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This paper analyzes stochastic networks consisting of finite capacity
nodes with different classes of requests which move according to some rout-
ing policy. The Markov processes describing these networks do not, in gen-
eral, have reversibility properties, so the explicit expression of their invariant
distribution is not known. Kelly’s limiting regime is considered: the arrival
rates of calls as well as the capacities of the nodes are proportional to a factor
going to infinity. It is proved that, in limit, the associated rescaled Markov
process converges to a deterministic dynamical system with a unique equilib-
rium point characterized by a nonstandard fixed point equation.

1. Introduction. In this paper, a new class of stochastic networks is intro-
duced and analyzed. Their dynamics combine the key characteristics of the two
main classes of queueing networks: loss networks and Jackson type networks.

1. Each node of the network has finite capacity, so a request entering a saturated
node is rejected, as in a loss network.

2. Requests visit a subset of nodes along some (possibly) random route, as in
Jackson or Kelly’s networks.

This class of networks is motivated by the mathematical representation of cellu-
lar wireless networks. Such a network is a group of base stations covering some
geographical area. The area where mobile users communicate with a base station
is referred to as a cell. See Figure 1. A base station is responsible for the band-
width management concerning mobiles in its cell. New calls are initiated in cells
and calls are handed over (transferred) to the corresponding neighboring cell when
mobiles move through the network. A new or a handoff call is accepted if there is
available bandwidth in the cell, otherwise it is rejected.

Previously, these networks have been modeled at a macroscopic level as loss
networks characterized by call arrival rates, mean call lengths, handoff rates and
capacity restrictions on the number of calls, in the case of exponential times. One
of the main quantities of interest is the stationary blocking probability of the net-
work at each node, defined as the stationary probability that a call arriving at that
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FIG. 1. The motion of a mobile among the cells of the network.

node cannot be accepted. Approximations have been used to analyze these net-
works; see [1, 5, 11] and the references therein.

Assuming Poisson arrivals and exponentially distributed random variables, the
evolution of such a network with N nodes can be represented as a Markov jump
process (X(t)) with values in some finite (but large) set S. It turns out that, contrary
to uncontrolled loss networks with fixed routing, the Markov process (X(t)) is
not in general reversible or quasi-reversible. Consequently, contrary to Jackson
networks and the like, or uncontrolled loss networks, these networks do not have
a stationary distribution with a product form.

In this paper, the time evolution of these networks is analyzed by considering
Kelly’s scaling. The arrival rates and capacities at nodes are proportional to some
factor N which becomes large. This scaling has been introduced by Kelly [8] to
study the invariant distribution of loss networks. A study of the time evolution
of loss networks under this scaling has been carried out by Hunt and Kurtz [6].
See [7] for a survey of these questions. A different scaling is considered in [2].

The equilibrium points. The time evolution of the network can be (roughly)
described as follows. A stochastic process (�XN(t)) associated with the state of
the network for the parameter N is introduced: �XN(t) is the vector describing the
numbers of customers of different classes at the nodes of the network. The equation
of evolution for the network is

d

dt
�XN(t) = FN( �XN(t)) + �MN(t), t ≥ 0,

where ( �MN(t)) is a martingale which vanishes as N becomes large, FN is a some-
what complicated functional (associated with the generator of the corresponding
Markov process) converging to some limit F . As N goes to infinity, it is proved
that (�XN(t)) converges to some function (x(t)) satisfying the deterministic equa-
tion

d

dt
x(t) = F(x(t)), t ≥ 0.(1)

The equilibrium points of the limiting process are the solutions x of the equation
F(x) = 0. It is shown in this paper (and this is a difficult point) that there is only
one equilibrium point in Kelly’s limiting regime.
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Related work. For classical uncontrolled loss networks, the invariant probabil-
ity has a product form representation. Nevertheless, the evolution of these networks
under Kelly’s scaling turns out to be quite intricate. Hunt and Kurtz [6] showed that
at any x, the vector field F(x) driving the limiting dynamical system is related to
some reflected random walk in R

d+ with jump rates depending on x. Intuitively,
the situation can be described as follows. At points x at which this random walk is
ergodic, F(x) is expressed in terms of its invariant distribution; at x at which the
random walk is transient, the exit paths to infinity determine F(x). It is not known,
in general, whether there always exists a unique limiting dynamical system. Hunt
and Kurtz [6], Bean, Gibbens and Zachary [3, 4] and Zachary [12] analyzed several
examples with one or two nodes where uniqueness is shown to hold.

Results of the paper. Using the terminology of cellular networks, users arriving
in the network correspond to new requests for a connection in a cell. Different
classes of customers access the network—classes differ by their arrival rate, by
their dwell time at the nodes (i.e., the amount of time that a mobile of an ongoing
call remains in a given cell), by their call duration and also by their routing through
the network. During a call, a user moves from one cell to another according to some
Markovian mechanism, depending on his class. When a user moves to another cell
(node), this cell has to be nonsaturated to accommodate the user, otherwise the
user is rejected (the call is lost). If it is not rejected during the travel through the
network, the user call terminates after the call duration time has elapsed.

For the networks analyzed in this paper, the uniqueness of the limiting dynami-
cal system is not difficult to establish. The main difficulty lies in the complexity of
the system of equations defining the equilibrium points of the dynamical system.
Since there does not seem to exist some reasonably simple contracting scheme to
solve these equations, the uniqueness of the equilibrium points is therefore a quite
challenging problem. For example, in Section 4.2, the case of a very simple net-
work with two nodes and two deterministic routes is investigated and the explicit
representation of the equilibrium point is obtained, expressed in terms of quite
complicated polynomial expressions involving the parameters.

