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A SPATIALLY EXPLICIT MODEL FOR COMPETITION AMONG
SPECIALISTS AND GENERALISTS IN A HETEROGENEOUS

ENVIRONMENT

BY N. LANCHIER AND C. NEUHAUSER

University of Minnesota

Competition is a major force in structuring ecological communities. The
strength of competition can be measured using the concept of a niche. A niche
comprises the set of requirements of an organism in terms of habitat, environ-
ment and functional role. The more niches overlap, the stronger competition
is. The niche breadth is a measure of specialization: the smaller the niche
space of an organism, the more specialized the organism is. It follows that,
everything else being equal, generalists tend to be more competitive than spe-
cialists. In this paper, we compare the outcome of competition among gener-
alists and specialists in a spatial versus a nonspatial habitat in a heterogeneous
environment. Generalists can utilize the entire habitat, whereas specialists are
restricted to their preferred habitat type. We find that although competitive-
ness decreases with specialization, specialists are more competitive in a spa-
tial than in a nonspatial habitat as patchiness increases.

1. Introduction. An ecological community is an assembly of populations that
inhabit the same spatial location at the same time. Understanding the forces that
shape such communities has been the goal of community ecology.

Competition was identified early on as an important driver of community as-
sembly and is closely linked to the concept of a niche, which was introduced by
Elton in 1927 [12]. Elton defined niche as “the status of an animal in its commu-
nity” and used it to explain how multiple species can coexist within a community.
Hutchinson [15] formalized this concept and defined niche mathematically as a
subset of an n-dimensional hypervolume. Species with overlapping niches com-
pete with each other. One of the main insights has been that in order for species to
coexist, they cannot occupy identical niches, that is, identical subsets of the niche
space. Although delineating the exact niche of a species is nearly impossible in
nature, the concept has proven quite useful, particularly in mathematical models
where niches can be identified more easily.

Species that coexist are able to divide up the niche space so that each species
occupies some subset of the niche space by itself. It thus follows that commu-
nities composed of species with narrower niches can be more species-rich than
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those composed of species with broader niches (see, e.g., [6]). We call the former
specialists and the latter generalists.

Much research has been done to understand the roles of generalists and special-
ists in ecological communities. No clear patterns have emerged. Some taxa consist
of mostly specialists. For instance, about 90% of herbivorous insects are highly
specialized, feeding on three or fewer plant families [2]. Others are dominated by
generalists. For instance, 60% of human pathogens are zoonotic, that is, they infect
both humans and nonhuman animals, and often infect hosts from different orders
or classes [22].

Evolutionary ecologists have used optimal behaviors of individuals to gain in-
sights into the question of relative success of specialists versus generalists, in order
to assess these strategies in an evolutionary context and ultimately to predict com-
munity structure. Extending the work of Rosenzweig [21], Brown [5] found in
a theoretical study on habitat selection that in an environment with two habitat
types, three scenarios are possible: (a) two specialists, one for each habitat type,
(b) one generalist who occupies both habitat types and (c) one generalist and one
specialist. Scenario (a) occurs when there is no cost to habitat selection, whereas
scenario (b) occurs when there is a cost. Scenario (c) occurs when there is an
asymmetry in the two habitat types, either in terms of relative abundances or pro-
ductivities.

The theoretical work mentioned above relied on nonspatial models and thus did
not incorporate a way to account for the often very localized interactions between
competitors. Past research on competition has demonstrated that the inclusion of a
spatial component with local interactions can alter predictions based on nonspatial
models [19] or offer new insights into consequences of local interactions [1]. In
this paper we employ the multitype contact process [18] in a heterogeneous envi-
ronment to investigate how local, competitive interactions among specialists and
generalists affect their abilities to coexist. We define the environment as a patch-
work of two host types on which specialists and generalists feed. Specialists feed
on one of the two hosts, whereas the generalists can consume either host. We as-
sume that the environment does not change over time.

We begin by defining the environment. To set the spatial configuration of the
host population, we let L ≥ 1 be an integer, which we will refer to as the space
scale, introduce the d-dimensional box HL = [−L,L)d and define H1 and H2 as
a partition of Z

d given by

H1 = ⋃
z∈H1

(2Lz + HL) and H2 = ⋃
z∈H2

(2Lz + HL),

where H1 and H2 denote the sets of z ∈ Z
d such that z1 + · · · + zd is even and

odd, respectively. In our biological context, Hi will represent the set of sites that
are permanently occupied by a host of type i, i = 1,2.

Into this host population we introduce two specialist species and one generalist
species that differ in their abilities to reproduce. We will refer to these species
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collectively as consumers. To describe their evolution, we consider a continuous-
time Markov process whose state at time t is a function ξt : Zd −→ {0,1,2,3}.
A site x ∈ Z

d is said to be occupied by a specialist of type 1 (resp. 2) if ξ(x) = 1
(resp. 2), and a generalist if ξ(x) = 3, with the condition ξ(x) = 0 denoting the
absence of a consumer. The local dynamics at site x are described by the following
transition rates:

0 → 1 at rate α
∑

0<‖x−z‖≤R

1{ξ(z)=1;x∈H1} 1 → 0 at rate 1,

0 → 2 at rate α
∑

0<‖x−z‖≤R

1{ξ(z)=2;x∈H2} 2 → 0 at rate 1,

0 → 3 at rate β
∑

0<‖x−z‖≤R

1{ξ(z)=3} 3 → 0 at rate 1,

where ‖x‖ = supi=1,2,...,d |xi |. We refer to R as the dispersal range. To understand
the evolution of our stochastic process when d = 2, let us imagine an infinite chess-
board where each of its squares has length 2L (and thus 2L × 2L sites). The black
and white squares represent parts of the habitat that are permanently occupied by
hosts of type 1 and 2, respectively. Particles of type 3, that is, the generalists, do
not see the colors of the chessboard and, in the absence of particles of type 1 and 2,
perform a (translation-invariant) contact process. That is, each 3 tries to give birth
onto each of its neighboring sites at rate β , the birth occurring if and only if the
offspring is sent to a site that is not already occupied by a consumer, regardless of
the type of the host present at that site. The dynamics of the specialists are quite
different since black (resp. white) squares present unsuitable habitat for particles
of type 2 (resp. 1). Specifically, if the offspring of a 1 (resp. 2) is sent to a white
(resp. black) square, then the birth is suppressed.

The mean-field model. Before we describe the behavior of the spatially ex-
plicit stochastic model, we will look at the mean-field model [9], that is, we will
pretend that all sites are independent and that the probability of a site being oc-
cupied by a consumer of type i depends only on the host type at that site, but
is otherwise spatially homogeneous. This then results in a system of differential
equations for the densities of specialists and generalists. Let vij denote the den-
sity of hosts of type i associated with a consumer of type j , where i = 1,2 and
j = 1,2,3. We let

u1 = 1
2 − v11 − v13 and u2 = 1

2 − v22 − v23

denote the densities of unassociated hosts of type 1 and 2, respectively. The con-
stant 1/2 corresponds to the limit of the proportions of the two host types in a
spatial box whose size tends to infinity. The mean-field limit is obtained by letting
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the dispersal range R tend to infinity. To obtain a meaningful limit, we need to
rescale the parameters α and β by the neighborhood size, that is, we set

α = a

νR

and β = b

νR

,

where νR denotes the size of the dispersal neighborhood, that is, νR = |{z : 0 <

‖x − z‖ ≤ R}|. The following system of differential equations describes the mean-
field behavior:

dv11

dt
= −v11 + au1v11,

dv22

dt
= −v22 + au2v22,

dv13

dt
= −v13 + bu1(v13 + v23),

dv23

dt
= −v23 + bu2(v13 + v23).

