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STATIONARITY AND GEOMETRIC ERGODICITY OF A CLASS
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A class of nonlinear ARCH processes is introduced and studied. The
existence of a strictly stationary and β-mixing solution is established under
a mild assumption on the density of the underlying independent process. We
give sufficient conditions for the existence of moments. The analysis relies
on Markov chain theory. The model generalizes some important features of
standard ARCH models and is amenable to further analysis.

1. Introduction. Since the appearance of seminal papers by Engle [9] and
Bollerslv [2], a variety of GARCH (generalized autoregressive conditionally het-
eroskedastic) specifications have been introduced to model the characteristic fea-
tures of observed financial time series. These specifications are of the form

εt = σtηt , t ∈ Z,(1.1)

where the sequence (ηt ) is independent and identically distributed (i.i.d.) with zero
mean and unit variance, and σt is a positive variable called volatility, which is a
measurable function of the past, {εt−i , i > 0}. Typically, εt represents the loga-
rithm of the return, that is, the variation of the price in logarithm.

The original model specified σ 2
t as a linear function of the squared past log-

returns and was found adequate to capture many stylized facts associated with
the financial data, namely tail heaviness, volatility clustering, leptokurtosis of the
marginal distribution and dependence without autocorrelation. Other characteristic
properties such as asymmetries motivated extensions of the basic model (see, e.g.,
[15, 20]). A common feature of these models is that σt is specified as a strictly
increasing function of the modulus of the past returns. In general, the specification
of σt involves a linear combination of some function of the past returns.

In this paper, we consider a class of nonlinear ARCH processes. More precisely,
the model we study in this paper is given by

εt = σtηt ,
(1.2)

σ 2
t = ω + αε2

t−11ε2
t−1>kε2

t−2
,
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where ω, α and k are nonnegative constants with ω > 0 and where the same as-
sumptions are made concerning (ηt ) as in (1.1). The standard ARCH(1) model is
obtained as a particular case by taking k = 0. The conditionally homoskedastic
model (constant volatility) can be obtained by setting α = 0, but it is worthnoting
that “large” values of k also produce a model which is close to being homoskedas-
tic. This model belongs to the class of endogenous switching regime models, in the
spirit of the threshold autoregressive models of Tong and Lim [19]. In the present
model, the volatility equation can be interpreted as a two-regime specification, the
first regime being homoskedastic (σ 2

t = ω) and the second one being a classical
ARCH(1) (σ 2

t = ω + αε2
t−1). The originality of the specification, however, is that

the regime change depends on the relative variation of the last squared observa-
tion. As soon as the relative variations (ε2

t−1/ε
2
t−2) are small, the process remains

in the homoskedastic regime. But, when these variations are large, the volatility
depends on the last squared observation. The coefficient k allows for flexibility in
the occurrence of the two regimes. Empirical motivations for model (1.2) based on
the features of real financial time series can be found in the dissertation by Saïdi
[17].

The aim of this paper is to study the stability properties of the specification
in (1.2). Recent references dealing with ergodic properties of GARCH-type models
are [1, 5, 11, 10]. These papers use a random coefficient linear representation of the
volatility, of the form σ 2

t = ω(ηt−1) + a(ηt−1)σ
2
t−1 in the first-order case, which

does not hold in our framework. A different approach is used by Cline and Pu
[7] who establish sharp conditions for geometric ergodicity of a class of threshold
autoregressive ARCH models under assumptions we will discuss further.

The rest of the paper proceeds as follows. In Section 2, we recall the main results
of Markov chain theory that we will use in the sequel. Section 3 is devoted to the
existence of strictly stationary solutions. We start by considering the deterministic
model implied by (1.2). Then we establish conditions for the existence of strictly
stationary and β-mixing solutions. Finally, we provide conditions for the existence
of moments.

2. Some Markov chain results. In this section, we give results from the the-
ory of Markov chain processes that allow to study the existence of ergodic solu-
tions to stochastic difference equations. This section is heavily based on the book
by Meyn and Tweedie [13]. Let E ⊂ R

d and let E be the Borel σ -field on E.
We denote by {Xt, t ≥ 0} a homogeneous Markov chain on (E,E) and denote by
P t(x,B) = P(Xt ∈ B|X0 = x) the probability of moving from x ∈ E to the set
B ∈ E in t steps. The Markov chain (Xt) is φ-irreducible if, for some nontrivial
σ -finite measure φ on (E,E),

∀B ∈ E φ(B) > 0 �⇒ ∀x ∈ E, ∃ t > 0, P t (x,B) > 0.
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If (Xt) is φ-irreducible, there exists a maximal irreducibility measure M (see [13],
Proposition 4.2.2) and we set E+ = {B ∈ E |M(B) > 0}. The chain is called posi-
tive recurrent if

∀x ∈ E , ∀B ∈ E+ lim sup
t→∞

P t(x,B) > 0.