The paper is organized as follows. Section 2 introduces the Markovian descrip-
tion of these networks, Section 3 gives the convergence results, together with the
description of the limiting dynamical system. Section 4 is devoted to the main re-
sults of the paper—it is shown that, in limit, there exists a unique stable point for
the network. The ingredients used to obtain this uniqueness result are:

• a dual approach to the problem of uniqueness, that is, finding the set of parame-
ters such that a given point is an equilibrium point of the dynamical system;

• a key inequality proved in the Appendix;
• a convenient probabilistic representation of a set of linear equations.

The inequality proved in the Appendix involves a quantity related to relative en-
tropy, but, curiously, it does not seem to be a consequence of a standard convex
inequality as is usually the case in this type of situation.
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2. The stochastic model. The network consists of a finite set I of nodes,
node i ∈ I having capacity �ciN�, where ci > 0 and N ∈ N. This network receives
a finite number of classes of customers, indexed by a finite set R; class r ∈ R

customers enter the network according to a Poisson process with rate λrN , where
λr > 0.

• Call duration. A class r customer who thus far has neither been rejected nor
routed to the outside (see Routing below) leaves the network after an exponen-
tially distributed time with rate µr (call duration in the context of a cellular
network). The case µr = 0 is not excluded; it corresponds to the situation where
customers stay in the network as long as they are not rejected or routed to the
outside.

• Dwell time. The residence time of a customer of class r at any node i ∈ I is
exponentially distributed with parameter γr . Such a customer can leave the node
before the end of his dwell time (due to the end of call) at rate µr .

• Routing. A class r customer entering the network arrives at some random node
in I whose distribution is qr and then moves from one node to another, or to
the outside (referred to as node 0), according to some transition matrix p(r) on
I × I ∪ {0}. By changing the parameter of the residence time, it can be assumed
without loss of generality that the matrix p(r) is 0 on the diagonal.

• Capacity requirements. All customers require one unit of capacity at each node.

All random variables used for arrivals, residence times and dwell times are as-
sumed to be independent.

This class of networks includes the case of classes of customers with determin-
istic routing, as in Kelly’s networks, and also classes of customers with Markovian
routing, as in Jackson networks. Figure 2 represents a network with two classes
of customers—class 1 customers follow a deterministic route, while class 2 cus-
tomers can reach either node 1 or node 3 from node 4, and the capacities of the
nodes are 5. Note that for the general model, no assumptions have been made con-
cerning the transition matrices p(r)(·, ·), so some classes of customers may achieve
infinite loops in the network.

FIG. 2. A network with two classes of customers.
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Notation. For i ∈ I , r ∈ R and t ≥ 0, XN
i,r (t) denotes the number of class r

customers at node i at time t . (XN(t)) = (XN
i,r (t), i ∈ I, r ∈ R) is the correspond-

ing process. The renormalized process is defined as

�XN
i,r (t) = 1

N
XN

i,r (t)

and �XN(t) = (�XN
i,r (t), i ∈ I, r ∈ R).

Denote by Ir ⊂ I the set of nodes which can be visited by a class r customer,
that is, i ∈ Ir when i is visited with positive probability by the Markov chain with
transition matrix p(r) and initial distribution qr . It is assumed that I = ⋃

r∈R Ir .
The state space of the Markov process (XN(t)) is

SN =
{
x = (xi,r ) ∈ N

I×R :
∑
r

xi,r ≤ ciN and xi,r = 0 if i /∈ Ir

}
.

The Q-matrix (AN(x, y)) of (XN(t)) is given follows:
External arrival of a class r customer at node i:

AN(x, x + ei,r ) = λrNqr(i)1{x+ei,r∈SN };
Service completion, rejection by a cell or a transition to the outside:

AN(x, x − ei,r ) = xi,r

(
µr + γr

∑
j∈I

p(r)(i, j)1{x+ej,r /∈SN } + γrp
(r)(i,0)

)
;

Transfer from node i to node j :

AN(x, x − ei,r + ej,r ) = γrxi,rp
(r)(i, j)1{x+ej,r∈SN },

where ei,r is the unit vector at coordinate (i, r). The state space of the renormalized
process (�XN(t)) is given by

Xc =
{
x = (xi,r ) ∈ R

I×R+ :
∑
r

xi,r ≤ ci and xi,r = 0 if i /∈ Ir

}
,

the subscript c = (ci) of Xc standing for the vector of capacities.

3. Convergence results. The following proposition establishes the determin-
istic behavior of �XN(t) as N goes to infinity. This result is the consequence of the
fact that the stochastic perturbations of the original system are of order

√
N and

therefore vanish because of the scaling in 1/N .
To describe the time evolution of the network, one introduces the following

Poisson processes: Nξ denotes a Poisson process with parameter ξ > 0, and an
upper index N

p
ξ , p ∈ N

d , d ∈ N, is added when several such Poisson processes are
required. For example, for i ∈ I and r ∈ R, Nλrqr (i) is the external arrival Poisson
process of class r customers at node i. In a similar way, for k ≥ 1, N k

γrp(r)(i,j)
is
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the Poisson process associated with the transfer of the kth class r customers from
node i to j ∈ I ∪ {0}.