A standard linear stability analysis reveals the equilibrium behavior [20]. If b < 1
and a < 2, then the trivial equilibrium (v11 = v22 = v13 = v23 = 0) is the only lo-
cally stable equilibrium. If a > 2b and a > 2, then there is a locally stable equilib-
rium point with v11 = v22 > 0 and v13 = v23 = 0 (Figure 1; picture on the left). If
a < 2b and b > 1, then there is a locally stable equilibrium in which v11 = v22 = 0
and v13 = v23 > 0 (Figure 1; picture on the right). Furthermore, if one of the spe-
cialists is initially absent (say, v22 = 0 at time 0), then there is an additional equilib-
rium in which v11, v13 and v23 are positive, provided a > 2 and 2a

a+2 < b < a
2 . This

FIG. 1. Solution curves of the mean-field model. Picture on the left: a = 5 and b = 2. Picture on
the right: a = 3 and b = 2. In each of the pictures, we start with v11 = v22 and v13 = v23.
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equilibrium can, however, be invaded by specialist 2, which then outcompetes the
generalist, resulting in the equilibrium in which v11 = v22 > 0 and v13 = v23 = 0.
There is no locally stable equilibrium in which both specialists and the generalist
coexist (i.e., all three have positive densities). A necessary condition for such an
equilibrium is a = 2b > 2, but the resulting equilibrium is not locally stable (it is
neutrally stable).

The spatially explicit model. We now return to the spatially explicit model
with parameters α and β . Our results show that the inclusion of a spatial structure
in the form of local interactions can significantly modify the outcome of compe-
tition among specialists and generalists. While in the mean-field model, both the
dispersal range R and the space scale L lose their meaning, the study of the spatial
model reveals that setting L much larger than R helps the specialists to compete.

As explained above, in the absence of specialists, the process for the generalists
reduces to a translation-invariant contact process with parameter β . In particular,
there exists a critical value λc ∈ (0,∞) such that the following holds: If β ≤ λc, the
process converges in distribution to the “all 0” configuration. If β > λc, there exists
a stationary measure µ3 that concentrates on configurations with infinitely many
3’s ([3] or [17], Theorem 2.25). A simple coupling argument shows that specialists
die out when α ≤ λc. To show this, we consider an initial configuration ξ0 with
ξ0(x) �= 3 for all x ∈ Z

d . Let ζt denote the contact process with parameter α and
initial configuration ζ0(x) = 0 if ξ0(x) = 0, and ζ0(x) = 3 otherwise, that is, ζ0 can
be deduced from ξ0 by replacing each specialist by a generalist. Both processes can
then be constructed graphically from the same collection of independent Poisson
processes [13] in such a way that ζt has more consumers than ξt at any time t ≥ 0
(see Section 2 for a detailed description of this graphical representation). Since ζt

(the process for the generalists) dominates ξt (the process for the specialists) and ζt

converges to the “all 0” configuration for α ≤ λc, it follows that ξt also converges
to the “all 0” configuration for α ≤ λc. Hence specialists die out when α ≤ λc. It is
more difficult to show that specialists can survive when α > λc (see Theorem 3).

To investigate the competition between specialists and generalists, we now con-
sider the process starting with infinitely many consumers of each type. Relying on
a new coupling argument, we may run our stochastic process ξt and the 3-color
multitype contact process ηt (in which particles of type 1 and 2 give birth at rate α

and particles of type 3 give birth at rate β) on the same probability space in such a
way that, starting from the same initial configuration, ξt has more 3’s and fewer 1’s
and 2’s than ηt . According to Theorem 1 in [18] the process ηt converges in dis-
tribution to µ3, provided β > α > λc. The above-mentioned coupling then implies
that the generalists outcompete the specialists. An analysis of the dual process will
show that the result still holds when α = β > λc. That is, while coexistence occurs
for the multitype contact process in a homogeneous environment when α = β and
d ≥ 3 (see [18]), the process in this heterogeneous environment gives the gener-
alists an advantage over specialists in any dimension. This is summarized in the
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following theorem where “⇒” denotes weak convergence, and µ3 is the upper
invariant measure of the basic contact process introduced above.

THEOREM 1. Assume that L and R are fixed and that β ≥ α and β > λc. If ξ0
is translation-invariant and P(ξ0(x) = 3) > 0, then ξt ⇒ µ3.

This result corresponds to the case b ≥ a and b > 1 in the mean-field model
and tells us that the fragmentation of the environment allows the generalists to
outcompete the specialists in both the spatial and the nonspatial models, provided
the birth rate of the generalists is at least as high as that of the specialists.

The next step is to investigate the behavior of the spatially explicit model when
the specialists have a higher birth rate than the generalists. In the mean-field model,
we have seen that the condition a ≥ 2b is required for the specialists to invade the
generalists in their equilibrium. The behavior of the stochastic process, however,
is different. Let us choose a space scale L much larger than the range of inter-
actions R so that well inside black squares, specialists of type 1 and generalists
behave nearly like a multitype contact process. In particular, specialists locally
outcompete generalists, provided α > β . The survival of specialists, however, is
not clear since the contact process on a finite set (here the 2L × 2L square when
d = 2) always converges to its absorbing state, the “all 0” configuration. To show
that the specialists actually survive on the infinite chessboard (with large squares),
we will prove that, with probability close to 1, the 1’s can invade the four diago-
nally adjacent black squares before going extinct. The trickiest point of the proof
will be to show that, with high probability, a specialist of type 1 in the middle of
a black square will produce four “invasion paths” to bring its offspring within a
finite distance (independent of L) of each of the four corners of the square. Since
white squares are forbidden for the 1’s, the invasion paths will have to be contained
in the black square. Comparing the set of black squares occupied by (a significant
quantity of ) 1’s with the set of wet sites in a one-dependent oriented percolation
process will then yield the following:

THEOREM 2. Assume that R is fixed and that initially there are infinitely many
1’s and 3’s, but no 2’s. If α > β > λc and d ≥ 2, then 1’s and 3’s coexist, pro-
vided L is sufficiently large.

Since specialists of type 1 and 2 do not interfere with each other, the proof of
Theorem 2 also implies the following:

THEOREM 3. Assume that R is fixed and d ≥ 2. If α > λc and α > β , and
initially there are infinitely many 1’s and 2’s, then 1’s and 2’s coexist, provided
the space scale L is sufficiently large.
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FIG. 2. Simulation results for the spatially explicit model with parameter β = 2 on the 200 × 200
square with periodic boundary conditions. In both pictures, the vertical axis denotes the common
birth rate of specialists. The curves represent the smallest α such that the density of specialists is
greater than the density of generalists after 100 units of time. The simulation results suggest that
when the range of the interactions of the symbionts is larger than the length of the squares, the com-
petitiveness of the specialists reduces significantly, just as in the mean-field model. The competitive-
ness of the specialists increases when the range interactions is short and the habitat is coarse-grained
as shown in Theorem 2.