For a φ-irreducible Markov chain, positive recurrence is equivalent (see [13], The-
orem 18.2.2) to the existence of a (unique) invariant distribution, that is, a proba-
bility measure π such that

∀B ∈ B π(B) =
∫

P(x,B)π(dx).

“Geometric ergodicity” refers to the rate of convergence of the transition probabil-
ities to the invariant distribution. More precisely, if ‖ · ‖ denotes the total variation
norm, the Markov chain (Xt) is said to be geometrically ergodic if there exists a ρ,
ρ ∈ (0,1) such that

∀x ∈ E ρ−t ‖P t(x, ·) − π ‖→ 0 as t → +∞.(2.1)

In order to state the following criterion for the geometric ergodicity of a Markov
chain, we need the notions of T -chain, small sets and aperiodicity. For any dis-
tribution a = (an) on the set of positive integers, for all x ∈ E and B ∈ E ,
let Ka(x,B) = ∑

n≥1 anP
n(x,B). Recall that if E is endowed with a metric,

a function h :E → R is called lower semicontinuous if for any constant c, the
set {x :h(x) > c} is open. Now, if for any open set B , the function P(·,B) is
lower semicontinuous, (Xt) is called a Feller Markov chain. More generally, if
there exists a function T :E × E → [0,+∞) and a distribution a = (an) on the
set of positive integers such that (i) T (·,B) is lower semicontinuous, ∀B ∈ E ,
(ii) T (x, ·) is a nontrivial measure over (E,E), ∀x ∈ E and (iii) Ka(x,B) ≥
T (x,B),∀x ∈ E,B ∈ E , then (Xt) is called a T -chain and T is called a con-
tinuous component of Ka . A set C ∈ E is called a νm-small set if there exist
an m > 0 and a nontrivial measure νm on E such that ∀x ∈ C and ∀B ∈ E ,
P m(x,B) ≥ νm(B). Let C be a νM -small set where the measure νM := ν is
such that ν(C) > 0. Such a measure exists whenever C ∈ E+ (see [13], Propo-
sition 5.2.4). Let EC = {m ≥ 1|C is νm-small with νm = δmν for some δm > 0}.
Then if (Xt) is a φ-irreducible Markov chain and C ∈ B+, the greatest common
divisor d of the set EC does not depend on C and is called the period of the Markov
chain. If d = 1, (Xt) is said to be aperiodic. If every compact set is small, then (Xt)

is a T -chain. If (Xt) is a φ-irreducible T -chain, then every compact set is small
(see [13], Proposition 5.5.7 and Theorem 6.2.5). However, some noncompact sets
may also be small, and such sets can be worth considering, as we shall see.

We are now in a position to state a criterion for geometric ergodicity based on
m-step transitions, which is adapted from [13], Theorem 19.1.3. The use of m-step
transitions in ergodicity criteria was suggested by Tjøstheim [18].
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THEOREM 2.1. Assume that:

(i) (Xt) is φ-irreducible for some measure φ on (E,E),
(ii) (Xt) is an aperiodic T -chain,

(iii) there exists a small set C ∈ E+, an integer m ≥ 1 and a nonnegative con-
tinuous function (test function) g :E → [0,+∞) such that

E[g(Xt+m)|Xt = x] ≤
{

(1 − β)g(x) − β, x ∈ Cc,
b, x ∈ C,

for some strictly positive constants β and b. Then (Xt) is geometrically ergodic.
Moreover, Eπg(Xt) is finite, where Eπ denotes expectation taken under the sta-
tionary distribution.

One consequence of the geometric ergodicity is that the Markov chain (Xt) is
β-mixing, and hence strongly mixing, with geometric rate. Recall that for a station-
ary process, the β-mixing coefficients are defined by

βX(k) = E sup
B∈σ(Xs,s≥k)

∣∣P(
B|σ(Xs, s ≤ 0)

) − P(B)
∣∣.(2.2)

The process is called β-mixing if limk→∞ βX(k) = 0. If Y = (Yt ) is a process
such that Yt = f (Xt , . . . ,Xt−r ) for some measurable function f and some integer
r ≥ 0, then σ(Yt , t ≤ s) ⊂ σ(Xt , t ≤ s) and σ(Yt , t ≥ s) ⊂ σ(Xt−r , t ≥ s). Thus,

βY (k) ≤ βX(k − r) for all k ≥ r.(2.3)

Davydov [8] showed that for an ergodic Markov chain (Xt) with invariant proba-
bility measure π ,

βX(k) =
∫

‖P k(x, ·) − π ‖π(dx).

Noting that in (2.1), the rate ρ can be chosen independently of the initial point x,
it follows that βX(k) = O(ρk) if (2.1) holds.