For t ≥ 0 and (i, r) ∈ I × R, let YN
i (t) = �ciN� − ∑

r XN
i,r (t). The quantity

YN
i (t) is the size of the free space at node i. The process (XN(t)) can then be

represented as the solution of the following stochastic integral equation:

XN
i,r (t) = XN

i,r (0) +
∫ t

0
1{YN

i (s−)>0}NλrNqr (i)(ds)

+ ∑
j∈I−{i}

∑
k≥1

∫ t

0
1{k≤XN

j,r (s−),YN
i (s−)>0}N

k
γrp(r)(j,i)

(ds)

(2)

− ∑
j∈I∪{0}

j 
=i

∑
k≥1

∫ t

0
1{k≤XN

i,r (s−)}N
k
γrp(r)(i,j)

(ds)

− ∑
k≥1

∫ t

0
1{k≤XN

i,r (s−)}N
i,k
µr

(ds).

Here f (t−) denotes the limit on the left of the function f at t . By compensating
the Poisson processes, that is, by replacing the differential term Nξ (ds) by the
martingale increment Nξ (ds) − ξ ds, one gets the identity

XN
i,r (t) = XN

i,r (0) + MN
i,r(t) + λrNqr(i)

∫ t

0
1{YN

i (s−)>0} ds

+ γr

∑
j∈I

p(r)(j, i)

∫ t

0
XN

j,r (s−)1{YN
i (s−)>0} ds(3)

− (γr + µr)

∫ t

0
XN

i,r (s−) ds,

where (MN
i,r (t)) is the martingale obtained from the compensated integrals of the

previous expression.
Denoting the renormalized martingale �MN

i,r (t) = MN
i,r (t)/N , one finally gets

�XN
i,r (t) = �XN

i,r (0) + �MN
i,r (t) + λrqr(i)

∫ t

0
1{YN

i (s−)>0} ds

+ γr

∑
j∈I

p(r)(j, i)

∫ t

0
�XN

j,r (s−)1{YN
i (s−)>0} ds(4)

− (γr + µr)

∫ t

0
�XN

i,r (s−) ds.

The evolution equations for the renormalized process having now been written,
one can establish the main convergence result:
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THEOREM 1. If the initial state �XN(0) converges to x ∈ Xc as N goes to
infinity, then (�XN(t)) converges in the Skorohod topology to the solution (x(t)) of
the following differential equation: For (i, r) ∈ I×R,

d

dt
xi,r (t) =

(
λrqr(i) + γr

∑
j

xj,r (t)p
(r)(j, i)

)
τi(x(t)) − (γr + µr)xi,r (t)(5)

with x(0) = x and

τi(x) =
 1, if

∑
r

xi,r < ci ,

ρi
x ∧ 1, otherwise,

where a ∧ b = min(a, b) for a, b ∈ R and

ρi
x

def .=
∑

r (γr + µr)xi,r∑
r [λrqr(i) + γr

∑
j xj,rp(r)(j, i)] .

By convergence in the Skorohod topology, one means convergence in distribution
for the Skorohod topology on the space of trajectories.

PROOF OF THEOREM 1. Recall that if Nξ1 and Nξ2 , are two independent
Poisson processes, and if Mp(t) = Nξp ((0, t])− ξpt , p = 1, 2, are their associated
martingales, the latter are orthogonal in the sense that (M1(t)M2(t)) is a mar-
tingale, that is, the bracket process 〈M1,M2〉(t) is 0 for all t ≥ 0; see [10]. The
same property holds for stochastic integrals of previsible processes (H1(t)) and
(H2(t))—for t ≥ 0,〈∫ ·

0
H1(s) dM1(s),

∫ ·

0
H2(s) dM2(s)

〉
(t) = 0.

The increasing process of the renormalized martingale defined above is

〈 �MN
i,r ,

�MN
i,r〉(t) = 1

N2 〈MN
i,r ,M

N
i,r〉(t),

and the increasing process in the right-hand side of the last equation can be eval-
uated by using the orthogonality of independent Poisson processes mentioned
above. By using the fact that, for (i, r) ∈ I × R and t ≥ 0, XN

i,r (t) ≤ �ciN�, one
obtains that there exists some constant K such that

E([MN
i,r(t)]2) = E(〈MN

i,r ,M
N
i,r〉(t)) ≤ KNt.

Doob’s inequality implies that the martingale ( �MN
i,r(t)) converges a.s. to 0 uni-

formly on compact sets. Hence the stochastic fluctuations represented by the mar-
tingales vanish in limit.
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Now, by using the results of Kurtz [9], similarly to their use in Hunt and
Kurtz [6] for loss networks, one can prove that any weak limit X = (Xi,r ) of the
process �XN satisfies the following equations: For (i, r) ∈ I × R,

Xi,r(t) = Xi,r (0) +
∫ t

0

(
λrqr(i) + γr

∑
j∈I

p(r)(j, i)Xj,r (s)

)
πX(s)(�NI

i ) ds

(6)

− (γr + µr)

∫ t

0
Xi,r(s) ds,

where �NI
i = {m = (mj ) ∈ (N ∪ {+∞})I :mi ≥ 1} and for x = (xir ) ∈ Xc, πx is

some stationary probability measure on �NI = (N ∪ {+∞})I of the Markov jump
process whose Q-matrix (Bx(·, ·)) is defined as

