=0

[
E

∫
[br (n)/r2,ar (n+1)/r2)

e−γ t
(
h · Q̂r(t)+ γp · Û r (t))dt

+ E

∫
[ar (n)/r2,br (n)/r2)

e−γ t
(
h · Q̂r(t)+ γp · Û r (t))dt](4.33)

=
p0∑
n=0

E

∫
[br (n)/r2,ar (n+1)/r2)

e−γ t
(
h · Q̂r(t)+ γp · Û r (t))dt + εr ,

where, using Proposition 4.4 and the observation that ar(n+ 1)/r2 − br(n)/r2 ≤
ρ/r → 0, we have that εr → 0 as r → ∞. From Theorem 4.5, as r → ∞, q r ⇒ q .
Combining this with Proposition 4.4, we get for every n= 0, . . . , p0,

lim
r→∞ E

∫
[br (n)/r2,ar (n+1)/r2)

e−γ th · Q̂r(t) dt

= lim
r→∞ E

∫
[nθ+ρ/r,(n+1)θ)

e−γ th · Q̂r(t) dt

= lim
r→∞ E

∫
[nθ,(n+1)θ)

e−γ th · q r,n(t − nθ)dt(4.34)

= E

∫
[nθ,(n+1)θ)

e−γ th · q (n)(t − nθ)dt

= E

∫
[nθ,(n+1)θ)

e−γ th · Q̃(t) dt,
where, by convention, [nθ, (n+1)θ)= [p0θ,∞)when n= p0. Next, for t ∈ [nθ+
ρ/r, (n+ 1)θ), n= 0, . . . , p0,

γp · Û r (t)= γp ·K(Ŷ r (t)− Ŷ r (nθ + ρ/r))+ γp ·KŶ r(nθ + ρ/r)
(4.35)

= γp ·Kzr,n(t − nθ)+ γp ·Kνr,n0 .
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From Theorem 4.5, as r → ∞,

γp ·Kzr,n(·)+ γp ·Kνr,n0 ⇒ γp ·Kz(n)(·)+ γp ·Kν(n)0

in C 1
θ . Combining this with (4.35) and Proposition 4.4 we now get similarly

to (4.34), for n= 0, . . . , p0,

lim
r→∞ E

∫
[br (n)/r2,ar (n+1)/r2)

γ e−γ tp · Û r (t) dt

= lim
r→∞E

∫
[nθ,(n+1)θ)

γ e−γ tp ·K(zr,n(t − nθ)+ νr,n0

)
dt

=E
∫
[nθ,(n+1)θ)

γ e−γ tp ·K(z(n)(t − nθ)+ ν(n)0

)
dt.

Note that for t ∈ [nθ, (n+ 1)θ),

z(n)(t − nθ)+ ν(n)0 = Ỹ (nθ)+ Ỹ (t)− Ỹ (nθ)= Ỹ (t).
Thus, the expression on the right-hand side of the above display equals

E

∫
[nθ,(n+1)θ)

γ e−γ tp · Ũ (t) dt.
The result now follows on using this observation along with (4.34) in (4.33). �

4.3. Proof of Theorem 4.5. For j ∈ J, n= 0,1, . . . , p0, and ω ∈�, define

Š
r,n
j (ω)= {s ∈ [0, ρ] :Qrσ1(j)

(nr2θ + rs,ω)= 0}.(4.36)

From the definition of ϑε0 , it follows that for some γ0 > 0,

inf
r≥r0

min
n=0,...,p0;j∈J

(Rνr,n)j ≥ γ0 a.e.

As a consequence of this observation, we have the following result. The proof is
given in Section 4.4.

PROPOSITION 4.6. For some {ρr} ⊂ [0, ρ] such that ρr → 0 as r → ∞, we
have

P("rn)→ 1 as r → ∞, for all n= 0,1, . . . , p0,(4.37)

where "rn = {ω ∈� : (
⋃
j∈J Š

r,n
j (ω))∩ [ρr, ρ] = ∅}.

For n = 0,1, . . . , p0, let ν̄r [n] = (ν̄r,0, . . . , ν̄r,n). We define νr [n], νr0[n], q r [n],
zr [n] and their limiting analogues ν̄[n], ν[n], ν0[n], q[n], z[n] in a similar fashion.
Set

J r [n] = (ζ̂ r , ν̄r [n], νr [n], νr0[n], q r [n], zr [n]),
J [n] = (ζ̂ , ν̄[n], ν[n], ν0[n], q[n], z[n]).
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Then J r [n],J [n] are  [n]-valued random variables, with

 [n] = DI × (SηM)⊗(n+1) × (
R

J(n+1))× (
R

J(n+1))× D(n+1)I
θ × C(n+1)J

θ ,

where we follow the usual convention for n= p0. To prove the theorem, we need to
show that J r [p0] ⇒ J [p0]. In the lemma below we will in fact show, recursively
in n, that J r [n] ⇒ J [n] as r → ∞, for each n= 0,1, . . . , p0, which will complete
the proof of Theorem 4.5.