Unfortunately, Theorem 3 does not tell us if all three consumers coexist when
d ≥ 2. Numerical simulations on a 200 × 200 torus indicate that the generalists
persist for a very long time along the boundaries of the squares of the chessboard,
namely where the density of specialists is low, but proving or disproving that they
can percolate on the infinite lattice would be difficult.

Comparison of the spatially explicit and the mean-field models. In the mean-
field model, that is, in the absence of spatial structure, the condition for the special-
ists to invade the generalists is given by a ≥ 2b. The factor 2 comes from the fact
that only half of the habitat is available for each specialist. In the spatially explicit
model, the dimension d as well as the space scale L and the dispersal range R

can profoundly modify the outcome of the competition. In the one-dimensional
case, the behavior of the spatial model is quite easy to predict when R ≤ 2L. Since
all the offspring of a specialist are confined to their parents’ segment of length
2L < ∞ and are unable to reach other segments (because R ≤ 2L), the special-
ists eventually go extinct so that the only nontrivial stationary distribution of the
process is µ3. To describe the behavior of the process when d ≥ 2, let αc denote
the infimum of α’s such that the specialists can survive on the chessboard. The-
orems 1 and 3 tell us that if the birth rate of the generalists is equal to β , then
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β < αc < ∞. Moreover, αc → β as the space scale L tends to infinity. That is, tak-
ing large L makes the specialists much more competitive in the spatially explicit
model than in the mean-field model. The right-hand picture in Figure 2 illustrates
the effects of L on the outcome of the competition. Another interesting corollary
of Theorem 3 is that, in the absence of generalists, λc < αc < ∞ and αc → λc as L

tends to infinity. In conclusion, our (multitype) contact process on the chessboard
behaves nearly like the corresponding (multitype) contact process in a homoge-
neous environment when the size of the squares is large, while their respective
nonspatial versions differ significantly.

2. Duality. Proof of Theorem 1. We saw in the Introduction that the behavior
of the process when α < β is a straightforward consequence of Theorem 2 of [18],
so we will now focus on the case α ≥ β . The key to the proof of Theorem 1 is
duality. To define the dual process of our heterogeneous multitype contact process,
we start by introducing a graphical representation from which the process with
parameters α and β , where α ≥ β , can be constructed.

The graphical representation when α ≥ β . For any x, z ∈ Z
d , 0 < ‖x − z‖ ≤

R, let {T x,z
n :n ≥ 1} and {Ux

n :n ≥ 1} denote the arrival times of independent Pois-
son processes with parameters α and 1, respectively. At times T x,z

n , we draw an
arrow from site x to site z, toss a coin with success probability (α − β)/α and, if
there is a success, label the arrow with an s (for specialist). Moreover, if x ∈ Hi

and z ∈ Hj with i �= j , then we label the arrow with a g (for generalist). This can
be interpreted as follows. If, at time T x,z

n , the site x is occupied by a consumer
and z is empty, then the consumer at site x, regardless of type, gives birth to a con-
sumer of the same type through this arrow, unless the arrow is labeled with an s or
a g. Only specialists (resp. generalists) can give birth if the label is s (resp. g). We
stipulate that arrows labeled with both s and g cannot be used by either consumer.
To complete the construction, we put a “×” at (x,Ux

n ) to indicate that a consumer,
regardless of its type, dies.

The dual process. The dual process in the heterogeneous environment is de-
fined as for the process in a homogeneous environment. We say that there is a path
from (x, s) to (z, T ), where 0 ≤ s ≤ T , if there is a sequence of times s0 = s <

s1 < · · · < sn+1 = T and a sequence of spatial locations x0 = x, x1, . . . , xn = z

such that the following two conditions hold:

1. for i = 1,2, . . . , n, there is an arrow from xi−1 to xi at time si , and
2. for i = 0,1, . . . , n, the vertical segments {xi} × (si, si+1) do not contain any

×’s.

A dual path from (x, T ) to (z, T −s) then refers to a path from (z, T −s) to (x, T ).
The dual process starting at (x, T ) is defined by setting

ξ̂ (x,T )
s = {z ∈ Z

d : there is a dual path from (x, T ) to (z, T − s)}.
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The dual process is naturally defined only for 0 ≤ s ≤ T but it is convenient to
assume that the Poisson processes involved in the graphical representation are de-
fined for negative times so that the dual process can be defined for all s ≥ 0.

We introduce the dual process in order to deduce the state of site x at time T

from the configuration at earlier times. The aim is to understand the ancestry of
(x, T ) by working backwards in time. As for the multitype contact process, at any
time s ≥ 0, the elements of ξ̂

(x,T )
s , called ancestors, can be arranged according

to the order in which they determine the type of (x, T ). This hierarchy can be
deduced from the tree structure of

� = {(
ξ̂ (x,t)
s , s

)
: 0 ≤ s ≤ T

}
,

and we refer to [18], Section 2, and [11], Section 3, for a detailed description. To
have a rigorous definition of the hierarchy of ancestors, we introduce a function φs

that, at any time s ≥ 0, maps the dual process into the set of sequences with integer
values S equipped with the usual lexicographic order 	. We recall that for any
v,w ∈ S,

v 	 w if and only if vk = wk for k = 1,2, . . . , n − 1 and vn < wn

for some integer n ≥ 1. To facilitate the writing of φs , we identify any v ∈ S such
that

vn �= 0 and vk = 0 for k ≥ n + 1

with the vector (v1, v2, . . . , vn). The function φs is defined inductively in the fol-
lowing way. First, we go down the graphical representation starting at (x, T ), de-
note by T − sx the first time a death mark is encountered at site x and let φs(x) = 0
for any 0 ≤ s ≤ sx . Assume that a site z is added to the dual process at time T − u

and denote by T − sz the first time we encounter a death mark at site z by going
backward in time starting from (z, T − u). We then go back up from (z, T − sz) to
(z, T − u) and, each time we encounter the tip of an arrow, denote its space–time
location by (zk, T − sk), with sz > s1 > · · · > sn > u. For k = 1,2, . . . , n, denote
by T − szk

the first time a death mark is encountered at site zk . We then set

φs(zk) = (u, k) where u = φsk (z) for sk ≤ s ≤ szk
.

See Figure 3, left-hand picture. This naturally introduces a hierarchy in the set of
ancestors where, given two sites y and z belonging to ξ̂

(x,T )
s , site y comes before

site z in the hierarchy if and only if φs(y) 	 φs(z). The spatial location of the first
ancestor at time t − s is denoted by ξ̂

(x,T )
s (1). Later on, this ancestor will be called

the distinguished particle.
The space–time point (x, T ) is said to live forever if ξ̂

(x,T )
s �= ∅ for all s ≥ 0.

Provided (x, T ) lives forever, the distinguished particle has a nice feature, namely
that its path can be broken up at renewal points into independent and identically
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FIG. 3. Tree structure of the dual process. Left-hand picture: Construction of the function φs and
description of the ancestor hierarchy at time 0. Right-hand picture: Spatial and temporal locations
of the renewal points. In both pictures, the bold lines refer to the path of the distinguished particle.

distributed pieces. Renewal points are defined as follows. If at time s the distin-
guished particle jumps to a site y such that (y, s) lives forever, then (y, s) is a re-
newal point. Let (Sk, Tk) denote the kth renewal point, Xi the spatial displacement
between consecutive renewal points and τi the corresponding temporal displace-
ment, that is,

Sk = x +
k∑

i=1

Xi and Tk =
k∑

i=1

τi.

