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MODEL ROBUSTNESS OF FINITE STATE NONLINEAR
FILTERING OVER THE INFINITE TIME HORIZON

BY PAVEL CHIGANSKY1 AND RAMON VAN HANDEL2

Weizmann Institute of Science and California Institute of Technology

We investigate the robustness of nonlinear filtering for continuous time
finite state Markov chains, observed in white noise, with respect to misspec-
ification of the model parameters. It is shown that the distance between the
optimal filter and that with incorrect model parameters converges to zero uni-
formly over the infinite time interval as the misspecified model converges to
the true model, provided the signal obeys a mixing condition. The filtering
error is controlled through the exponential decay of the derivative of the non-
linear filter with respect to its initial condition. We allow simultaneously for
misspecification of the initial condition, of the transition rates of the signal,
and of the observation function. The first two cases are treated by relatively
elementary means, while the latter case requires the use of Skorokhod inte-
grals and tools of anticipative stochastic calculus.

1. Introduction. The theory of nonlinear filtering concerns the estimation of
a signal corrupted by white noise, and has diverse applications in target tracking,
signal processing, automatic control, finance, and so on. The basic setting of the
theory involves a Markov signal process, for example, the solution of a (nonlinear)
stochastic differential equation or a finite-state Markov process, observed in inde-
pendent corrupting noise. The calculation of the resulting filters is a classical topic
in stochastic analysis [14]. Of course, the filtering equations will depend explicitly
on the model chosen for the signal process and observations; in almost all realistic
applications, however, the model that underlies the filter is only an approximation
of the true system that generates the observations. In order for the theory to be
practically useful, it is important to establish that the filtered estimates are not too
sensitive to the choice of underlying model.

Continuity with respect to the model parameters of nonlinear filtering estimates
on a fixed finite time interval is well established, for example, [3, 4, 10]; generally
speaking, it is known that the error incurred in a finite time interval due to the
choice of incorrect model parameters can be made arbitrarily small if the model
parameters are chosen sufficiently close to those of the true model. As the corre-
sponding error bounds grow rapidly with the length of the time interval, however,
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such estimates are of little use if we are interested in robustness of the filter over
a long period of time. One would like to show that the approximation errors do
not accumulate, so that the error remains bounded uniformly over an infinite time
interval.

The model robustness of nonlinear filters on the infinite time horizon was inves-
tigated in discrete time in [6, 12, 13, 19]. The key idea that allows one to control the
accumulation of approximation errors is the asymptotic stability property of many
nonlinear filters, which is the focus of much recent work (see [1, 2] and the refer-
ences therein) and can be summarized as follows. The optimal nonlinear filter is a
recursive equation that is initialized with the true distribution of the signal process
at the initial time. If the filter is initialized with a different distribution, then the
resulting filtered estimates are no longer optimal (in the least-squares sense). The
filter is called asymptotically stable if the solution of the wrongly initialized filter
converges to the solution of the correctly initialized filter at large times; that is, the
filter “forgets” its initial condition after a period of observation.

Using an approximate filter rather than the optimal filter is equivalent to using
the optimal filter where we make an approximation error after every time step.
Now suppose the optimal filter forgets its initial condition at an exponential rate;
then also the approximation error at each time step is forgotten at an exponential
rate, and the errors cannot accumulate in time. If the approximation error at each
time step is bounded (finite time robustness), then the total approximation error
will be bounded uniformly in time. Model robustness on the infinite time horizon
is thus a consequence of finite time robustness together with the exponential for-
getting property of the filter. This is precisely the method used in [6, 12, 13, 19],
and its implementation is fairly straightforward once bounds on the exponential
forgetting rate of the filter have been obtained. However, the method used there
does not extend to nonlinear filtering in continuous time; even the continuous time
model with point process observations studied in [6], though more involved, re-
duces essentially to discrete (but random) observation times. The continuous time
case requires different tools, which we develop in this paper in the setting of non-
linear filtering of a finite-state Markov signal process. (We also mention [7], where
a different but related problem is solved.)

We consider the following filtering setup. The signal process X = (Xt)t≥0 is
a continuous time, homogeneous Markov chain with values in the finite alphabet
S = {a1, . . . , ad}, transition intensities matrix � = (λij ) and initial distribution
νi = P(X0 = ai). The observation process Y = (Yt )t≥0 is given by

Yt =
∫ t

0
h(Xs) ds + Bt,(1.1)

where h : S → R is the observation function [we will also write hi = h(ai)] and B

is a Wiener process that is independent of X. The filtering problem for this model
concerns the calculation of the conditional probabilities πi

t = P(Xt = ai |F Y
t )
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from the observations {Ys : s ≤ t}, where F Y
t = σ {Ys : s ≤ t}. It is well known

that πt satisfies the Wonham equation [14, 22]

dπt = �∗πt dt + (H − h∗πt)πt (dYt − h∗πt dt), π0 = ν,(1.2)

where x∗ denotes the transpose of x and H = diagh. Note that the Wonham equa-
tion is initialized with the true distribution of X0; we will denote by πt(µ) the
solution of the Wonham equation at time t with an arbitrary initial distribution
π0 = µ, and by πs,t (µ) the solution of the Wonham equation at time t ≥ s with
the initial condition πs = µ. In [1, 2] the exponential forgetting property of the
Wonham filter was established as follows: the �1-distance |πt(µ) − πt(ν)| decays
exponentially a.s., provided the initial distributions are equivalent µ ∼ ν and that
the mixing condition λij > 0 ∀i �= j is satisfied. Now consider the Wonham filter
with incorrect model parameters:

dπ̃t = �̃∗π̃t dt + (H̃ − h̃∗π̃t )π̃t (dYt − h̃∗π̃t dt), π̃0 = ν,(1.3)

where �̃ and h̃ denote a transition intensities matrix and observation function that
do not match the underlying signal-observation model (X,Y ), H̃ = diag h̃, and we
denote by π̃t (µ) the solution of this equation with initial condition π̃0 = µ and by
π̃s,t (µ) the solution with π̃s = µ. The following is the main result of this paper.

THEOREM 1.1. Suppose νi,µi > 0 ∀i and λij , λ̃ij > 0 ∀i �= j . Then

sup
t≥0

E‖π̃t (µ) − πt(ν)‖2 ≤ C1 |µ − ν| + C2 |h̃ − h| + C3|�̃∗ − �∗|,

where |�̃∗ − �∗| = sup{|(�̃∗ − �∗)τ | : τ i > 0 ∀i, |τ | = 1} and the quantities
C1,C2,C3 are bounded on any compact subset of parameters {(ν,�,h,µ, �̃, h̃) :
νi,µi > 0 ∀i, |ν| = |µ| = 1, λij , λ̃ij > 0 ∀i �= j,

∑
j λij = ∑

j λ̃ij = 0 ∀i}. Addi-
tionally we have the asymptotic estimate

lim sup
t→∞

E‖π̃t (µ) − πt(ν)‖2 ≤ C2|h̃ − h| + C3|�̃∗ − �∗|.

In particular, this implies that if νi > 0 ∀i, λij > 0 ∀i �= j , then

lim
(h̃,�̃,µ)→(h,�,ν)

sup
t≥0

E‖π̃t (µ)−πt(ν)‖ = lim
(h̃,�̃)→(h,�)

lim sup
t→∞

E‖π̃t (µ)−πt(ν)‖ = 0.

Let us sketch the basic idea of the proof. Rather than considering the Wonham
filter, let us demonstrate the idea using the following simple caricature of a filter-
ing equation. Consider a smooth “observation” yt and a “filter” whose state xt is
propagated by the ordinary differential equation dxt/dt = f (xt , yt ). Similarly, we
consider the “approximate filter” dx̃t/dt = f̃ (x̃t , yt ) and assume that everything
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is sufficiently smooth, so that for fixed y both equations generate a two-parameter
flow xt = ϕ

y
s,t (xs), x̃t = ϕ̃

y
s,t (x̃s). The following calculation is straightforward:

ϕ
y
0,t (x) − ϕ̃

y
0,t (x) =

∫ t

0

d

ds
[ϕ̃y

s,t (ϕ
y
0,s(x))]ds

=
∫ t

0
Dϕ̃

y
s,t (ϕ

y
0,s(x)) · (

f (ϕ
y
0,s(x), ys) − f̃ (ϕ

y
0,s(x), ys)

)
ds,

where Dϕ̃
y
s,t (x) · v denotes the directional derivative of ϕ̃

y
s,t (x) in the direction v.

Hence we obtain the following estimate on the approximation error:

|ϕy
0,t (x) − ϕ̃

y
0,t (x)| ≤

∫ t

0
|Dϕ̃

y
s,t (ϕ

y
0,s(x))| |f (ϕ

y
0,s(x), ys) − f̃ (ϕ

y
0,s(x), ys)|ds.