LEMMA 4.7. For each n= 0,1, . . . , p0, J r [n] ⇒ J [n], as r → ∞.

PROOF. The proof will follow the following two steps:

(i) As r → ∞, J r [0] ⇒ J [0].
(ii) Suppose that J r [k] ⇒ J [k] as r → ∞ for k = 0,1, . . . , n, for some n <

p0. Then, as r → ∞, J r [n+ 1] ⇒ J [n+ 1].
Consider (i). Define scaled processes Q̌r(t) = Qr(rt)/r , Y̌ r (t) = Y r(rt)/r .

Processes X̌r , Ť r , Ť r,1, ζ̌ r are defined similarly. By the functional central limit
theorem for renewal processes and Proposition 4.3, it follows that (cf. Lemma 3.3
of [9])

ζ̂ r ⇒ ζ̃ .(4.38)

Also, convergence of (ν̄r [0], νr [0]) follows trivially since ν̄r [0] = ν̄[0] = 0 and
νr [0] = ν[0] = ε0y

∗. Next, consider νr0[0] = Ŷ r (ρ/r). From the definition of the
scaled processes defined above (4.36), we have that

ζ̌ r (t)= q̌r + X̌r(t)+ 1

r
[θr1 t − (C − P ′)diag(θr2 )Ť

r (t)],(4.39)

and

Q̌r(t)= ζ̌ r (t)+RY̌ r(t), t ∈ [0, ρ].(4.40)

Also, observe that Y̌ r can be written as

Y̌ r (t)=
((
x∗ − ε0y

∗

ρ

)
t − Ť r,1(t)

)
+ 1

ρ
ε0y

∗t + Ňr (t),(4.41)

where, with Šr,0j defined in (4.36),

Ňrj (t)=
∫
[0,t]

1
Š
r,0
j
(s) dŤ

r,1
j (s).(4.42)

Next, note that, for a suitable C1 ∈ (0,∞),∣∣∣∣Ť r,1 −
(
x∗ − ε0y

∗

ρ

)
i
∣∣∣∣∞,ρ ≤ C1

�r

r
.(4.43)
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Also, |Ňr |∞,ρ ≤ ρr + ρ1("rn)c . Thus, from Proposition 4.6, |Ň r |∞,ρ converges to
0 in probability as r → ∞, which shows that∣∣∣∣Y̌ r − ε0

ρ
y∗
∣∣∣∣∞,ρ =

∣∣∣∣
(
x∗ − ε0

ρ
y∗
)

i − Ť r
∣∣∣∣∞,ρ → 0

(4.44)
in probability, as r → ∞.

The above convergence is the key reason for introducing the modification of Ỹ (1),
through the vector y∗, described above Theorem 3.8.

Next, standard moment bounds for renewal processes (see, e.g., Lemma 3.5
of [9]) yield that |X̌r |∞,ρ converges to zero in probability as r → ∞. Combining
these observations, we get from (4.39) and (4.40) that (Q̌r , Y̌ r ) converge, uni-
formly over [0, ρ], in probability, to (q + ε0

ρ
Ry∗i , ε0y

∗
ρ

i). In particular, this shows
that

(q r,0(0), νr,00 )= (Q̌r (ρ), Y̌ r (ρ))
(4.45)

⇒ (q + ε0Ry
∗, ε0y

∗)= (
q (0)(0), ν(0)0

)
.

Finally, we prove the convergence of (q r,0, zr,0) to (q (0), z(0)). We will apply The-
orem 4.1 of [29]. Note that

q r,0(t)= q r,0(0)+wr,0(t)+Rzr,0(t), t ∈ [0, θ ],(4.46)

where wr,0 is a DI
θ -valued random variable defined as wr,0(t) = (ζ̂ r (t) −

ζ̂ r (ρ/r))1[ρ/r,∞)(t). From (4.45) and (4.38)

q r,0(0)→ q (0)(0) and wr,0 ⇒ ζ̃ as r → ∞.(4.47)

Next, for t ∈ [ρ/r, θ), write

zr,0(t)= Ĥ r,0(t)+ L̂r,0(t),(4.48)

where for j ∈ J,

Ĥ
r,0
j (t)= r

∫
[ρ/r,t]

(
1 − 1Sr,1j

(s)
)
d
(
x∗
j s − T̄ r,1j (s)

)+ r ∫
[ρ/r,t]

1Sr,2j
(s) dT̄

r,1
j (s),

L̂
r,0
j (t)= rx∗

j

∫
[ρ/r,t]