See Figure 3, right-hand picture.

PROPOSITION 2.1 ([18]). Conditioned on the event that (x, T ) lives for-
ever, the random vectors {(Xi, τi)}i≥1 are independent and identically distributed.
Moreover, the tail distributions of Xi and τi have exponential bounds, that is,

P(‖Xi‖ > t) ≤ Ce−γ t and P(τi > t) ≤ Ce−γ t

for appropriate C < ∞ and γ > 0.

Before proving Theorem 1, we need to describe an algorithm that allows us to
deduce the type of (x, T ) from the (topological) structure of � and the hierarchy of
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the ancestors. We look for the first ancestor in the hierarchy that does not land on an
empty site at time 0. If this ancestor lands on a specialist (resp. generalist) at time 0,
then (x, T ) will be occupied by a specialist (resp. generalist) of the same type
unless the path crosses a g-arrow (resp. s-arrow) on its way up to (x, T ). If it lands
on a specialist (resp. generalist) and the path crosses a g-arrow (resp. s-arrow),
this specialist (resp. generalist) can block some other ancestors from determining
the type of (x, T ) so we will need to remove these ancestors from the hierarchy.
To do this, we follow the path on its way up to (x, T ) until we first encounter a
g-arrow (resp. s-arrow), then remove from the hierarchy all the ancestors of the
dual process starting at the point where this arrow is attached, repeat the same
algorithm with the first remaining ancestor of the hierarchy at time 0, and so on.
The algorithm halts whenever we find an ancestor that successfully reaches (x, T ).
If none of the ancestors succeed, (x, T ) will be empty.

Proof of Theorem 1. It remains to prove Theorem 1 for α = β . The proof is
similar to the proof of Theorem 1 in [18]. We begin by assuming that the dual
process starting at (x, T ) lives forever, an event with positive probability since
α > λc. We will prove that P(ξT (x) = 3) → 1 as T → ∞ on the set where (x, T )

lives forever. Without loss of generality, we can suppose that x ∈ H1. Proposi-
tion 2.1, together with the irreducibility of the random walk associated with the
renewal points, implies that there is a subscript k almost surely finite such that
Sk ∈ H2. In particular, since what happens before and after each renewal is inde-
pendent, we can inductively extract a subsequence of renewal points as follows.
We set k0 = 0 and, for any i ≥ 1, let

ki =
{

min{k > ki−1 :Sk ∈ H2}, if i is odd,
min{k > ki−1 :Sk ∈ H1}, if i is even.

By continuity of the path, the distinguished particle will cross, on its way up to
(x, T ), at least one arrow that crosses from H1 to H2 (or vice versa) between time
T − Tki

and time T − Tki−1 . It follows from our graphical representation that such
an arrow is a g-arrow which will block the specialists from determining the type
of (x, T ).

To prove that P(ξT (x) = 3) → 1 as T → ∞ [provided (x, T ) lives forever], we
will construct a sequence of ancestors that are good candidates to bring a generalist
to (x, T ). We start the dual process at (x, T ) and determine the ordered set of
ancestors after T units of time by going backward in time. The first member of
the sequence, denoted by ηT (1), is the distinguished particle. We follow the path
this ancestor takes to determine the type of (x, T ) by going forward in time until
the first time we cross a g-arrow. We then discard all the ancestors that cross this
g-arrow on their way up to (x, T ). The first ancestor that is left after discarding
these ancestors, denoted by ηT (2), is the second member of our sequence. Since,
before discarding, the tree starting at each renewal point is linearly growing in
time (in the sense described by the Shape Theorem in [17], page 128), we can find,
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by choosing t sufficiently large, an integer i ≥ 1 such that, even after discarding,
the dual starting at (Ski

, Tki
) lives forever. This tells us that the path the second

member will take to determine the type of (x, T ) goes through the ki th renewal
point. The definition of the sequence of times Tki

, i ≥ 1, implies that the second
member crosses at least ki g-arrows on its way up to (x, T ). As previously, we
discard all the ancestors that cross the first g-arrow encountered by the second
member on its way up to (x, T ), define the third member of the sequence as the
first remaining ancestor, and so on, until we run out of ancestors. Since different
ancestors can occupy the same site, we now extract a further subsequence so that,
at time 0, all the candidates are different. We start with ηT (1) and discard all the
members of {ηT (k) :k ≥ 2}, that occupy the same site as ηT (1). We then take the
next ancestor that is left, and so on.

We now denote by ηT the set of members of the subsequence we have just
defined. With the possible exception which can occur if it is the last member of the
subsequence [since it may happen that this member does not cross any g-arrow on
its way up to (x, T )], if a site z ∈ ηT is occupied by a specialist at time 0, then this
specialist will be blocked on its way up to (x, T ) by a g-arrow. On the other hand,
if z is occupied by a generalist, this generalist will be able to bring its offspring up
to (x, T ) since there are no s-arrows in our graphical representation (recall α = β).
In particular, if we denote by �3 the set of sites occupied at time 0 by a particle of
type 3, we only need to prove that

P(ηT ∩ �3 �= ∅) → 1 as T → ∞.

Since the tree growing out of (x, T ) is linearly growing in time, for any ε > 0 and
M > 0, there exists a time t0 > 0 such that

P(cardηT < M) ≤ ε ∀T ≥ t0.

To conclude, we apply Lemma 9.14 from [14] which tells us that if ξ0 is
translation-invariant and P(ξ0(x) = 3) > 0 then, given ε > 0, there is an M > 0
such that if cardηT ≥ M , then

P(ηT ∩ �3 = ∅) ≤ ε.

This, together with the previous inequality, completes the proof of Theorem 1.

3. Proof of Theorem 2. This section is devoted to the proof of Theorem 2,
which describes the behavior of the stochastic process when α > β > λc and the
space scale L is large. To avoid cumbersome notation, we will prove the result
only when d = 2, but would like to point out that when d ≥ 3, each step of the
proof is the same. The proof relies on a rescaling argument (see, e.g., [4, 8]). The
basic idea is to show that, for any ε > 0, members of the family of processes
under consideration, when viewed on suitable length and time scales, dominate
a one-dependent, oriented site percolation process in which sites are open with
probability at least 1 − ε.
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Let B = HL = [−L,L)2. To prepare for a multiscale argument, we define a
sequence of spatial boxes Jn = [−L/n,L/n)2, n = 1,2, . . . . For any z = (z1, z2)

in Z
2 and any positive integer n ∈ N

∗, we set

�(z) = (2Lz1,2Lz2), B(z) = �(z) + B and Jn(z) = �(z) + Jn.

Moreover, we tile J4(z) with L0.1 × L0.1 squares by setting

π(w) = (L0.1w1,L
0.1w2), D = [−L0.1/2,L0.1/2)2,

D(w) = π(w) + D, Iz = {w ∈ Z
2 :D(w) ⊆ J4(z)}.

