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In this paper we study the ergodicity properties of some adaptive Markov
chain Monte Carlo algorithms (MCMC) that have been recently proposed in
the literature. We prove that under a set of verifiable conditions, ergodic av-
erages calculated from the output of a so-called adaptive MCMC sampler
converge to the required value and can even, under more stringent assump-
tions, satisfy a central limit theorem. We prove that the conditions required are
satisfied for the independent Metropolis–Hastings algorithm and the random
walk Metropolis algorithm with symmetric increments. Finally, we propose
an application of these results to the case where the proposal distribution of
the Metropolis–Hastings update is a mixture of distributions from a curved
exponential family.

1. Introduction. Markov chain Monte Carlo (MCMC), introduced by
Metropolis et al. [27], is a popular computational method for generating samples
from virtually any distribution π . In particular, there is no need for the normalizing
constant to be known, and the space X ⊂ R

nx (for some integer nx) on which it
is defined can be high dimensional. We will hereafter denote by B(X) the asso-
ciated countably-generated σ -field. The method consists of simulating an ergodic
Markov chain {Xk, k ≥ 0} on X with transition probability P such that π is a sta-
tionary distribution for this chain, that is, πP = π . Such samples can be used, for
example, to compute integrals of the form

π(f )
def=

∫
X
f (x)π(dx),

for some π -integrable function f : X → R, using estimators of the type

Sn(f ) = 1

n

n∑
k=1

f (Xk).(1)

In general, the transition probability P of the Markov chain depends on some
tuning parameter, say θ , defined on some space � ⊂ R

nθ for some integer nθ ,
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and the convergence properties of the Monte Carlo averages in equation (1) might
strongly depend on a proper choice of these parameters.

We illustrate this here with the Metropolis–Hastings (MH) update, but it should
be stressed at this point that the results presented in this paper apply to much more
general settings (including, in particular, hybrid samplers, sequential or population
Monte Carlo samplers). The MH algorithm requires the choice of a proposal dis-
tribution q . In order to simplify the discussion, we will here assume that π and q

admit densities with respect to the Lebesgue measure λLeb, denoted (with an abuse
of notation) π and q hereafter. The role of the distribution q consists of proposing
potential transitions for the Markov chain {Xk}. Given that the chain is currently
at x, a candidate y is accepted with probability α(x, y), defined as

α(x, y) =
1 ∧ π(y)

π(x)

q(y, x)

q(x, y)
, if π(x)q(x, y) > 0,

1, otherwise,

where a∧b
def= min(a, b). Otherwise it is rejected, and the Markov chain stays at its

current location x. For (x,A) ∈ X × B(X), the transition kernel P of this Markov
chain takes the form

P(x,A) =
∫
A−x

α(x, x + z)q(x, x + z)λLeb(dz)

(2)
+ 1A(x)

∫
X−x

(
1 − α(x, x + z)

)
q(x, x + z)λLeb(dz),

where A − x
def= {z ∈ X, x + z ∈ A}. The Markov chain P is reversible with respect

to π and therefore admits π as an invariant distribution. Conditions on the pro-
posal distribution q that guarantee irreducibility and positive recurrence are mild,
and many satisfactory choices are possible. For the purpose of illustration, we
concentrate in this introduction on the symmetric increments random walk MH
algorithm (hereafter SRWM), in which q(x, y) = q(y − x) for some symmetric
probability density q on R

nx , referred to as the increment distribution. The transi-
tion kernel P SRW

q of the Metropolis algorithm is then given for x,A ∈ X × B(X)

by

P SRW
q (x,A) =

∫
A−x

(
1 ∧ π(x + z)

π(x)

)
q(z)λLeb(dz)

(3)

+ 1A(x)

∫
X−x

(
1 − 1 ∧ π(x + z)

π(x)

)
q(z)λLeb(dz).

A classical choice for q is the multivariate normal distribution with zero mean
and covariance matrix �, N (0,�). We will later on refer to this algorithm as the
N-SRWM. It is well known that either too small or too large a covariance matrix
will result in highly positively correlated Markov chains and therefore estimators
Sn(f ) with a large variance. Gelman, Roberts and Gilks [16] have shown that the
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“optimal” covariance matrix (under restrictive technical conditions not given here)
for the N-SRWM is (2.382/nx)�π , where �π is the true covariance matrix of the
target distribution. In practice, this covariance matrix � is determined by trial and
error, using several realizations of the Markov chain. This hand-tuning requires
some expertise and can be time consuming. In order to circumvent this problem,
Haario, Saksman and Tamminen [19] have proposed to “learn � on the fly.” The
Haario, Saksman and Tamminen [19] algorithm can be summarized as follows:

µk+1 = µk + γk+1(Xk+1 − µk), k ≥ 0,
(4)

�k+1 = �k + γk+1
(
(Xk+1 − µk)(Xk+1 − µk)

T − �k

)
,

where, denoting by Cnx+ the cone of positive nx × nx matrices:

• Xk+1 is drawn from Pθk
(Xk, ·), where for θ = (µ,�) ∈ � = R

nx × Cnx+ , Pθ =
P SRW

N (0,λ�) is here the kernel of a symmetric random walk MH with a Gaussian
increment distribution N (0, λ�), λ > 0 being a constant scaling factor depend-
ing only on the dimension of the state space nx and kept constant across the
iterations;

• {γk} is a nonincreasing sequence of positive stepsizes such that
∑∞

k=1 γk = ∞
and

∑∞
k=1 γ 1+δ

k < ∞ for some δ > 0 (Haario, Saksman and Tamminen [19]
have suggested the choice γk = 1/k).

It was realized in [4] that such a scheme is a particular case of a more general
framework. More precisely, for θ = (µ,�) ∈ �, define H :�×X → R

nx ×R
nx×nx

as

H(θ, x)
def= (

x − µ, (x − µ)(x − µ)T − �
)T

.(5)

With this notation, the recursion in (4) may be written as

θk+1 = θk + γk+1H(θk,Xk+1), k ≥ 0,(6)

with Xk+1 ∼ Pθk
(Xk, ·). This recursion is at the core of most of classical stochastic

approximation algorithms (see, e.g., [9, 13, 23] and the references therein). This
algorithm is designed to solve the equations h(θ) = 0 where θ �→ h(θ) is the so-
called mean field defined as

h(θ)
def=

∫
X
H(θ, x)π(dx).(7)

For the present example, assuming that
∫

X |x|2π(dx) < ∞, one can easily check
that

h(θ) =
∫

X
H(θ, x)π(dx) = (

µπ − µ, (µπ − µ)(µπ − µ)T + �π − �
)T

,(8)

with µπ and �π the mean and covariance of the target distribution, that is,

µπ =
∫

X
xπ(dx) and �π =

∫
X
(x − µπ)(x − µπ)Tπ(dx).(9)
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One can rewrite (6) as

θk+1 = θk + γk+1h(θk) + γk+1ξk+1,

where {ξk = H(θk−1,Xk)−h(θk−1), k ≥ 1} is generally referred to as “the noise.”
The general theory of stochastic approximation (SA) provides us with conditions
under which this recursion eventually converges to the set {θ ∈ �,h(θ) = 0}.
These issues are discussed in Sections 3 and 5.

In the context of adaptive MCMC, the parameter convergence is not the central
issue; the focus is rather on the approximation of π(f ) by the sample mean Sn(f ).
However, there is here a difficulty with the adaptive approach: as the parameter
estimate θk = θk(X0, . . . ,Xk) depends on the whole past, the successive draws
{Xk} do not define an homogeneous Markov chain, and standard arguments for the
consistency and asymptotic normality of Sn(f ) do not apply in this framework.
Note that this is despite the fact that, for any θ ∈ �, πPθ = π . This is illustrated
by the following example. Let X = {1,2} and consider for θ, θ(1), θ(2) ∈ � the
following Markov transition probability matrices:

Pθ =
[

1 − θ θ

θ 1 − θ

]
, P̃ =

[
1 − θ(1) θ(1)

θ(2) 1 − θ(2)

]
.

One can check that for any θ ∈ �, π = (1/2,1/2) satisfies πPθ = π . However,
if we let θk be a given function θ : X → (0,1) of the current state, that is, θk =
θ(Xk), one defines a new Markov chain with transition probability P̃ now having
[θ(2)/(θ(1) + θ(2)), θ(1)/(θ(1) + θ(2))] as invariant distribution. One recovers
π when the dependence on the current state Xk is removed or vanishes with the
iterations. With this example in mind, the problems that we address in the present
paper and our main general results can be summarized as follows:

1. In situations where |θk+1 − θk| → 0 as k → +∞ w.p. 1, we prove a strong law
of large numbers for Sn(f ) (see Theorem 8) under mild additional conditions.
Such a consistency result may arise even in situations where the parameter se-
quence {θk} does not converge.

2. In situations where θk converges w.p. 1, we prove an invariance principle
for

√
n(Sn(f ) − π(f )); the limiting distribution is, in general, a mixture of

Gaussian distributions (see Theorem 9).

Note that Haario, Saksman and Tamminen [19] have proved the consistency
of Monte Carlo averages for the algorithm described by (4). Our results apply to
more general settings and rely on assumptions which are less restrictive than those
used in [19]. The second point above, the invariance principle, has, to the best
of our knowledge, not been addressed for adaptive MCMC algorithms. We point
out that Atchadé and Rosenthal [6] have independently extended the consistency
result of Haario, Saksman and Tamminen [19] to the case where X is unbounded,
using Haario, Saksman and Tamminen’s [19] mixingale technique. Our technique



1466 C. ANDRIEU AND E. MOULINES

of proof is different, and our algorithm allows for an unbounded parameter θ to be
considered, as opposed to Atchadé and Rosenthal [6].

The paper is organized as follows. In Section 2 we detail our general proce-
dure and introduce some notation. In Section 3 we establish the consistency (i.e.,
a strong law of large numbers) for Sn(f ) (Theorem 8). In Section 4 we strengthen
the conditions required to ensure the law of large numbers (LLN) for Sn(f ) and es-
tablish an invariance principle (Theorem 9). In Section 5 we focus on the classical
Robbins–Monro implementation of our procedure and introduce further conditions
that allow us to prove that {θk} converges w.p. 1 (Theorem 11). In Section 6 we es-
tablish general properties of the generic SRWM required to ensure an LLN and an
invariance principle. For pedagogical purposes we show how to apply these results
to the N-SRWM of [19] (Theorem 15). In Section 7 we present another application
of our theory. We focus on the independent Metropolis–Hastings algorithm (IMH)
and establish general properties required for the LLN and the invariance princi-
ple. We then go on to propose and analyse an algorithm that matches the so-called
proposal distribution of the IMH to the target distribution π , in the case where the
proposal distribution is a mixture of distributions from the exponential family. The
main result of this section is Theorem 21. We conclude with the remark that this
latter result equally applies to a generalization of the N-SRWM where the pro-
posal is again a mixture of distributions. Application to samplers which consist of
a mixture of SRWM and IMH is straightforward.

2. Algorithm description and main definitions. Before describing the pro-
cedure under study, it is necessary to introduce some notation and definitions.
Let T be a separable space and let B(T) be a countably-generated σ -field
on T. For a Markov chain with transition probability P : T × B(T) → [0,1]
and any nonnegative measurable function f : T → [0,+∞), we define Pf (t) =
P(t, f )

def= ∫
T P(t, dt ′)f (t ′) and for any integer k, denote by P k the kth iter-

ate of the kernel. For a probability measure µ, we define, for any A ∈ B(T),
µP(A)

def= ∫
T µ(dt)P (t,A). A Markov chain on a state space T is said to be

µ-irreducible if there exists a measure µ on B(T) such that, whenever µ(A) > 0,∑∞
k=0 P k(t,A) > 0 for all t ∈ T. Denote by µ a maximal irreducibility measure for

P (see [28], Chapter 4, for the definition and the construction of such a measure).
If P is µ-irreducible, aperiodic and has an invariant probability measure π , then
π is unique and is a maximal irreducibility measure.

Two main ingredients are required for the definition of our adaptive MCMC
algorithms:

1. A family of Markov transition kernels on X, {Pθ , θ ∈ �} indexed by a finite-
dimensional parameter θ ∈ � ⊂ R

nθ , where � is asumed to be an open set. For
each θ in �, it is assumed that Pθ is π -irreducible and that πPθ = π , that is,
π is the invariant distribution for Pθ .
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2. A family of update functions {H(θ, x) :� × X �→ R
nθ } which are used to adapt

the value of the tuning parameter.