Now suppose that |f (·, ·) − f̃ (·, ·)| ≤ K , where K → 0 as f̃ → f ; this is an
expression of finite-time robustness, as it ensures that |ϕy

0,t (x)− ϕ̃
y
0,t (x)| ≤ Kt → 0

(for fixed t) as f̃ → f . Suppose furthermore that we can establish a bound of
the form |Dϕ̃

y
s,t (·)| ≤ Ce−λ(t−s), that is an infinitesimal perturbation to the initial

condition is forgotten at an exponential rate. Then the estimate above is uniformly
bounded and converges to zero uniformly in time as f̃ → f . Conceptually this is
similar to the logic used in discrete time, but we have to replace the exponential
forgetting of the initial condition by the requirement that the derivative of the filter
with respect to its initial condition decays exponentially.

Returning to the Wonham filter, this procedure can be implemented in a fairly
straightforward way if h̃ = h. In this case, most of the work involves finding a suit-
able estimate on the exponential decay of the derivative of the filter with respect
to its initial condition; despite the large number of results on filter stability, such
estimates are not available in the literature to date. We obtain estimates by adapt-
ing methods from [2], together with uniform estimates of the concentration of the
optimal filter near the boundary of the simplex.

The general case with h̃ �= h is significantly more involved. The problem is
already visible in the simple demonstration above. Note that the integrand on the
right-hand side of the error estimate is not adapted; it depends on the observations
on the entire interval [0, t]. As the Wonham filter is defined in terms of an Itô-type
stochastic integral, this will certainly get us into trouble. When h̃ = h the stochastic
integral cancels in the error bound and the problems are kept to a minimum; in
the general case, however, we are in no such luck. Nonetheless this problem is
not prohibitive, but it requires us to use the stochastic calculus for anticipating
integrands developed by Nualart and Pardoux [16, 15] using Skorokhod integrals
rather than Itô integrals and using Malliavin calculus tools.

An entirely different application of the Malliavin calculus to problems of filter
stability can be found in [8].

The remainder of this paper is organized as follows. In Section 2 we prove some
regularity properties of the solution of the Wonham equation. We also demonstrate
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the error estimate discussed above in the simpler case h̃ = h, and comment on the
more general applicability of such a bound. In Section 3 we obtain exponential
bounds on the derivative of the Wonham filter with respect to its initial condition.
Section 4 treats the general case h̃ �= h using anticipative stochastic calculus; some
of the technical estimates appear in Appendix B. Finally, Appendix A contains a
brief review of the results from the Malliavin calculus and anticipative stochastic
calculus that are needed in the proofs.

NOTATION. The signal-observation pair (X,Y ) is defined on the standard
probability space (	,F ,P). The expectation with respect to P is denoted by E
or sometimes EP. For x ∈ R

d , we denote by |x| the �1-norm, by ‖x‖ the �2-norm,
and by ‖x‖p the �p-norm. We write x � y (resp. ≺,,�) if xi > yi (<,≥,≤) ∀i.

The following spaces will be used throughout. Probability distributions on S

are elements of the simplex 
d−1 = {x ∈ R
d :x  0, |x| = 1}. Usually, we will

be interested in the interior of the simplex Sd−1 = {x ∈ R
d :x � 0, |x| = 1}. The

space of vectors tangent to Sd−1 is denoted by T Sd−1 = {x ∈ R
d :

∑
i xi = 0}.

Finally, we will denote the positive orthant by R
d++ = {x ∈ R

d :x � 0}.

2. Preliminaries. Equation (1.2) is a nonlinear equation for the conditional
distribution πt . It is well known however (e.g. [9]) that πt can also be calculated
in a linear fashion: πt = ρt/|ρt |, where the unnormalized density ρt is propagated
by the Zakai equation

dρt = �∗ρt dt + Hρt dYt , ρ0 = ν.(2.1)

We will repeatedly exploit this representation in what follows. As before ρt (µ) and
ρs,t (µ) (t ≥ s) denote the solution of the Zakai equation at time t with the initial
condition ρ0 = µ and ρs = µ, respectively, and πs,t (µ) = ρs,t (µ)/|ρs,t (µ)|.

We also recall the following interpretation of the norm |ρt | of the unnormalized
conditional distribution. If we define a new measure Q ∼ P through

dP
dQ

= |ρt (ν)| = |ρt |,(2.2)

then under Q the observation process Yt is an F Y
t -Wiener process. This observa-

tion will be used in Section 4 to apply the Malliavin calculus.
The main goal of this section is to establish some regularity properties of the

solutions of the Wonham and Zakai equations. In particular, as we will want to
calculate the derivative of the filter with respect to its initial condition, we have
to establish that πs,t (µ) is in fact differentiable. We will avoid problems at the
boundary of the simplex by disposing of it alltogether: we begin by proving that if
µ ∈ Sd−1, then a.s. πs,t (µ) ∈ Sd−1 for all times t > s.

LEMMA 2.1. P(ρs,t (µ) ∈ R
d++ for all µ ∈ R

d++, 0 ≤ s ≤ t < ∞) = 1.
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PROOF. The following variant on the pathwise filtering method reduces the
Zakai equation to a random differential equation. First, we write �∗ = S+T where
S is the diagonal matrix with Sii = λii . Note that the matrix T has only nonnegative
entries. We now perform the transformation fs,t (µ) = Ls,tρs,t (µ) where

Ls,t = exp
((1

2H 2 − S
)
(t − s) − H(Yt − Ys)

)
.

Then fs,t (µ) satisfies

dfs,t

dt
= Ls,tT L−1

s,t fs,t , fs,s = µ.(2.3)

Let 	c ⊂ 	, P(	c) = 1 be a set such that t �→ Bt(ω) is continuous for every ω ∈
	c. Then t �→ Ls,t , t �→ L−1

s,t are continuous in t and have strictly positive diagonal
elements for every ω ∈ 	c. By standard arguments, there exists for every ω ∈ 	c,
µ ∈ R

d and s ≥ 0 a unique solution fs,t (µ) to equation (2.3) where t �→ fs,t (µ)

is a C1-curve. Moreover, note that Ls,tT L−1
s,t has nonnegative matrix elements

for every ω ∈ 	c, s ≤ t < ∞. Hence if µ ∈ R
d++ then clearly fs,t (µ) must be

nondecreasing, that is, fs,t  fs,r for every t ≥ r ≥ s and ω ∈ 	c. But then R
d++

must be forward invariant under equation (2.3) for every ω ∈ 	c, and as Ls,t has
strictly positive diagonal elements the result follows. �

COROLLARY 2.2. P(πs,t (µ) ∈ Sd−1 for all µ ∈ Sd−1, 0 ≤ s ≤ t < ∞) = 1.

Let us now investigate the map ρs,t (µ). As this map is linear in µ, we can write
ρs,t (µ) = Us,tµ a.s. where the d × d matrix Us,t is the solution of

dUs,t = �∗Us,t dt + HUs,t dYt , Us,s = I.(2.4)

The following lemma establishes that Us,t defines a linear stochastic flow in R
d .

LEMMA 2.3. For a.e. ω ∈ 	 (i) ρs,t (µ) = Us,tµ for all s ≤ t ; (ii) Us,t is
continuous in (s, t); (iii) Us,t is invertible for all s ≤ t , where U−1

s,t is given by

dU−1
s,t = −U−1

s,t �∗ dt + U−1
s,t H 2 dt − U−1

s,t H dYt , U−1
s,s = I ;(2.5)

(iv) Ur,tUs,r = Us,t (and hence Us,tU
−1
s,r = Ur,t ) for all s ≤ r ≤ t .

PROOF. Continuity of Us,t (and U−1
s,t ) is a standard property of solution of

Lipschitz stochastic differential equations. Invertibility of U0,t for all 0 ≤ t < ∞
is established in [20], page 326, and it is evident that Us,t = U0,tU

−1
0,s satisfies

equation (2.4). The remaining statements follow, where we can use continuity to
remove the time dependence of the exceptional set as in the proof of [20], page 326.

�

We now turn to the properties of the map πs,t (µ).
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LEMMA 2.4. The Wonham filter generates a smooth stochastic semiflow in
Sd−1, that is, the solutions πs,t (µ) satisfy the following conditions:

1. For a.e. ω ∈ 	, πs,t (µ) = πr,t (πs,r (µ)) for all s ≤ r ≤ t and µ.
2. For a.e. ω ∈ 	, πs,t (µ) is continuous in (s, t,µ).
3. For a.e. ω ∈ 	, the injective map πs,t (·) :Sd−1 → Sd−1 is C∞ for all s ≤ t .

PROOF. For x ∈ R
d++ define (x) = x/|x|, so that πs,t (µ) = (ρs,t (µ))

(µ ∈ Sd−1). Note that  is smooth on R
d++. Hence continuity in (s, t,µ) and

smoothness with respect to µ follow directly from the corresponding properties
of ρs,t (µ). The semiflow property πs,t (µ) = πr,t (πs,r (µ)) follows directly from
Lemma 2.3. It remains to prove injectivity.