To prove that specialists and generalists coexist, we start by introducing the fol-
lowing two collections of good events. We set T = L1.5.

1. For z1 and z2 both even or both odd, we will say that J4(z) is s-good if J4(z) is
void of 3’s and has at least one particle of type 1 in each of the squares D(w),
w ∈ Iz. For z1 and z2 both even for even k and z1 and z2 both odd for odd k, we
will say that (z, k) is s-occupied if the spatial box J4(z) is s-good at time kT .

2. For z1 even and z2 odd or z1 odd and z2 even, we will say that J4(z) is g-good
if J4(z) is void of 1’s and has at least one 3 in each of the squares D(w), w ∈ Iz.
For z1 even and z2 odd for even k and z1 odd and z2 even for odd k, we will
say that (z, k) is g-occupied if the spatial box J4(z) is g-good at time kT .

The main ingredient needed to prove that the specialists survive is the following:

PROPOSITION 3.1. Assume that α > β > λc and J4 is s-good at time 0. For
any ε > 0, the space scale parameter L can then be chosen in such a way that

P
(
J4(1,1) is s-good at time T

)
> 1 − ε.

The idea is that if some square B(z) ⊆ H1 is occupied by a cluster of specialists
at a given time, then this cluster will invade the four diagonal squares with prob-
ability close to 1, and this will occur in less than T units of time. It then follows
from well-known results about oriented site percolation (see, e.g., [7, 10]) that the
s-occupied sites percolate provided ε > 0 is sufficiently small, implying that the
specialists survive. To prove that both consumers coexist, we still need to show
that the g-occupied sites percolate as well. More precisely, we have, analogously:

PROPOSITION 3.2. Assume that β > λc and J4(0,1) is g-good at time 0. For
any ε > 0, the space scale parameter L can then be chosen in such a way that

P
(
J4(1,0) is g-good at time T

)
> 1 − ε.

We illustrate the strategy of Proposition 3.1 in Figure 4. Let z = (1,1) and
x ∈ J4(z). We will then construct a dual path At starting at A0 = (x, T ) that lands
at time 0 on the target set J4 in the heart of the cluster of specialists. This selected
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FIG. 4. Picture of the selected path.

path will have to block 3’s, but not 1’s, from determining the type of (x, T ). In
particular, the important step will be to move At from J4(z) to J4 without escaping
from the set H1, by crossing the corner at the point Lz = (L,L). The proof of
Proposition 3.2 is similar.

Construction of the selected path. The construction of the selected path At re-
lies on the repositioning algorithm described in [11], supplemented with a restart
argument. To define At , we will first construct a sequence of auxiliary processes
for k = 0,1, . . . , denoted by {ξ̂ k

t }t≥0, called the kth test path, with ξ̂ k
t taking values

in Z
2, and then show in a series of lemmas that we can use the test paths to con-

struct At . We will say that a renewal point is associated with an s-arrow if the first
arrow a particle crosses, starting at this renewal point and moving up the graphical
representation, is an s-arrow (see Figure 5, left-hand picture). Furthermore, let �

denote the straight line going through the origin (0,0) and the point Lz, and de-
note by dist(·, ·) the Euclidean distance. We also let δ > 0 be a constant, to be fixed
later.

The test paths are defined inductively (see Figure 5, right-hand picture). To con-
struct the first test path {ξ̂1

t }t≥0, we define a sequence of stopping times σ1,j ,
j = 0,1,2, . . . , with σ1,0 = 0. The process ξ̂1

t starts at ξ̂1
0 = x and follows the

path of the first ancestor starting at (x, T ) until the first time, denoted by σ1,1,
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FIG. 5. Left-hand picture: Picture of the renewal points. The first renewal point (S1, T1) is not asso-
ciated with an s-arrow. The second one, namely (S2, T2), is associated with an s-arrow. In particular,
σ1,1 = T2. Right-hand picture: Picture of the first test path (solid path). The bold straight lines refer

to the jump process S1
t . The points represent the renewal points associated with an s-arrow. The test

path ξ̂1
t is repositioned at closed points and left where it was at that time at open points.

that it jumps to a renewal point associated with an s-arrow. At time σ1,1, we either
leave ξ̂1

t where it is at that time or we reposition ξ̂1
t . To determine whether and

where to reposition ξ̂1
t , we denote the location of the second ancestor in the hier-

archy at time σ1,1, if it exists, by Bσ1,1 . If Bσ1,1 exists and the dual process starting
at (Bσ1,1, T − σ1,1) lives forever, then we have the following three alternatives:

1. If dist(ξ̂1
σ1,1

,�) > δ and dist(Bσ1,1,�) < dist(ξ̂1
σ1,1

,�), then we set ξ̂1
σ1,1+ =

Bσ1,1 .

2. If dist(ξ̂1
σ1,1

,�) ≤ δ and dist(Bσ1,1,0) < dist(ξ̂1
σ1,1

,0), then we set ξ̂1
σ1,1+ =

Bσ1,1 .

3. Otherwise, we set ξ̂1
σ1,1+ = ξ̂1

σ1,1
.

If Bσ1,1 does not exist, or the dual process starting at (Bσ1,1, T −σ1,1) does not live

forever, then we set ξ̂1
σ1,1+ = ξ̂1

σ1,1
.

To define the next stopping time σ1,2, we start a new dual process at (ξ̂1
σ1,1+, T −

σ1,1) and follow the path of the first ancestor until the first time it jumps to a re-
newal point that is associated with an s-arrow. Denote this time by σ1,2. [Note
that we followed the path of the first ancestor of the dual process starting at
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FIG. 6. Picture of the first three test paths. The selected path At , in bold lines, is equal to the third
test path, which is the first successful path. As in Figure 5, right-hand picture, the points represent
the renewal points associated with an s-arrow. The repositioning algorithm is applied successfully at
filled points.

(ξ̂1
σ1,1+, T − σ1,1) for σ1,2 − σ1,1 units of time, as shown in Figure 5, right-hand

picture.] We apply the repositioning algorithm again as described above.
Into the first test path, we embed a jump process S1

t , t ≥ 0, as follows. The
process S1

t stays put except at the stopping times σ1,j , j = 0,1, . . . , that is,
S1

t = ξ̂1
σ1,j+ for σ1,j ≤ t < σ1,j+1. The effect of the repositioning algorithm is that,

whenever possible, we move the jump process S1
t closer to 0 while staying within

a finite distance δ of �.
We set T J

0 = 0 and let T J
1 denote the first time S1

t jumps inside J8. We call ξ̂1
t

a successful path if a particle, starting at (ξ̂1
T J

1
, T − T J

1 ) and going up to (x, T ) by

taking the path we have just defined, does not cross any g-arrow. If the 1st path
is not successful, we define a 2nd path ξ̂2

t as follows. For the first T J
1 units of

time, the test path follows the path of the distinguished particle starting at ξ̂2
0 = x,

and from time T J
1 on moves according to the repositioning algorithm. Into this

process, we embed the jump process S2
t and denote by T J

2 the first time S2
t jumps

inside J8. We repeat the procedure until the first successful path is found, and call
this path At (see Figure 6).