Bx(m,m − ei) = ∑
r

λrqr(i) if mi ≥ 1,

Bx(m,m + ei) = ∑
r

xi,r

(
µr + γr

(
p(r)(i,0) + ∑

j∈I

p(r)(i, j)1{mj=0}
))

,

Bx(m,m − ei + ej ) = ∑
r

γrxj,rp
(r)(j, i) if mi ≥ 1,

where ei denotes the ith unit vector of R
I . Moreover, the probability distribution

πx has to satisfy the following condition:

πx(m ∈ �NI :mi = +∞) = 1 if
∑
r

xi,r < ci.(7)

The Markov process (mx(t)) associated with the matrix Bx(·, ·) describes the evo-
lution of YN(t/N) = (YN

i (t/N)), that is, the time-rescaled process of the numbers
of free units of capacity at different nodes during a time interval [t, t +Ndt[ when
the renormalized process �XN is around x on the normal time scale. Compared to
(XN(t)), the process (YN(t)) indeed evolves on a rapid time scale, so that∫ t+dt

t
1{YN

i (s−)>0} ds ∼ πx(�NI
i ) dt,

that is, such quantities can be replaced, in limit, by the average values of indi-
cator functions under some limiting regime πx of YN when �XN(t) ∼ x. Hunt
and Kurtz [6] provide a detailed treatment of these interesting questions; see also
[3, 4] and [12] for the analysis of several examples.

In our case, the marginals of (mx(t)) are also Markov, due to the fact that each
customer occupies only one node at a time so that acceptance at node i only de-
pends on the number of free units there. For i ∈ I , the process (mx

i (t)) of the
number of free units at node i when the renormalized process is around x is a
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classical birth and death process on �N whose rates are given by

q(m,m + 1) = N
∑
r

(γr + µr)xi,r ,

q(m,m − 1) = N
∑
r

(
λrqr(i) + γr

∑
j

xj,rp
(r)(j, i)

)
if m ≥ 1.

The point +∞ is an absorbing point. Under the condition

∑
r

(γr + µr)xi,r <
∑
r

(
λrqr(i) + γr

∑
j

xj,rp
(r)(j, i)

)
,(8)

the geometric distribution with parameter

∑
r

(γr + µr)xi,r

/∑
r

(
λrqr(i) + γr

∑
j

xj,rp
(r)(j, i)

)
= ρi

x

and δ+∞, the Dirac distribution at +∞, are the two extreme invariant measures
of the process (mx(t)). If

∑
r xi,r = ci and condition (8) holds, then the quantity

πx(�NI
i ) is necessarily some convex combination of 1 and ρi

x . For such an i ∈ I , by
summing equations (6) over r , it is easy to check that the quantity πx(�NI

i ) cannot
be more than ρi

x (otherwise the finite capacity condition
∑

r xi,r ≤ ci would be
violated). One gets that πx(�NI

i ) = ρi
x .

The other cases follow from condition (7) or the transience of the process
(mx

i (t)). Since the differential equation (5) clearly has a unique solution, the theo-
rem is proved. �

REMARK. For t > 0, the above proof shows that the quantity τi(x(t)) can
be interpreted as the probability that a call is accepted at node i at time t . If the
limiting dynamical system has a unique equilibrium point x (which will be shown
in the sequel), then by using arguments similar to these in [6], τi(x) can be seen as
the limiting stationary probability that a call is accepted at node i.

4. Equilibrium points. Theorem 1 shows that equilibrium points x ∈ Xc of
the limiting dynamical system, that is, those x that satisfy x′

i,r (t) = 0 for any
(i, r) ∈ I × R and t ≥ 0 when (xi,r (0)) = x, are the solutions of the following
set of equations:

(γr + µr)xi,r =
(
λrqr(i) + γr

∑
j

xj,rp
(r)(j, i)

)
τi(x), (i, r) ∈ I × R,(9)

where τi(x) is defined as in Theorem 1. Note that τi(x) ∈ (0,1] and that either
τi(x) = 1 or

∑
r xi,r = ci .
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4.1. Characterizations and existence of equilibrium points. If x ∈ Xc satis-
fies (9), it is a solution of the equations

(γr + µr)xi,r =
(
λrqr(i) + γr

∑
j

xj,rp
(r)(j, i)

)
ti ∀ (i, r) ∈ I × R,(10)

for some t = (ti) ∈ (0,1]I such that for any i ∈ I , either ti = 1 or
∑

r xi,r = ci .
Conversely, if x ∈ Xc is a solution of (10) for a fixed i ∈ I , then there are two

cases:

• If λrqr(i) + γr

∑
j xj,rp

(r)(j, i) = 0 for all r ∈ R, then xi,r = 0 for all r and
thus, necessarily, τi(x) = 1 and equations (9) hold trivially.

• Otherwise, by summing these relations over r ∈ R, one gets the identity

ti =
∑

r (γr + µr)xi,r∑
r (λrqr(i) + γr

∑
j xj,rp(r)(j, i))

.

If ti = 1, then ρi
x = 1 and so, by definition of τi(x), τi(x) = 1 = ti . If ti < 1,

then due to the above assumption, we necessarily have
∑

r xi,r = ci , so

τi(x) =
∑

r (γr + µr)xi,r∑
r (λrqr(i) + γr

∑
j xj,rp(r)(j, i))

∧ 1 = ti .