Suppose that πs,t (µ) = πs,t (ν) for some µ,ν ∈ Sd−1. Then Us,tµ/|Us,tµ| =
Us,tν/|Us,tν|, and as Us,t is invertible we have µ = (|Us,tµ|/|Us,tν|)ν. But as µ

and ν must lie in Sd−1, it follows that µ = ν. Hence πt(·) is injective. �

REMARK 2.5. The results in this section hold identically if we replace � by
�̃, h by h̃. We will use the obvious notation π̃s,t (µ), ρ̃s,t (µ), Ũs,t , and so on.

We finish this section by obtaining an expression for the approximation error in
the case h̃ = h; in fact, we will demonstrate the bound for this simple case in a
more general setting than is considered in the following. Rather than considering
the approximate Wonham filter with modified �, consider the equation

dπ̆t = f (π̆t ) dt + (H − h∗π̆t )π̆t (dYt − h∗π̆t dt), π̆0 = µ ∈ Sd−1,(2.6)

where f :Sd−1 → T Sd−1 is chosen in such a way that this equation has a strong
solution and inf{t > 0 : π̆t /∈ Sd−1} = ∞ a.s. In the sequel we consider the case
f (π̆) = �̃π̆ , which clearly satisfies the requirements. We formulate the more gen-
eral result here, as it might be of interest in other contexts (see Remark 2.8).

PROPOSITION 2.6. Let π̆t be as above. Then the difference between π̆t and
the Wonham filter started at µ is a.s. given by

π̆t − πt(µ) =
∫ t

0
Dπs,t (π̆s) · (

f (π̆s) − �∗π̆s

)
ds,

where Dπs,t (µ) · v is the derivative of πs,t (µ) in the direction v ∈ T Sd−1.

PROOF. Define the (scalar) process �t by

�t = exp
(∫ t

0
h∗π̆s dYs − 1

2

∫ t

0
(h∗π̆s)

2 ds

)
.

Using Itô’s rule, we evaluate

d

ds
(�sU

−1
0,s π̆s) = �sU

−1
0,s

(
f (π̆s) − �∗π̆s

)
.(2.7)
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Multiplying both sides by U0,t , we obtain

d

ds
(�sUs,t π̆s) = �sUs,t

(
f (π̆s) − �∗π̆s

)
.

Now introduce as before the map  : Rd++ → Sd−1, (x) = x/|x|, which is
smooth on R

d++. Define the matrix D(x) with elements

[D(x)]ij = ∂i(x)

∂xj
= 1

|x| [δij − i(x)].

Note that (αx) = (x) for any α > 0. Hence

d

ds
(Us,t π̆s) = d

ds
(�sUs,t π̆s) = D(�sUs,t π̆s)

d

ds
(�sUs,t π̆s).

But then we have, using D(αx) = α−1D(x) (α > 0),

d

ds
(Us,t π̆s) = D(�sUs,t π̆s)�sUs,t

(
f (π̆s) − �∗π̆s

)
= D(Us,t π̆s)Us,t

(
f (π̆s) − �∗π̆s

)
.

On the other hand, we obtain from the representation πs,t (µ) = (Us,tµ)

Dπs,t (µ) · v = D(Us,tµ)Us,tv, µ ∈ Sd−1, v ∈ T Sd−1.

Note that f (π̆s) − �∗π̆s ∈ T Sd−1 as we required that f :Sd−1 → T Sd−1, so that
D(Us,t π̆s)Us,t (f (π̆s)−�∗π̆s) = Dπs,t (π̆s) · (f (π̆s)−�∗π̆s). Finally, note that∫ t

0

d

ds
(Us,t π̆s) ds = (π̆t ) − (U0,t π̆0) = π̆t − πt(µ),

and the proof is complete. �

COROLLARY 2.7. The following estimate holds:

|π̆t − πt(µ)| ≤
∫ t

0
|Dπs,t (π̆s)||f (π̆s) − �∗π̆s |ds,

where |Dπs,t (µ)| = sup{|Dπs,t (µ) · v| :v ∈ T Sd−1, |v| = 1}. Moreover

|π̆t − πt(ν)| ≤ |πt(µ) − πt(ν)| +
∫ t

0
|Dπs,t (π̆s)||f (π̆s) − �∗π̆s |ds.

REMARK 2.8. Corollary 2.7 suggests that the method used here could be ap-
plicable to a wider class of filter approximations than those obtained by misspeci-
fication of the underlying model. In particular, in the infinite-dimensional setting it
is known [5] that by projecting the filter onto a properly chosen finite-dimensional
manifold, one can obtain finite-dimensional approximate filters that take a form
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very similar to equation (2.6). In order to obtain useful error bounds for such ap-
proximations one would need to have a fairly tight estimate on the derivative of the
filter with respect to its initial condition. Unfortunately, worst-case estimates of the
type developed in Section 3 are not sufficiently tight to give quantitative results on
the approximation error, even in the finite-state case. In the remainder of the article
we will restrict ourselves to studying the robustness problem.

In the following, it will be convenient to turn around the role of the exact and
approximate filters in Corollary 2.7, that is, we will use the estimate

|πt(ν) − π̃t (µ)| ≤ |π̃t (ν) − π̃t (µ)| +
∫ t

0
|Dπ̃s,t (πs)||(�∗ − �̃∗)πs |ds,(2.8)

which holds provided h̃ = h. The proof is identical to the one given above.

3. Exponential estimates for the derivative of the filter. In order for the
bound equation (2.8) to be useful, we must have an exponential estimate for
|Dπ̃s,t (·)|. The goal of this section is to obtain such an estimate. We proceed in
two steps. First, we use native filtering arguments as in [2] to obtain an a.s. expo-
nential estimate for |Dπ0,t (ν)|. As the laws of the observation processes generated
by signals with different initial distributions and jump rates are equivalent, we can
extend this a.s. bound to |Dπ̃s,t (µ)|. We find, however, that the proportionality
constant in the exponential estimate depends on µ and diverges as µ approaches
the boundary of the simplex. This makes a pathwise bound on |Dπ̃s,t (πs)| difficult
to obtain, as πs can get arbitrarily close to the boundary of the simplex on the in-
finite time interval. Instead, we proceed to find a uniform bound on E|Dπ̃s,t (πs)|.

We begin by recalling a few useful results from [2].

LEMMA 3.1. Assume µ,ν are in the interior of the simplex. Then

πi
t (µ) =

∑
j (µ

j/νj )P(X0 = aj ,Xt = ai |F Y
t )∑

j (µ
j/νj )P(X0 = aj |F Y

t )
.(3.1)

PROOF. Define a new measure Pµ ∼ P through

dPµ

dP
= dµ

dν
(X0).

It is not difficult to verify that under Pµ, Xt is still a finite-state Markov process
with intensities matrix � but with initial distribution Pµ(X0 = ai) = µi . Hence
evidently πi

t (µ) = Pµ(Xt = ai |F Y
t ). Using the usual change of measure formula

for conditional expectations, we can write

πi
t (µ) = EPµ(IXt=ai

|F Y
t ) = E(IXt=ai

(dµ/dν)(X0)|F Y
t )

E((dµ/dν)(X0)|F Y
t )

.
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The result now follows immediately. �

For the proof of the following lemma we refer to [2], Lemma 5.7, page 662.

LEMMA 3.2. Define ρ
ji
t = P(X0 = aj |F Y

t , Xt = ai). Assume that λij > 0
∀i �= j . Then for any t ≥ 0 we have the a.s. bound

max
j,k,�

|ρjk
t − ρ

j�
t | ≤ exp

(
−2t min

p,q �=p

√
λpqλqp

)
.

We are now ready to obtain some useful estimates.

PROPOSITION 3.3. Let λij > 0 ∀i �= j and ν ∈ Sd−1, v ∈ T Sd−1. Then a.s.

|Dπt(ν) · v| ≤ ∑
k

|vk|
νk

exp
(
−2t min

p,q �=p

√
λpqλqp

)
.

PROOF. We can calculate directly the directional derivative of (3.1):

(
Dπt(µ) ·v)i =

∑
j (vj /νj )(P(X0 = aj ,Xt = ai |F Y

t ) − πi
t (µ)P(X0 = aj |F Y

t ))∑
j (µj/νj )P(X0 = aj |F Y

t )
.

Setting µ = ν, we obtain after some simple manipulations(
Dπt(ν) · v)i = πi

t (ν)
∑
j,k

(vj /νj )πk
t (ν) (ρ

ji
t − ρ

jk
t ).

The result follows from Lemma 3.2. �

To obtain this bound we had to use the true initial distribution ν, jump rates λij

and observation function h. However, the almost sure nature of the result allows
us to drop these requirements.

COROLLARY 3.4. Let λ̃ij > 0 ∀i �= j and µ ∈ Sd−1, v ∈ T Sd−1. Then a.s.

|Dπ̃s,t (µ) · v| ≤ ∑
k

|vk|
µk

exp
(
−2(t − s) min

p,q �=p

√
λ̃pq λ̃qp

)
.(3.2)

Moreover, the result still holds if µ,v are F Y
s -measurable random variables with

values a.s. in Sd−1 and T Sd−1, respectively.