Existence of a successful path. Since the kth test path ξ̂ k
t follows the distin-

guished particle starting at (x, T ) from time 0 to time T J
k−1, the first step is to
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prove that, with probability close to 1, the first ancestor ξ̂
(x,T )
t (1) does not escape

from the box J2(z) by time T = L1.5. This allows us to locate the path when we
start applying the repositioning algorithm. It also implies that our kth path does
not cross any g-arrows between time 0 and time T J

k−1 and is therefore a successful
path.

LEMMA 3.3. Assume that α > β > λc. If x ∈ J4(z) and T = L1.5, then

P
(
ξ̂

(x,T )
t (1) /∈ J2(z) for t ∈ [0, T ]) ≤ C1 exp(−γ1L

0.2)

for appropriate C1 < ∞ and γ1 > 0.

PROOF. Since our graphical representation is invariant under translation of the
vector 2Lz, we can assume that x ∈ J4 and work with J2 instead of J2(z). We will
prove that, with probability close to 1, (i) the renewal points do not escape from
the box x + J8 and (ii) between two renewal points, the spatial displacements of
the distinguished particle do not exceed L/8, an event that we define as

Gk = {∣∣Sk − ξ̂
(x,T )
t (1)

∣∣ ≤ L/8 for Tk ≤ t < Tk+1
}
.

Let m1 = Eτ1 and denote by St the location of the renewal point Sn at time t , and
by NT the number of renewal points between time 0 and time T . We then have

P
(
ξ̂

(x,T )
t (1) /∈ J2 for some t ≤ T

)
≤ P(NT > 2T/m1)

+ P(Gc
k for some 0 ≤ k ≤ NT ;NT ≤ 2T/m1)

+ P(St − x /∈ J8 for some 0 ≤ t ≤ T ;NT ≤ 2T/m1).

By using large deviation estimates, we get

P(NT > 2T/m1) ≤ C2 exp(−γ2T )

for appropriate C2 < ∞ and γ2 > 0. Furthermore, the proof of Proposition 2.1
implies that

P(Gc
k for some 0 ≤ k ≤ NT ;NT ≤ 2T/m1)

≤ P(Gc
k for some 1 ≤ k ≤ 2T/m1)

≤ 2T/m1P(Gc
1) ≤ 2T/m1C exp(−γL/8).

Finally, by letting S
(1)
t denote the 1st coordinate of St and using the reflection

principle, we get

P(St − x /∈ J8 for some 0 ≤ t ≤ T ;NT ≤ 2T/m1)

≤ 2P
(∣∣S(1)

t − S
(1)
0

∣∣ ≥ L/8 for some 0 ≤ t ≤ T ;NT ≤ 2T/m1
)

≤ 4P
(∣∣S(1)

2T/m1
− S

(1)
0

∣∣ ≥ L/8
)
.
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Now, Chebyshev’s inequality implies that, for any θ > 0,

P
(∣∣S(1)

2T/m1
− S

(1)
0

∣∣ ≥ L/8
) ≤ e−θL/8

2T/m1∏
i=1

E exp
(
θX

(1)
i

)

≤ exp
(
−θL

8
+ 2L1.5

m1
logφ(θ)

)
,

where φ(θ) is the moment-generating function of X
(1)
1 . Since EX

(1)
1 = 0 and

VarX(1)
1 < ∞, we have logφ(θ) ≤ C3θ

2 for some C3 < ∞ and for sufficiently
small θ . By taking θ = L−0.8 in the last expression, we can conclude that

P(St − x /∈ J8 for some 0 ≤ t ≤ T ;NT ≤ 2T/m1) ≤ 4 exp(−L0.2/10)

for sufficiently large L. Putting things together, we finally get

P
(
ξ̂

(x,T )
t (1) /∈ J2 for some t ≤ T

)
≤ C2 exp(−γ2L

1.5) + 2L1.5/m1C exp(−γL/8) + 4 exp(−L0.2/10).

This completes the proof of the lemma. �

The second step in proving the existence of a successful path is to investigate
the behavior of the process ξ̂m

t between time T J
m−1 and time T J

m , that is, when
the repositioning algorithm is applied. The aim is to prove that there is a positive
probability that, between these times, the mth test path does not cross any g-arrows
on its way to J8. Since this will only happen if the path crosses the corner as shown
in Figure 4, we will call this event to successfully cross the corner. Let � be a
positive integer to be fixed later and, for any k ≥ 0, set

ak = Lz + 2k(�,0), bk = Lz + 2k(0, �),

ck = Lz + 2k(�,2�), dk = Lz + 2k(2�, �).

Moreover, we consider the sequence of segments

Ik = [3ak/8 + 5bk/8,5ak/8 + 3bk/8],
as well as the rapidly increasing sequence of squares given by Dk = (ak, bk, ck, dk).
That is, Ik is the segment with endpoints 3ak/8+5bk/8 and 5ak/8+3bk/8, and Dk

the square with corners ak , bk , ck and dk . We can assume that � and L are chosen
so that there exists K� with L = 2K�

�. IK� is then contained in the diagonal line
connecting the points Lz + (2L,0) and Lz + (0,2L) (see Figure 7 for a picture).
Assume that the mth test path starts at x ∈ Ik+1. We will prove that, with a pos-
itive probability (uniform in k), we can bring our test path from x to I0 without
escaping from the decreasing sequence of squares Dk,Dk−1, . . . ,D0. We say that
the repositioning algorithm was applied successfully if the new path is chosen.
Let Mt denote the number of times the repositioning algorithm has been applied
successfully by time t .
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FIG. 7. The sequence of squares.

LEMMA 3.4. Assume that α > β > λc. There exists γ4 > 0 so that

P(Mt ≤ γ4t) ≤ C5 exp(−γ5t)

for appropriate C5 < ∞ and γ5 > 0.

PROOF. This is the same as the proof of Lemma 3.4 in [11]. �

In Lemma 3.5, we will show that, with high probability, a test path can move
from I1 to I0 without leaving D0. A corollary to this lemma is that, with probability
close to 1, a test path can move from Ik to Ik−1 without leaving Dk−1. Applying
this lemma repeatedly will then show that, with positive probability, a test path can
successfully cross the corner starting anywhere in J2(z).

LEMMA 3.5. If α > β > λc and the mth test path starts within distance �/8
of I1, then

P(the test path escapes from D0 before getting within �/16 of I0)

≤ C6 exp(−γ6�
0.4)

for sufficiently large � and appropriate C6 < ∞ and γ6 > 0.
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PROOF. To lighten the notation, we will write σk instead of σm,k . Let θ1

(resp. θ2) denote the first time dist(Sm
t ,�) ≤ δ [resp. ξ̂m

t crosses either segment
(a0d0) or (b0c0)], and π� denote the orthogonal projection on the straight line �.
It follows from the repositioning algorithm that there exists m2 > 0 such that, on
the set where dist(Sm

σk−1
,�) > δ,

E
[
dist

(
Sm

σk
,�

) − dist
(
Sm

σk−1
,�

)|Fσk−1

] ≤ −m2

where Fσk−1 = σ(Sm
σ0

, . . . , Sm
σk−1

). This, together with Lemma 3.4, implies that we
can find constants C7, C8, γ8 ∈ (0,∞) such that

P(θ1 > C7� or θ1 > θ2) ≤ C8 exp(−γ8�).