1Sr,1j
(s) ds,

with Sr,ij defined in (4.17). Using calculations similar to those in the proof of
Proposition 4.3 [see (4.22)], we get

sup
ρ/r≤t≤θ

∣∣∣∣r
∫
[ρ/r,t]

1Sr,2j
(s)T̄

r,1
j (s)

∣∣∣∣→ 0 in probability, as r → ∞,(4.49)

for all j ∈ J.
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Also, from (4.13) it follows that

sup
ρ/r≤t≤θ

∣∣∣∣r
∫
[ρ/r,t]

(
1 − 1Sr,1j

(s)
)
d
(
x∗
j s − T̄ r,1j (s)

)∣∣∣∣≤ �r

r
.

Combining the above estimates,

sup
ρ/r≤t≤θ

|Ĥ r,0j (t)| → 0 in probability, as r → ∞.(4.50)

Also, L̂r,0(t)= (diag(x∗))C′�̂r,0(t), where for i ∈ I and t ∈ [ρ/r, θ ],
�̂
r,0
i (t)= r

∫
[ρ/r,t]

1{Q̂ri (p̄r (s))≤r�̄r (s)} ds
(4.51)

= r
∫
[ρ/r,t]

1{qr,0i (p̄
r (s))≤r�̄r (s)} ds.

Recall that zr,0(t) = 0 for t ∈ [0, ρ/r]. Hence, setting Ĥ r,0(t) = �̂r,0(t) = 0 for
t ∈ [0, ρ/r], we have from (4.46) and (4.48)

q r,0(t)= q r,0(0)+wr,0(t)+RĤ r,0(t)+D�̂r,0(t), t ∈ [0, θ ].(4.52)

From (4.47) and (4.50) we now have that, as r → ∞,

qr,0(0)+wr,0 +RĤ r,0 ⇒ q(0) + ζ̃(4.53)

in DI
θ . Using the definition of pr , Assumption 2.13 and elementary properties of

renewal processes [see similar arguments in (4.22) and (4.29)], we have that for
some C2, as r → ∞,

P

(
sup

s∈[ρ/r,θ ]
|Q̂r(p̄r (s))− Q̂r(s)|> ε

)
≤C2

r2θ

�r

1

(�r)m
=C2

r2θ

rk(m+1) → 0.

This shows that

sup
s∈[0,θ ]

|q r,0(s)− q r,0(p̄r (s))| → 0 in probability, as r → ∞.(4.54)

Using Theorem 4.1 of [29] along with (4.51), (4.52), (4.53) and (4.54), we now
have that

(ζ̂ r , q r,0, �̂r,0)⇒ (
ζ̃ , �

(
q(0)(0)+ ζ̃ ), �̂(q(0)(0)+ ζ̃ )) as r → ∞,

as DI × DI
θ × DI

θ valued random variables. Since

�
(
q(0)(0)+ ζ̃ )= q (0) and diag(x∗)C′�̂

(
q(0)(0)+ ζ̃ )= z(0),

we get from the above display that (q r,0, zr,0)⇒ (q (0), z(0)) as r → ∞. Combining
this with (4.45) and observations below (4.38), we have J r [0] ⇒ J [0], which
completes the proof of (i).



CONVERGENCE OF VALUE FUNCTIONS 781

We now prove (ii). We can write

J r [n+ 1] = (J r [n], (ν̄r,n+1, νr,n+1, ν
r,n+1
0 , q r,n+1, zr,n+1))

J [n+ 1] = (
J r [n], (ν̄(n+1), ν(n+1), ν

(n+1)
0 , q (n+1), z(n+1))).

By assumption,

J r [n] ⇒ J [n](4.55)

and, thus, in particular, (4.38) holds. This shows that χ̂ κ,r (n+1)⇒ χκ(n+1) and
as a consequence, using continuity properties of �n+1,

ν̄r,n+1 .=�n+1
(
χ̂ κ,r (n+ 1),Un+1

)⇒�n+1
(
χκ(n+ 1), Ũn+1

)
(4.56)

= ν̄(n+1).

In fact, this shows the joint convergence: (J r [n], ν̄r,n+1)⇒ (J [n], ν̄n+1). In par-
ticular, we have(

ν̄r,n+1, Q̂r
(
(n+ 1)θ

))= (ν̄r,n+1, q r,n(θ))

⇒ (
ν̄(n+1), q (n)(θ)

)= (
ν̄(n+1), Q̃((n+ 1)θ−)).

For the remaining proof, to keep the presentation simple, we will not explicitly
note the joint convergence of all the processes being considered. From continuity
of the map ϑε0 , we now have that

νr,n+1 = ϑε0

(
Q̂r

(
(n+ 1)θ

)
, ν̄r,n+1) ⇒ ϑε0

(
Q̃
(
(n+ 1)θ−), ν̄(n+1))= ν(n+1).