The adaptive algorithm studied in this paper (which corresponds to the process
{Zk} defined below) requires for both its definition and study the introduction of
an intermediate “stopped” process, which we now define:

First, in order to take into account potential jumps outside the space �, we ex-

tend the parameter space with a cemetery point, θc /∈ �, and define �� def= � ∪ {θc}.
It is convenient to introduce the family of transition kernels {Qγ̃ , γ̃ ≥ 0} such that
for any γ̃ ≥ 0, (x, θ) ∈ X × �, A ∈ B(X) and B ∈ B(��),

Qγ̃ (x, θ;A × B) =
∫
A

Pθ(x, dy)1{θ + γ̃ H(θ, y) ∈ B}
(10)

+ δθc(B)

∫
A

Pθ(x, dy)1{θ + γ̃ H(θ, y) /∈ �},
where δθ denotes the Dirac delta function at θ ∈ �. In its general form, the ba-
sic version of the adaptive MCMC algorithm considered here may be written
as follows. Set θ0 = θ ∈ �, X0 = x ∈ X and, for k ≥ 0, define recursively the
sequence {(Xk, θk), k ≥ 0}: if θk = θc, then set θk+1 = θc and Xk+1 = x, other-
wise (Xk+1, θk+1) ∼ Qρk+1(Xk, θk; ·), where ρ = {ρk} is a sequence of stepsizes.
The sequence {(Xk, θk)} is a nonhomogeneous Markov chain on the product space
X × ��. This nonhomogeneous Markov chain defines a probability measure on the
canonical state space (X×��)N equipped with the canonical product σ -algebra. We
denote by F = {Fk, k ≥ 0} the natural filtration of this Markov chain and by P

ρ
x,θ

and E
ρ
x,θ the probability and the expectation associated with this Markov chain

starting from (x, θ) ∈ X × �.
Because of the interaction with feedback between Xk and θk , the stability of this

inhomogeneous Markov chain is often difficult to establish. This is a long-standing
problem in the field of stochastic optimization. Known practical remedies for this
problem include the reprojections on a fixed set (see [23]) and the more recent
reprojection on random varying boundaries proposed in [11, 12] and generalized
in [3].

More precisely, we first define the notion of compact coverage of �. A family
of compact subsets {Kq, q ≥ 0} of � is said to be a compact coverage if⋃

q≥0

Kq = � and Kq ⊂ int(Kq+1), q ≥ 0,(11)

where int(A) denotes the interior of set A. Let γ
def= {γk} be a monotone nonin-

creasing sequence of positive numbers and let K be a subset of X. For a sequence
a = {ak} and an integer l, we define the “shifted” sequence a←l as follows: for

any k ≥ 1, a←l
k

def= ak+l . Let � : X × �� → K × K0 be a measurable function. De-
fine the homogeneous Markov chain Zk = {(Xk, θk, κk, νk), k ≥ 0} on the product
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space Z
def= X × �� × N × N, with transition probability R : Z × B(Z) :→ [0,1]

algorithmically defined as follows (note that in order to alleviate notation, the de-
pendence of R on both γ and {Kq, q ≥ 0} is implicit throughout the paper). For
any (x, θ, κ, ν) ∈ Z:

1. If ν = 0, then draw (X′, θ ′) ∼ Qγκ (�(x, θ); ·); otherwise, draw (X′, θ ′) ∼
Qγκ+ν (x, θ; ·).

2. If θ ′ ∈ Kκ , then set κ ′ = κ and ν′ = ν +1; otherwise, set κ ′ = κ +1, and ν′ = 0.

In words, κ and ν are counters: κ is the index of the current active truncation
set and ν counts the number of iterations since the last reinitialization. The event
{νk = 0} indicates that a reinitialization occurs. The algorithm is restarted at itera-
tion k from a point in K×K0 with the “smaller” sequence of stepsizes γ ←κk . Note
the important fact, at the heart of our analysis, that, between reinitializations, this
process coincides with the basic version of the algorithm described earlier, with
ρ = γ ←κk . This is formalized in Lemma 1 below.

This algorithm is reminiscent of the projection on random varying boundaries
proposed in [11, 12]: whenever the current iterate wanders outside the active trun-
cation set, the algorithm is reinitialized with a smaller initial value of the stepsize
and a larger truncation set.

The homogeneous Markov chain {Zk, k ≥ 0} defines a probability measure on
the canonical state space ZN equipped with the canonical product σ -algebra. We
denote by G = {Gk, k ≥ 0}, �Px,θ,k,l and �Ex,θ,k,l the filtration, probability and ex-
pectation associated with this Markov chain started from (x, θ, k, l) ∈ Z. For sim-

plicity, we will use the shorthand notation �E� and �P� for �Ex,θ
def= �Ex,θ,0,0 and

�Px,θ
def= �Px,θ,0,0 for all (x, θ) ∈ X × �.

These probability measures depend upon the deterministic sequence γ . The de-
pendence will be implicit hereafter. We define recursively {Tn,n ≥ 0} the sequence
of successive reinitialization times

Tn+1 = inf{k ≥ Tn + 1, νk = 0} with T0 = 0,(12)

where, by convention, inf{∅} = ∞. It may be shown that, under mild conditions
on {Pθ , θ ∈ �}, {H(θ, x), (θ, x) ∈ � × X} and the sequence γ ,

�P�

(
sup
n≥0

κn < ∞
)

=�P�

( ∞⋃
n=0

{Tn = ∞}
)

= 1,

that is, the number of reinitializations of the procedure described above is finite
�P�-a.s. We postpone to Sections 5, 6 and 7 the presentation and discussion of sim-
ple sufficient conditions that ensure that this holds in concrete situations. We will,
however, assume this property to hold in Sections 3 and 4. Again, we stress the fact
that our analysis of the homogeneous Markov chain {Zk} (“the algorithm”) for a
given sequence γ relies on the study of the inhomogeneous Markov chain defined
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earlier (the “stopped process”), for the sequences {ρk
def= γ ←κk } of stepsizes. It is

therefore important to precisely and probabilistically relate these two processes.
This is the aim of the lemma below (adapted from [3], Lemma 4.1).

Define, for K ⊂ �,

σ(K) = inf{k ≥ 1, θk /∈ K}.(13)

LEMMA 1. Given any m ≥ 1, any nonnegative measurable function �m : (X ×
��)m → R

+, for any integer k ≥ 0 and (x, θ) ∈ X × �, satisfies

�Ex,θ,k,0[�m(X1, θ1, . . . ,Xm, θm)1{T1 ≥ m}]
= E

γ ←k

�(x,θ)[�m(X1, θ1, . . . ,Xm, θm)1{σ(Kk) ≥ m}].

3. Law of large numbers. Hereafter, for a probability distribution P, the var-
ious kinds of convergence—in probability, almost-sure and weak (in distribution)

are denoted, respectively,
prob.−→P,

a.s.−→P and
D−→P.

3.1. Assumptions. As pointed out in the Introduction, an LLN has been
obtained for a particular adaptive MCMC algorithm by Haario, Saksman and
Tamminen [19], using mixingale theory (see [24]). Our approach is more in line
with the martingale proof of the LLN for Markov chains and is based on the ex-
istence and regularity of the solutions of Poisson’s equation and martingale limit
theory. The existence and appropriate properties of those solutions can be easily
established under a uniform (in the parameter θ ) version of the V -uniform ergod-
icity of the transition kernels Pθ [see condition (A1) below and Proposition 3].

We will use the following notation throughout the paper. For W : X → [1,∞)

and f : X → R a measurable function, define

‖f ‖W = sup
x∈X

|f (x)|
W(x)

and LW = {f :‖f ‖W < ∞}.(14)

We will also consider functions f :� × X → R. We will often use the shorthand
notation fθ (x) = f (θ, x) for all θ, x ∈ � × X in order to avoid ambiguities. We
will assume that fθ ≡ 0 whenever θ /∈ � except when fθ does not depend on θ ,
that is, fθ ≡ fθ ′ for any (θ, θ ′) ∈ � × �. Let W : X → [1,∞). We say that the
family of functions {fθ : X → R, θ ∈ �} is W -Lipschitz if, for any compact subset
K ⊂ �,

sup
θ∈K

‖fθ‖W < ∞ and sup
(θ,θ ′)∈K×K,θ �=θ ′

|θ − θ ′|−1‖fθ − fθ ′‖W < ∞.(15)

(A1) For any θ ∈ �, Pθ has π as its stationary distribution. In addition, there exists
a function V : X → [1,∞) such that supx∈K V (x) < ∞ (with K defined in
Section 2) and such that, for any compact subset K ⊂ �:
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(i) Minorization condition. There exist C ∈ B(X), ε > 0 and a probabil-
ity measure ϕ (all three depending on K) such that ϕ(C) > 0 and, for all
A ∈ B(X) and θ, x ∈ K × C,

Pθ(x,A) ≥ εϕ(A).

(ii) Drift condition. There exist constants λ ∈ [0,1), b ∈ (0,∞) (depend-
ing on V , C and K) satisfying

PθV (x) ≤
{

λV (x), x /∈ C,

b, x ∈ C,

for all θ ∈ K .

(A2) For any compact subset K ⊂ � and any r ∈ [0,1], there exists a constant C

(depending on K and r) such that, for any (θ, θ ′) ∈ K × K and f ∈ LV r ,

‖Pθf − Pθ ′f ‖V r ≤ C‖f ‖V r |θ − θ ′|,
where V is given in (A1).

(A3) {Hθ, θ ∈ �} is V β -Lipschitz for some β ∈ [0,1/2] with V defined in (A1).

REMARK 1. Note that for the sake of clarity and simplicity, we restrict here
our results to the case where {Pθ , θ ∈ �} satisfy one-step drift and minorization
conditions. As shown in [3], the more general case where either an m-step drift or
minorization condition is assumed for m > 1 requires one to modify the algorithm
in order to prevent large jumps in the parameter space (see [2, 3]). This mainly
leads to substantial notational complications, but the arguments remain essentially
unchanged.

Conditions of type (A1) to establish geometric ergodicity have been extensively
studied over the last decade for the Metropolis–Hastings algorithms. Typically,
the required drift function depends on the target distribution π , which makes our
requirement of uniformity in θ ∈ K in (A1) reasonable and relatively easy to es-
tablish (see Sections 6 and 7). The following theorem, due to [29] and recently
improved by [8], converts information about the drift and minorization condition
into information about the long-term behavior of the chain:

THEOREM 2. Assume (A1). Then, for all θ ∈ �, Pθ admits π as its unique sta-
tionary probability measure, and π(V ) < ∞. Let K ⊂ � be a compact subset and
r ∈ [0,1]. There exists ρ̃ < 1 depending only (and explicitly) on the constants r , ε,
ϕ(C), λ and b [given in (A1)] such that, whenever ρ ∈ (ρ̃,1), there exists C < ∞
depending only (and explicitly) on r , ρ, ε, ϕ(C) and b such that for any f ∈ LV r ,
all θ ∈ K and k ≥ 0,

‖P k
θ f − π(f )‖V r ≤ C‖f ‖V r ρk.(16)
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Formulas for ρ and C are given in [29], Theorem 2.3, and have been later im-
proved in [8], Section 2.1.

This theorem automatically ensures the existence of solutions to Poisson’s
equation. More precisely, for all θ, x ∈ � × X and f ∈ LV r ,

∑∞
k=0 |P k

θ f (x) −
π(f )| < ∞ and f̂θ

def= ∑∞
k=0(P

k
θ f − π(f )) is a solution of Poisson’s equation

f̂θ − Pθ f̂θ = f − π(f ).(17)

Poisson’s equation has proven to be a fundamental tool for the analysis of additive
functionals, in particular for establishing limit theorems such as the (functional)
central limit theorem (see, e.g., [9, 13, 18, 30], [28], Chapter 17.

The Lipschitz continuity of the transition kernel Pθ as a function of θ [assump-
tion (A2)] does not seem to have been studied for the Metropolis–Hastings algo-
rithm. We establish this continuity for the SRWM algorithm and the independent
MH algorithm (IMH) in Sections 6 and 7. This assumption, used in conjunction
with (A1), allows one to establish the Lipschitz continuity of the solution of Pois-
son’s equation.

PROPOSITION 3. Assume (A1). Suppose that the family of functions {fθ , θ ∈
�} is V r -Lipschitz, for some r ∈ [0,1]. Define, for any θ ∈ �, f̂θ

def= ∑∞
k=0(P

k
θ fθ −

π(fθ )). Then, for any compact set K , there exists a constant C such that, for any
(θ, θ ′) ∈ K ,

‖f̂θ‖V r + ‖Pθ f̂θ‖V r ≤ C sup
θ∈K

‖fθ‖V r ,(18)

‖f̂θ − f̂θ ′‖V r + ‖Pθ f̂θ − Pθ ′ f̂θ ′‖V r ≤ C|θ − θ ′| sup
θ∈K

‖fθ‖V r .(19)

The proof is given in Appendix B.