3. Existence of stationary solutions. In this section, we consider the prob-
lem of the existence of strictly stationary and second-order stationary solutions to
model (1.2). The problem is not standard because, contrary to most ARCH-type
specifications, no linear representation of the model seems to exist. Hence, we
cannot rely on the theory developed in the papers by Bougerol and Picard [3, 4].
Instead, we will use the techniques of Tweedie to deal with the stationarity ques-
tion.

Thinking of the standard ARCH(1) model, we could perhaps expect to require
a (strict and second-order) stationarity condition of the form α < 1. The presence
of the (conditionally) homoskedastic regime seems to allow us greater freedom.
As for the threshold autoregressive models, it will be helpful to first consider the
deterministic model.
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3.1. Stability of the deterministic model. Suppose that, in model (1.2), the
i.i.d. process (ηt ) is such that η2

t = 1, for all t , almost surely. We call this model
deterministic, although the sign of εt is, of course, a random variable. For ease
of exposition, we take ε0 = 0, but any other initial value would also produce the
following asymptotic results:

THEOREM 3.1. Let (εt )t≥0 be as defined in (1.2), with η2
t = 1, a.s. for all t ,

and ε0 = 0. Then:

(i) if max(α,1) < k or α = 0, then there exists i ≥ 3 such that ∀ t ≥ i, ε2
t = ω

a.s.;
(ii) if α < 1 and k ≤ 1, then ε2

t −→ ω
1−α

a.s. when t → +∞;
(iii) if α ≥ max(1, k), then ε2

t −→ +∞ a.s. when t → +∞.

PROOF. We have, a.s., ε2
1 = ω and ε2

2 = ω(1 +α). The value of ε2
3 depends on

the position of 1 + α compared to k. Let, for all i ≥ 0,

Ei =
{
(α, k);α + 1

1 + α + · · · + αi
≤ k

}
.

Since α ≥ 0, the sets Ei constitute an increasing sequence. We have

E∞ := ⋃
i≥0

Ei = {α = 0, k ≥ 1} ∪ {0 < α < 1 < k} ∪ {1 ≤ α < k}

= {max(α,1) < k} ∪ {(0,1)}.
Let us consider the different cases.

Case (i). We have (α, k) ∈ E∞, hence there exists i ≥ 0 such that (α, k) ∈ Ei .
Let i0 = min{i ≥ 0, (α, k) ∈ Ei}. For 1 ≤ i ≤ i0 + 2, we have ε2

i = ω(1 + · · · +
αi−1). Then

ε2
i0+2

ε2
i0+1

= α + 1

1 + α + · · · + αi0
≤ k.

It follows that ε2
i0+3 = ω and, since

ε2
i0+3

ε2
i0+2

= 1
1+α+···+αi0+1 ≤ 1 < k, that ε2

i = ω for

all i ≥ i0 + 3.
Case (ii). If (α, k) 
= (0,1), then (α, k) /∈ E∞. Thus, for all i ≥ 1, ε2

i = ω(1 +
· · · + αi−1) and the result follows. When (α, k) = (0,1), the sequence (ε2

i ) takes
the constant value ω.

Case (iii). We have (α, k) /∈ E∞. Thus, for all i ≥ 1, ε2
i = ω(1+· · ·+αi−1) and

the sequence (ε2
i ) tends to +∞. �

From this result, the region of nonexplosion of the deterministic models is given
by α < max(1, k). We now turn to the general case.
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3.2. Markov chain results. As with many discrete-time models, the analysis
of the probability structure of model (1.2) draws on Markov chain results. Let

Xt =
(

ε2
t

ε2
t−1

)
=

(
X1,t

X2,t

)

and let

∀x ∈ R
2 ψ(x) = ω + αx11x1>kx2 .

The vector representation of model (1.2) takes the form of a nonlinear stochastic
difference equation,

Xt =
(

ψ(Xt−1)η
2
t

X1,t−1

)
:= F(Xt−1, ηt ), t ≥ 1,(3.1)

where the i.i.d. sequence (ηt ) is supposed to be independent of the initial state X0.
Note that models of the form (3.1) are considered, among others, by [13], Chapter
7, but under a smoothness assumption on the function F which is not valid in our
framework. Let λ+

m be the Lebesgue measure and let B(R+m) be the Borel class
of sets for R

+m. We will make the following assumption:

ASSUMPTION A. The variables η2
t admit a density f with respect to λ+

1 , with
f > 0 on R

+. Moreover, Eηt = 0 and Eη2
t = 1.

LEMMA 1. The process (Xt)t≥0 is a time-homogeneous Markov chain on
R

+2, with transition probabilities given as follows:

∀x = (x1, x2) ∈ R
+2,∀B = B1 × B2 ∈ B(R+2).