Equations (9) are thus satisfied for x.

The following characterization of equilibrium points of the system has thus been
obtained:

PROPOSITION 1 (Characterization of equilibrium points). The equilibrium
points of the limiting dynamical system are the elements x ∈ Xc such that there
exists some t ∈ (0,1]I satisfying:

1. For any (i, r) ∈ I × R,

xi,r =
(
αrqr(i) + βr

∑
j

xj,rp
(r)(j, i)

)
ti .(11)

2. For any i ∈ I , either ti = 1 or
∑

r xi,r = ci ,

where αr = λr/(γr + µr) and βr = γr/(γr + µr) for r ∈ R.

To prove the existence of a fixed point, a second characterization of equilibrium
points will be useful:

PROPOSITION 2 (Existence of equilibrium points). The equilibrium points of
the dynamical system (5) of Theorem 1 are the fixed points in Xc of the function
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c defined by, for x ∈ Xc,


c(x) =
(
�ci

((
αrqr(i) + βr

∑
j

xj,rp
(r)(j, i), r ∈ R

))
, i ∈ I

)
,(12)

where, for z > 0 and u ∈ [0,+∞)R ,

�z(u) =
(

z∑
r ur

∧ 1
)
u.

The function 
c has at least one fixed point.

PROOF. Note that the function �c maps [0,+∞)R into the subset {u ∈
[0,+∞)R :

∑
r ur ≤ c} and 
c(x) indeed belongs to Xc: its (i, r)th coordinate

is 0 whenever i /∈ Ir .
The characterization of equilibrium points follows from Proposition 1 and by

noting that, for u ∈ [0,+∞)R , z > 0 and v ∈ [0,+∞)R such that
∑

r vr ≤ z, there
is an equivalence between the identity �z(u) = v and the fact that there exists
some t ∈ (0,1] such that v = tu and either t = 1 or

∑
r vr = z.

The existence of a fixed point is then a consequence of Brouwer’s fixed point
theorem, since Xc is a convex compact subset of R

I×R and 
c is a continuous
function from Xc into itself. �

4.2. The example of deterministic routes. Requests of class r use a determin-
istic route of length L ∈ N ∪ {+∞} consisting of a sequence Ir = (ip,0 ≤ p < L)

with values in I such that

qr(i0) = 1, p(r)(ip, ip+1) = 1 for 0 ≤ p < L − 1

and p(r)(iL−1,0) = 1 if L < +∞. Note that, since I is finite, the case L = +∞
necessarily corresponds to a route r which eventually becomes periodic. Equilib-
rium points as described in Proposition 1 can be written more explicitly in terms
of t solving (11)

xi,r =
(
αrqr(i) + βr

∑
j

xj,rp
(r)(j, i)

)
ti

as follows:

1. For a nonperiodic deterministic route, L < +∞, these equations reduce to a
recursion—for 0 ≤ p < L,

xip,r = αrβ
p
r

p∏
k=0

tik .
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2. For a periodic route r consisting of nodes i0, i1, . . . , ik−1 and then the infi-
nite loop ik, ik+1, . . . , ik+l−1, ik, ik+1, . . . . Provided that the (tik ) are such that
βl

r tik . . . tik+l−1 < 1, the solutions are given by

xih,r = αrβ
h
r

∏
0≤m≤h

tim, 0 ≤ h ≤ k − 1,

(13)

xih,r = αrβ
h
r ti0 ti1 . . . tih

1 − βl
r tik . . . tik+l−1

, h ≥ k.

The above calculations show that an equilibrium point (xi,r ) has a polynomial ex-
pression in t = (tj ) whose degree is related to the rank of i along the route in the
case of a nonperiodic route, and that (xi,r ) is given by a power series in t when the
route r is periodic. Moreover, these quantities have to satisfy the following con-
straints: for i ∈ I , then either ti = 1 or

∑
r xi,r = ci . The exact expression of fixed

points in the case of deterministic routes is therefore very likely to be nontractable.
As will be seen, even the uniqueness is not a simple problem.

The complexity of exact expressions is illustrated by a simple example of a
network with two nodes, I = {1,2}, and two deterministic nonperiodic routes: the
first class enters at node 1, goes to node 2 then exits, whereas the second class does
the opposite. Take µ1 = µ2 = 0 so that β1 = β2 = 1. It is then easy to show that:

1. An equilibrium point associated to (t1, t2) with t1 = t2 = 1 exists if and only
if α1 + α2 ≤ c1 and α1 + α2 ≤ c2. In this case, x1,1 = x2,1 = α1 and x1,2 =
x2,2 = α2.

2. An equilibrium point exists with t1 = 1 and t2 < 1 if and only if

α1 + α2

α1 + α2
c2 ≤ c1 and α1 + α2 > c2.

Under these conditions it is then unique:

x1,1 = α1, x2,1 = α1
c2

α1 + α2
,

x1,2 = x2,2 = α2
c2

α1 + α2
.

3. By symmetry, analogous results hold with t1 = 1 and t2 < 1.
4. An equilibrium point exists with t1 < 1 and t2 < 1 if and only if

α1 + α2

α1 + α2
c2 > c1 and α2 + α1

α1 + α2
c1 > c2.