REMARK 2. The regularity of the solutions of Poisson’s equation has been
studied, under various ergodicity and regularity conditions on the mapping θ �→ Pθ

(see, e.g., [9] and [7] for regularity under conditions implying V -uniform geomet-
ric ergodicity). The results of the proposition above are sharper than those reported
in the literature, because all the transition kernels Pθ share the same limiting dis-
tribution π , a property which plays a key role in the proof.

We finish this section with a convergence result for the chain {Xk} under the
probability P

ρ
x,θ , which is an important and direct byproduct of the property men-

tioned in the remark immediately above. This result improves on [19, 21] and [6].

PROPOSITION 4. Assume (A1)–(A3), let ρ ∈ (0,1) be as in (16), let ρ̄ = {ρ̄k}
be a positive and finite, nonincreasing sequence such that lim supk→∞ ρ̄k−n(k)/

ρ̄k < +∞ with, when k ≥ k0 for some integer k0, n(k) := �log(ρ̄k/ρ̄)/ log(ρ)� +
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1 ≤ k, and n(k) = 0 otherwise, where ρ̄ ∈ [ρ1,+∞). Let f ∈ LV 1−β , where V is
defined in (A1), and β is defined in (A3). Let K be a compact subset of �. Then,
there exists a constant C ∈ (0,+∞) [depending only on K , the constants in (A1)
and ρ̄] such that, for any (x, θ) ∈ X × K ,∣∣Eρ̄

x,θ

{(
f (Xk) − π(f )

)
1{σ(K) ≥ k}}∣∣ ≤ C‖f ‖V 1−β ρ̄kV (x).

The proof appears in Appendix B.

3.2. Law of large numbers. We prove in this section a law of large numbers
(LLN) under �P� for n−1 ∑n

k=1 fθk
(Xk), where {fθ , θ ∈ �} is a set of sufficiently

regular functions. It is worth noting here that we need not require that the sequence
{θk} converges in order to establish our result. The proof is based on the identity

fθk
(Xk) −

∫
X
π(dx)fθk

(x) = f̂θk
(Xk) − Pθk

f̂θk
(Xk),

where f̂θ is a solution of Poisson’s equation (17). The decomposition

f̂θk
(Xk) − Pθk

f̂θk
(Xk)

= (
f̂θk−1(Xk) − Pθk−1 f̂θk−1(Xk−1)

)
(20)

+ (
f̂θk

(Xk) − f̂θk−1(Xk)
)+ (

Pθk−1 f̂θk−1(Xk−1) − Pθk
f̂θk

(Xk)
)
,

displays the different terms that need to be controlled to prove the LLN. The first
term in the decomposition is (except at the time of a jump) a martingale difference
sequence. As we shall see, this is the leading term in the decomposition, and the
other terms are remainders which are easily dealt with, thanks to the regularity
of the solutions of Poisson’s equation under (A1). The term f̂θk

(Xk) − f̂θk−1(Xk)

can be interpreted as the perturbation introduced by adaptation. We preface our
main result, Theorem 8, with two intermediate propositions concerned with the
control of the fluctuations of the sum

∑n
k=1(fθk

(Xk) − ∫
X π(dx)fθk

(x)) for the
inhomogeneous chain {(Xk, θk)} under the probability P

ρ
x,θ . The following lemma,

whose proof is given in Appendix A, is required in order to prove Propositions
6 and 7:

LEMMA 5. Assume (A1). Let K ⊂ � be a compact set and r ∈ [0,1] be a
constant. There exists a constant C [depending only on r , K and the constants
in (A1)] such that, for any sequences ρ = {ρk} and a = {ak} of positive numbers
and for any (x, θ) ∈ X × K ,

E
ρ
x,θ [V r(Xk)1{σ(K) ≥ k}] ≤ CV r(x),(21)

E
ρ
x,θ

[
max

1≤m≤k
(amV (Xm))r1{σ(K) ≥ m}

]
≤ Cr

(
k∑

m=1

am

)r

V r(x),(22)

E
ρ
x,θ

[
max

1≤m≤n
1{σ(K) ≥ m}

m∑
k=1

V r(Xk)

]
≤ CnV r(x).(23)
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PROPOSITION 6. Assume (A1)–(A3). Let {fθ , θ ∈ �} be a V α-Lipschitz fam-
ily of functions for some α ∈ [0,1−β), where V is defined in (A1) and β is defined
in (A3). Let K be a compact subset of �. Then, for any p ∈ (1,1/(α + β)], there
exists a constant C [depending only on p, K and the constants in (A1)] such that,
for any sequence ρ = {ρk} of positive numbers satisfying

∑∞
k=1 k−1ρk < ∞, we

have, for all (x, θ) ∈ X × K , δ > 0, γ̃ > α and integer l ≥ 1,

P
ρ
x,θ

[
sup
m≥l

(m−1|Mm|) ≥ δ

]
(24)

≤ Cδ−p sup
θ∈K

‖fθ‖p
V α l

−{(p/2)∧(p−1)}V αp(x),

P
ρ
x,θ

[
sup
m≥l

{
1{σ(K) > m}m−γ̃

∣∣∣∣∣
m∑

k=1

(
fθk

(Xk)

−
∫

X
fθk

(x)π(dx)

)
− Mm

∣∣∣∣∣
}

≥ δ

]
(25)

≤ Cδ−p sup
θ∈K

‖fθ‖p
V α

{( ∞∑
k=1

(k ∨ l)−γ̃ ρk

)p

V (x)βp + l−(γ̃−α)p

}

× V αp(x),

where σ(K) is given in (13), f̂θ
def= ∑∞

k=1[P k
θ fθ −π(fθ )] is a solution of Poisson’s

equation (17) and

Mm
def= 1{σ(K) > m}

m∑
k=1

[
f̂θk−1(Xk) − Pθk−1 f̂θk−1(Xk−1)

]
.(26)

REMARK 3. The result provides us with some useful insights into the prop-
erties of MCMC with vanishing adaptation. First, whenever {θk} ⊂ K ⊂ � for a
deterministic compact set K , the bounds above give explicit rates of convergence
for ergodic averages (1). The price we must pay for adaptation is apparent on the
righ-hand side of (25), as reported in [1]. The constraints on p,β and α illustrate
the tradeoff between the rate of convergence, the smoothness of adaptation and
the class of functions covered by our result. Scenarios of interest include the case
where assumption (A3) is satisfied with β = 0 [in other words, for any compact
subset K ⊂ �, the function supθ∈K supx∈X |Hθ(x)| < ∞] or the case where (A3)
holds for any β ∈ (0,1/2], both of which imply that the results of the proposition
hold for any α < 1 (see Theorem 15 for an application).

PROOF OF PROPOSITION 6. For notational simplicity, we set σ
def= σ(K). Let

p ∈ (1,1/(α + β)] and K ⊂ � be a compact set. In this proof, C is a constant
which only depends on the constants in (A1)–(A3), p and K ; this constant may



1474 C. ANDRIEU AND E. MOULINES

take different values upon each appearance. Theorem 2 implies that for any θ ∈ �,
f̂θ exists and is a solution of Poisson’s equation (17). We decompose the sum
1{σ > m}∑m

k=1(fθk
(Xk) − ∫

X fθk
(x)π(dx)) as Mm + R

(1)
m + R

(2)
m , where

R(1)
m

def= 1{σ > m}
m∑

k=1

(
f̂θk

(Xk) − f̂θk−1(Xk)
)
,

R(2)
m

def= 1{σ > m}(Pθ0 f̂θ0(X0) − Pθmf̂θm(Xm)
)
.

We consider these terms separately. First, since 1{σ > m} = 1{σ > m}1{σ ≥ k}
for 0 ≤ k ≤ m,

|Mm| = 1{σ > m}
∣∣∣∣∣

m∑
k=1

(
f̂θk−1(Xk) − Pθk−1 f̂θk−1(Xk−1)

)
1{σ ≥ k}

∣∣∣∣∣ ≤ |M̃m|,

where

M̃m
def=

m∑
k=1

[
f̂θk−1(Xk) − Pθk−1 f̂θk−1(Xk−1)

]
1{σ ≥ k}.

By Proposition 3, equation (18), there exists a constant C such that, for all θ ∈ K ,
‖f̂θ‖V α + ‖Pθ f̂θ‖V α ≤ C supθ∈K ‖fθ‖V α . Since 0 ≤ αp ≤ 1, by using (21) in
Lemma 5, we have, for all x, θ ∈ X × K ,

E
ρ
x,θ

{(∣∣f̂θk−1(Xk)
∣∣p + ∣∣Pθk−1 f̂θk−1(Xk−1)

∣∣p)1{σ ≥ k}}
(27)

≤ CV αp(x) sup
θ∈K

‖fθ‖p
V α .

Since

E
ρ
x,θ

{[
f̂θk−1(Xk) − Pθk−1 f̂θk−1(Xk−1)

]
1{σ ≥ k}|Fk−1

}
= (

Pθk−1 f̂θk−1(Xk−1) − Pθk−1 f̂θk−1(Xk−1)
)
1{σ ≥ k} = 0,

{M̃m} is a (P
ρ
x,θ , {Fk})-adapted martingale with increments bounded in Lp . Using

Burkholder’s inequality for p > 1 ([20], Theorem 2.10), we have

E
ρ
x,θ {|M̃m|p}

(28)

≤ CpE
ρ
x,θ

{(
m∑

k=1

∣∣f̂θk−1(Xk) − Pθk−1 f̂θk−1(Xk−1)
∣∣21{σ ≥ k}

)p/2}
,

where Cp is a universal constant. For p ≥ 2, by Minkowski’s inequality,

E
ρ
x,θ {|M̃m|p}

(29)

≤ Cp

{
m∑

k=1

(
E

ρ
x,θ

{∣∣f̂θk−1(Xk) − Pθk−1 f̂θk−1(Xk−1)
∣∣p1{σ ≥ k}})2/p

}p/2

.
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For 1 ≤ p ≤ 2, we have

E
ρ
x,θ

{(
m∑

k=1

∣∣f̂θk−1(Xk) − Pθk−1 f̂θk−1(Xk−1)
∣∣21{σ ≥ k}

)p/2}
(30)

≤ E
ρ
x,θ

{
m∑

k=1

∣∣f̂θk−1(Xk) − Pθk−1 f̂θk−1(Xk−1)
∣∣p1{σ ≥ k}

}
.

By combining the two cases above and using (27), we obtain for any x, θ ∈ X ×K
and p > 1,

E
ρ
x,θ {|M̃m|p} ≤ Cm(p/2)∨1 sup

θ∈K
‖fθ‖p

V αV
αp(x).(31)

Let l ≥ 1. By Birnbaum and Marshall’s [10] inequality (a straightforward adapta-
tion of Birnbaum and Marshall [10] result is given in Proposition 22, Appendix A)
and (31), there exists a constant C such that

P
ρ
x,θ

[
sup
m≥l

(
m−1|M̃m|) ≥ δ

]
≤ δ−p

{ ∞∑
m=l

(
m−p − (m + 1)−p)

E
ρ
x,θ {|M̃m|p}

}

≤ Cδ−p sup
θ∈K

‖fθ‖p
V α

( ∞∑
m=l

m−p−1+(p/2)∨1

)
V αp(x)

≤ Cδ−p sup
θ∈K

‖fθ‖p
V α l

−{(p/2)∧(p−1)}V αp(x),

which proves (24). We now consider R
(1)
m . Equation (19) shows that there

exists a constant C such that, for any (θ, θ ′) ∈ K × K , ‖f̂θ − f̂θ ′‖V α ≤
C|θ − θ ′| supθ∈K ‖fθ‖V α . On the other hand, by construction, θk − θk−1 =
ρkH(θk−1,Xk) for σ ≥ k and, under assumption (A3), there exists a constant
C such that, for any x, θ ∈ X × K , |H(θ, x)| ≤ CV β(x). Therefore, there exists
C such that, for any m ≥ l and γ̃ > α,

m−γ̃
∣∣R(1)

m

∣∣ = m−γ̃ 1{σ > m}
∣∣∣∣∣

m∑
k=1

{
f̂θk

(Xk) − f̂θk−1(Xk)
}∣∣∣∣∣

≤ C sup
θ∈K

‖fθ‖V α

m∑
k=1

(k ∨ l)−γ̃ ρkV
α+β(Xk)1{σ ≥ k}.

Hence, using Minkowski’s inequality and (21), one deduces that there exists C

such that, for (x, θ) ∈ X × K , l ≥ 1 and γ̃ > α,

E
ρ
x,θ

{
sup
m≥l

m−γ̃ p
∣∣R(1)

m

∣∣p}
(32)

≤ C sup
θ∈K

‖fθ‖p
V α

( ∞∑
k=1

(k ∨ l)−γ̃ ρk

)p

V (α+β)p(x).
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Consider now R
(2)
m . The term Pθ0 f̂θ0(X0) does not pose any problem. From

Lemma 5 [equation (22)] there exists a constant C such that, for all x, θ ∈ X × K
and 0 < α < γ̃ ,

E
ρ
x,θ

{
sup
m≥l

m−γ̃ p
∣∣Pθmf̂θm(Xm)

∣∣p1{σ > m}
}

≤ C sup
θ∈K

‖fθ‖p
V αE

ρ
x,θ

{
sup
m≥l

|m−γ̃ /αV α(Xm)|p1{σ > m}
}

(33)

≤ C sup
θ∈K

‖fθ‖p
V α

( ∞∑
k=l

k−γ̃ /α

)αp

V αp(x).