P(x,B) = P [η2
t ∈ ψ(x)−1B1]1x1∈B2 .(3.2)

Moreover, under Assumption A, the process (Xt) is λ+
2 -irreducible (λ+

2 is therefore
a maximal irreducibility measure).

PROOF. Equation (3.1) ensures that (Xt) is a time-homogeneous Markov
chain. The two-step transition probabilities are given as follows:

∀B = B1 × B2 ∈ B(R+2),∀x ∈ R
2

P2(x,B) = P [ψ(Xt−1)η
2
t ∈ B1,ψ(x)η2

t−1 ∈ B2|Xt−2 = x]
= P [ψ{ψ(x)η2

t−1, x1}η2
t ∈ B1,ψ(x)η2

t−1 ∈ B2](3.3)

=
∫

1ψ(x)−1B2
(y)P [η2

t ∈ ψ{ψ(x)y, x1}−1B1]f (y) dλ+
1 (y).

This can be seen by using the Fubini theorem, using the independence between
ηt and ηt−1 and noting that ψ(·) ≥ ω > 0. If λ+

1 (B1) > 0, we have, for all
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y ∈ R
+, P [η2

t ∈ ψ{ψ(x)y, x1}−1B1] > 0, in view of Assumption A. Similarly,
λ+

1 {ψ(x)−1B2} > 0 if λ+
1 (B2) > 0. Hence, P2(x,B) > 0, which ensures that λ+

2 is
an irreducibility measure. We have Pt (x,B) = 0 for any Borel set B ⊂ (R−)2, any
t > 0 and any x ∈ R

2. Thus, any irreducibility measure φ is such that φ(B) = 0
for any B ∈ B(R−2). It follows that λ+

2 is a maximal irreducibility measure (see
[13], Proposition 4.2.2). �

REMARK 1. Cline and Pu [6] provide conditions for irreducibility (as well as
aperiodicity and the T-chain property) for a general class of nonlinear autoregres-
sive models encompassing (1.2). Since we use slightly weaker conditions for the
error density, we give direct proofs of the corresponding lemmas.

REMARK 2. The transition probability defined in (3.2) is a function of x

which is not lower semicontinuous for any open set B . To see this, let x1 =
kx2, let B = B1 × B2 be an open set such that p = P [η2

t ∈ ω−1B1] > P [η2
t ∈

(ω + αx1)
−1B1] = q and such that x1 ∈ B2. For x = (x1, x2), we have P [η2

t ∈
ψ(x)−1B1] > c = (p + q)/2. Any neighborhood of x contains points y = (y1, y2)

with y1 > ky2. For such points, we have ψ(y) = ω + αy1 and thus, if y1 is suffi-
ciently close to x1, P [η2

t ∈ ψ(y)−1B1] < c. The set {x : P(x,B) > c} is therefore
not open. It follows that (Xt) is not a Feller chain. The fact that compact sets are
small, which will be used in the verification of our ergodicity criterion, is thus not
straightforward. This property will follow from the next result.

LEMMA 2. Under the assumptions of Lemma 1, the process (Xt) is a T-chain.

PROOF. It will be convenient to consider a partition of the positive quadrant
of R

2 into three regions: D1 = {x1 < kx2}, D2 = {x1 = kx2} and D3 = {x1 > kx2}.
For x ∈ D1 ∪D2, we have ψ(x) = ω. Thus, from (3.3), using the Fubini theorem

and the independence between ηt and ηt−1, we have

∀x ∈ D1 ∪ D2,∀B = B1 × B2 ∈ B(R+2)

P2(x,B) = P [ψ(ωη2
t−1, x1)η

2
t ∈ B1, ωη2

t−1 ∈ B2]
=

∫
1ω−1B2∩(−∞,ω−1kx1](y)P [η2

t ∈ ω−1B1]f (y) dλ+
1 (y)

+
∫

1ω−1B2∩(ω−1kx1,+∞)(y)P [η2
t ∈ {ω(1 + αy)}−1B1]f (y) dλ+

1 (y).

By the Lebesgue theorem and Assumption A, we can conclude that P2(·,B) is
continuous over the set D1. This is not the case for x ∈ D2. However, if some
sequence (xn) converges to x with xn ∈ D1 ∪D2, we have P2(xn,B) −→ P2(x,B)

by the same arguments. For xn = (x1n, x2n) ∈ D3, we have

P2(xn,B) = P [ψ{(ω + αx1n)η
2
t−1, x1n}η2

t ∈ B1, (ω + αx1n)η
2
t−1 ∈ B2],
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because ψ(xn) = ω + αx1n. Therefore, proceeding as for D1,

lim
xn→x,xn∈D3

P2(xn,B) = P [ψ{(ω + αx1)η
2
t−1, x1}η2

t ∈ B1,

(ω + αx1)η
2
t−1 ∈ B2].