Next, we consider the weak convergence of νr,n+1
0 to ν(n+1)

0 . The proof is similar
to the case n+ 1 = 0 treated in the first part of the lemma [cf. below (4.38)] and
so only a sketch will be provided. Note that

ν
r,n+1
0 = νr,n0 + zr,n(θ)+ (

Ŷ r
(
(n+ 1)θ + ρ/r)− Ŷ r((n+ 1)θ

))
q r,n+1(0)= q r,n(θ)+ (

Q̂r
(
(n+ 1)θ + ρ/r)− Q̂r((n+ 1)θ

))
.

Weak convergence of (q r,n(θ), νr,n0 + zr,n(θ)) to (q (n)(θ), ν(n)0 + z(n)(θ)) is a con-
sequence of (4.55). Next, abusing notation introduced above (4.38), define for
t ∈ [0, ρ],

Q̌r(t)= r−1Qr
(
r2θ(n+ 1)+ rt), q̌r = Q̌r(0),

Y̌ r (t)= r−1(Y r(r2θ(n+ 1)+ rt)− Y r(r2θ(n+ 1)
))
.

Processes X̌r , Ť r , Ť r,1, ζ̌ r are defined similarly to Y̌ r . Then, equations (4.39) and
(4.40) are satisfied with these new definitions. Hence, using arguments similar to
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the ones used in the proof of (4.45) (in particular, making use of Proposition 4.6),
we have that (Y̌ r , Q̌r) converges in distribution to(

ν(n+1)

ρ
i , Q̃

(
(n+ 1)θ−)+ 1

ρ
Rν(n+1)i

)
,

as r → ∞. Combining the above observations, we have, as r → ∞,

(q r,n+1(0), νr,n+1
0 )= (Q̌r(ρ), Y̌ r (ρ))

(4.57)
⇒ (

Q̃
(
(n+ 1)θ

)
, ν
(n)
0 + z(n)(θ)+ ν(n+1))= (

q (n+1)(0), ν(n+1)
0

)
.

Finally, we consider weak convergence of (q r,n+1, zr,n+1) to (q (n+1), z(n+1)). Sim-
ilar to (4.46), we have

q r,n+1(t)= q r,n+1(0)+wr,n+1(t)+Rzr,n+1(t), t ∈ [0, θ ],
where wr,n+1 is a DI

θ -valued random variable defined as

wr,n+1(t)= (
ζ̂ r
(
t + (n+ 1)θ

)− ζ̂ r((n+ 1)θ + ρ/r))1[ρ/r,∞)(t).
Using (4.57) and (4.38), as r → ∞,

q r,n+1(0)+wr,n+1 ⇒ q (n+1)(0)+ ζ̃ ((n+ 1)θ + ·)− ζ̃ ((n+ 1)θ
)
.(4.58)

Weak convergence of (qr,n+1, zr,n+1) to (q (n+1), z(n+1)) now follows exactly as
below (4.47). Combining the above weak convergence properties, we now have
J r [n+ 1] ⇒ J [n+ 1] and the result follows. �

4.4. Proof of Proposition 4.6. We will only consider the case n= 0. The gen-
eral case is treated similarly. Let Mr = 
 rρ

�r
�. From Assumption 2.13, for each

δ > 0, one can find C1(δ) such that, for i ∈ I, j ∈ J, r ≥ 1 and k ≤Mr ,
P
(|Eri ((k + 1)�r

)−Eri (k�r)− αri �r ∣∣≥ δ�r)≤ C1(δ)

rkm
,

P
(∣∣Srj (T r,1j (

(k + 1)�r
))− Srj (T r,1j (k�r))− βrj τ r,kj

∣∣≥ δ�r)≤ C1(δ)

rkm
,

(4.59)
P
(∣∣�j,ri (

Srj
(
T
r,1
j

(
(k + 1)�r

)))−�j,ri (Srj (T r,1j (k�r)))− pji βrj τ r,kj
∣∣≥ δ�r)

≤ C1(δ)

rkm
,

where τ r,kj = T r,1j ((k + 1)�r) − T r,1j (k�r) = (x∗
j − ε0y

∗
j

ρ
)�r. Denote the union,

over all i, j , of events on the left-hand side of the three displays in (4.59), by Hrk .
Then, the above estimates, along with (4.2), yield

P

(
Mr⋃
k=0

Hrk

)
→ 0 as r → ∞.(4.60)
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Define for k = 0,1, . . . ,Mr ,

Qr0
(
(k + 1)�r

) .=Qr(k�r)+Er((k + 1)�r
)−Er((k�r))

−C(Sr(T r,1((k + 1)�r
))− Sr(T r,1(k�r)))

+�r(Sr(T r,1((k + 1)�r
)))−�r(Sr(T r,1(k�r))).