The case α = 0 is straightforward. From Markov’s inequality, (32) and (33), one
deduces (25). �

We can now apply the results of Proposition 6 for the inhomogeneous Markov
chain defined below (10) to the time-homogeneous time chain {Zk} under the as-
sumption that the number of reinitializations κn is �P� almost surely finite. Note that
the very general form of the result will allow us to prove a central limit theorem in
Section 4.

PROPOSITION 7. Let {Kq, q ≥ 0} be a compact coverage of � and let
γ = {γk} be a nonincreasing positive sequence such that

∑∞
k=1 k−1γk < ∞. Con-

sider the time-homogeneous Markov chain {Zk} on Z with transition probabil-

ity R, as defined in Section 2. Assume (A1)–(A3), and let F
def= {fθ , θ ∈ �} be a

V α-Lipschitz family of functions for some α ∈ [0,1 − β), with β as in (A3) and
V as in (A1). Assume, in addition, that �P�{limn→∞ κn < ∞} = 1. Then, for any
fθ ∈ F ,

n−1
n∑

k=1

(
fθk

(Xk) −
∫

X
fθk

(x)π(dx)

)
1{νk �= 0} a.s.−→�P�

0.(34)

PROOF. Without loss of generality, we may assume that, for any θ ∈ �,∫
X fθ (x)π(dx) = 0. Let p ∈ (1,1/(α + β)] and define κ∞ def= limn→∞ κn. By

construction of the Tk’s [see (12)], and since κ∞ < ∞ �P�-a.s., we deduce
that Tκ∞ < ∞, �P�-a.s. We now decompose Sn = ∑n

k=1 fθk
(Xk)1{νk �= 0} as

Sn
def= S

(1)
n + S

(2)
n , where S

(1)
n

def= ∑Tκ∞∧n

k=1 fθk
(Xk)1{νk �= 0} and

S
(2)
n

def= ∑n
k=Tκ∞+1 fθk

(Xk). Since Tκ∞ < ∞ �P�-a.s.,
∑Tκ∞

k=1 |fθk
(Xk)|1{νk �= 0} <

∞, �P�-a.s., showing that n−1S
(1)
n → 0, �P�-a.s. We now bound the second term.
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For any integers n and K ,

�P�

[
sup
m≥n

m−1∣∣S(2)
m

∣∣ ≥ δ, κ∞ ≤ K

]

≤
K∑

i=0

�P�

[
sup
m≥n

m−1

∣∣∣∣∣
m∑

k=Ti+1

fθk
(Xk)

∣∣∣∣∣ ≥ δ, κ∞ = i, Ti ≤ n/2

]
(35)

+�P�

[
Tκ∞ > n/2

]
.

Since, for κ∞ = i, Ti+1 = ∞,{
sup
m≥n

m−1

∣∣∣∣∣
m∑

k=Ti+1

fθk
(Xk)

∣∣∣∣∣ ≥ δ, κ∞ = i, Ti ≤ n/2

}

⊂
{

sup
m≥n

1{Ti+1 > m}m−1

∣∣∣∣∣
m∑

k=Ti+1

fθk
(Xk)

∣∣∣∣∣ ≥ δ, Ti ≤ n/2

}

⊂
{(

sup
m≥n/2

1{σ(Ki ) > m}m−1

∣∣∣∣∣
m∑

k=1

fθk
(Xk)

∣∣∣∣∣
)

◦ τTi ≥ δ

}
,

where we have used the fact that Ti+1 = Ti + σ(Ki ) ◦ τTi , where τ is the shift
operator on the canonical space of the chain {Zn}. As a consequence, by apply-
ing Lemma 1 [noting that 1{σ(Ki ) ≥ m}1{σ(Ki ) > m} = 1{σ(Ki ) > m} and
1{σ(Ki ) > m} ∈ Fm], the strong Markov property, Proposition 6 with γ̃ = 1, the
fact that {γk} is nonincreasing and the fact that supx∈K V (x) < ∞, we have, for
0 ≤ i ≤ K ,

�P�

[
sup
m≥n

m−1

∣∣∣∣∣
m∑

k=Ti+1

fθk
(Xk)

∣∣∣∣∣ ≥ δ, κ∞ = i, Ti ≤ n/2
∣∣∣∣GTi

]

≤ P
γ ←i

�(XTi
,θTi

)

[
sup

m≥n/2
1{σ(Ki ) > m}m−1

∣∣∣∣∣
m∑

k=1

fθk
(Xk)

∣∣∣∣∣ ≥ δ

]
(36)

≤ Cδ−p sup
θ∈Ki

‖fθ‖p
V α

{( ∞∑
k=1

[�n/2� ∨ k]−1γk

)p

+
(

n

2

)−p(1−α)

+
(

n

2

)−{(p/2)∧(p−1)}}
.

By Kronecker’s lemma, the condition
∑∞

k=1 k−1γk < ∞ implies that
n−1 ∑n

k=1 γk → 0 as n → ∞, showing that

∞∑
k=1

[�n/2� ∨ k]−1γk ≤ (�n/2�)−1
�n/2�∑
k=1

γk +
∞∑

k=�n/2�+1

k−1γk → 0,
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as n → ∞. Combining this with (35) and (36) shows that, for any K,δ, η > 0,
there exists N such that, for n ≥ N ,

�P�

[
sup
m≥n

m−1∣∣S(2)
m

∣∣ ≥ δ, κ∞ ≤ K

]
≤ η.

Now, for K large enough that �P�[κ∞ > K] ≤ η, the result above shows that there
exists an N such that, for any n ≥ N , �P�[supm≥n m−1|S(2)

m | ≥ δ] ≤ 2η, concluding
the proof. �

REMARK 4. How one checks �P�(limn→∞ κn < ∞) = 1 depends on the par-
ticular algorithm used to update the parameters. Verifiable conditions have been es-
tablished in [3] for checking the stability of the algorithm; see Sections 5, 6 and 7.

We may now state our main consistency result.

THEOREM 8. Let {Kq, q ≥ 0} be a compact coverage of � and let γ = {γk}
be a nonincreasing positive sequence such that

∑∞
k=1 k−1γk < ∞. Consider the

time-homogeneous Markov chain {Zk} on Z with transition probability R, as de-
fined in Section 2. Assume (A1)–(A3) and let f : X → R be a function such that
‖f ‖V α < ∞ for some α ∈ [0,1 − β), with β as in (A3) and V as in (A1). Assume,
in addition, that �P�{limn→∞ κn < ∞} = 1. Then,

n−1
n∑

k=1

[f (Xk) − π(f )] a.s.−→�P�
0.(37)

PROOF. We may assume that π(f ) = 0. From Proposition 7, it is sufficient to
prove that n−1 ∑κn

j=1 |f (XTj
)| a.s.−→�P�

0. Since κ∞ < ∞ �P�-a.s.,
∑κ∞

j=1 |f (XTj
)| <

∞ �P�-a.s. The proof follows from
∑κn

j=1 |f (XTj
)| ≤ ∑κ∞

j=1 |f (XTj
)|. �

4. Invariance principle. We shall now prove an invariance principle. As in
the case of homogeneous Markov chains, more stringent conditions are required
here than for the simple LLN. In particular, we will require here that the series {θk}
converges �P�-a.s. This is in contrast with simple consistency for which bounded-
ness of {θk} was sufficient. The main idea of the proof consists of approximating
n−1/2 ∑n

k=1{f (Xk) − π(f )} with a triangular array of martingale differences se-
quence, and then applying an invariance principle for martingale differences to
show the desired result.

THEOREM 9. Let {Kq, q ≥ 0} be a compact coverage of � and let γ = {γk}
be a nonincreasing positive sequence such that

∑∞
k=1 k−1/2γk < ∞. Consider the

time-homogeneous Markov chain {Zk} on Z with transition probability R, as de-
fined in Section 2. Assume (A1)–(A3) and let f : X → R satisfy f ∈ LV α , where
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V is defined in (A3) and α ∈ [0, (1 − β)/2) with β as in (A1). Define, for any
θ ∈ �,

σ 2(θ, f )
def= π[(f̂θ − Pθ f̂θ )

2] with f̂θ
def=

∞∑
k=0

[P k
θ f − π(f )].(38)

Assume, in addition, that there exists a random variable θ∞ ∈ �, such that∫
X π(dx)f̂ 2

θ∞(x) < ∞ and
∫

X π(dx)(Pθ∞ f̂θ∞(x))2 < ∞ �P�-a.s. and

lim sup
n→∞

|θn − θ∞| = 0, �P�-a.s.

Then,

n−1/2
n∑

k=1

[f (Xk) − π(f )] D−→�P�
Z,

where the random variable Z has characteristic function �E�[exp(−1
2σ 2(θ∞,

f )t2)]. If in addition σ(θ∞, f ) > 0, �P�-a.s., then

1√
nσ(θ∞, f )

n∑
k=1

(
f (Xk) − π(f )

) D−→�P�
N (0,1).(39)

PROOF. Without loss of generality, we suppose that π(f ) = 0. The proof
again relies on a martingale approximation. Set, for k ≥ 1,

ξk
def= [

f̂θk−1(Xk) − Pθk−1 f̂θk−1(Xk−1)
]
1{νk−1 �= 0}.(40)

Since f is V α-Lipschitz, Proposition 3 shows that {f̂θ , θ ∈ �} and {Pθ f̂θ , θ ∈ �}
are V α-Lipschitz. Since 2α < 1, this implies that {Pθ f̂

2
θ , θ ∈ �} and {(Pθ f̂θ )

2, θ ∈
�} are V 2α-Lipschitz. We deduce that {ξk} is a (�P�, {Gk, k ≥ 0})-adapted square-
integrable martingale difference sequence, that is, for all k ≥ 1, �E�[ξ2

k ] < ∞ and
�E�[ξk|Gk−1] = 0,�P�-a.s. We are going to prove that with Z a r.v. with characteristic
function �E�[exp(−1

2σ 2(θ∞, f )t2)],
1√
n

n∑
k=1

ξk
D−→�P�

Z,(41)

1√
n

n∑
k=1

f (Xk) − 1√
n

n∑
k=1

ξk
a.s.−→�P�

0.(42)

To show (41), we use [20], Corollary 3.1 of Theorem 3.2. We need to establish
that:

(a) the sequence n−1 ∑n
k=1

�E�[ξ2
k |Gk−1] converges in �P�-probability to

σ 2(θ∞, f );
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(b) the conditional Lindeberg condition is satisfied, that is,

for all ε > 0 n−1
n∑

k=1

�E�

[
ξ2
k 1

{|ξk| ≥ ε
√

n
}|Gk−1

] prob.−→�P�
0.(43)

We first prove (a). Note that

�E�[ξ2
k |Gk−1] = [

Pθk−1 f̂
2
θk−1

(Xk−1) − (
Pθk−1 f̂θk−1(Xk−1)

)2]1{νk−1 �= 0}.
Since {Pθ f̂

2
θ , θ ∈ �} and {(Pθ f̂θ )

2, θ ∈ �} are V 2α-Lipschitz and 2α ∈ [0,1 −β),
we may apply Proposition 7 to prove that

1

n

n∑
k=1

[
Pθk−1 f̂

2
θk−1

(Xk−1) − (
Pθk−1 f̂θk−1(Xk−1)

)2]1{νk−1 �= 0}

− 1

n

n−1∑
k=0

∫
X
π(dx)

[
Pθk

f̂ 2
θk

(x) − (
Pθk

f̂θk
(x)

)2]1{νk �= 0} a.s.−→�P�
0.

For any j ≥ 0 and κ∞ = j , {θk, k > Tj } ⊂ Kj , which, together with the
V 2α-Lipschitz property and the dominated convergence theorem, implies that

lim
k→∞1{κ∞ = j}

∫
X
π(dx)

[
Pθk

f̂ 2
θk

(x) − (
Pθk

f̂θk
(x)

)2
]

= 1{κ∞ = j}
∫

X
π(dx)

[
Pθ∞ f̂ 2

θ∞(x) − (
Pθ∞ f̂θ∞(x)

)2]
, �P�-a.s.