In this case the solution is unique:

x1,1 = α1t1, x2,1 = α1t1t2,

x1,2 = α2t1t2, x2,2 = α2t2,
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with

t1 = (α1c1 − α2c2 − α1α2) +
√

(α1c1 − α2c2 − α1α2)2 + 4c1α2α
2
1

2α2
1

,

t2 having a similar expression with the subscripts 1 and 2 exchanged.

It is not difficult to check that these four cases are disjoint and cover all situations.
Therefore, the uniqueness of the equilibrium point holds in this case.

A similar approach does not seem possible for a more complicated system of
deterministic routes. Even proving uniqueness in such a context is challenging.

4.3. Uniqueness of equilibrium points. In view of Proposition 2, to prove the
uniqueness of equilibrium points, a contraction property of 
c would suffice. But
it can be shown that 
c is generally not a contraction for classical norms.

For example, in the simple network considered above with β1 = β2 = 1, the
equation 
c(x) = y is

(y1,1, y1,2) = �c1(α1, x2,2) and (y2,1, y2,2) = �c2(x1,1, α2).

When c1 > α1 and c2 > α2, one can choose x and x′ in Xc such that{
α1 + x2,2 ≤ c1, α1 + x′

2,2 ≤ c1, x1,1 + α2 ≤ c2,

x′
1,1 + α2 ≤ c2, x1,2 = x′

1,2, x2,1 = x′
2,1.

Then, in this case, ‖
c(x) − 
c(x
′)‖p = ‖x − x′‖p for p ∈ [1,+∞], where ‖x‖p

is the Lp-norm (‖x‖p)p = ∑
i,r |xi,r |p for p < +∞ and ‖x‖∞ = max{|xi,r | :

(i, r) ∈ I × R}.
Under the condition max{βr : r ∈ R} < 1 and in the case of deterministic non-

periodic routes, the function

x →
(
αrqr(i) + βr

∑
j

xj,rp
(r)(j, i), (i, r) ∈ I × R

)

is a contraction for any Lp-norm. However, the same property does not necessarily
hold for 
c, since it can be shown that the function �c, c > 0, is not a contraction
for any Lp-norm on [0,+∞)R , except when |R| = 1, or when |R| = 2 and p =
+∞.

A dual approach. To prove uniqueness in the general case, the point of view is
changed—instead of looking for x ∈ Xc which are equilibrium points of the limit-
ing dynamics associated to a given vector c = (ci, i ∈ I ) ∈ (0,+∞)I of capacities,
an element x is given and one looks for the set of vectors c such that x is a equilib-
rium point of the limiting dynamics. The uniqueness of the equilibrium point for
a given c is then equivalent to the property that those sets of vectors associated to
two different values of x do not intersect.
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Define

X∞ def.= {x ∈ [0,+∞)I×R :xi,r = 0 if i /∈ Ir}.
It is of course enough to consider the solutions x in X∞ that satisfy (11) for some
t ∈ (0,1]I . The first step of this analysis is to show that for any t ∈ (0,1]I , a solu-
tion x to the system of equations (11) is at most unique.

PROPOSITION 3 (Probabilistic representation). If t ∈ (0,1]I is such that the
system of equations (11) has a solution in X∞, this solution is unique and can be
expressed as

xt
i,r = αrE

( +∞∑
k=0

βk
r

k∏
p=0

t
Z

(r)
p

1{Z(r)
k =i}

)
∀ (i, r) ∈ I × R,(14)

where (Z
(r)
n ) is a ( possibly killed) Markov chain with transition matrix p(r)(·, ·)

and initial distribution qr .

Note that the above expression for (xi,r ) generalizes the formula obtained for
periodic deterministic Markovian routes since, using the same notation as in the
example of periodic deterministic routes, equation (14) gives, for h ≥ k,

xih = αrβ
h
r ti0 ti1 · · · tih

+∞∑
j=0

(
βp

r tik · · · tik+l−1

)j = αrβ
h
r ti0 ti1 · · · tih

1 − β
p
r tik · · · tik+l−1

,

which is formula (13), and xih = αrβ
h
r ti0 · · · tih for h < k.

PROOF OF PROPOSITION 3. The system of equations (11) splits into |R| sub-
systems of equations, one for each r ∈ R, with unknown variables (xi,r , i ∈ Ir).
Consider just one of these |R| systems and remove the index r for simplicity. J is
defined as the range in I of the Markov chain (Zk) with initial distribution q and
transition matrix p(·, ·). Such a subsystem of equations can be expressed as

xi =
(
αq(i) + β

∑
j

xjp(j, i)

)
ti , i ∈ J.

This system of equations has a solution since the system of equations (11) is as-
sumed to have one. For i ∈ J , set yi = xi/(αti) (remember that both α and ti are
positive). The vector y = (yi) then solves the equations

yi = q(i) + ∑
j

yj P̃ (j, i), i ∈ J,(15)

with P̃ (j, i) = βtjp(j, i). The matrix P̃ = (P̃ (i, j)) is sub-Markovian and (Z̃n)

denotes the Markov chain with initial distribution (q(i)) and transition matrix P̃ .
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For i ∈ J , clearly yi ≥ q(i) = P(Z̃0 = i), and by induction, the above equation
gives that, for n ≥ 1,

yi ≥ E
(
1{Z̃0=i} + 1{Z̃1=i} + · · · + 1{Z̃n=i}

)
.

By letting n go to infinity, we get

yi ≥ ui
def.= E

( +∞∑
k=0

1{Z̃k=i}

)
∀ i ∈ J.