Setting

T (x,B) = P [ψ{ωη2
t−1, x1}η2

t ∈ B1,ωη2
t−1 ∈ B2,

ψ{(ω + αx1)η
2
t−1, x1}η2

t ∈ B1, (ω + αx1)η
2
t−1 ∈ B2],

we define a measure for any x, which is nontrivial because T (x,R
+2) = 1. Setting

a(x1) = ω + αx1, T (x,B) can be decomposed into three probabilities, depending
on the position of η2

t−1, as follows:

P [ωη2
t ∈ B1,ωη2

t−1 ∈ B2, a(x1)η
2
t−1 ∈ B2, η

2
t−1 < kx1/a(x1)]

+ P
[
ωη2

t ∈ B1,ωη2
t−1 ∈ B2, {ω + a(x1)η

2
t−1}η2

t ∈ B1,

a(x1)η
2
t−1 ∈ B2, η

2
t−1 ∈ [kx1/a(x1), kx1/ω)

]
+ P [ω(1 + αη2

t−1)η
2
t ∈ B1,ωη2

t−1 ∈ B2,

{ω + a(x1)η
2
t−1}η2

t ∈ B1, a(x1)η
2
t−1 ∈ B2, η

2
t−1 > kx1/ω].

This, in view of Assumption A, shows that the function T (·,B) is continuous.
Finally, P2(x,B) ≥ T (x,B) for all x and all B . Thus, T is a continuous component
of P2. The conclusion follows. �

Classical ergodicity proofs for nonlinear stochastic difference equations (as, for
instance, in the case of TAR models, see [16]) rely on verifying a drift condition
when the chain goes outside a compact set. In the model of this paper, no drift
condition holds over the region {x1 ≤ kx2}. It is therefore necessary to consider
more general small sets than compact sets, as was done, for instance, by Cline and
Pu [6], Theorem 2.5.

LEMMA 3. Under the assumptions of Lemma 1, the set C = {x1 ≤ kx2} is
small for the Markov chain (Xt). Moreover, the chain is aperiodic.

PROOF. For x = (x1, x2) ∈ C, we have ψ(x) = ω. Thus, by (3.3), for any
B = B1 × B2 ∈ B(R+2)

P2(x,B) = P [ψ(ωη2
t−1, x1)η

2
t ∈ B1,ωη2

t−1 ∈ B2]
= P [ωη2

t ∈ B1,ωη2
t−1 ≤ kx1,ωη2

t−1 ∈ B2]
(3.4)

+ P [(ω + αωη2
t−1)η

2
t ∈ B1,ωη2

t−1 > kx1,ωη2
t−1 ∈ B2]

:= P1(x,B) + P2(x,B).



2264 Y. SAÏDI AND J.-M. ZAKOÏAN

Let ε > 0. For x1 > ε, we have

P1(x,B) ≥ P [ωη2
t ∈ B1,ωη2

t−1 ≤ kε,ωη2
t−1 ∈ B2] := µ1(B).(3.5)

For x1 ≤ ε, we have

P2(x,B) ≥ P [(ω + αωη2
t−1)η

2
t ∈ B1,ωη2

t−1 > kε,ωη2
t−1 ∈ B2] := µ2(B).

The measures µ1 and µ2 are clearly nontrivial. It follows that the sets C1 = {x1 >

ε} ∩C and C2 = {x1 ≤ ε} ∩C are small. The union of two small sets being a small
set, we may conclude that C = C1 ∪ C2 is a small set.

To prove aperiodicity, we will consider three-step transition probabilities. Recall
that, for a φ-irreducible Markov chain, the definition of the period d is independent
of the choice of a small set. For our small set, we choose C1. For x ∈ C1 and for
B = B1 × B2 ∈ B(R+2), we have, from (3.4) and (3.5), after translation of the
times,

P2(x,B) ≥ P [ωη2
t+1 ∈ B1,ωη2

t ≤ kε,ωη2
t ∈ B2]

≥ P [ωη2
t+1 ∈ B1,ωη2

t−1 ≤ kε,ωη2
t ≤ kε,ωη2

t ∈ B2, η
2
t ≤ kη2

t−1]
:= µ(B),

P3(x,B) = P [ψ{ψ(ωη2
t−1, x1)η

2
t , ωη2

t−1}η2
t+1 ∈ B1,ψ(ωη2

t−1, x1)η
2
t ∈ B2]

= P [ψ{ωη2
t , ωη2

t−1}η2
t+1 ∈ B1,ωη2

t−1 ≤ kx1,ωη2
t ∈ B2]

+ P [ψ{(ω + αωη2
t−1)η

2
t , ωη2

t−1}η2
t+1 ∈ B1,

ωη2
t−1 > kx1, (ω + αωη2

t−1)η
2
t ∈ B2]

≥ P [ψ{ωη2
t , ωη2

t−1}η2
t+1 ∈ B1,ωη2

t−1 ≤ kε,ωη2
t ∈ B2]

≥ P [ωη2
t+1 ∈ B1,ωη2

t−1 ≤ kε,ωη2
t ∈ B2, η

2
t ≤ kη2

t−1]
≥ µ(B).