By the dominated convergence theorem and the fact that �P�(κ∞ < ∞) = 1,

lim
k→∞

∫
X
π(dx)

[
Pθk

f̂ 2
θk

(x) − (
Pθk

f̂θk
(x)

)2]1{νk �= 0}

= lim
k→∞

∞∑
j=0

{∫
X
π(dx)

[
Pθk

f̂ 2
θk

(x) − (
Pθk

f̂θk
(x)

)2]}1{νk �= 0}1{κ∞ = j}

=
∞∑

j=0

{
lim

k→∞

∫
X
π(dx)

[
Pθk

f̂ 2
θk

(x) − (
Pθk

f̂θk
(x)

)2]}1{κ∞ = j}, �P�-a.s.,

and the Cesàro convergence theorem finally shows that

lim
n→∞

1

n

n−1∑
k=0

∫
X
π(dx)

[
Pθk

f̂ 2
θk

(x) − (
Pθk

f̂θk
(x)

)2]1{νk �= 0}

=
∫

X
π(dx)

[
Pθ∞ f̂ 2

θ∞(x) − (
Pθ∞ f̂θ∞(x)

)2]
, �P�-a.s.

We now establish the conditional Lindeberg condition in (b). We use the following
lemma, which is a conditional version of [14], Lemma 3.3.
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LEMMA 10. Let G be a σ -field and X a random variable such that
E[X2|G] < ∞. Then, for any ε > 0,

4E[|X|21{|X| ≥ ε}|G] ≥ E
[|X − E[X|G]|21{∣∣X − E[X|G]∣∣ ≥ 2ε

}|G].
Using Dvoretzky’s lemma, we have for any ε,M > 0 and n sufficiently large,

n−1
n∑

k=1

�E�

[
ξ2
k 1

{|ξk| ≥ ε
√

n
}|Gk−1

]

≤ 4n−1
n−1∑
k=0

∫
X
Pθk

(Xk, dx)f̂ 2
θk

(x)1
{∣∣f̂θk

(x)
∣∣ ≥ M

}
1{νk �= 0}, �P�-a.s.

Proceeding as above, the right-hand side of the previous display converges �P�-a.s.
to ∫

X
π(dx)f̂ 2

θ∞(x)1
{∣∣f̂θ∞(x)

∣∣ ≥ M
}
,

where we have used the fact that, for any θ ∈ �, πPθ = π . Since
∫

X π(dx) ×
f̂ 2

θ∞(x) < ∞ �P�-a.s., the monotone convergence theorem implies that

lim
M→∞

∫
X
π(dx)f̂ 2

θ∞(x)1
{∣∣f̂θ∞(x)

∣∣ ≥ M
} = 0, �P�-a.s.,

showing that the conditional Lindeberg condition (b) holds.
In order to prove equation (42), we proceed along the lines of the proof of Propo-

sition 7. First, since κ∞ < ∞, �P�-a.s.,
∑Tκ∞

k=1 |f (Xk)| + ∑Tκ∞
k=1 |ξk| < ∞, �P�-a.s.,

which implies that

n−1/2

∣∣∣∣∣
Tκ∞∑
k=1

f (Xk) −
Tκ∞∑
k=1

ξk

∣∣∣∣∣ a.s.−→�P�
0.(44)

Second, proceeding as in the proof of (36) and using (25) with γ̃ = 1/2 and some
p ∈ (1,1/(α + β)], since f is V α-Lipschitz, we have that for any 0 ≤ i ≤ K for
some K > 0 and n > 0,

�P�

[
sup
m≥n

m−1/2

∣∣∣∣∣
m∑

k=Ti+1

f (Xk) −
m∑

k=Ti+1

ξk

∣∣∣∣∣ ≥ δ, κ∞ = i, Ti ≤ n/2
∣∣∣∣GTi

]
(45)

≤ Cδ−p‖f ‖p
V α

{( ∞∑
k=1

[�n/2� ∨ k]−1/2γk

)p

+
(

n

2

)−p(1/2−α)
}
.

Under the assumption
∑∞

k=1 k−1/2γk < ∞, proceeding as below equation (36),
one can show that limn→∞

∑∞
k=1[�n/2�) ∨ k]−1/2γk = 0. Arguing as in (35), we

conclude that

m−1/2

∣∣∣∣∣
m∑

k=Ti+1

f (Xk) −
m∑

k=Ti+1

ξk

∣∣∣∣∣ a.s.−→�P�
0.(46)



1482 C. ANDRIEU AND E. MOULINES

The proof of (42) follows from (44) and (46). The proof of (39) follows from [20],
Corollary 3.2 of Theorem 3.3. �

5. Stability and convergence of the stochastic approximation process. In
order to conclude the part of this paper dedicated to the general theory of adaptive
MCMC algorithms, we now present generally verifiable conditions under which
the number of reinitializations of the algorithm that produces the Markov chain
{Zk} described in Section 2 is �P�-a.e. finite. This is a difficult problem per se,
which has been worked out in a companion paper, [3]. We here briefly introduce
the conditions under which this key property is satisfied and give (without proof)
the main stability result. The reader should refer to [3] for more details.

As mentioned in the Introduction, the convergence of the stochastic approx-
imation procedure is closely related to the stability of the noiseless sequence
θ̄k+1 = θ̄k + γk+1h(θ̄k). A practical technique for proving the stability of the
noiseless sequence consists, when possible, of determining a Lyapunov function
w :� → [0,∞) such that 〈∇w(θ),h(θ)〉 ≤ 0, where ∇w denotes the gradient of
w with respect to θ and, for u, v ∈ R

n, 〈u, v〉 is their Euclidean inner product (we
will later on also use the notation |v| = √〈v, v〉 to denote the Euclidean norm
of v). This indeed shows that the noiseless sequence {w(θ̄k)} eventually decreases,
showing that limk→∞ w(θ̄k) exists. It should therefore not be surprising if such a
Lyapunov function can play an important role in showing the stability of the noisy
sequence {θk}. With this in mind, we can now detail the conditions required to
prove our convergence result:

(A4) � is an open subset of R
nθ . The mean field h :� → R

nθ is continuous, and
there exists a continuously differentiable function w :� → [0,∞) [with the
convention w(θ) = ∞ when θ /∈ �] such that:

(i) For any M > 0, the level set WM
def= {θ ∈ �,w(θ) ≤ M} ⊂ � is

compact;

(ii) the set of stationary point(s) L
def= {θ ∈ �, 〈∇w(θ),h(θ)〉 = 0} be-

longs to the interior of �;
(iii) for any θ ∈ �, 〈∇w(θ),h(θ)〉 ≤ 0 and the closure of w(L) has an

empty interior.

Finally we require some conditions on the sequence of stepsizes γ = {γk}.
(A5) The sequence γ = {γk} is nonincreasing, positive and

∞∑
k=1

γk = ∞ and
∞∑

k=1

{γ 2
k + k−1/2γk} < ∞.

The following theorem is a straightforward simplification of [3], Theorems
5.4 and 5.5, and shows that the tail probability of the number of reinitializa-
tions decreases faster than any exponential, and that the parameter sequence
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{θk} converges to the stationary set L. For a point x and a set A we define

d(x,A)
def= inf{|x − y| :y ∈ A}.

THEOREM 11. Let {Kq, q ≥ 0} be a compact coverage of � and let γ = {γk}
be a real-valued sequence. Consider the time-homogeneous Markov chain {Zk}
on Z with transition probability R, as defined in Section 2. Assume (A1)–(A5).
Then,

lim sup
k→∞

k−1 log
(

sup
(x,θ)∈X×�

�Px,θ

[
sup
n≥0

κn ≥ k

])
= −∞,

inf
(x,θ)∈X×�

�Px,θ

[
lim

k→∞d(θk,L) = 0
]

= 1.

6. Consistency and invariance principle for the adaptive N-SRW kernel.
In this section we show how our results can be applied to the adaptive N-SRWM
algorithm proposed by Haario, Saksman and Tamminen [19] and described in Sec-
tion 1. We first illustrate how the conditions required to prove the LLN in [19] can
be alleviated. In particular, no boundedness condition is required on the parameter
set �, but rather conditions on the tails of the target distribution π . We then extend
these results further and prove a central limit theorem (Theorem 15).

In view of the results proved above it is required:

(a) to prove the ergodicity and regularity conditions for the Markov kernels
outlined in assumption (A1);

(b) to prove that the reinitializations occur finitely many times (stability) and
that {θk} eventually converges. Note again that the convergence property is only
required for the CLT.

We first focus on (a). The geometric ergodicity of the SRWM kernel has been stud-
ied by Roberts and Tweedie [31] and refined by Jarner and Hansen [22]; the regu-
larity of the SRWM kernel has not, to the best of our knowledge, been considered
in the literature. The geometric ergodicity of the SRWM kernel mainly depends on
the tail properties of the target distribution π . We will therefore restrict our discus-
sion to target distributions that satisfy the following set of conditions. These are
not minimal, but easy to check in practice (see [22] for details).

(M) The probability density π is defined on X = R
nx for some integer nx and has

the following properties:

(i) It is bounded, bounded away from zero on every compact set and
continuously differentiable.

(ii) It is super-exponential, that is,

lim|x|→+∞

〈
x

|x| ,∇ logπ(x)

〉
= −∞.
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(iii) The contours ∂A(x) = {y :π(y) = π(x)} are asymptotically regular,
that is,

lim|x|→+∞ sup
〈

x

|x| ,
∇π(x)

|∇π(x)|
〉
< 0.

We now establish uniform minorization and drift conditions for the SRWM algo-
rithm defined in (3). Let M(X) denote the set of probability densities w.r.t. the
Lebesgue measure λLeb. For any a, b > 0, define Qa,b(X) ⊂ M(X) as follows:

Qa,b(X)
def=

{
q ∈ M(X), q(x) = q(−x) and inf|x|≤a

q(x) ≥ b

}
.(47)

PROPOSITION 12. Assume (M). For any η ∈ (0,1), set V = π−η/

(supx∈X π(x))−η. Then:

1. For any nonempty compact set C ⊂ X, there exists a > 0 such that, for any b > 0
such that Qa,b(X) �= ∅, there exists ε > 0 such that C is a (1, ε)-small set for the
elements of {P SRW

q :q ∈ Qa,b(X)}, with minorization probability distribution ϕ

such that, for any A ∈ B(X), ϕ(A) = λLeb(A ∩ C)/λLeb(C), that is,

inf
q∈Qa,b(X)

P SRW
q (x,A) ≥ εϕ(A) for all x ∈ C and A ∈ B(X).(48)

2. Furthermore, for any a > 0 and b > 0 such that Qa,b(X) �= ∅,

sup
q∈Qa,b(X)

lim sup
|x|→+∞

P SRW
q V (x)

V (x)
< 1,(49)

sup
(x,q)∈X×Qa,b(X)

P SRW
q V (x)

V (x)
< +∞.(50)

3. Let q, q ′ ∈ M(X) be two symmetric probability distributions. Then, for any r ∈
[0,1] and any f ∈ LV r , we have

‖P SRW
q f − P SRW

q ′ f ‖V r ≤ 2‖f ‖V r

∫
X
|q(x) − q ′(x)|λLeb(dx).(51)

The proof appears in Appendix C.
As an example of an application, one can again consider the adaptive N-SRWM

introduced earlier in Section 1, where the proposal distribution is N (0,�). In the
following lemma, we show that the mapping � → P SRW

N (0,�) is Lipschitz continuous.
This result can be generalized to distributions in the curved exponential family (see
Proposition 16).

LEMMA 13. Let K be a convex compact subset of Cnx+ and set V =
π−η/(supX π)−η for some η ∈ (0,1). For any r ∈ [0,1], any �,�′ ∈ K × K and



ERGODICITY OF ADAPTIVE MCMC 1485

any f ∈ LV r , we have∥∥P SRW
N (0,�)f − P SRW

N (0,�′)f
∥∥
V r ≤ 2nx

λmin(K)
‖f ‖V r |� − �′|,

where, for � ∈ Cnx+ , |�|2 = Tr[��T] and λmin(K) is the minimum possible eigen-
value for matrices in K.

The proof appears in Appendix D. We now turn to proving that the stochas-
tic approximation procedure outlined by Haario, Saksman and Tamminen [19] is
ultimately pathwise bounded and eventually converges. In the case of the algo-
rithm proposed by Haario, Saksman and Tamminen [19], the parameter estimates
µk and �k take the form of maximum likelihood estimates under the i.i.d. multi-
variate Gaussian model. It therefore comes as no surprise if the Lyapunov function
w required to check (A4) is the Kullback–Leibler divergence between the target
density π and the normal density N (µ,�),

w(µ,�) = log det� + (µ − µπ)T�−1(µ − µπ) + Tr(�−1�π),(52)

where µπ and �π are the mean and covariance of the target distribution, defined
in (9). Using straightforward algebra and the definition (8) of the mean field h, one
can check that

〈∇w(µ,�),h(µ,�)〉
= −2(µ − µπ)T�−1(µ − µπ)(53)

− Tr
(
�−1(� − �π)�−1(� − �π)

)− (
(µ − µπ)T�−1(µ − µπ)

)2
,

that is, 〈∇w(θ),h(θ)〉 ≤ 0 for any θ
def= (µ,�) ∈ �, with equality if and only if

� = �π and µ = µπ . The situation in this case is simple, as the set of stationary
points {θ ∈ �,h(θ) = 0} is reduced to a single point, and the Lyapunov function
w goes to infinity as |µ| → ∞ or � goes to the boundary of the cone of positive
matrices.