Note that, on the set (Hrk )
c, we have for some C2 > 0,

Qr0
(
(k + 1)�r

)
≥Qr(k�r)+ αr�r − (C − P ′)diag(βr)

(
x∗ − ε0y

∗

ρ

)
�r −C2δ�

r1I.

Using Assumption 2.1, we now have that for some C3, on the set (Hrk )
c, for all

r ≥ r0,

Qr0
(
(k + 1)�r

)≥Qr(k�r)+ ε0

ρ
Ry∗�r −

(
C2δ�

r +C3
�r

r

)
1I.

Recall that Ry∗ > γ01I. Fix δ small enough so that for some ε1 > 0 and r1 > r0,

ε0

ρ
γ0 −

(
C2δ + C3

r

)
≥ ε1 for all r ≥ r1.(4.61)

Then, for every k = 0,1, . . . ,Mr ,

on the set (Hrk )
c, Qr

(
(k + 1)�r

)≥Qr0
(
(k + 1)�r

)
(4.62)

≥Qr(k�r)+ ε11I�
r, r ≥ r1.

Recall d1 introduced above (4.3). Let m0 be large enough so that ε1m0 > d1. Then
using (4.62), we get that

on the set
Mr⋂
k=0

(Hrk )
c, Qr(k�r)≥ d11I�

r,(4.63)

for all k =m0, . . . ,Mr, r ≥ r1.
Next, let

F rk =
{
ω : inf

i∈I
Qri (k�

r,ω)≥ d1�
r
}

∩ {ω :Qri (t,ω)= 0 for some i ∈ I, t ∈ [k�r, (k+ 1)�r ]}(4.64)
.=Grk ∩Brk .

Using estimates below (4.21), we see that

P

(
Mr⋃
k=0

F rk

)
→ 0 as r → ∞.(4.65)
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Also, from (4.63),

lim inf
r→∞ P(Grm0

) ≥ lim inf
r→∞ P

(
Grm0

∩
[Mr⋂
k=0

(Hrk )
c

])

(4.66)

= lim inf
r→∞ P

(
Mr⋂
k=0

(Hrk )
c

)
= 1.

Next, for r ≥ r1,

P

(
Mr⋃
k=m0

Brk

)
≤ P

(
Mr⋃
k=m0

(Brk ∩Grm0
)

)
+ P((Grm0

)c).(4.67)

Also,

P

(
Mr⋃
k=m0

(Brk ∩Grm0
)

)
= P

([
Mr⋃
k=m0

(Brk ∩Grm0
)

]
∩
[
Mr⋃
k=0

Hrk

])

+ P

([
Mr⋃
k=m0

(Brk ∩Grm0
)

]
∩
[
Mr⋂
k=0

(Hrk )
c

])
(4.68)

≤ P

(
Mr⋃
k=0

Hrk

)
+ P

(
Mr⋃
k=m0

(Brk ∩Grk)
)
,

where the last inequality is a consequence of the fact that on
⋂Mr
k=0(H

r
k )
c, Grk ⊆

Grk+1 for k ≥m0. From (4.60) and (4.65) the above expression is seen to approach
zero as r → ∞. Using this observation and (4.66) in (4.67), we now see that
P(
⋃Mr
k=m0

Brk)→ 0 as r → ∞. Finally, recalling the definition of Brk , we have

P
(
Qri (s)= 0, for some i ∈ I and s ∈ [m0�

r, rρ])= P

(
Mr⋃
k=m0

Brk

)
.

The proposition now follows on setting ρr = m0�
r

r
.

APPENDIX

LEMMA A.1. Let {Ỹn}n≥1 be a sequence of random variables, with values in
a finite set S, given on a probability space (�,F ,P). Let G be a sub-σ field of F .
Suppose that {Gn}n≥1 is a sequence of sub-σ fields of G and {Xn}n≥1 a sequence
of {Gn}-adapted, Rd -valued random variables such that

P(Ỹn = ζ |Gn)= pn,ζ (Xn), n≥ 1, ζ ∈ S,
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where pn,ζ : Rd → [0,1] are measurable maps such that �ζ∈Spn,ζ (x)= 1 for all
x ∈ Rd , n≥ 1. Then there is a sequence of S-valued random variables {Yn} defined
on an augmentation of (�,F ,P) such that

P(Yn = ζ |G ∨ Yn−1
0 )= pn,ζ (Xn), n≥ 1, ζ ∈ S,

where Yn−1
0 = σ {Y1, . . . , Yn−1}.