The set C1 is then both ν2-small and ν3-small, where ν2 = ν3 = µ. This measure µ

is nontrivial. The greatest common divisor d of the set EC1 which appears in the
definition of periodicity is thus equal to 1. The conclusion follows. �

3.3. β-mixing. The main result of this paper is the following theorem:

THEOREM 3.2. Under Assumption A and the condition k > 0, there exists
a strictly stationary solution (εt ) to model (1.2). This solution is β-mixing, and
hence strongly mixing, with geometric rate. Moreover, there exists r > 0 such that
Eπ(ε2r

t ) < ∞.
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REMARK 3. It is worth noting that when k > 0, strict stationarity holds regard-
less of the value of α. When k = 0, that is, in the case of the standard ARCH(1),
we have the well-known strict stationarity condition established by Nelson [14]:
0 ≤ α < exp{−E(logη2

t )}.
REMARK 4. Assumption A is crucial for strict stationarity to hold without an

upper bound for α. For instance, in the deterministic case, η2
t = 1, a.s., Assump-

tion A is not verified and it was seen in Section 3.1 that stability requires k > α, or
k ≤ α < 1.

REMARK 5. Cline and Pu [7] provided useful conditions for geometric er-
godicity of a general class of nonlinear AR–ARCH models. We cannot rely on
their results, however, because in particular their Assumption A.5 does not hold
for model (1.2).

To prove Theorem 3.2, we start by establishing the following lemma:

LEMMA 4. Under the assumptions of Theorem 3.2, the Markov chain (Xt) is
geometrically ergodic.

PROOF. The conclusion being obvious when α = 0, we consider the case
α > 0. The proof consists in verifying the three conditions of Theorem 2.1 for
m = 2. Property (i) holds with φ = λ+

2 , by Lemma 1, (ii) holds by Lemmas 2 and 3.
To check (iii), we take g(x) = g(x1, x2) = xr

1, where r ∈ (0,1]. Let µ2r = E(η2r
t )

and let µ∗
2r = E(η2r

t 1η2
t >k/α). Note that these quantities are finite under Assump-

tion A. We have

E[g(Xt+2)|Xt = (x1, x2)]
= E[ε2r

t+2|Xt = (x1, x2)]
= E

[
η2r

t+2
(
ψ{ψ(x1, x2)η

2
t+1, x1})r ]

(3.6)
= µ2rE[ψ{ψ(x1, x2)η

2
t+1, x1}]r

= µ2rE
{
ω + αψ(x1, x2)η

2
t+11η2

t+1>kx1/ψ(x1,x2)

}r

≤ µ2rω
r + µ2rα

rψ(x1, x2)
rE

[
η2r

t+11η2
t+1>kx1/ψ(x1,x2)

]
,

where the last inequality follows from the elementary inequality (a+b)r ≤ ar +br

for any a, b ≥ 0. For x1 > kx2, we then have

E[g(Xt+2)|Xt = (x1, x2)] ≤ µ2rω
r +µ2rα

r(ω +αx1)
rE

[
η2r

t+11η2
t+1>kx1/(ω+αx1)

]
.

When x1 → +∞, the right-hand side of this inequality is equivalent to

α2rµ2rµ
∗
2rx

r
1.
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Now α2rµ2rµ
∗
2r tends to P [η2

t > k/α] when r → 0, by the Lebesgue theorem.
This probability being strictly less than 1 when k > 0 (by Assumption A), we have
α2rµ2rµ

∗
2r < 1 for r sufficiently small. Therefore, there exist β > 0, r > 0 and

M > 0 such that

x1 > M and x1 > kx2 �⇒ E[ε2r
t+2|Xt = (x1, x2)] ≤ (1 − β)xr

1 − β.

For x1 ≤ M , we have ψ(x1, x2) ≤ ω + αM and hence, from

E
[
η2r

t+11η2
t+1>kx1/ψ(x1,x2)

] ≤ µ2r

and (3.6), we have

E[ε2r
t+2|Xt = (x1, x2)] ≤ µ2rω

r + µ2
2rα

r(ω + αM)r .

Finally, for x1 ≤ kx2, since ψ(x1, x2) = ω, we have, by (3.6),

E[ε2r
t+2|Xt = (x1, x2)] ≤ µ2rω

r(1 + µ2rα
r) ≤ µ2rω

r + µ2
2rα

r(ω + αM)r .