Furthermore, using the notation introduced in Lemma 3.3, we get

P
(
dist

(
ξ̂m
t , (a1b1)

)
> �/2 for some t ≤ θ1

)
≤ P(θ1 > C7� or θ1 > θ2) + P(Nθ1 > 2C7�/m1; θ1 ≤ C7�)

+ P(the largest spatial displacement is greater than �/16;
Nθ1 ≤ 2C7�/m1)

+ P
(
dist

(
Sm

t , (a1b1)
)
> �/4 for some t ≤ θ1;Nθ1 ≤ 2C7�/m1

)
.

Since π�(Sm
σk

)−π�(Sm
σk−1

) has mean 0 (and finite variance) before time θ1, the ar-

guments of the proof of Lemma 3.3 (with θ = �−0.6) together with the exponential
bound on θ1 imply that

P
(
dist

(
ξ̂m
t , (a1b1)

)
> �/2 for some t ≤ θ1

)
≤ C8 exp(−γ8�) + C2 exp(−γ2C7�)

+ 2C7�/m1C exp(−γ �/16) + 2 exp(−�0.4/8).

Now that ξ̂m
t is close to �, the next step is to bring it to the target region I0 without

escaping from the square D0. Let θ3 > θ1 (resp. θ4 > θ1) denote the first time Sm
t

crosses the straight line (a0b0) [resp. (c0d0)], and let K denote the number of times
the repositioning algorithm has been applied between time θ1 and time θ3. First of
all, since Sm

t has a drift toward � when dist(Sm
σk−1

,�) > δ, there is a positive
constant ρ such that

P
(
card

(
σk ∈ [θ1, θ3] : dist

(
Sm

σk
,�

) ≤ δ
)
< ρK

) ≤ C9 exp(−γ9�)

for appropriate C9 < ∞ and γ9 > 0. That is, with probability close to 1, the
fraction of renewal points associated with s-arrows that are within distance δ

from � is at least ρ. Furthermore, there exists m3 > 0 such that, on the set where
dist(Sm

σk−1
,�) ≤ δ,

E
[
dist

(
Sm

σk
,0

) − dist
(
Sm

σk−1
,0

)|Fσk−1

] ≤ −m3
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which, together with the previous estimate, implies that there is a C10 < ∞ such
that

P(θ3 − θ1 > C10� or θ3 > θ4) ≤ C11 exp(−γ11�)

for appropriate C11 < ∞ and γ11 > 0. The same decomposition as above then
implies that

P
(
dist(ξ̂m

t ,�) > �/8 for some θ1 ≤ t ≤ θ3
) ≤ C12 exp(−γ12�)

for appropriate C12 < ∞ and γ12 > 0. In conclusion, there exist C6, γ6 ∈ (0,∞)

such that

P(the test path escapes from D0 before getting within �/16 of I0)

≤ P
(
dist

(
ξ̂m
t , (a1b1)

)
> �/2 for some t ≤ θ1

) + P(θ1 > C7� or θ1 > θ2)

+ P
(
dist(ξ̂m

t ,�) > �/8 for some θ1 ≤ t ≤ θ3
)

+ P(θ3 − θ1 > C10� or θ3 > θ4)

≤ C6 exp(−γ6�
0.4).

This completes the proof of the lemma. �

Relying on Lemma 3.5, we can now prove that there is a strictly positive prob-
ability that, starting at x ∈ J2(z), the mth test path reaches J8 without crossing
any g-arrow. This, together with independence of temporally separated paths, will
imply that a geometric number of trials suffices to find a successful path.

LEMMA 3.6. Assume that α > β > λc. There exists p1 > 0 such that

P(the mth test path successfully crosses the corner) > p1

for all sufficiently large L.

PROOF. This is a three-step process in which we will prove that, with positive
probability, we can bring our path from J2(z) to I0, then from I0 to I0 − (�, �), and
finally from I0 − (�, �) to J8 without crossing any g-arrows (see Figures 4 and 7).
To estimate our first good event, we apply Lemma 3.5 repeatedly to obtain

P(starting within L/16 of IK� ,

the path crosses a g-arrow before getting within �/16 of I0)

≤ C6

∞∑
k=0

exp(−γ6(2
k�)0.4) ≤ 2C6 exp(−γ6�

0.4)

for sufficiently large �. Note that the previous estimate holds regardless of the value
of L. Moreover, it tells us that we can fix � so that our first good event occurs with
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probability p2 > 0. The same reasoning that led to the estimate of the first good
event can be used to estimate the third good event, since it is symmetric to our
first good event. We reverse time in Lemma 3.5 and find that if a test path starts
within �/16 of I0, then the probability that the test path escapes from D0 before
getting within �/8 of I1 is less than C6 exp(−γ6�

0.4). Iterating as before, it follows
that, with high probability, we can move the particle inside J8 without crossing any
g-arrows. Now that � is fixed, there is a positive probability p3(�) > 0 that the mth
test path goes from I0 to I0 − (�, �) without crossing any g-arrow, since the inter-
action neighborhood we chose has (at least) the eight nearest neighbors. Finally,
to be able to start from anywhere in J2(z), we use the repositioning algorithm to
move the path first from x ∈ J2(z) toward � and then toward IK� . Using similar
estimates as in Lemma 3.5, it follows that

P
(
the test path escapes from J1(z) before getting within L/16 of IK�

)
≤ C6 exp(−γ6L

0.4)

for sufficiently large L and appropriate constants C6, γ6 ∈ (0,∞). In conclusion,
the lemma follows by taking p1 = p2

2p3(�) > 0. �

With Lemmas 3.3 and 3.6 in hand, we are now ready to prove that, with high
probability, the first successful path reaches J8 by time T − √

L. More precisely,
we have the following:

LEMMA 3.7. Let T = L1.5 and N = min{k ≥ 1 : ξ̂ k
t is a successful path}. It

then follows that

P
(
T J

N > T − √
L

) ≤ C13 exp(−γ13L
0.2)

for α > β > λc and appropriate C13 < ∞ and γ13 > 0.

PROOF. The first step is to prove that the temporal displacement T J
k+1 − T J

k

is small enough such that, by taking sufficiently large L, the number of test paths
run by time T can be made arbitrarily large. The arguments used in the proof
of Lemma 3.5 to estimate the stopping times θ1 and θ3 imply that there exists
C14 < ∞ such that

P(T J
k+1 − T J

k > C14L) ≤ C15 exp(−γ15L)

for appropriate C15 < ∞ and γ15 > 0. In particular, since the increments
T J

k+1 − T J
k are independent, it remains to be shown that a geometrical number

of trials suffices to find a successful path. Let � denote the event that the distin-
guished particle starting at (x, T ) does not cross any g-arrow by time T . From
Lemma 3.3 we know that

P(�) ≥ 1 − C1 exp(−γ1L
0.2)
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and from Lemma 3.6 that

P(the kth test path does not

cross any g-arrow by time T J
k |�;T J

k−1 < T ) > p1,

regardless of the values of k and L. This implies that

P
(
T J

N > T − √
L

) ≤ P
(
T J

N > T − √
L;N > L0.4)

+ P
(
TN > T − √

L;N ≤ L0.4;�)
+ P

(
TN > T − √

L;N ≤ L0.4;�c)

≤ (1 − p1)
L0.4 + L0.4C15 exp(−γ15L) + C1 exp(−γ1L

0.2)

≤ C13 exp(−γ13L
0.2)

for appropriate C13 < ∞ and γ13 > 0. The lemma follows. �

Invading the spatial box J4(z). By Lemma 3.7, our selected path At reaches
the target set J8 by time T − √

L with probability close to 1. The last step, similar
to the one described in [11], is to show that such a path gives us a good opportunity
to bring a 1 up to (x, T ).