It can now be shown that these results lead to the following intermediate lemma;
see [3] for details.

LEMMA 14. Assume (M) and let H and h be as in (5) and (8). Then,
(A3) and (A4) are satisfied with V = π−1/(supX π)−1 for any β ∈ (0,1/2] and

w as in (52). In addition, the set of stationary points L
def= {θ ∈ �

def= R
nx ×

Cnx+ , 〈∇w(θ),h(θ)〉 = 0} is reduced to a single point θπ = (µπ,�π), whose com-
ponents are respectively the mean and covariance of the distribution π .

From Proposition 12 and Lemma 13, we deduce our main theorem for this sec-
tion, concerned with the adaptive N-SRWM of [19] as described in Section 1, but
with reprojections as in Section 2.
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THEOREM 15. Consider the process {Zk} with {Pθ , θ = (µ,�) ∈ �
def= R

nx ×
Cnx+ , qθ = N (0, λ�),λ > 0} as in (3), {Hθ, θ ∈ �} as in equation (5), π sat-

isfying (M), γ = {γk, k ≥ 0} satisfying (A5) and K a compact set. Let W
def=

π−1/(supπ)−1. Then, for any α ∈ [0,1):

1. For any f ∈ L(Wα) a strong LLN holds, that is,

n−1
n∑

k=1

(
f (Xk) −

∫
X
f (x)π(dx)

)
a.s.−→�P�

0.(54)

2. For any f ∈ L(Wα/2) a CLT holds, that is,

1√
n

n∑
k=1

[f (Xk) − π(f )] D−→�P�
N

(
0, σ 2(θπ , f )

)
,

if σ(θπ , f ) > 0,

1√
nσ(θπ , f )

n∑
k=1

(
f (Xk) − π(f )

) D−→�P�
N (0,1),

where θπ = (µπ,�π) and σ 2(θπ , f ) are defined in (38).

The proof is immediate. We refer the reader to [19] for applications of this type
of algorithm to various settings.

7. Application: matching π with mixtures.

7.1. Setup. The independence Metropolis–Hastings algorithm (IMH) corre-
sponds to the case where the proposal distribution used in an MH transition
probability does not depend on the current state of the MCMC chain, that is,
q(x, y) = q(y) for some density q ∈ M(X). The transition kernel of the Metropolis
algorithm is then given for x ∈ X and A ∈ B(X) by

P IMH
q (x,A) =

∫
A

αq(x, y)q(y)λLeb(dy)

+ 1A(x)

∫
X

(
1 − αq(x, y)

)
q(y)λLeb(dy)(55)

with αq(x, y) = 1 ∧ π(y)q(x)

π(x)q(y)
.

Irreducibility of Markov chains built on this model naturally require that q(x) > 0
whenever π(x) > 0. In fact, the performance of the IMH is known to depend on
how well the proposal distribution mimics the target distribution, and this can be
quantified in several ways. For example, it has been shown in [26] that the IMH
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sampler is geometrically ergodic if and only if there exists ε > 0 such that q ∈
Qε,π ⊂ M(X), where

Qε,π = {
q ∈ M(X) :λLeb({x ∈ X :q(x)/π(x) < ε}) = 0

}
.(56)

This condition implies that the whole state space X is a (1, ε)-small set, which in
turn implies that convergence occurs uniformly, at a geometric rate bounded above
by 1−ε. Given a family of candidate proposal distributions {qθ ∈ M(X), θ ∈ �}, it
therefore seems natural to maximise θ → infx∈X π(x)/qθ (x). However, although
theoretically attractive, the optimization of this uniform criterion might be a very
ambitious task in practice. Furthermore, it might not necessarily be a good choice
for a given parametric family of proposal distributions: one might in this case try to
optimize the transition probability for pathological features of π with small prob-
ability under π , at the expense of more fundamental characteristics of the target,
such as its global shape. Additionally, such pathological features can very often be
taken care of by other specialized MCMC updates. Instead of this uniform crite-
rion, we suggest the optimization of an average property of the ratio π(x)/qθ (x)

under π , which possesses the advantage of being more amenable to computation.
It is argued in [15] that minimizing the total variation distance ‖π − qθ‖TV is a
sensible criterion to optimize, since it can be proved that the expected acceptance
probability is bounded below by 1 − ‖π − qθ‖TV, and that, for a bounded func-
tion f , the first covariance coefficient of the Markov chain in the stationary regime
is bounded as follows: covπ(f (Xk), f (Xk+1)) ≤ (5/2)2 supx∈X |f |‖π − qθ‖TV.
However, no systematic way of effectively minimizing this criterion is described.
We propose here to use the Kullback–Leibler divergence between the target distri-
bution π and an auxiliary distribution q̃θ close in some sense to qθ ,

K(π‖q̃θ ) =
∫

X
π(x) log

π(x)

q̃θ (x)
λLeb(dx).(57)

The proposal distribution qθ of the IMH algorithm is then constructed from q̃θ .
As we shall see, this offers an additional degree of freedom which, in particular,
will be a simple way of ensuring that {qθ , θ ∈ �} ⊂ Qε,π , defined in (56), for
some ε > 0 (see Remark 7). The use of this criterion possesses several advan-
tages. First, invoking Pinsker’s inequality, it is possible to repeat Gasemyr [15]
arguments. Second, it formalizes several ideas that have been proposed in the lit-
erature (cf. [15] and [17] among others). In [17] it is suggested to use the EM
(Expectation–Minimization) algorithm in order to fit a mixture of normals in the,
possibly penalized, maximum likelihood sense to samples from a preliminary run
of an MCMC algorithm. This mixture can then be used to define the proposal dis-
tribution of an IMH. As we shall see, the choice of the Kullback–Leibler (KL)
divergence corresponds precisely to this choice and naturally leads to an on-line
EM algorithm that allows us to adjust qθ to π as samples from π become avail-
able from the MCMC sampler. Finally, we point out at this stage that, although
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we restrict here our discussion to the IMH algorithm, the KL criterion can equally
be used for other updates, such as the SRWM algorithm. The algorithm proposed
by Haario, Saksman and Tamminen [19] is in this case a particular instance of the
algorithm hereafter.

In order to allow for flexibility and the description of a general class of algo-
rithms, we consider here mixtures of distributions in the exponential family for
the auxiliary proposal distribution. More precisely, let � ⊂ R

nξ and Z ⊂ R
nz , for

some integers nξ and nz, and define the following family of exponential proba-
bility densities (defined with respect to the product measure λLeb ⊗ µ for some
measure µ on Z)

Ec = {
f :fξ (x, z) = exp{−ψ(ξ) + 〈T (x, z),φ(ξ)〉}; ξ, x, z ∈ � × X × Z

}
,

where ψ :� → R, φ :� → R
nθ and T : X × Z → R

nθ . Let E denote the set of
densities q̃ξ that are marginals of densities from Ec, that is, such that for any ξ, x ∈
� × X we have

q̃ξ (x) =
∫
Z

fξ (x, z)µ(dz).(58)

This family of densities covers in particular finite mixtures of multivariate normal
distributions. Here, the variable z plays the role of the label of the class, which is
not observed (see, e.g., [32]). Using standard missing data terminology, fξ (x, z) is
the complete data likelihood and q̃ξ is the associated incomplete data likelihood,
which is the marginal of the complete data likelihood with respect to the class la-
bels. When the number of observations is fixed, a classical approach to estimating
the parameters of a mixture distribution consists of using the EM algorithm.

7.2. Classical EM algorithm. The classical EM algorithm is an iterative pro-
cedure which consists of two steps. Given n independent samples (X1, . . . ,Xn)

distributed marginally according to π : (1) Expectation step: calculate the condi-
tional expectation of the complete data log-likelihood, given the observations and
ξk (the estimate of ξ at iteration k)

ξ �→ Q(ξ, ξk)
def=

n∑
i=1

E
[
log

(
fξ (Xi,Zi)

)|Xi, ξk

]
.

(2) Maximization step: maximize the function ξ �→ Q(ξ, ξk) with respect to ξ .
The new estimate for ξ is ξk+1 = arg maxξ∈� Q(ξ, ξk) (provided that it exists and
is unique). The key property at the core of the EM algorithm is that the incom-
plete data likelihood

∏n
i=1 q̃ξk+1(Xi) ≥ ∏n

i=1 q̃ξk
(Xi) is increased at each iteration,

with equality if and only if ξk is a stationary point (i.e., a local or global min-
imum or a saddle point). Under mild additional conditions (see, e.g., [33]), the
EM algorithm therefore converges to stationary points of the marginal likelihood.
Note that, when n → ∞, under appropriate conditions, the renormalized incom-
plete data log-likelihood n−1 ∑n

i=1 log q̃ξ (Xi) converges to Eπ [log q̃ξ (X)], which
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is equal, up to a constant and a sign, to the Kullback–Leibler divergence between
π and q̃ξ . In our particular setting, the classical batch form of the algorithm is as
follows: first define for ξ ∈ � the conditional distribution

νξ (x, z)
def= fξ (x, z)

q̃ξ (x)
,(59)

where q̃ξ is given by (58). Now, assuming that
∫
Z |T (x, z)|νξ (x, z)µ(dz) < ∞,

one can define for x ∈ X and ξ ∈ �

νξT (x)
def=

∫
Z

T (x, z)νξ (x, z)µ(dz),(60)

and check that for fξ ∈ Ec and any (ξ, ξ ′) ∈ � × � that

E
{
log

(
fξ (Xi,Zi)

)|Xi, ξ
′} = L

(
νξ ′T (Xi); ξ ),

where L : � × � → R is defined as

L(θ; ξ)
def= −ψ(ξ) + 〈θ,φ(ξ)〉 with �

def= T (X,Z).(61)

From this, one easily deduces that, for n samples,

Q(ξ, ξk) = nL

(
1

n

n∑
i=1

νξk
T (Xi); ξ

)
.

Assuming now for simplicity that, for all θ ∈ �, the function ξ → L(θ; ξ) reaches
its maximum at a single point denoted by ξ̂ (θ) [i.e., L(θ; ξ̂ (θ)) ≥ L(θ; ξ) for all
ξ ∈ �], the EM recursion can then be simply written as

ξk+1 = ξ̂

(
1

n

n∑
i=1

νξk
T (Xi)

)
.

The condition on the existence and uniqueness of ξ̂ (θ) is not restrictive. It is, for
example, satisfied for finite mixtures of normal distributions. More sophisticated
generalizations of the EM algorithm have been developed in order to deal with
situations where this condition is not satisfied; see, for example, [25].

Our scenario differs from the classical setup above in two respects. First, the
number of samples considered evolves with time, which requires that we esti-
mate ξ on the fly. Second, the samples {Xi} are generated by a transition prob-
ability with invariant distribution π and are therefore not independent. We address
the first problem in Section 7.3 and the two problems simultaneously in Section 7.4
where we describe our particular adaptive MCMC algorithm.
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7.3. Sequential EM algorithm. Sequential implementations of the EM algo-
rithm for estimating the parameters of a mixture when the data are observed se-
quentially in time have been considered by several authors (see [32], Chapter 6,
[5] and the references therein). The version presented here is, in many respects,
a standard adaptation of these algorithms and consists of recursively and jointly
estimating and maximizing with respect to ξ the function

θ(ξ) = Eπ [log q̃ξ (X)] = π{νTξ (X)},
which, as pointed out earlier, is the Kullback–Leibler divergence between π

and q̃ξ , up to an additive constant and a sign. At iteration k + 1, given an esti-
mate θk of θ and ξk = ξ̂ (θk), sample Xk+1 ∼ π and calculate

θk+1 = (1 − γk+1)θk + γk+1νξk
T (Xk+1)

(62)
= θk + γk+1

(
νξk

T (Xk+1) − θk

)
,

where {γk} is a sequence of stepsizes and γk ∈ [0,1]. This can be interpreted as a
stochastic approximation algorithm θk+1 = θk +γk+1H(θk,Xk+1) with, for θ ∈ �,

H(θ, x) = ν
ξ̂(θ)

T (x) − θ and h(θ) = π
(
ν
ξ̂(θ)

T
)− θ.(63)

At this stage, it is possible to introduce a set of simple conditions on the distri-
butions in Ec that ensures the convergence of the sequence {θk} defined above. By
convergence, we mean here that {θk} converges to the set of stationary points of
the Kullback–Leibler divergence between π and q̃

ξ̂ (θ)
, that is,

L
def= {θ ∈ � :∇w(θ) = 0},

where, for θ ∈ �

w(θ) = K
(
π‖q̃

ξ̂ (θ)

)
,(64)

and K and q̃ξ are defined in (57) and (58), respectively. It is worth noticing that
these very same conditions will be used to prove the convergence of our adaptive
MCMC algorithm:

(E1) (i) The sets � and � are open subsets of R
nξ and R

nθ , respectively. Z is
a compact subset of R

nz .