We can conclude that (iii) holds, with C = [0,M]2 ∪ {x1 ≤ kx2} and b = µ2rω
r +

µ2
2rα

r(ω + αM)r .
That C is a small set is a consequence of Lemma 2 (implying that any compact

set is small), Lemma 3 and the fact that the union of two small sets is small ([13],
Proposition 5.5.5). The conclusion follows. �

PROOF OF THEOREM 3.2. Since (Xt) is geometrically ergodic, it is β-mixing,
with Eπg(Xt) = Eπε2r

t < ∞. It follows that (ε2
t ) and (σt ) are β-mixing processes.

The fact that εt inherits this β-mixing property follows from the independence be-
tween σt and ηt (see, e.g., [10], proof of Theorem 3). �

3.4. Existence of moments. Theorem 3.2 ensures the existence of a moment of
some order 2r . For statistical applications, however, it is often necessary to assume
second order stationarity or the existence of higher order moments. The following
theorem provides a sufficient condition for the existence of 2pth-order moments:

THEOREM 3.3. Let p ∈ N. Under Assumption A, with µ2p = Eη
2p
t < ∞, if

0 ≤ α < max
m∈{1,2,...}

(
km−1

µ2pµ
1−1/m
2m µ

1/m
2mp

)1/(2p+m−1)

,(3.7)

then there exists a strictly stationary solution process (εt ) to model (1.2) such that
Eπ(ε

2p
t ) < ∞.

REMARK 6. For m = 1, the term inside the brackets reduces to µ
−1/p
2p . A sim-

ple condition for the existence of E(ε
2p
t ) is thus

µ2pαp < 1,(3.8)
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which is also necessary in the standard ARCH(1) case (k = 0). However, the ex-
ample below shows that when k increases, the upper bound in (3.7) is attained for
integers m > 1.

PROOF OF THEOREM 3.3. Following the same approach as that used in the
proof of Lemma 4, but now with g(x) = g(x1, x2) = x

p
1 , we get

E[ε2p
t+2|Xt = (x1, x2)]
= E[η2p

t+2ψ{ψ(x1, x2)η
2
t+1, x1}p|Xt−1 = (x1, x2)]

= µ2pE
{
ω + αψ(x1, x2)η

2
t+11η2

t+1>kx1/ψ(x1,x2)

}p

= µ2p

p∑
s=0

(
s

p

)
ωp−sαsψ(x1, x2)

sE
[
η2s

t+11η2
t+1>kx1/ψ(x1,x2)

]
.(3.9)

By the Hölder and Markov inequalities, we have, for m ≥ 1,

E
(
η2s

t+11η2
t+1>kx1/ψ(x1,x2)

) ≤ {E(η2ms
t+1 )}1/m

{
P

[
η2m

t+1 >

(
kx1

ψ(x1, x2)

)m]}(m−1)/m

≤ {E(η2ms
t+1 )}1/m

{
E(η2m

t+1)ψ(x1, x2)
m

(kx1)m

}(m−1)/m

= µ
1/m
2ms µ

(m−1)/m
2m

{
ψ(x1, x2)

kx1

}m−1

.

When x1 > kx2 and x1 → +∞, the right-hand side of (3.9) is thus bounded by a
term which is equivalent to

µ2pα2pµ
1/m
2mpµ

(m−1)/m
2m

{
α

k

}m−1

x
p
1

=
{
α

µ
1/(2p+m−1)
2p µ

1/(m(2p+m−1))
2mp µ

(m−1)/(m(2p+m−1))
2m

k(m−1)/(2p+m−1)

}2p+m−1

x
p
1 .

The right-hand side term inside the brackets being, in view of (3.7), strictly less
than 1 for some m ≥ 1, we thus have

µ2pα2pµ
1/m
2mpµ

(m−1)/m
2m

{
α

k

}m−1

x
p
1 ≤ (1 − β)x

p
1 − β

for some constant β > 0. Therefore, there exists M > 0 such that

x1 > M and x1 > kx2 �⇒ E[ε2p
t+2|Xt = (x1, x2)] ≤ (1 − β)x

p
1 − β.
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Furthermore, for x1 ≤ M , we have ψ(x1, x2) ≤ ω +αM and thus, in view of (3.9),

E[ε2p
t+2|Xt = (x1, x2)] ≤ µ2p

p∑
s=0

(
s

p

)
ωp−sαs(ω + αM)s

= µ2p{ω + α(ω + αM)}p.

Finally, for x1 ≤ kx2, we have ψ(x1, x2) = ω and thus, from (3.9),

E[ε2p
t+2|Xt = (x1, x2)] ≤ µ2p{ω + αω}p.