To define At between time T J
N and time τ = T − √

L, we pretend that our
selected path follows the path determined by the algorithm of the first ancestor
starting at (AT J

N
, T − T J

N ). The next step is to prove that, between times T J
N and τ ,

the selected path does not escape from J6. We will then let the dual process spread
out for the remaining

√
L time units and sprinkle the target region J4 where the

1’s live.

LEMMA 3.8. Assume that α > β > λc. Let T = L1.5 and τ = T −√
L. It then

follows that

P(At /∈ J6 for some T J
N ≤ t ≤ τ) ≤ C16 exp(−γ16L

0.2)

for appropriate C16 < ∞ and γ16 > 0.

PROOF. This is, with some minor modifications, the same as the proof of
Lemma 3.3. �

To complete the proof of Proposition 3.1, we still need to prove that (Aτ ,
√

L)

will be occupied by a 1, provided J4 is s-good at time 0. Since the selected path
has been constructed to block 3’s, this 1 will determine the type of (x, T ) unless
another 1 succeeds earlier. This will prove that the specialists present in J4 invade
the neighboring box J4(z) with probability close to 1.
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LEMMA 3.9. Assume that α > β > λc and that J4 is s-good at time 0. If
Aτ ∈ J6, there are C17 < ∞ and γ17 > 0 such that

P
((

Aτ ,
√

L
)

is not occupied by a 1
) ≤ C17 exp(−γ17L

0.1).

PROOF. We run the dual process starting at (Aτ ,
√

L) for
√

L − L0.2 units of
time. It follows from the Shape Theorem (see [17], page 128) and the ergodicity of
the upper invariant measure of the contact process (see Proposition 2.16, page 143,
in [16]) that, except for a probability smaller than C18 exp(−γ18L

0.1), we can se-
lect L0.1 sites at time L0.2 which are contained in the dual process starting at
(Aτ ,

√
L) such that (i) all these sites are contained in J5, (ii) they are at least L0.3

units apart from each other, and (iii) none of the duals starting at these sites uses
the same part of the graphical representation for the remaining L0.2 units of time.
Since each of the duals has a positive probability of surviving, and the square J4 is
s-good at time 0, each of these L0.1 sites has probability η > 0 of being occupied
by a 1. In conclusion,

P
((

Aτ ,
√

L
)

is not occupied by a 1
) ≤ C18 exp(−γ18L

0.1) + (1 − η)L
0.1

.

This completes the proof of the lemma. �

The proof of Proposition 3.1 is now straightforward. First of all, by combining
Lemmas 3.7, 3.8 and 3.9, it follows that if J4 is s-good at time 0, then, for any
x ∈ J4(z),

P
(
ξT (x) = 3

) ≤ C13 exp(−γ13L
0.2) + C16 exp(−γ16L

0.2) + C17 exp(−γ17L
0.1)

≤ C19L
−3

for some C19 < ∞. In particular, since there are (L/2+1)2 sites in J4(z), it follows
that

P
(
ξT (x) = 3 for some x ∈ J4(z)

) ≤ C19L
−1 ≤ ε/2

for sufficiently large L. In other respects, the process dominates a one-color contact
process with parameter β > λc, so the probability that there exists an L0.1 × L0.1

square D(w) ⊆ J4(z) that is empty can be bounded by C20L
1.8 exp(−γ20L

0.2) ≤
ε/2. Proposition 3.1 then follows.

PROOF OF PROPOSITION 3.2. The proof of Proposition 3.2 is almost the
same. The construction of the selected path, however, is slightly different, since
there are no s-arrows in the squares B(0,1) and B(1,0). We will use the same
notation to describe the construction of the new selected path.

Let e1 = (1,0) and x ∈ J4(e1). As previously, At will be the first successful path
in a sequence of test paths. The first difference is that, since B(e1) ⊆ H2, and the
1’s cannot give birth through an arrow that points into H2, we can now apply the
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repositioning algorithm at each renewal point, regardless of whether it is associated
with an s-arrow or not. On the other hand, the s-arrows are now prohibited, so we
remove them from the graphical representation. We run the dual process, starting
at (x, T ) for T units of time, and break up the path of the distinguished particle at
renewal points. Since β > λc, the event that the dual process lives forever still has
a positive probability, even after removal of the s-arrows.

To define the 1st test path ξ̂1
t , we first set σ1,0 = 0. The process ξ̂1

t starts at
ξ̂1

0 = x and follows the path of the first ancestor of (x, T ) until the first time,
denoted by σ1,1, that it jumps to a renewal point. As previously, the position of the
test path at time σ1,1 is determined by a repositioning algorithm. The process then
follows the path described by the algorithm of the first ancestor until the next time,
denoted by σ1,2, that it jumps to a new renewal point, and so on. Let Bσ1,k

denote
the second ancestor, if it exists, of the previous renewal at time σ1,k . Since β > λc,
there is a positive probability that (Bσ1,k

, T − σ1,k) lives forever. To describe the
new repositioning algorithm, we define as above an embedded jump process S1

t

which stays put except at times σ1,k . Let e2 = (0,1) and let �′ denote the straight
line going through Lz and 2Le2. The jump process S1

t evolves according to the
following rules. If site Bσ1,k

does not exist, or if the dual starting at (Bσ1,k
, T −σ1,k)

does not live forever, then we set S1
σ1,k

= ξ̂1
σ1,k

. Otherwise, we have the following
three alternatives:

1. If dist(ξ̂1
σ1,k

,�′) > δ and dist(Bσ1,k
,�′) < dist(ξ̂1

σ1,k
,�′), then we set S1

σ1,k
=

Bσ1,k
.

2. If dist(ξ̂1
σ1,k

,�′) ≤ δ and dist(Bσ1,k
,2Le2) < dist(ξ̂1

σ1,k
,2Le2), then we set

S1
σ1,k

= Bσ1,k
.

3. Otherwise, we set S1
σ1,k

= ξ̂1
σ1,k

.

In other words, we now move the jump process toward the target set J8(e2) in a
direction perpendicular to the straight line �.

As previously, the 2nd test path follows the path of the first ancestor of (x, T )

until the 1st test path reaches J8(e2), at which time it moves according to the
repositioning algorithm, and so on. We now call ξ̂ k

t a successful path if a particle
in J8(e2) following this path by going forward in time does not cross any arrow
that points to H1 on its way up to (x, T ). In particular, if this particle is of type 3,
it will determine the type of (x, T ) unless another 3 succeeds earlier.

It is not difficult to see that, with this new construction, all our estimates still
hold. In particular, if the square J4(e2) is g-good at time 0, then

P
(
ξT (x) = 1 for some x ∈ J4(z)

) ≤ C21L
−1

for a suitable C21 < ∞. Proposition 3.2 and Theorem 2 then follow. �
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