PROOF. By suitably augmenting the space, we can assume that the probabil-
ity space (�,F ,P) supports an i.i.d. sequence {Un}n≥1 of Uniform [0,1] random
variables, independent of G . Let, for n≥ 1, ζ ∈ S, an,ζ , bn,ζ : Rd → [0,1] be mea-
surable maps, such that for all x ∈ Rd :

(i) bn,ζ (x)− an,ζ (x)= pn,ζ (x), n≥ 1, ζ ∈ S.
(ii) [an,ζ (x), bn,ζ (x))∩ [an,ζ ′(x), bn,ζ ′(x))= ∅, ζ, ζ ′ ∈ S, ζ �= ζ ′, n≥ 1.

(iii)
⋃
ζ∈S[an,ζ (x), bn,ζ (x))= [0,1). The result follows on defining

Yn =∑
ζ∈S

ζ1[an,ζ (Xn),bn,ζ (Xn))(Un), n≥ 1.
�

A.1. Proof of Lemma 3.7. From (2.38) we have that for some C1 ∈ (0,∞),
|Q̃1 − Q̃2|∞,T ≤ C1|Ỹ 1 − Ỹ 2|∞,T .(A.1)

Thus, for some C2 ∈ (0,∞),∣∣∣∣Ẽ
∫ T

0
e−γ th · Q̃1(t) dt − Ẽ

∫ T

0
e−γ th · Q̃2(t) dt

∣∣∣∣≤C2Ẽ|Ỹ 1 − Ỹ 2|∞,T .(A.2)

Next, for t ≥ 0 and i = 1,2,

Q̃i(t + T )= �(Q̃i(T )+ ζ̃ (T + ·)− ζ̃ (T )).(A.3)

Using Assumption 2.15 and (A.1), we now have that for all t ≥ 0,

|Q̃1(t + T )− Q̃2(t + T )| ≤ L|Q̃1(T )− Q̃2(T )| ≤ LC1|Ỹ 1 − Ỹ 2|∞,T .(A.4)

This shows that, for some C3 ∈ (0,∞),∣∣∣∣Ẽ
∫ ∞
T
e−γ th · Q̃1(t) dt − Ẽ

∫ ∞
T
e−γ th · Q̃2(t) dt

∣∣∣∣≤ C3Ẽ|Ỹ 1 − Ỹ 2|∞,T .(A.5)

Next, for some C4 ∈ (0,∞),∣∣∣∣
∫
[0,T ]

e−γ tp · dŨ1(t)−
∫
[0,T ]

e−γ tp · dŨ2(t)

∣∣∣∣
≤ |p|

[
|Ũ1(0)− Ũ2(0)| + e−γ T |Ũ1(T )− Ũ2(T )|

(A.6)

+ γ
∫
[0,T ]

|Ũ1(t)− Ũ2(t)|dt
]

≤C4|Ỹ 1 − Ỹ 2|∞,T .
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Next, note that for S > T , i = 1,2,∫
(T ,S]

e−γ tp · dŨ i(t)
(A.7)

= γ
∫ S

T
e−γ tp · [Ũ i(t)− Ũ i(T )]dt + e−γ Sp · [Ũ i(S)− Ũ i(T )].

Also, using Assumption 2.15 and (2.39), for some C5 ∈ (0,∞),
|Ũ i(t)− Ũ i(T )| ≤ C5|ζ̃ (T + ·)− ζ̃ (T )|∞,t−T , t ≥ T ,

which shows that, for i = 1,2,

Ẽ|e−γ Sp · [Ũ i(S)− Ũ i(T )]| → 0 as S→ ∞.
Combining this observation with (A.7), we now have, on sending S→ ∞, that for
i = 1,2,

Ẽ

∫
(T ,∞)

e−γ tp · dŨ i(t)= γ Ẽ

∫ ∞
T
e−γ tp · [Ũ i(t)− Ũ i(T )]dt.

Thus, for some C6 ∈ (0,∞),
Ẽ

∣∣∣∣
∫
(T ,∞)

e−γ tp · dŨ1(t)−
∫
(T ,∞)

e−γ tp · dŨ2(t)

∣∣∣∣
≤ γ |p|

∫
(T ,∞)

e−γ t |[Ũ1(t)− Ũ1(T )] − [Ũ2(t)− Ũ2(T )]|dt

≤C6Ẽ

∫
(T ,∞)

e−γ t |Q̃1(T )− Q̃2(T )|dt,
where the last equality follows on using Assumption 2.15 and (A.3). Combining
this with (A.1), we now have that

Ẽ

∣∣∣∣
∫
(T ,∞)

e−γ tp · dŨ1(t)−
∫
(T ,∞)

e−γ tp · dŨ2(t)

∣∣∣∣≤ C7Ẽ|Ỹ 1 − Ỹ 2|∞,T .
The result now follows on combining the above estimate with (A.2), (A.5)
and (A.6).