We can conclude that

E[ε2p
t+2|Xt = (x1, x2)] ≤

{
(1 − β)x

2p
1 − β, x ∈ Cc,

b, x ∈ C,

for some strictly positive constants β and b, with C = [0,M]2 ∪ {x1 ≤ kx2}. The
theorem follows. �

When k ≤ 1, a necessary condition can be straightforwardly obtained as follows.
Let (εt ) be a strictly stationary solution of model (1.2) with a finite 2pth moment.
Then

E(ε
2p
t ) ≥ µ2p

[
ωp + αpE

{
ε

2p
t−11ε2

t−1>kε2
t−2

}]

= µ2p

[
ωr + αpE(ε

2p
t ) − αpE

{
ε

2p
t−11ε2

t−1≤kε2
t−2

}]

≥ µ2p[ωp + αpE(ε
2p
t ) − αpkpE(ε

2p
t−2)].

It follows that

{1 − µ2pαp(1 − kp)}E(ε
2p
t ) ≥ µ2pωp.

Therefore, a necessary condition for E(ε
2p
t ) < ∞ is

µ2pαp(1 − kp) < 1,(3.10)

and we have

E(ε
2p
t ) ≥ µ2pωp

1 − µ2pαr(1 − kp)
.

When k = 0, (3.10) coincides with (3.8) and provides the necessary and sufficient
condition for the existence of E(ε

2p
t ) in the standard ARCH(1) case (see [12] for

moment conditions for the GARCH(p,q) model).

EXAMPLE. In the case of the standard N (0,1) distribution for ηt , condition
(3.7) can be made explicit. First, let p = 1. We have µ2m = (2m)!

2mm! and simple alge-
bra shows that the maximum in (3.7) is attained for

m0 = m0(k) = min
m∈{2,3,...}

{
m :k <

(
(2m − 1)m

µ2(m−1)

)1/2}
− 1.
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TABLE 1
Constraints for the existence of the second order moment (p = 1), for the standard normal

distribution, as functions of k. The second column gives the value of m for which the maximum is
attained in (3.7). The third column gives the constraint for α as a function of k and the last column

gives the maximum value for α when k is equal to the upper bound of the interval

k m α αmax

[0,3[ 1 [0,1[ 1
[3,6.455[ 2 [0, { k

µ4
}1/3[ 1.291

[6.455,12.652[ 3 [0, { k2

µ6
}1/4[ 1.807

[12.652,23.714[ 4 [0, { k3

µ8
}1/5[ 2.635

[23.714,43.297[ 5 [0, { k4

µ10
}1/6[ 3.936

[43.297,77.694[ 6 [0, { k5

µ12
}1/7[ 5.976

[77.694,137.715[ 7 [0, { k6

µ14
}1/8[ 9.181

Thus, the second-order stationarity condition is

0 < α <

(
km0−12m0m0!

(2m0)!
)1/(m0+1)

.

For k ≥ 3, values of α that are greater than 1 can be compatible with second-order
stationarity, as can be seen from Table 1.

Similar computations can be carried out when p = 2. Table 2 provides the

TABLE 2
As in Table 1, but for the moment of order 4 (p = 2)

k m α αmax

[0,3.416) 1 [0, 1
µ

1/2
4

) 0.577

[3.416,4.579) 2 [0, { k

µ
3/2
4 µ

1/2
8

}1/5) 0.612

[4.579,6.373) 3 [0, { k2

µ4µ
2/3
6 µ

1/3
12

}1/6) 0.684

[6.373,8.846) 4 [0, { k3

µ4µ
3/4
8 µ

1/4
16

}1/7) 0.787

[8.846,12.183) 5 [0, { k4

µ4µ
4/5
10 µ

1/5
20

}1/8) 0.923

[12.183,16.656) 6 [0, { k5

µ4µ
5/6
12 µ

1/6
24

}1/9) 1.098

[16.656,22.626) 7 [0, { k6

µ4µ
6/7
14 µ

1/7
28

}1/10) 1.320

[22.626,30.571) 8 [0, { k7

µ4µ
7/8
16 µ

1/8
32

}1/11) 1.599

[30.571,41.122) 9 [0, { k8

µ4µ
8/9
18 µ

1/9
36

}1/12) 1.948
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FIG. 1. Stationarity regions for model (1.2) with ηt ∼ N (0,1). 1. Existence of Eε4
t ; 2. Existence of

Eε2
t with Eε4

t = ∞; 3. Strict stationarity with Eε2
t = ∞. The right panel is a zoom of the left panel.

fourth-order stationarity constraints, for different ranges of values of k. The val-
ues of m corresponding to the maximum in (3.7) have been obtained numerically.
For k < 3.416, the maximum is reached for m = 1 and the constraint is that of
a standard ARCH(1) (3α2 < 1). Interestingly, when k increases, the maximum is
reached for larger values of m (e.g., m = 2 for 1.763 ≤ k < 1.886) and larger val-
ues for α are obtained. It is seen that values of α much larger than 1 are compatible
with E(ε4

t ) < ∞ when k is large. Similar tables can be constructed for any value
of p and for other distributions.

The outputs of Tables 1 and 2 are represented in Figure 1.
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