PROOF. Note that we can write π̃ i
0,t (µ) = P̃µ(Xt = ai |F Y

t ), where P̃µ is the

measure under which Xt has transition intensities matrix �̃ and initial distrib-
ution µ, and dYt = h̃(Xt) dt + dB̃t where B̃t is a Wiener process independent
of Xt . But P̃µ and P are equivalent measures (by the Girsanov theorem and [21],
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Section IV.22), so that the result for s = 0 follows trivially from Proposition 3.3.
The result for s > 0 follows directly as the Wonham equation is time homoge-
neous.

To show that the result still holds when µ,v are random, note that π̃s,t only
depends on the observation increments in the interval [s, t], that is, Dπ̃s,t (µ) · v

is F Y[s,t]-measurable where F Y[s,t] = σ {Yr − Ys : s ≤ r ≤ t}. Under the equivalent
measure Q introduced in Section 2, Y is a Wiener process and hence F Y[s,t] and
F Y

s are independent. It follows from the bound with constant µ,v that

EQ
(
I|Dπ̃s,t (µ)·v|≤(∗)|σ {µ,v}) = 1, Q-a.s.,

where (∗) is the right-hand side of (3.2). Hence EQ(I|Dπ̃s,t (µ)·v|≤(∗)) = 1, and the
statement follows from P ∼ Q. �

PROPOSITION 3.5. Let λ̃ij > 0 ∀i �= j and µ1,µ2 ∈ Sd−1. Then a.s.

|π̃s,t (µ2) − π̃s,t (µ1)| ≤ C|µ2 − µ1| exp
(
−2(t − s) min

p,q �=p

√
λ̃pq λ̃qp

)
,

where C = max{1/µk
1,1/µk

2 :k = 1, . . . , d}.

PROOF. Define γ (u) = π̃s,t (µ1 + u(µ2 − µ1)), u ∈ [0,1]. Then

π̃s,t (µ2) − π̃s,t (µ1) =
∫ 1

0

dγ

du
du =

∫ 1

0
Dπ̃s,t

(
µ1 + u(µ2 − µ1)

) · (µ2 − µ1) du.

We can thus estimate

|π̃s,t (µ2) − π̃s,t (µ1)| ≤ sup
u∈[0,1]

∣∣Dπ̃s,t

(
µ1 + u(µ2 − µ1)

) · (µ2 − µ1)
∣∣.

The result now follows from Corollary 3.4. �

Corollary 3.4 and Proposition 3.5 are exactly what we need to establish bound-
edness of equation (2.8). Note, however, that the right-hand side of (3.2) is pro-
portional to 1/µi , and we must estimate |Dπ̃s,t (πs)|. Though we established in
Section 2 that πs cannot hit the boundary of the simplex in finite time, it can
get arbitrarily close to the boundary during the infinite time interval, thus render-
ing the right-hand side of equation (3.2) arbitrarily large. If we can establish that
sups≥0 E(1/mink πk

s ) < ∞, however, then we can control E|Dπ̃s,t (πs)| to obtain
a useful bound.

We begin with an auxiliary integrability property of πt :

LEMMA 3.6. Let ν ∈ Sd−1 and T < ∞. Then

E
∫ T

0
(πi

s )
−k ds < ∞ ∀ i = 1, . . . , d, k ≥ 1.
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PROOF. Applying Itô’s rule to the Wonham equation gives

d logπi
t =

(
λii − 1

2
(hi − h∗πt)

2
)

dt + ∑
j �=i

λji

π
j
t

πi
t

dt + (hi − h∗πt) dWt,

where the innovation dWt = dYt − h∗πt dt is an F Y
t -Wiener process. The appli-

cation of Itô’s rule is justified by a standard localization argument, as πt is in Sd−1

for all t ≥ 0 a.s. and logx is smooth in (0,1). As λij ≥ 0 for j �= i, we estimate

−k logπi
t ≤ −k logνi − kλii t + k

2
max

j
(hi − hj )2 t − k

∫ t

0
(hi − h∗πs) dWs.

But as hi − h∗πt is bounded, Novikov’s condition is satisfied and hence

E exp
(
−k

∫ t

0
(hi − h∗πs) dWs − k2

2

∫ t

0
(hi − h∗πs)

2 ds

)
= 1.

Estimating the time integral, we obtain

E(πi
t )

−k ≤ (νi)−k exp
(
−kλii t + 1

2k(k + 1)max
j

(hi − hj )2 t

)
.

The lemma now follows by the Fubini–Tonelli theorem, as (πi
s )

−k ≥ 0 a.s. �

We are now in a position to bound supt≥0 E(1/mini π
i
t ).

PROPOSITION 3.7. Let ν ∈ Sd−1 and suppose that λij > 0 ∀i �= j . Then

sup
t≥0

E
(

1

mini π
i
t

)
< ∞.

PROOF. By Itô’s rule and using the standard localization argument, we obtain

(πi
t )

−1 = (νi)−1 −
∫ t

0
λii(π

i
s )

−1 ds −
∫ t

0
(πi

s )
−2

∑
j �=i

λjiπ
j
s ds

−
∫ t

0
(πi

s )
−1(hi − h∗πs) dWs +

∫ t

0
(πi

s )
−1(hi − h∗πs)

2 ds,

where Wt is the innovations Wiener process. Using Lemma 3.6 we find

E
∫ t

0
(πi

s )
−2(hi − h∗πs)

2 ds ≤ max
j

(hi − hj )2E
∫ t

0
(πi

s )
−2 ds < ∞,

so the expectation of the stochastic integral term vanishes. Using the Fubini–
Tonelli theorem, we can thus write

E((πi
t )

−1) = (νi)−1 −
∫ t

0
λiiE((πi

s )
−1) ds

−
∫ t

0
E

(
(πi

s )
−2

∑
j �=i

λjiπ
j
s

)
ds +

∫ t

0
E

(
(πi

s )
−1(hi − h∗πs)

2)
ds.
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Taking the derivative and estimating each of the terms, we obtain

dMi
t

dt
≤ −min

j �=i
λji (M

i
t )

2 +
(
|λii | + min

j �=i
λji + max

j
(hi − hj )2

)
Mi

t ,

where we have written Mi
t = E((πi

t )
−1) and we have used (Mi

t )
2 ≤ E(πi

t )
−2 by

Jensen’s inequality. Using the estimate

−Ki
1(M

i
t )

2 + Ki
2M

i
t ≤ −Ki

2M
i
t + (Ki

2)
2

Ki
1

for Ki
1 > 0,

we now obtain

dMi
t

dt
≤ Ki

2

(
Ki

2

Ki
1

− Mi
t

)
, Ki

2 = |λii | + min
j �=i

λji + max
j

(hi − hj )2,

where Ki
1 = minj �=i λji > 0. Consequently we obtain

Mi
t ≤ e−Ki

2t (νi)−1 + (Ki
2)

2

Ki
1

e−Ki
2t

∫ t

0
eKi

2s ds = e−Ki
2t (νi)−1 + Ki

2

Ki
1

(1 − e−Ki
2t ).

We can now estimate

sup
t≥0

E
(

1

mini π
i
t

)
≤

d∑
i=1

sup
t≥0

E
(

1

πi
t

)
≤

d∑
i=1

(
1

νi
∨ Ki

2

Ki
1

)
< ∞,

which is what we set out to prove. �

We can now prove Theorem 1.1 for the special case h̃ = h. Using equation (2.8),
Corollary 3.4, Proposition 3.5 and Proposition 3.7, we obtain

E|πt − π̃t (µ)|
≤ |µ − ν|max

k

{
1

µk
∨ 1

νk

}
exp

(
−2t min

p,q �=p

√
λ̃pq λ̃qp

)

+ |�∗ − �̃∗| sup
s≥0

E
(

1/min
k

πk
s

)∫ t

0
exp

(
−2(t − s) min

p,q �=p

√
λ̃pq λ̃qp

)
ds,

where |�∗ − �̃∗| = sup{|(�∗ − �̃∗)µ| :µ ∈ Sd−1}. Thus

E|πt − π̃t (µ)| ≤ |µ − ν|max
k

{
1

µk
∨ 1

νk

}
e−βt + |�∗ − �̃∗|sups≥0 E(1/mink πk

s )

β
,

where we have written β = 2 minp,q �=p(λ̃pqλ̃qp)1/2. The result follows directly
using ‖πt − π̃t (µ)‖2 ≤ |πt − π̃t (µ)| [as |πi

t − π̃t (µ)i | ≤ 1].
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4. Model robustness of the Wonham filter. We are now ready to proceed
to the general case where the initial density, the transition intensities matrix and
the observation function can all be misspecified. The simplicity of the special case
h̃ = h that we have treated up to this point is due to the fact that in the calculation
of equation (2.7), the stochastic integral term drops out and we can proceed with
the calculation using only ordinary calculus. In the general case we cannot get rid
of the stochastic integral, and hence we run into anticipativity problems in the next
step of the calculation.