A.2. Proof of Proposition 4.1. It is immediate from the construction that T r

satisfies (i)–(iii) of Definition 2.7. We now verify that, with G = σ {Ui , i ≥ 1},
T r satisfies (iv).(A.8)

The proof of (A.8) is similar to that of Theorem 5.4 in [9], which shows that if a
policy satisfies certain natural conditions (see Assumptions 5.1, 5.2, 5.3 therein),
then it is admissible (in the sense of Definition 2.7 of the current paper). The pol-
icy T r constructed in Section 4.1 does not exactly satisfy conditions in Section 5
of [9], but it has similar properties. Since most of the arguments are similar to [9],
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we only provide a sketch, emphasizing only the changes that are needed. For the
convenience of the reader, we use similar notation as in [9]. Also, we suppress the
superscript r from the notation. Recall from (4.8) that

Tj (t)=
∫
[0,t]

1{Qσ1(j)(u)>0}1{Qσ1(j)(p(u))>�(u)}Ṫ
(1)
j (u) du,(A.9)

j ∈ J, t ≥ 0.

In particular, Assumption 5.1 of [9] is satisfied. In view of (2.1), the integrand
above has countably many points (a.s.) where the value of Ṫ (1)j changes from 0

to 1 (or vice versa). Denote these points by {ϒ̄1
� }�∈N. Set ϒ̄1

0 = 0. We refer to
these points as the “break-points” of T . Break-points are boundaries of the inter-
vals of the form {[nr2θ, (n+ 1)r2θ)}n or those of subintervals of length ∇1,k,n

i or

∇2,k,n
i for some k, i, n [see (4.11), see also (4.4) for ∇1,k

i or ∇2,k
i ] that are used

to define the policy T . Next, define {ϒ̄0
� }�∈N0 as the countable set of (random)

“event-points” as defined in [9] (denoted there as {ϒ�}�∈N0 ). These are the points
where either an arrival of a job or service completion of a job takes place anywhere
in the network. Combining the event-points and the break-points, we get the set of
“change-points” of the policy T denoted by {ϒ�}:

{ϒ�} = {ϒ̄0
� } ∪ {ϒ̄1

� }.
We will assume that the sequence {ϒ�} [resp. {ϒ̄0

� }, {ϒ̄1
� }] is indexed such that ϒ�

[resp. ϒ̄0
� , ϒ̄1

� ] is a strictly increasing sequence in �.
As noted earlier, [9] uses the notation {ϒ�}, instead of {ϒ̄0

� }, for event points. We
have made this change of notation since {ϒ�} here plays an identical role as that of
event-points in the proof of [9]. In particular, it is easily seen that Assumption 5.2
of [9] holds with this new definition of {ϒ�}. We will next verify Assumption 5.3
(a nonanticipativity condition) of [9] in Lemma A.2 below.

For i ∈ I and � ∈ N0, let u�i
.= ξi(Ei(ϒ�) + 1) − ϒ�. Thus, u�i is the residual

(exogenous) arrival time at the ith buffer at time ϒ�, unless an arrival of the ith
class occurred at time ϒ�, in which case it equals u�i = ui(Ei(ϒ�)+ 1). Similarly,
for j ∈ J, � ∈ N0, define v�j

.= ηj (Sj (ϒ�)+1)−ϒ�. Next, write T (t)= ∫ t
0 Ṫ (s) ds,

where Ṫ is right continuous. For i ∈ I, setQi,0 = 0, and for �≥ 1,Qi,�
.=Qi(ϒ�).

Also, for j ∈ J, and �≥ 0, let Ṫ �j
.= Ṫj (ϒ�). Let Ṫ −1

j

.= 0. Finally, define for �≥ 0,

χ�
.= {
(ϒ�′, u

�′
i , v

�′
j ,Q

�′
i , Ṫ

�′−1
j : i ∈ I, j ∈ J, {Ui : i ∈ N}) :�′ = 0, . . . , �

}
.(A.10)

The definition of χ� above is similar to that in [9], with the exception of the se-
quence {Ui : i ∈ N}. This enlargement of the collection χ� is needed due to the
randomization step, involving the sequence {Ui}, in the construction of the policy
[see (4.10)]. In [9], part (iv) of the admissibility requirement (for the smaller class
of policies considered there) was in fact shown with respect to a smaller filtration,
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namely, F̄ r ((m,n)). Here, using the above enlargement, we will show that part
(iv) holds (for the policy in Section 4.1) with F r ((m,n))= F̄ r ((m,n))∨ {Ui}. In
Lemma A.2 below, we prove that Ṫ (ϒ�) is a measurable function of χ�, for all
� ∈ N0. This shows that T satisfies Assumptions 5.1–5.3 of [9] with the modified
definition of ϒ� and χ�. Now part (iv) of the admissibility requirement [i.e., (A.8)]
follows exactly as the proof of Theorem 5.4 of [9]. This completes the proof of the
proposition.