(ii) For any x ∈ X, T (x)
def= inf{M :µ({z : |T (x, z)| ≥ M}) = 0} < ∞.

(iii) The functions ψ :� → R and φ :� → R
nθ are twice continuously

differentiable on �.
(iv) There exists a continuously differentiable function ξ̂ :� → � such

that, for all θ, ξ ∈ � × �,

L
(
θ; ξ̂ (θ)

) ≥ L(θ; ξ).
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REMARK 5. For many models, the function ξ → L(θ; ξ) admits a unique
global maximum for any θ ∈ �, and the existence and differentiability of θ → ξ̂ (θ)

follows from the implicit function theorem under mild regularity conditions.

(E2) (i) The level sets {θ ∈ �,w(θ) ≤ M} for M > 0 are compact.

(ii) The set L
def= {θ ∈ �,∇w(θ) = 0} of stationary points is included in

a compact subset of �.
(iii) The closure of w(L) has an empty interior.

REMARK 6. Assumption (E2) depends on both the properties of π and q
ξ̂(θ)

and should therefore be checked on a case-by-case basis. Note, however, that (a)
these assumptions are satisfied for finite mixtures of distributions in the exponen-
tial family under classical technical conditions on the parametrization beyond the
scope of the present paper (see, among others [32], Chapter 6, and [5] for details)
(b) the third assumption in (E2) can very often be checked using Sard’s theorem.

We first prove here an intermediate proposition concerned with estimates of the
variation q̃ξ − q̃ξ ′ under (E2) in various senses. Note that most of these results are
not used in this section, but will be useful in the following.

PROPOSITION 16. Let {q̃ξ , ξ ∈ �} ⊂ E be a family of distributions satisfy-
ing (E1). Then, for any convex compact set K ⊂ �:

1. There exists a constant C < ∞ such that

sup
ξ∈K

|∇ξ log q̃ξ (x)| ≤ C
(
1 + T (x)

)
.(65)

2. For any ξ, ξ ′, x ∈ K2 × X there exists a constant C < ∞ such that

|q̃ξ (x) − q̃ξ ′(x)| < C|ξ − ξ ′|(1 + T (x)
)

sup
ξ∈K

q̃ξ (x).(66)

3. For W → [1,∞) such that supξ∈K

∫
X q̃ξ (x)[1+T (x)]W(x)λLeb(dx) < ∞ and

any ξ, ξ ′ ∈ K , there exists a constant C < ∞ such that∫
X
|q̃ξ (x) − q̃ξ ′(x)|W(x)λLeb(dx) ≤ C|ξ − ξ ′|.(67)

The proof appears in Appendix E. The key to establishing the convergence
of the stochastic approximation procedure here consists of proving that w(θ) =
K(π‖q

ξ̂(θ)
) plays the role of a Lyapunov function. This is hardly surprising as the

algorithm aims at minimizing sequentially in time the incomplete data likelihood.
More precisely, we have:
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PROPOSITION 17. Assume (E1). Then, for all θ ∈ �, 〈∇w(θ),h(θ)〉 ≤ 0, and

L = {θ ∈ � : 〈∇w(θ),h(θ)〉 = 0} = {θ ∈ � :∇w(θ) = 0},(68)

ξ̂ (L) = {ξ ∈ � : ∇ξK(π‖qξ ) = 0},(69)

where θ �→ h(θ) is given in (63).

The proof appears in Appendix E. Another important result needed to prove
convergence is the regularity of the field θ �→ Hθ . We have:

PROPOSITION 18. Assume (E1). Then {Hθ, θ ∈ �} is (1 + T )2-Lipschitz,
where Hθ is defined in (63).

The proof appears in Appendix E. With this, and standard results on the con-
vergence of SA, one may show that the SA procedure converges pointwise under
(E1) and (E2).

7.4. On-line EM for IMH adaptation. We now consider the combination of the
sequential EM algorithm described earlier with the IMH sampler. As we shall see
in Proposition 20, using q̃

ξ̂ (θ)
as a proposal distribution for the IMH transition is

not sufficient to ensure the convergence of the algorithm, and it will be necessary
to use a mixture of a fixed distribution ζ (which will not be updated during the
successive iterations) and an adaptive component, here q̃

ξ̂ (θ)
. More precisely, we

define the following family of parametrized IMH transition probabilities {Pθ , θ ∈
�}: for e ∈ (0,1] let ζ ∈ Qe,π (assumed nonempty) be a density which does not
depend on θ ∈ �, let ι ∈ (0,1) and define the family of IMH transition probabilities

Pe,ζ
def= {

Pθ
def= P IMH

qθ
, θ ∈ �

}
with

{
qθ

def= (1 − ι)q̃
ξ̂ (θ)

+ ιζ, θ ∈ �
}
.(70)

The following properties on ζ and Ec will be required in order to ensure that Pe,ζ

satisfies (E1) and (E2):

(E3) (i) There exist e > 0 and ζ ∈ Qe,π such that, for any compact K ⊂ �,

sup
ξ∈K

inf
{
M :λLeb

(
q̃ξ (x)(1 + T (x))

ζ(x)
≥ M

)
= 0

}
< ∞.(71)

(ii) There exists W → [1,∞) such that, for any compact subset K ⊂ �,∫
X
W(x)

(
1 + T (x)

)
ζ(x)λLeb(dx)

+ sup
ξ∈K

∫
X
W(x)

(
1 + T (x)

)
q̃ξ (x)λLeb(dx) < ∞,

and supx∈K W(x) < ∞, where K is defined in Section 2.
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REMARK 7. It is worth pointing out that the above choice for qθ and the con-
dition ζ ∈ Qe,π automatically ensure that {qθ , θ ∈ �} ⊂ Qε,π for ε = eι.

The basic version (see Section 2) of our algorithm now proceeds as follows:
set θ0 ∈ �, ξ0 = ξ̂ (θ0) and draw X0 according to some initial distribution. At it-
eration k + 1 for k ≥ 0, draw Xk+1 ∼ Pθk

(Xk, ·) where Pθ is given in (70). Com-
pute θk+1 = θk + γk+1(νξk

T (Xk+1) − θk) and ξk+1 = ξ̂ (θk+1). We will study here
the corresponding algorithm with reprojections which results in the homogeneous
Markov chain {Zk, k ≥ 0} as described in Section 2.

We now establish intermediate results about Pe,ζ and {Hθ, θ ∈ �} which will
lead to the proof that (A1)–(A3) are satisfied. We start with a general proposition
about the properties of IMH transition probabilities, relevant to checking (A1).

PROPOSITION 19. Let V : X → [1,+∞), and let q ∈ Qε,π for some ε > 0.
Then:

1. X is a (1, ε)-small set with minorization distribution ϕ = q , and

P IMH
q V (x) ≤ (1 − ε)V (x) + q(V ), where q(V ) =

∫
X
q(x)V (x)λLeb(dx).

2. For any f ∈ LV , and any proposal distributions q, q ′ ∈ Qε,π ,

(2‖f ‖V )−1‖P IMH
q f − P IMH

q ′ f ‖V

≤
∫

X
|q(x) − q ′(x)|V (x)λLeb(dx)(72)

+ [q(V ) ∨ q ′(V )]((1 ∧ |1 − q−1q ′|1) ∨ (
1 ∧ |1 − (q ′)−1q|1)).

The proof appears in Appendix F. In contrast with the SRWM, the V -norm
‖P IMH

q f − P IMH
q ′ f ‖V can be large, even in situations where

∫
X |q(x) − q ′(x)| ×

V (x)λLeb(dx) is small. This stems from the fact that the ratio of densities q/q ′
enters the upper bound above. As we shall see in Proposition 20 below, this is
what motivates our definition of the proposal distributions in (70) as a mixture of
q̃ξ ∈ E and a nonadaptive distribution ζ which satisfies (E3).

PROPOSITION 20. Assume that the family of distributions {q̃ξ , ξ ∈ �} ⊂ E
satisfies (E1) and (E3). Then, the family of transition kernels Pe,ζ given in (70)
satisfies (A1) with ε = eι, V = W , ϕ = ζ and, if W is bounded, then C = X, λ = 0,
otherwise choose ε ∈ (0, eι) such that C = {x :V (x) < ε−1 supθ∈K qθ (V )} is such
that ζ(C) > 0, and set λ = 1 − eι + ε.

The proof appears in Appendix F. We are now in a position to present our final
result:
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THEOREM 21. Let π ∈ M(X) and {q̃ξ , ξ ∈ �} ⊂ E be a family of distribu-
tions. Define � := T (X,Z). Consider the following families of transition proba-
bilities and functions:

(i) {Pθ , θ ∈ �}, as in (70), where ζ ∈ Qe,π for some e > 0, {q̃ξ , ξ ∈ �} is
further assumed to satisfy (E1), (E3) [with V such that T ∈ LV β/2 for some β ∈
[0,1)] and (E2);

(ii) {Hθ, θ ∈ �} as in (63).

Let {Kq, q ≥ 0} be a compact coverage of �, let K be a compact set and let γ =
{γk} satisfy (A5). Consider the time-homogeneous Markov chain {Zk} on Z with
transition probability R, as defined in Section 2. Then, for any (x, θ) ∈ K × K0
and any α < 1 − β:

1. For any f ∈ LV α ,

n−1
n∑

k=1

(
f (Xk) − π(f )

) → 0, �P�-a.s.

2. There �P�-a.s. exists a random variable θ∞ ∈ {θ ∈ � :∇θK(π‖q̃
ξ̂ (θ)

) = 0} such
that, provided that σ(θ∞, f ) > 0 and for any f ∈ LV α/2 ,

1√
nσ(θ∞, f )

n∑
k=1

(
f (Xk) − π(f )

) D−→�P�
N (0,1),

where σ(θ, f ) is given as in (38).

PROOF. The application of Propositions 17, 18 and 20 shows that (A1)–(A3)
are satisfied, which, together with (E2) and (A5), implies Theorem 11. Then, we
conclude by invoking Theorems 8 and 9. �

REMARK 8. It is worth noting that, provided π ∈ M(X) satisfies (M), the
results of Propositions 12, 16, 17 and 18 proved in this paper easily allow one
to establish a result similar to Theorem 21 for a generalization of the N-SRWM
of [19] (described here in Section 1 and studied in Section 5) to the case where
the proposal distribution belongs to E , that is, when the proposal is a mixture of
distributions.

APPENDIX A: STABILITY OF THE INHOMOGENEOUS CHAIN

PROOF OF LEMMA 5. Under (A1) and (A2), we have, for x, θ ∈ X × � and
k ≥ 1,

E
ρ
x,θ [V (Xk)1{σ(K) ≥ k}] = E

ρ
x,θ

[
E

ρ[V (Xk)|Fk−1]1{σ(K) ≥ k}]
≤ λE

ρ
x,θ [V (Xk−1)1{σ(K) ≥ k − 1}] + b.
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Now, a straightforward induction leads to

E
ρ
x,θ [V (Xk)1{σ(K) ≥ k}] ≤ λkV (x) + b

1 − λ
,

which shows that there exists a constant C [depending only on K and the constants
appearing in (A1)] such that, for all k ≥ 0,

E
ρ
x,θ [V (Xk)1{σ(K) ≥ k}] ≤ CV (x).(73)

Now, for any r ∈ [0,1], by Jensen’s inequality, we have, for any k ≥ 0,

E
ρ
x,θ [V r(Xk)1{σ(K) ≥ k}] ≤ (

E
ρ
x,θ [V (Xk)1{σ(K) ≥ k}])r ≤ CrV r(x),(74)

showing (21). Similarly, again using Jensen’s inequality,

E
ρ
x,θ

[
max

1≤m≤k
(amV (Xm))r1{σ(K) ≥ m}

]

≤
(

E
ρ
x,θ

[
max

1≤m≤k
amV (Xm)1{σ(K) ≥ m}

])r

≤
(

k∑
m=1

amE
ρ
x,θ [V (Xm)1{σ(K) ≥ m}]

)r

≤ Cr

(
k∑

m=1

am

)r

V r(x),

showing (22). Finally, since

1{σ(K) ≥ m}
m∑

k=1

V r(Xk) ≤
m∑

k=1

V r(Xk)1{σ(K) ≥ k},

we have

E
ρ
x,θ

[
max

1≤m≤n
1{σ(K) ≥ m}

m∑
k=1

V r(Xk)

]

≤ E
ρ
x,θ

[
n∑

k=1

V r(Xk)1{σ(K) ≥ k}
]

≤ CnV r(x),

showing (23). �

The following proposition is a direct adaptation of Birnbaum and Marshall [10]
inequality:

PROPOSITION 22. Let {Sk,Fk, k ≥ 0} be a submartingale, that is,
E(Sk|Fk−1) ≥ Sk−1 a.e. Let {ak > 0,1 ≤ k ≤ n} be a nonincreasing real-valued
sequence. If p ≥ 1 is such that E|Sk|p < ∞ for k ∈ {1, . . . , n}, then for m ≤ n,

P

{
max

m≤k≤n
ak|Sk| ≥ 1

}
≤

n−1∑
k=m

(a
p
k − a

p
k+1)E|Sk|p + ap

n E|Sn|p.
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APPENDIX B: PROOF OF PROPOSITIONS 3 AND 4

In the sequel, C is a generic constant, which may take different values upon
each appearance.