We solve this problem by using anticipative stochastic integrals in the sense
of Skorokhod, rather than the usual Itô integral (which is a special case of the
Skorokhod integral defined for adapted processes only). Though the Skorokhod
integral is more general than the Itô integral in the sense that it allows some antic-
ipating integrands, it is less general in that we have to integrate against a Wiener
process (rather than against an arbitrary semimartingale), and that the integrands
should be functionals of the driving Wiener process. In our setup, the most con-
venient way to deal with this is to operate exclusively under the measure Q of
Section 2, under which the observation process Y is a Wiener process. At the end
of the day we can calculate the relevant expectation with respect to the measure P
by using the explicit expression for the Radon–Nikodym derivative dP/dQ. The
fact that the integrands must be functionals of the underlying Wiener process is not
an issue, as both the approximate and exact filters are functionals of the observa-
tions only.

Our setup is further detailed in Appendix A, together with a review of the rele-
vant results from the Malliavin calculus and anticipative stochastic calculus. Below
we will use the notation and results from this appendix without further comment.
We will also refer to Appendix B for some results on smoothness of the various
integrands we encounter; these results are not central to the calculations, but are
required for the application of the theory in Appendix A.

We begin by obtaining an anticipative version of Proposition 2.6. Note that this
result is precisely of the form one would expect. The first two lines follow the
formula for the distance between two flows as one would guess, for example, from
the discussion in the Introduction; the last line is an Itô correction term which
contains second derivatives of the filter with respect to its initial condition.

PROPOSITION 4.1. The difference between πt and π̃t satisfies

πt − π̃t =
∫ t

0
Dπ̃r,t (πr) · 
�πr dr +

∫ t

0
Dπ̃r,t (πr) · 
H(πr) dYr

−
∫ t

0
Dπ̃r,t (πr) · [h∗πr (H − h∗πr)πr − h̃∗πr (H̃ − h̃∗πr)πr ]dr

+ 1
2

∫ t

0
[D2π̃r,t (πr) · (H − h∗πr)πr − D2π̃r,t (πr) · (H̃ − h̃∗πr)πr ]dr,
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where the stochastic integral is a Skorokhod integral and we have written 
� =
�∗ − �̃∗, 
H(π) = (H − h∗π)π − (H̃ − h̃∗π)π , and D2π̃r,t (µ) · v is the di-
rectional derivative of Dπ̃r,t (µ) · v with respect to µ ∈ Sd−1 in the direction
v ∈ T Sd−1.

PROOF. Fix some T > t . We begin by evaluating, using Itô’s rule and equation
(2.5),

Ũ−1
0,s U0,sν = ν +

∫ s

0
Ũ−1

0,r (�∗ − �̃∗)U0,rν dr

−
∫ s

0
Ũ−1

0,r H̃ (H − H̃ )U0,rν dr +
∫ s

0
Ũ−1

0,r (H − H̃ )U0,rν dYr .

Now multiply from the left by Ũ0,t ; we wish to use Lemma A.5 to bring Ũ0,t into
the Skorokhod integral term, that is, we claim that

Ũs,tU0,sν = Ũ0,t ν +
∫ s

0
Ũr,t (�

∗ − �̃∗)U0,rν dr −
∫ s

0
Ũr,t H̃ (H − H̃ )U0,rν dr

+
∫ s

0
Ũr,t (H − H̃ )U0,rν dYr +

∫ s

0
(Dr Ũ0,t )Ũ

−1
0,r (H − H̃ )U0,rν dr.

To justify this expression we need to verify the integrability conditions of
Lemma A.5. Note that all matrix elements of Ũs,t are in D

∞ ∀0 ≤ s ≤ t < T ,
and that

Dr Ũs,t =
{

0, a.e. r /∈ [s, t],
Ũr,t H̃ Ũs,r , a.e. r ∈ [s, t].

This follows directly from Proposition A.4 and Lemma 2.3 (note that the same
result holds for Us,t if we replace H̃ by H and Ũ by U ). Once we plug this re-
sult into the expression above, the corresponding integrability conditions can be
verified explicitly, see Lemma B.1, and hence we have verified that

Ũs,tU0,sν = Ũ0,t ν +
∫ s

0
Ũr,t (�

∗ − �̃∗)U0,rν dr +
∫ s

0
Ũr,t (H − H̃ )U0,rν dYr .

Next we would like to apply the anticipating Itô rule, Proposition A.6, with the
function  : Rd++ → Sd−1, (x) = x/|x|. To this end we have to verify a set of
technical conditions, see Lemma B.2. We obtain

(Ũs,tU0,sν)

= (Ũ0,t ν) +
∫ s

0
D(Ũr,tU0,rν)Ũr,t (�

∗ − �̃∗)U0,rν dr

+ 1

2

∑
k,�

∫ s

0

∂2

∂xk ∂x�
(Ũr,tU0,rν)(∇r Ũr,tU0,rν)k

(
Ũr,t (H − H̃ )U0,rν

)�
dr

+
∫ s

0
D(Ũr,tU0,rν)Ũr,t (H − H̃ )U0,rν dYr .
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We need to evaluate ∇r Ũr,tU0,rν. Using Proposition A.2, we calculate

lim
ε↘0

Dr Ũr+ε,tU0,r+εν = lim
ε↘0

Ũr+ε,tUr,r+εHU0,rν = Ũr,tHU0,rν,

and similarly

lim
ε↘0

Dr Ũr−ε,tU0,r−εν = lim
ε↘0

Ũr,t H̃ Ũr−ε,rU0,r−εν = Ũr,t H̃U0,rν.

After some rearranging, we obtain

(Ũs,tU0,sν) = (Ũ0,t ν) +
∫ s

0
D(Ũr,tU0,rν)Ũr,t (�

∗ − �̃∗)U0,rν dr

+ 1

2

∑
k,�

∫ s

0

∂2

∂xk ∂x�
(Ũr,tU0,rν)(Ũr,tHU0,rν)k(Ũr,tHU0,rν)� dr

− 1

2

∑
k,�

∫ s

0

∂2

∂xk ∂x�
(Ũr,tU0,rν)(Ũr,t H̃U0,rν)k(Ũr,t H̃U0,rν)� dr

+
∫ s

0
D(Ũr,tU0,rν)Ũr,t (H − H̃ )U0,rν dYr .

From this point onward we will set s = t . We will need (on R
d++)

D2ik�(x) = ∂2i(x)

∂xk ∂x�
= − 1

|x|
(
Dik(x) + Di�(x)

)
.

Recall that D(αx) = α−1D(x); it follows that also D2(αx) = α−2D2(x)

for α > 0. Using these expressions with α = |U0,rν|, we get

πt − π̃t =
∫ t

0
D(Ũr,tπr)Ũr,t
�πr dr +

∫ t

0
D(Ũr,tπr)Ũr,t (H − H̃ )πr dYr

+ 1

2

∑
k,�

∫ t

0

∂2

∂xk ∂x�
(Ũr,tπr)(Ũr,tHπr)

k(Ũr,tHπr)
� dr

− 1

2

∑
k,�

∫ t

0

∂2

∂xk ∂x�
(Ũr,tπr)(Ũr,t H̃πr)

k(Ũr,t H̃πr)
� dr.

Next we want to express the integrands in terms of Dπ̃r,t (πr) · v, and so on,
rather than in terms of D(x). Recall that Dπ̃r,t (πr) · v = D(Ũr,tπr)Ũr,t v

when v ∈ T Sd−1. Similar terms appear in the expression above, but, for exam-
ple, H̃πr /∈ T Sd−1. To rewrite the expression in the desired form, we use that
D(Ũr,tπr)Ũr,tπr = 0. Hence

D(Ũr,tπr)Ũr,t H̃πr = D(Ũr,tπr)Ũr,t (H̃ − h̃∗πr)πr

= Dπ̃r,t (πr) · (H̃ − h̃∗πr)πr
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and similarly for the other terms. Note also that∑
k

D2ik�(Ũr,tπr)(Ũr,tπr)
k = −Di�(Ũr,tπr).

Substituting this into the expression for πt − π̃t and rearranging, we obtain

πt − π̃t

=
∫ t

0
Dπ̃r,t (πr) · 
�πr dr +

∫ t

0
Dπ̃r,t (πr) · 
H(πr) dYr

−
∫ t

0
Dπ̃r,t (πr) · [h∗πr (H − h∗πr)πr − h̃∗πr (H̃ − h̃∗πr)πr ]dr

+ 1

2

∑
k,�

∫ t

0

∂2

∂xk ∂x�
(Ũr,tπr)

(
Ũr,t (H − h∗πr)πr

)k(
Ũr,t (H − h∗πr)πr

)�
dr

− 1

2

∑
k,�

∫ t

0

∂2

∂xk ∂x�
(Ũr,tπr)

(
Ũr,t (H̃ − h̃∗πr)πr

)k(
Ũr,t (H̃ − h̃∗πr)πr

)�
dr.

It remains to note that we can write(
D2π̃s,t (µ) · v)i = ∑

k,�

D2ik�(Ũs,tµ)(Ũs,t v)k(Ũs,t v)�.