LEMMA A.2. Ṫ (ϒ�) is a measurable function of χ�, for all � ∈ N0.

PROOF. Let for m ∈ N0, Lm = (ϒ̄1
m+1 − ϒ̄1

m) denote the length of the mth
break-point interval. Define κ0 = 0 and κ� = max{m ≥ 0 : ϒ̄1

m ≤ ϒ�} for � ∈ N0.
Hence, κ� denotes the number of break-points that preceded the �th change-point,
and ϒ̄1

κ�
is the “last” break-point before the �th change-point ϒ� (note that κ� ≤ �)

for all � ∈ N0. Also, define for � ∈ N0, �� = (ϒ̄1
κ�

+ Lκ� −ϒ�) as the “residual”
time for the next break-point after ϒ�. In particular, �� = 0 implies that ϒ� itself
is a break-point. By definition of T [see (4.10)], it follows that κ�, ϒ̄1

κ�
, Lκ� , and,

hence,�� are all measurable functions of χ� for � ∈ N0. Summarizing this, we get

κ�,��, ϒ̄1
κ�

are measurable functions of χ� for � ∈ N0.(A.11)

Using notation from [9], let Ji = {j ∈ J :σ1(j) = i} be the set of all activities
that are associated with the buffer i and, for a ∈ {0,1}J, Ji (a) be as defined by
equation (5.2) of [9]. Then Ji (Ṫ (t)) denotes all activities in Ji that are active at
time t ≥ 0, under T . Clearly, for � ∈ N0,

ϒ� =ϒ�−1 + min
i∈I

min{��−1, u�−1
i , v�−1

j : j ∈ Ji(Ṫ �−1)}.(A.12)

For i ∈ I, let I�i be the indicator function of the event that at the change-point ϒ�
an arrival or service completion occurs at buffer i. More precisely, for i ∈ I and
�≥ 0,

I�i =
⎧⎪⎨
⎪⎩

1, if min{u�−1
i , v�−1

j : j ∈ Ji (Ṫ �−1)}
= min
i′∈I

min{��−1, u�−1
i′ , v�−1

j : j ∈ Ji′(Ṫ �−1)},
0, otherwise.

(A.13)

From (A.11) and (A.10), it follows that

both I�i ,ϒ� are measurable functions of χ�, � ∈ N0.(A.14)

Using (4.10) and the construction below it, along with (A.14), it is easily checked
that Ṫ (1)(ϒ�) is a measurable function of χ�. Next, for j ∈ J,

Ṫj (ϒ�)= 1{Qσ1(j)(ϒ�)>0}1{Qσ1(j)(p(ϒ�))>�(ϒ�)}Ṫ
(1)
j (ϒ�).(A.15)
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From (A.14) and (A.10), �(ϒ�) and Qσ1(j)(ϒ�) are χ� measurable, thus, so is
the first indicator in the above display. Also, since p(ϒ�) is either ϒ� or ϒ̄1

κ�
—

depending on whether ϒ� is in
⋃
n≤p0

I2(n) or not—and both Qσ1(j)(ϒ�) and
Qσ1(j)(ϒ̄

1
κ�
) are χ� measurable, we see that the second indicator in (A.15) is χ�

measurable as well. The lemma follows on combining the above observations. �

A.3. Proof of Lemma 4.2. Since hn is equicontinuous, pre-compactness of
(f n, gn,hn, γ n) is immediate. Suppose now that (f n, gn,hn, γ n) converges (in
D3I+1), along some subsequence, to (f, g,h, γ ). Then γ (t) = t for t ≥ 0 and
f,g,h ∈ C I. Also, for suitable measurable maps h̃i : [0,∞)→ [0,1], i ∈ I,

hi(t)=
∫
[0,t]

h̃i(s) ds, i ∈ I, t ≥ 0.

Ifψ : [0,∞)→ R is a continuous map with compact support, then, along the above
subsequence,∫

[0,t]
ψ(f ni (s))1{f ni (γ n(s))≤εn} ds→

∫
[0,t]

ψ(fi(s))h̃i(s) ds, t ≥ 0, i ∈ I.

Suppose now that supp(ψ) ⊂ (δ,∞) for some δ > 0. Then the left-hand side of
the above display converges to 0 and so for all t, i,

∫
[0,t]ψ(fi(s))h̃i(s) ds = 0 for

such ψ . Since δ > 0 is arbitrary, we get∫
[0,t]

1{fi(s)=0}h̃i(s) ds = hi(t).
The result follows.

Acknowledgment. We thank an anonymous referee for pointing us to the pa-
per [21].
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