For any i ∈ J , the above inequality implies that

+∞∑
k=0

P̃ k(i, i) < +∞,

leading to the conclusion that the state i is transient for the Markov chain (Z̃n).
It is easy to check that (ui) is also a solution of (15). Consequently, the nonneg-

ative vector (vi) = (yi − ui) satisfies the equation

vi = ∑
j

vj P̃ (j, i), i ∈ J,

which is the invariant measure equation for this Markov chain. Since all the states
are transient, we necessarily have vi = 0 for all i ∈ J . The uniqueness is thus
proved. It is easy to check that the representation of (xi) in terms of the Markov
chain (Zn) is indeed given by the representation of (ui) in terms of the Markov
chain (Z̃n). The proposition is thus proved. �

DEFINITION 1. The set T is the subset of t ∈ (0,1]I such that the system of
equations (11) has a solution, denoted by xt = (xt

i,r ) (it is unique by the above
proposition). For t ∈ T and i ∈ I , define

σi(t) = ∑
r

xt
i,r = ∑

r

αrE

( +∞∑
k=0

βk
r

k∏
p=0

t
Z

(r)
p

1{Z(r)
k =i}

)
,

where (Z
(r)
n ) is, as before, a Markov chain with transition matrix p(r)(·, ·) and

initial distribution qr .

LEMMA 1 (Strong monotonicity). If t = (ti) and t ′ = (t ′i ) are elements of
T such that, for any i ∈ I ,

ti < t ′i �⇒ σi(t) ≥ σi(t
′) and t ′i < ti �⇒ σi(t

′) ≥ σi(t),

then t = t ′.
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PROOF. The assumption on t and t ′ gives∑
i∈I

log(t ′i /ti)
(
σi(t

′) − σi(t)
) ≤ 0.(16)

The definition of σi gives the following representation for the difference σi(t
′) −

σi(t):

σi(t
′) − σi(t) = ∑

r

αrE

[ ∞∑
k=0

βk
r

(
k∏

h=0

t ′
Z

(r)
h

−
k∏

h=0

t
Z

(r)
h

)
1{Z(r)

k =i}

]
.

Note that, as in the proof of Proposition 3, the infinite sums within the expectation
are integrable, thereby allowing these algebraic operations. By substituting this
expression into (16) and exchanging summations first on i ∈ I and r ∈ R and then
on i ∈ I and k ∈ N (remembering that I and R are finite), one gets∑

r

αrE

[ ∞∑
k=0

βk
r log

(
t ′
Z

(r)
k

/t
Z

(r)
k

)( k∏
h=0

t ′
Z

(r)
h

−
k∏

h=0

t
Z

(r)
h

)
1{Z(r)

k 
=0}

]
≤ 0

and, by extending the definitions of t and t ′ to the coordinate 0 so that t0 = t ′0 = 1,

∑
r

αr

βr

E

[ ∞∑
k=0

log
(
βr t

′
Z

(r)
k

/βr tZ(r)
k

)( k∏
h=0

βr t
′
Z

(r)
h

−
k∏

h=0

βr tZ(r)
h

)]
≤ 0.

Proposition A.1 of the Appendix applied to the expression inside the expectation
implies that, with probability 1, this integrand should be 0. Consequently, the same
proposition implies that for any r ∈ R, the identity t

Z
(r)
k

= t ′
Z

(r)
k

holds almost surely

for any k ∈ N. Hence, ti = t ′i for any i ∈ Ir and any r ∈ R by definition of Ir . One
concludes that t = t ′, since I = ⋃

r Ir . The lemma is thus proved. �

The main result concerning the equilibrium points of the limiting dynamical
system (5) can now be established:

THEOREM 2 (Uniqueness of equilibrium points). There is a unique equilib-
rium point of the dynamical system (xi,r (t), (i, r) ∈ I × R) defined by (5).

PROOF. For t ∈ T , define Ct as the set of vectors c = (ci) ∈ (0,+∞[I such
that xt is a fixed point of the dynamical system associated with capacities (ci). For
t ∈ T and c ∈ (0,+∞)I , Proposition 1 shows that if c ∈ Ct then, for any i ∈ I ,
σi(t) ≤ ci , and when ti < 1 then σi(t) = ci .

For t , t ′ ∈ T , assume that there exists some c ∈ Ct ∩ Ct ′ . If i ∈ I , the relation
ti < t ′i implies that ti < 1 and therefore that σi(t

′) ≤ σi(t) = ci . From Lemma 1,
one concludes that, necessarily, t = t ′. The uniqueness of equilibrium points read-
ily follows from the result that if z and z′ are equilibrium points of the dynamical
system (5) associated with some vector of capacities c ∈ (0,+∞)I , then there ex-
ist t and t ′ ∈ T such that z = xt and z′ = xt ′ . Since c ∈ Ct ∩ Ct ′ , we have t = t ′
and therefore z = z′. The theorem is thus proved. �
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APPENDIX

This section is devoted to the proof of a key technical result for the proof of
the uniqueness of equilibrium points. It involves an expression which bears some
similarity to a relative entropy.

PROPOSITION A.1. Let u = (ui)i∈N and u′ = (u′
i )i∈N be two sequences of

elements of (0,1]. If the series

+∞∑
i=0

log(u′
i/ui)

( ∏
j≤i

u′
j − ∏

j≤i

uj

)

converges, then its sum is nonnegative and equals 0 if and only if u = u′.