The result follows immediately. �

REMARK 4.2. We have allowed misspecification of most model parameters
of the Wonham filter. One exception is the observation noise intensity: we have
not considered observations of the form dYt = h(Xt) dt + σ dBt with σ �= 1; in
other words, the quadratic variation of Yt is assumed to be known [Y,Y ]t = t .
We do not consider this a significant drawback as the quadratic variation can be
determined directly from the observation process Yt . On the other hand, the model
parameters ν,�,h are “hidden” and would have to be estimated, making these
quantities much more prone to modeling errors.

If we allow misspecification of σ , we would have to be careful to specify in
which way the filter is implemented: in this case, the normalized solution of the
misspecified Zakai equation no longer coincides with the solution of the misspeci-
fied Wonham equation. Hence one obtains a different error estimate depending on
whether the normalized solution of the misspecified Zakai equation, or the solution
of the misspecified Wonham equation, is compared to the exact filter. Both cases
can be treated using similar methods, but we do not pursue this here.

Let et = πt − π̃t . We wish to estimate the norm of et . Unfortunately, we can no
longer use the triangle inequality as in Section 2 due to the presence of the sto-
chastic integral; instead, we choose to calculate ‖et‖2, which is readily estimated.
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LEMMA 4.3. The filtering error can be estimated by

EP‖et‖2

≤
∫ t

0
EP|Dπ̃r,t (πr) · 
�πr |dr + K

∫ t

0
EP|Dπ̃r,t (πr) · 
H(πr)|dr

+
∫ t

0
EP

∣∣Dπ̃r,t (πr) · (
h∗πr (H − h∗πr)πr − h̃∗πr (H̃ − h̃∗πr)πr

)∣∣dr

+ 1
2

∫ t

0
EP|D2π̃r,t (πr) · (H − h∗πr)πr − D2π̃r,t (πr) · (H̃ − h̃∗πr)πr |dr,

where K = 2 maxk |hk| + maxk |h̃k|.

PROOF. We wish to calculate EP‖et‖2 = EPe∗
t et . Using Proposition 4.1, we

obtain

EP‖et‖2

=
∫ t

0
EPe∗

t Dπ̃r,t (πr) · 
�πr dr

+ EP

[
e∗
t

∫ t

0
Dπ̃r,t (πr) · 
H(πr) dYr

]

−
∫ t

0
EP e∗

t Dπ̃r,t (πr) · [h∗πr (H − h∗πr)πr − h̃∗πr (H̃ − h̃∗πr)πr ]dr

+ 1
2

∫ t

0
EPe∗

t [D2π̃r,t (πr) · (H − h∗πr)πr

− D2π̃r,t (πr) · (H̃ − h̃∗πr)πr ]dr.

The chief difficulty is the stochastic integral term. Using equation (2.2), we can
write

EP

[
e∗
t

∫ t

0
Dπ̃r,t (πr) · 
H(πr) dYr

]

= EQ

[
|U0,t ν| e∗

t

∫ t

0
Dπ̃r,t (πr) · 
H(πr) dYr

]
.

We would like to apply equation (A.1) to evaluate this expression. First, we must
establish that the integrand is in Dom δ; this does not follow directly from Propo-
sition 4.1, as the anticipative Itô rule which was used to obtain that result can yield
integrands which are only in L

1,2
loc . We can verify directly, however, that the inte-

grand in this case is indeed in Dom δ, see Lemma B.3. Next, we must establish
that |U0,t ν| ei

t is in D
1,2 for every i. Note that |U0,t ν| = ∑

i (U0,t ν)i , so |U0,t ν| is
in D

∞. Moreover, we establish in Lemma B.4 that et ∈ D
1,2 and that Dret is a
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bounded random variable for every t . Hence it follows from Proposition A.1 that
|U0,t ν| ei

t ∈ D
1,2. Consequently we can apply equation (A.1), and we obtain

EQ

[
|U0,t ν| e∗

t

∫ t

0
Dπ̃r,t (πr) · 
H(πr) dYr

]

=
∫ t

0
EQ[(|U0,t ν|Dre

∗
t + Dr |U0,t ν| e∗

t )Dπ̃r,t (πr) · 
H(πr)]dr

=
∫ t

0
EQ[|U0,t ν| (Drπt − Dr π̃t )

∗Dπ̃r,t (πr) · 
H(πr)]dr

+
∫ t

0
EQ

[∑
i

(Ur,tHU0,rν)i e∗
t Dπ̃r,t (πr) · 
H(πr)

]
dr.

Now note that |ei
t | ≤ 1, and that by Lemma B.4

|(Drπt − Dr π̃t )
i | ≤ |(Drπt )

i | + |(Dr π̃t )
i | ≤ max

k
|hk| + max

k
|h̃k|.

Furthermore we can estimate∣∣∣∣
∑

i (Ur,tHU0,rν)i

|U0,t ν|
∣∣∣∣ ≤ 1

|U0,t ν|
∑
i,j,k

U
ij
r,t |hj |Ujk

0,rν
k ≤ max

k
|hk|,

where we have used a.s. nonnegativity of the matrix elements of U0,r and Ur,t (this
must be the case, as, for example, Ur,tµ has nonnegative entries for any vector µ

with nonnegative entries). Hence we obtain

EQ

[
|U0,t ν|e∗

t

∫ t

0
Dπ̃r,t (πr) · 
H(πr) dYr

]

≤
(

2 max
k

|hk| + max
k

|h̃k|
)∫ t

0
EQ|U0,t ν||Dπ̃r,t (πr) · 
H(πr)|dr.

The result follows after straightforward manipulations. �

Unlike in the case h̃ = h, we now have to deal also with second derivatives of
the filter with respect to its initial condition. These can be estimated much in the
same way as we dealt with the first derivatives.

LEMMA 4.4. Let λ̃ij > 0 ∀i �= j and µ ∈ Sd−1, v,w ∈ T Sd−1. Then a.s.

|D2π̃s,t (µ) · v − D2π̃s,t (µ) · w|

≤ 2
∑
k

|vk + wk|
µk

∑
j

|vj − wj |
µj

exp
(
−2(t − s) min

p,q �=p

√
λ̃pq λ̃qp

)
.

Moreover, the result still holds if µ,v,w are F Y
s -measurable random variables

with values a.s. in Sd−1 and T Sd−1, respectively.
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PROOF. Proceeding as in the proof of Proposition 3.3, we can calculate di-
rectly the second derivative of (3.1):

(
D2πt(µ) · v)i = −2

(
Dπt(µ) · v)i ∑

j (v
j /νj )P(X0 = aj |F Y

t )∑
j (µ

j/νj )P(X0 = aj |F Y
t )

.

Setting µ = ν and using the triangle inequality, we obtain

|D2πt(ν) · v − D2πt(ν) · w| ≤ 2
∑
i,j

|vj (Dπt(ν) · v)i − wj(Dπt(ν) · w)i |
νj

.

Another application of the triangle inequality and using Proposition 3.3 gives

|D2πt(ν) · v − D2πt(ν) · w|

≤ ∑
k

|vk + wk|
νk

|Dπt(ν) · (v − w)| + ∑
k

|vk − wk|
νk

|Dπt(ν) · (v + w)|

≤ 2
∑
k

|vk + wk|
νk

∑
j

|vj − wj |
νj

exp
(
−2t min

p,q �=p

√
λpqλqp

)
.

We can now repeat the arguments of Corollary 3.4 to establish that the result still
holds if we replace π0,t by π̃s,t , λpq by λ̃pq , and ν, v,w by F Y

s -measurable ran-
dom variables µ,v,w. This completes the proof. �

We are now ready to complete the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Set β = 2 minp,q �=p(λ̃pqλ̃qp)1/2. Let us collect all
the necessary estimates. First, we have∫ t

0
EP|Dπ̃r,t (πr) · 
�πr |dr ≤ β−1 sup

s≥0
EP

(
1/min

k
πk

s

)
|�∗ − �̃∗|,

as we showed in Section 3. Next, we obtain∫ t

0
EP|Dπ̃r,t (πr) · 
H(πr)|dr ≤ β−1 sup

π∈Sd−1

∑
k

|hk − h̃k + h̃∗π − h∗π |

using Corollary 3.4. Using the triangle inequality, we can estimate this by∫ t

0
EP|Dπ̃r,t (πr) · 
H(πr)|dr ≤ (d + 1)β−1|h − h̃|.

Next, we estimate using Corollary 3.4∫ t

0
EP

∣∣Dπ̃r,t (πr) · (
h∗πr (H − h∗πr)πr − h̃∗πr (H̃ − h̃∗πr)πr

)∣∣dr

≤ β−1 sup
π∈Sd−1

∑
k

|h∗π (hk − h∗π) − h̃∗π(h̃k − h̃∗π)|

≤ β−1
(
(d + 1)max

k
|hk| + d max

k,�
|h̃k − h̃�|

)
|h − h̃|,
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where we have used the estimate∑
k

|h∗π (hk − h∗π) − h̃∗π (h̃k − h̃∗π)|

≤ |h∗π |∑
k

|hk − h̃k + h̃∗π − h∗π | + |h∗π − h̃∗π |∑
k

|h̃k − h̃∗π |

≤ (d + 1)max
k

|hk| |h − h̃| + |h − h̃|∑
k

|h̃k − h̃∗π |

≤
(
(d + 1)max

k
|hk| + d max

k,�
|h̃k − h̃�|

)
|h − h̃|.

Next we estimate using Lemma 4.4

1
2

∫ t

0
EP|D2π̃r,t (πr) · (H − h∗πr)πr − D2π̃r,t (πr) · (H̃ − h̃∗πr)πr |dr

≤ β−1 sup
π∈Sd−1

∑
k

|hk − h∗π + h̃k − h̃∗π |∑
j

|hj − h̃j + h̃∗π − h∗π |

≤ d(d + 1)β−1
(

max
k,�

|hk − h�| + max
k,�

|h̃k − h̃�|
)
|h − h̃|.

We have now estimated all the terms in Lemma 4.3, and hence we have bounded
EP‖et‖2 = EP‖πt(ν) − π̃t (ν)‖2. It remains to allow for misspecified initial condi-
tions. To this end, we estimate

‖πt(ν) − π̃t (µ)‖2

≤ ‖et‖2 + ‖π̃t (ν) − π̃t (µ)‖(‖π̃t (ν) − π̃t (µ)‖ + 2‖πt(ν) − π̃t (ν)‖)
.

Hence we obtain using the equivalence of finite-dimensional norms ‖x‖ ≤ K21 |x|
‖πt(ν) − π̃t (µ)‖2 ≤ ‖et‖2 + 6K21 |π̃t (ν) − π̃t (µ)|

where we have used that the simplex is contained in the (d − 1)-dimensional unit
sphere, so ‖µ1 − µ2‖ ≤ 2 ∀µ1,µ2 ∈ 
d−1. The statement of the theorem now
follows directly from Lemma 4.3, Proposition 3.5 and the estimates above. �

APPENDIX A: ANTICIPATIVE STOCHASTIC CALCULUS

The goal of this appendix is to recall briefly the main results of the Malliavin
calculus, Skorokhod integrals and anticipative stochastic calculus that are needed
in the proofs. In our application of the theory we wish to deal with functionals
of the observation process (Yt )t∈[0,T ], where T is some finite time (usually we
will calculate integrals from 0 to t , so we can choose any T > t). Recall from
Section 2 that Y is an F Y

t -Wiener process under the measure Q; it will thus be
convenient to work always under Q, as this puts us directly in the framework used,
for example, in [15]. As the theory described below is defined Q-a.s. and as P ∼
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Q, the corresponding properties under P are unambiguously obtained by using
equation (2.2). We will presume this setup whenever the theory described here is
applied.

A smooth random variable F is one of the form f (Y (h1), . . . , Y (hn)), where
Y (h) denotes the Wiener integral of the deterministic function h ∈ L2([0, T ]) with
respect to Y and f is a smooth function which is of polynomial growth together
with all its derivatives. For smooth F the Malliavin derivative DF is defined by

DtF =
n∑

i=1

∂f

∂xi
(Y (h1), . . . , Y (hn))hi(t).

The Malliavin derivative D can be shown [15], page 26, to be closeable as an op-
erator from Lp(	,F Y

T ,Q) to Lp(	,F Y
T ,Q;L2([0, T ])) for any p ≥ 1, and we

denote the domain of D in Lp(	) by D
1,p [for notational convenience we will

drop the measure Q and σ -algebra F Y
T throughout this section, where it is under-

stood that Lp(	) denotes Lp(	,F Y
T ,Q), etc.]. More generally, we consider it-

erated derivatives DkF ∈ Lp(	;L2([0, T ]k)) defined by Dk
t1,...,tk

F = Dt1 · · ·DtkF ,
and the domain of Dk in Lp(	) is denoted by D

k,p . The domains D
k,p can also be

localized ([15], pages 44–45), and we denote the corresponding localized domains
by D

k,p
loc . Finally, we define the useful class D

∞ = ⋂
p≥1

⋂
k≥1 D

k,p .
We will use two versions of the chain rule for the Malliavin derivative.

PROPOSITION A.1. Let ϕ : Rm → R be C1 and F = (F 1, . . . ,Fm) be a ran-
dom vector with components in D

1,2. Then ϕ(F ) ∈ D
1,2
loc and

Dϕ(F ) =
m∑

i=1

∂ϕ

∂xi
(F )DF i.

If ϕ(F ) ∈ L2(	) and Dϕ(F ) ∈ L2(	 × [0, T ]), then ϕ(F ) ∈ D
1,2. These results

still hold if F a.s. takes values in an open domain V ⊂ R
m and ϕ is C1(V ).

The first (local) statement is [16], Proposition 2.9; the second statement can be
proved in the same way as [17], Lemma A.1, and the proofs are easily adapted to
the case where F a.s. takes values in some domain. The next result is from [15],
page 62:

PROPOSITION A.2. Let ϕ : Rm → R be a smooth function which is of poly-
nomial growth together with all its derivatives, and let F = (F 1, . . . ,Fm) be a
random vector with components in D

∞. Then ϕ(F ) ∈ D
∞ and the usual chain

rule holds. This implies that D
∞ is an algebra, that is, FG ∈ D

∞ for F,G ∈ D
∞.

The following result follows from [15], page 32 (here [s, t]c = [0, T ]\[s, t]).
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LEMMA A.3. If F ∈ D
1,2 is F Y[s,t]-measurable, then DF = 0 a.e. in 	 ×

[s, t]c.

It is useful to be able to calculate explicitly the Malliavin derivative of the so-
lution of a stochastic differential equation. Consider dxt = f (xt ) dt + σ(xt ) dYt ,
x0 ∈ R

m, where f (x) and σ(x) are smooth functions of x with bounded derivatives
of all orders. It is well known that such equations generate a smooth stochastic flow
of diffeomorphisms xt = ξt (x) [11]. We now have the following result.

PROPOSITION A.4. All components of xt belong to D
∞ for every t ∈

[0, T ]. We have Drxt = Dξt(x0)Dξr(x0)
−1σ(xr) a.e. r < t , where (Dξt (x))ij =

∂ξ i
t (x)/∂xj is the Jacobian matrix of the flow, and Drxt = 0 a.e. r > t .

The first statement is given in [15], Theorem 2.2.2, page 105, the second on
[15], equation (2.38), page 109, the third follows from adaptedness (Lemma A.3).

We now consider D as a closed operator from L2(	) to L2(	 × [0, T ]) with
domain D

1,2. Its Hilbert space adjoint δ = D∗ is well defined in the usual sense
as a closed operator from L2(	 × [0, T ]) to L2(	), and we denote its domain by
Dom δ. The operator δ is called the Skorokhod integral, and coincides with the
Itô integral on the subspace L2

a(	 × [0, T ]) ⊂ Dom δ of adapted square integrable
processes ([15], Proposition 1.3.4, page 41). δ is thus an extension of the Itô inte-
gral to a class of possibly anticipative integrands. To emphasize this point we will
write

δ
(
uI[s,t]

) =
∫ t

s
ur dYr, uI[s,t] ∈ Dom δ.

The Skorokhod integral has the following properties. First, its expectation vanishes
EQδ(u) = 0 if u ∈ Dom δ. Second, by its definition as the adjoint of D we have

EQ(F δ(u)) = EQ

[∫ T

0
(DtF )ut dt

]
(A.1)

if u ∈ Dom δ, F ∈ D
1,2. We will also use the following result, the proof of which

proceeds in exactly the same way as its one-dimensional counterpart ([15], page
40).

LEMMA A.5. If u is an n-vector of processes in Dom δ and F is an
m × n-matrix of random variables in D

1,2 such that EQ
∫ T

0 ‖Fut‖2 dt < ∞, then
∫ T

0
Fut dYt = F

∫ T

0
ut dYt −

∫ T

0
(DtF )ut dt

in the sense that Fu ∈ Dom δ iff the right-hand side of this expression is in L2(	).
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As it is difficult to obtain general statements for integrands in Dom δ, it is use-
ful to single out restricted classes of integrands that are easier to deal with. To
this end, define the spaces L

k,p = Lp([0, T ];D
k,p) for k ≥ 1, p ≥ 2. Note that

L
k,p ⊂ L

1,2 ⊂ Dom δ [15], page 38. Moreover, the domains L
k,p can be localized

to L
k,p
loc ([15], pages 43–45). We can now state an Itô change of variables formula

for Skorokhod integrals, see [15, 16, 18]. The extension to processes that a.s. take
values in some domain is straightforward through localization.

PROPOSITION A.6. Consider an m-dimensional process of the form

xt = x0 +
∫ t

0
vs ds +

∫ t

0
us dYs,

where we assume that xt has a continuous version and x0 ∈ (D
1,4
loc )m, v ∈ (L

1,4
loc )m,

and u ∈ (L
2,4
loc )m. Let ϕ : R

m → R be a C2 function. Then

ϕ(xt ) = ϕ(x0) +
∫ t

0
Dϕ(xs)vs ds +

∫ t

0
Dϕ(xs)us dYs

+ 1
2

∫ t

0
(D2ϕ(xs)∇sxs, us) ds,

where ∇sxs = limε↘0 Ds(xs+ε + xs−ε), Dϕ(xs)us = ∑
i(∂ϕ/∂xi)(xs)u

i
s ,

(D2ϕ(xs)∇sxs, us) = ∑
ij (∂

2ϕ/∂xi ∂xj )(xs)u
i
s∇sx

j
s . The result still holds if xs

a.s. takes values in an open domain V ⊂ R
m ∀s ∈ [0, t] and ϕ is C2(V ).