PROOF. It is first proved by induction on n ∈ N that for any u, u′ ∈ (0,1]n,

fn(u,u′) def.=
n∑

i=0

log(u′
i/ui)

( ∏
j≤i

u′
j − ∏

j≤i

uj

)
≥ 0.(A.1)

This is obviously true for n = 0. Now assume this inequality holds for any integer
k < n. Let u and u′ be some fixed elements of (0,1]n.

• If there exists some k such that 1 ≤ k ≤ n and( ∏
j≤k−1

u′
j − ∏

j≤k−1

uj

)( ∏
j≤k

u′
j − ∏

j≤k

uj

)
≤ 0,

then fn(u,u′) can be decomposed as follows:

fn(u,u′) = fk−1
(
(u0, . . . , uk−1), (u

′
0, . . . , u

′
k−1)

)
+ fn−k

(( ∏
j≤k

uj , uk+1, . . . , un

)
,

( ∏
j≤k

u′
j , u

′
k+1, . . . , u

′
n

))
(A.2)

− log

( ∏
j≤k−1

u′
j

/ ∏
j≤k−1

uj

)( ∏
j≤k

u′
j − ∏

j≤k

uj

)
.

From the induction hypothesis and the assumption on k, all terms of the right-
hand side of this identity are nonnegative, so fn(u,u′) ≥ 0.

• Otherwise, for any 0 ≤ k ≤ n, the quantity
∏

j≤k u′
j − ∏

j≤k uj has a constant
sign and is not 0 (positive, say). There are two cases:

1. If uk ≤ u′
k for all k such that 0 ≤ k ≤ n, all terms in the sum defining fn(u,u′)

are nonnegative, and hence fn(u,u′) ≥ 0.
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2. If not, let k ≤ n be the first index such that uk > u′
k . Since u0 < u′

0, we have
k ≥ 1 and can write

fn(u,u′) = fn−1[(u0, . . . , uk−2, uk−1uk,uk+1, . . . , un),

(u′
0, . . . , u

′
k−2, u

′
k−1u

′
k, u

′
k+1, . . . , u

′
n)]

+ log(u′
k−1/uk−1)

(
(1 − u′

k)
∏

j≤k−1

u′
j − (1 − uk)

∏
j≤k−1

uj

)
.

The first term is nonnegative from the induction hypothesis. The second
one is also nonnegative, since uk−1 ≤ u′

k−1, u′
k ≤ uk and

∏
j≤k−1 uj ≤∏

j≤k−1 u′
j . Therefore, fn(u,u′) ≥ 0 also holds in this case. The proof by

induction is thus completed.

Inequality (A.1) is thus true for any n ∈ N, implying that for any u, u′ ∈ (0,1]N,

f∞(u,u′) def.=
+∞∑
i=0

log(u′
i/ui)

( ∏
j≤i

u′
j − ∏

j≤i

uj

)
≥ 0

whenever the series converges. The first part of the proposition is thus proved.
Assume now that f∞(u,u′) = 0 for some u, u′ ∈ (0,1]N such that the series

converges. Using the same kind of decomposition as in equation (A.2), f∞(u,u′)
can be expressed as, for some fixed k ≥ 1,

f∞(u,u′) = fk−1
(
(u0, . . . , uk−1), (u

′
0, . . . , u

′
k−1)

)
+ f∞

(( ∏
j≤k

uj , uk+1, . . .

)
,

( ∏
j≤k

u′
j , u

′
k+1, . . .

))

− log

( ∏
j≤k−1

u′
j

/ ∏
j≤k−1

uj

)( ∏
j≤k

u′
j − ∏

j≤k

uj

)
= 0.

The second term of the right-hand side is clearly well defined, since f∞(u,u′) is.
The first and second terms being nonnegative, we have

log

( ∏
j≤k−1

u′
j

/ ∏
j≤k−1

uj

)( ∏
j≤k

u′
j − ∏

j≤k

uj

)
≥ 0.

Consequently, the difference u′
0u

′
1 · · ·u′

k − u0u1 · · ·uk has a constant sign for any
k ∈ N. It can be assumed that these expressions are nonnegative.

1. If ui ≤ u′
i holds for any i ≥ 0, then each term of the infinite sum defining

f∞(u,u′) is nonnegative and therefore null, since f∞(u,u′) = 0. It clearly im-
plies that ui = u′

i for all i ∈ N.
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2. Otherwise, since u0 ≤ u′
0, define n ≥ 1 as the smallest integer such that

un > u′
n. Since u0u1 · · ·un ≤ u′

0u
′
1 · · ·u′

n, there exists some index i < n satis-
fying ui < u′

i . Define k as the largest such index. In particular, for k < i < n,
one has ui = u′

i . Therefore,

f∞(u,u′) = f∞
((

u0, . . . , uk−1,

n∏
j=k

uj , un+1, . . .

)
,

(
u′

0, . . . , u
′
k−1,

n∏
j=k

u′
j , u

′
n+1, . . .

))

+ log(u′
k/uk)

((
1 − ∏

k<j≤n

u′
j

) ∏
j≤k

u′
j −

(
1 − ∏

k<j≤n

uj

) ∏
j≤k

uj

)

= 0.

The first term is nonnegative and it is easily checked by using the definitions of
k and n that the second one is positive. This equality is therefore absurd. This
second case is not possible.

The proposition is thus proved. �
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