APPENDIX B: SOME TECHNICAL RESULTS

LEMMA B.1. The following equality holds:

Ũ0,t

∫ s

0
Ũ−1

0,r (H − H̃ )U0,rν dYr

=
∫ s

0
Ũr,t (H − H̃ )U0,rν dYr +

∫ s

0
Ũr,t H̃ (H − H̃ )U0,rν dr.

The integral on the left-hand side is an Itô integral, on the right-hand side a Sko-
rokhod integral.

PROOF. We have already established in the proof of Proposition 4.1 that the
matrix elements of Ũ0,t are in D

∞ ⊂ D
1,2. Moreover,

EQ‖Ũr,t (H − H̃ )U0,rν‖2

≤ ‖H − H̃‖2 EQ(‖Ũr,t‖2 ‖U0,r‖2)

≤ ‖H − H̃‖2
√

EQ‖Ũr,t‖4 EQ‖U0,r‖4

≤ C4
4 ‖H − H̃‖2

√
EQ‖|Ũr,t‖|44 EQ‖|U0,r‖|44,
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where we have used the Cauchy–Schwarz inequality and ‖ν‖ ≤ 1 for ν ∈ Sd−1.
Here ‖|U‖|p = (

∑
ij U

p
ij )

1/p is the elementwise p-norm of U , ‖U‖ is the usual
matrix 2-norm, and Cp matches the norms ‖U‖ ≤ Cp‖|U‖|p (recall that all norms
on a finite-dimensional space are equivalent). As U0,r , Ũr,t are solutions of linear
stochastic differential equations, standard estimates give for any integer p ≥ 2

EQ

(
sup

0≤r≤t

‖|Ũr,t‖|pp
)

≤ D1(p) < ∞,

EQ

(
sup

0≤r≤t

‖|U0,r‖|pp
)

≤ D2(p) < ∞,

and we obtain∫ s

0
EQ‖Ũr,t (H − H̃ )U0,rν‖2 dr ≤ s sup

0≤r≤s

EQ‖Ũr,t (H − H̃ )U0,rν‖2 < ∞.

Hence we can apply Lemma A.5 to obtain the result. By a similar calculation we
can establish that the right-hand side of the expression in Lemma A.5 for our case
is square integrable, so that the Skorokhod integral is well defined. �

LEMMA B.2. The anticipating Itô rule with (x) = x/|x| can be applied to

Ũs,tU0,sν = Ũ0,t ν +
∫ s

0
Ũr,t (�

∗ − �̃∗)U0,rν dr +
∫ s

0
Ũr,t (H − H̃ )U0,rν dYr .

PROOF. Clearly the Skorokhod integral term has a.s. continuous sample paths,
as both Ũs,tU0,sν and the time integrals do; moreover, Ũ0,t ν ∈ (D∞)d . In order
to be able to apply Proposition A.6, it remains to check the technical conditions
vr = Ũr,t (�

∗ − �̃∗)U0,rν ∈ (L1,4)d , ur = Ũr,t (H − H̃ )U0,rν ∈ (L2,4)d .
As D

∞ is an algebra, ut and vt take values in D
∞. Moreover, we can estab-

lish exactly as in the proof of Lemma B.1 that u and v are in L4(	 × [0, t]). To
complete the proof we must establish that

∑
i

∫ t

0
EQ

[∫ t

0
(Dsu

i
r )

2 ds

]2

dr < ∞,

∑
i

∫ t

0
EQ

[∫ t

0
(Dsv

i
r )

2 ds

]2

dr < ∞,

thus ensuring that u, v ∈ (L1,4)d , and

∑
i

∫ t

0
EQ

[∫ t

0

∫ t

0
(Dσ Dsu

i
r )

2 ds dσ

]2

dr < ∞
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which ensures that u ∈ (L2,4)d . Using the Cauchy–Schwarz inequality we have

∑
i

∫ t

0
EQ

[∫ t

0
(Dsu

i
r )

2 ds

]2

dr

≤ t

∫ t

0

∫ t

0
EQ‖Dsur‖4

4 ds dr ≤ t3 sup
0≤r,s≤t

EQ‖Dsur‖4
4,

and similarly for v. Moreover, we obtain

∑
i

∫ t

0
EQ

[∫ t

0

∫ t

0
(Dσ Dsu

i
r )

2 ds dσ

]2

dr ≤ t5 sup
0≤r,s,σ≤t

EQ‖Dσ Dsur‖4
4.

But using the chain rule Proposition A.2 we can easily establish that

Dsur =
{

Ũr,t (H − H̃ )Us,rHU0,sν, a.e. 0 < s < r < t ,
Ũs,t H̃ Ũr,s(H − H̃ )U0,rν, a.e. 0 < r < s < t ,

and similarly

Dσ Dsur =




Ũr,t (H − H̃ )Us,rHUσ,sHU0,σ ν, a.e. 0 < σ < s < r < t ,
Ũr,t (H − H̃ )Uσ,rHUs,σHU0,sν, a.e. 0 < s < σ < r < t ,
Ũσ,t H̃ Ũr,σ (H − H̃ )Us,rHU0,sν, a.e. 0 < s < r < σ < t ,
Ũs,t H̃ Ũr,s(H − H̃ )Uσ,rHU0,σ ν, a.e. 0 < σ < r < s < t ,
Ũs,t H̃ Ũσ,sH̃ Ũr,σ (H − H̃ )U0,rν, a.e. 0 < r < σ < s < t ,
Ũσ,t H̃ Ũs,σ H̃ Ũr,s(H − H̃ )U0,rν, a.e. 0 < r < s < σ < t .

The desired estimates now follow as in the proof of Lemma B.1. �

LEMMA B.3. The Skorokhod integrand obtained by applying the anticipative
Itô formula as in Lemma B.2 is in Dom δ.

PROOF. We use the notation ρr = U0,rν. The Skorokhod integral in question
is ∫ s

0
D(Ũr,tρr)Ũr,t (H − H̃ )ρr dYr =

∫ s

0
fr dYr .

To establish f ∈ Dom δ, it suffices to show that f ∈ L
1,2. We begin by showing

|D(Ũr,tρr)Ũr,t (H − H̃ )ρr |

= ∑
i

∣∣∣∣∣
∑
j,k

δij − i(Ũr,tρr)

|Ũr,tρr |
Ũ

jk
r,t (h

k − h̃k)ρk
r

∣∣∣∣∣
≤ 1

|Ũr,tρr |
∑
i,j,k

Ũ
jk
r,t |hk − h̃k|ρk

r
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≤ maxk |hk − h̃k|
|Ũr,tρr |

∑
i,j,k

Ũ
jk
r,t ρ

k
r

= d max
k

|hk − h̃k|,

where we have used the triangle inequality, |δij − i(x)| ≤ 1 for any x ∈ R
d++,

and the fact that Ur,t and ρr have nonnegative entries a.s. Hence fr is a bounded
process. Similarly, we will show that Dsfr is a bounded process. Note that fr is a
smooth function on R

d++ of positive random variables in D
∞; hence we can apply

the chain rule Proposition A.1. This gives

(Dsfr)
i =




∑
jk

D2ijk(Ũr,tρr)
(
Ũr,t (H − H̃ )ρr

)j
(Ũr,tUs,rHρs)

k

+ ∑
j

Dij (Ũr,tρr)
(
Ũr,t (H − H̃ )Us,rHρs

)j
, a.e. s < r ,

∑
jk

D2ijk(Ũr,tρr)
(
Ũr,t (H − H̃ )ρr

)j
(Ũs,t H̃ Ũr,sρr)

k

+ ∑
j

Dij (Ũr,tρr)
(
Ũs,t H̃ Ũr,s(H − H̃ )ρr

)j
, a.e. s > r .

Proceeding exactly as before, we find that Df ∈ L∞(	 × [0, t]2). But then by
Proposition A.1 we can conclude that Dsfr ∈ D

1,2 for a.e. (s, t) ∈ [0, t]2, and in
particular f ∈ L

1,2. Hence the proof is complete. �

LEMMA B.4. Drπs = Dπr,s(πr) · (H − h∗πr)πr a.e. r < s, Drπs = 0 a.e.
r > s. Moreover |(Drπs)

i | ≤ maxk |hk| for every i. The equivalent results hold for
Dr π̃s . In particular, this implies that πs and π̃s are in D

1,2.

PROOF. The case r > s is immediate from adaptedness of πs . For r < s, apply
the chain rule to πs = (U0,sν) ∈ D

1,2
loc . Boundedness of the resulting expression

follows, for example, as in the proof of Lemma B.3, and hence it follows that
πs ∈ D

1,2. �
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