PROOF OF PROPOSITION 3. Let K ⊂ � be a compact set and let r ∈ [0,1].
For any (θ, θ ′) ∈ K × K and f ∈ L(V r),

P n
θ f − P n

θ ′f =
n−1∑
j=0

P
j
θ (Pθ − Pθ ′)P n−j−1

θ ′ f

=
n−1∑
j=0

(P
j
θ − π)(Pθ − Pθ ′)

(
P

n−j−1
θ ′ f − π(f )

)
,

where we have used the fact that πPθ = πPθ ′ = π for any θ, θ ′. Theorem 2 shows
that there exists a constant C and ρ ∈ (0,1) such that, for any θ ∈ K , l ≥ 0 and
any f ∈ LV r ,

‖P l
θf − π(f )‖V r ≤ C‖f ‖V r ρl.(75)

Under assumption (A2), for any (θ, θ ′) ∈ K × K , l ≥ 0 and any f ∈ LV r ,∥∥(P j
θ − π)(Pθ − Pθ ′)

(
P

n−j−1
θ ′ f − π(f )

)∥∥
V r

≤ Cρj
∥∥(Pθ − Pθ ′)

(
P

n−j−1
θ ′ f − π(f )

)∥∥
V r

≤ Cρj |θ − θ ′|∥∥P n−j−1
θ ′ f − π(f )

∥∥
V r

≤ C|θ − θ ′|‖f ‖V r ρn,

showing that there exists a constant C < ∞ such that, for any (θ, θ ′) ∈ K × K
and f ∈ LV r ,

‖P n
θ f − P n

θ ′f ‖V r ≤ Cnρn|θ − θ ′|‖f ‖V r .(76)

Now consider {fθ , θ ∈ �}, a family of V r -Lipschitz functions. From (75), for

any θ ∈ K ,
∑∞

k=0 |P k
θ fθ − π(fθ )| < ∞ and f̂θ

def= ∑∞
k=0(P

k
θ fθ − π(fθ )) belongs

to LV r . Now we consider the difference

f̂θ − f̂θ ′ =
∞∑

k=0

(
P k

θ fθ − π(fθ )
)−

∞∑
k=0

(
P k

θ ′fθ ′ − π(fθ ′)
)

=
∞∑

k=0

(P k
θ fθ − P k

θ ′fθ ) −
∞∑

k=0

(
P k

θ ′(fθ ′ − fθ ) − π(fθ ′ − fθ )
)
,

which using (75) and (76) shows that

‖f̂θ − f̂θ ′‖V r ≤ C|θ − θ ′|
( ∞∑

k=0

kρk

)
‖fθ‖V r + C

( ∞∑
k=0

ρk

)
‖fθ − fθ ′‖V r ,
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and we conclude by using the fact that {fθ , θ ∈ �} is a V r -Lipschitz family of
functions. Using the same arguments one can prove a similar bound for ‖Pθ f̂θ −
Pθ ′ f̂θ ′‖V r . �

PROOF OF PROPOSITION 4. For simplicity, we set σ := σ(K) and, in what
follows, C is a finite constant whose value might change upon each appearance.
Let x, θ ∈ X × �. For k ≥ k0, we introduce the following decomposition:∣∣Eρ̄

x,θ

{(
f (Xk) − π(f )

)
1(σ ≥ k)

}∣∣
≤ ∣∣Eρ̄

x,θ

{(
f (Xk) − P

n(k)
θk−n(k)

f
(
Xk−n(k)

))
1(σ ≥ k)

}∣∣
+ ∣∣Eρ̄

x,θ

{(
P

n(k)
θk−n(k)

f
(
Xk−n(k)

)− π(f )
)
1(σ ≥ k)

}∣∣.
By Theorem 2, the last term is bounded by C‖f ‖V 1−βV 1−β(x)ρn(k) ≤
Cρ̄−1‖f ‖V 1−β ρ̄kV (x). We consider the first term and use the following new de-
composition of this bias term (cf. [19]),∣∣Eρ̄

x,θ

{(
f (Xk) − P

n(k)
θk−n(k)

f
(
Xk−n(k)

))
1(σ ≥ k)

}∣∣
≤

∣∣∣∣∣
n(k)∑
j=2

E
ρ̄
x,θ

{(
P

j−1
θk−j+1

f (Xk−j+1) − P
j
θk−j

f (Xk−j )
)
1(σ > k − j + 1)

}∣∣∣∣∣
≤

∣∣∣∣∣
n(k)∑
j=2

E
ρ̄
x,θ

{
E

ρ̄
x,θ

{
P

j−1
θk−j+1

f (Xk−j+1) − P
j−1
θk−j

f (Xk−j+1)|Fk−j

}

× 1(σ > k − j + 1)
}∣∣∣∣∣

≤ C‖f ‖V 1−β

n(k)∑
j=2

(j − 1)ρj−1∣∣Eρ̄
x,θ {|θk−j+1 − θk−j |V 1−β(Xk−j+1)

× 1(σ > k − j + 1)}∣∣
≤ C‖f ‖V 1−β

n(k)−1∑
j=1

jρj ρ̄k−jE
ρ̄
x,θ {V (Xk−j )1(σ ≥ k − j)}

≤ C‖f ‖V 1−βV (x)ρ̄k−n(k)+1,

where we have successively used (76) with r = 1 − β , (A3), the fact that ρ̄ is
assumed nonincreasing and (74). We conclude with the additional condition on ρ̄.

�
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APPENDIX C: PROOF OF PROPOSITION 12

For any x ∈ X, define the acceptance region A(x) = {z ∈ X;π(x + z) ≥ π(x)}
and the rejection region R(x) = {z ∈ X;π(x +z) < π(x)}. From the definition (47)
of Qa,b ([31], Theorem 2.2) applies for any q ∈ Qa,b and we can conclude that (48)
is satisfied. Noting that the two sets A(x) and R(x) do not depend on the proposal
distribution q and using the conclusion of the proof of Theorem 4.3 of [22], we
have

inf
q∈Qa,b

lim inf|x|→+∞

∫
A(x)

q(z)λLeb(dz) > 0,

so that, from the conclusion of the proof of Theorem 4.1 of [22],

sup
q∈Qa,b

lim sup
|x|→+∞

P SRW
q V (x)

V (x)
= 1 − inf

q∈Qa,b

lim inf|x|→+∞

∫
A(x)

q(z)λLeb(dz) < 1,

which proves (49). Finally, for any q ∈ Ka,b,

P SRW
q V (x)

V (x)
=

∫
A(x)

π(x + z)−η

π(x)−η
q(z)λLeb(dz)

+
∫

R(x)

(
1 − π(x + z)

π(x)
+ π(x + z)1−η

π(x)1−η

)
q(z)λLeb(dz)

≤ sup
0≤u≤1

(1 − u + u1−η),

which proves (50). Now notice that

P SRW
q f (x) − P SRW

q ′ f (x) =
∫

X
α(x, x + z)

(
q(z) − q ′(z)

)
f (x + z)λLeb(dz)

+ f (x)

∫
X
α(x, x + z)

(
q ′(z) − q(z)

)
λLeb(dz).

We therefore focus, for r ∈ [0,1] and f ∈ LV r , on the term

| ∫X α(x, x + z)(q(z) − q ′(z))f (x + z)λLeb(dz)|
‖f ‖V r V r(x)

≤
∫

X α(x, x + z)|q(z) − q ′(z)|V r(x + z)λLeb(dz)

V r(x)

≤
∫

A(x)

π(x + z)−rη

π(x)−rη
|q(z) − q ′(z)|λLeb(dz)

+
∫

R(x)

π(x + z)1−rη

π(x)1−rη
|q(z) − q ′(z)|λLeb(dz)

≤
∫

X
|q(z) − q ′(z)|λLeb(dz).



ERGODICITY OF ADAPTIVE MCMC 1499

We now conclude that, for any x ∈ X and any f ∈ LV r ,

|P SRW
q f (x) − P SRW

q ′ f (x)|
V r(x)

≤ 2‖f ‖V r

∫
X
|q(z) − q ′(z)|λLeb(dz).

APPENDIX D: PROOF OF LEMMA 13

For notational simplicity, we write q� for N (0,�). We have∫
X
|q�(z) − q�′(z)|λLeb(dz) =

∫
X

∣∣∣∣ ∫ 1

0

d

dv
q�+v(�′−�)(z)λ

Leb(dv)

∣∣∣∣λLeb(dz),

and let �v = � + v(�′ − �), so that

d

dv
logq�+v(�′−�)(z) = −1

2
Tr[�−1

v (�′ − �) + �−1
v zzT�−1

v (�′ − �)],
and consequently∫

X

∣∣∣∣ ∫ 1

0

d

dv
q�+v(�′−�)(z)λ

Leb(dv)

∣∣∣∣λLeb(dz) ≤ |�′ − �|
∫ 1

0
|�−1

v |λLeb(dv)

≤ nx

λmin(K)
|�′ − �|,

where we have used the following inequality:

|Tr[�−1
v zzT�−1

v (�′ − �)]| ≤ |�′ − �|Tr[�−1
v �−1

v zzT].
APPENDIX E: PROOFS OF PROPOSITIONS 16, 17 AND 18

Hereafter, for a scalar function s, ∇s is a column vector, and for a (column)
vector-valued function v with scalar entries v1, v2, . . . , we use the convention that
∇v is the matrix with ∇vi as its ith column.

PROOF OF PROPOSITION 16. We first note that, from Fisher’s identity, we
have

∀ ξ ∈ � ∇ξ log q̃ξ (x) =
∫
Z

∇ξ logfξ (x, z)νξ (x, z)µ(dz)

= −∇ξψ(ξ) + ∇ξφ(ξ)νξT (x)

and, from (E1), we conclude that (65) holds. Equation (66) is a direct consequence

of (65). Now we prove (67). With �ψ
def= ψ(ξ ′) − ψ(ξ) and �φ

def= φ(ξ ′) − φ(ξ)

for ξ, ξ ′ ∈ �,∫
X
|q̃ξ (x) − q̃ξ ′(x)|W(x)λLeb(dx)

=
∫

X

∣∣∣∣∣
∫ 1

0

∫
Z
[�ψ − 〈T (x, z),�φ〉]f v

ξ (x, z)f 1−v
ξ ′ (x, z)µ(dz)λLeb(dv)

∣∣∣∣∣
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× W(x)λLeb(dx)

≤ |�ψ |
∫

X

∫ 1

0

∫
Z

f v
ξ (x, z)f 1−v

ξ ′ (x, z)W(x)µ(dz)λLeb(dv dx)

+ |�φ|
∫

X

∫ 1

0
T (x)

∫
Z

f v
ξ (x, z)f 1−v

ξ ′ (x, z)W(x)µ(dz)λLeb(dv dx)

≤ |�ψ |
∫ 1

0

[∫
X
W(x)q̃ξ (x)λLeb(dx)

]v

×
[∫

X
W(x)q̃ξ ′(x)λLeb(dx)

]1−v

λLeb(dv)

+ |�φ|
∫ 1

0

[∫
X
T (x)W(x)q̃ξ (x)λLeb(dx)

]v

×
[∫

X
T (x)W(x)q̃ξ ′(x)λLeb(dx)

]1−v

λLeb(dv),

and we conclude by invoking the assumptions on W , φ and ψ . �

PROOF OF PROPOSITION 17. We first note that, from Fisher’s identity, we
have

∀ ξ ∈ � ∇ξ log q̃ξ (x) =
∫
Z

∇ξ logfξ (x, z)νξ (x, z)µ(dz)

= −∇ξψ(ξ) + ∇ξφ(ξ)νξT (x).

From (65) and (E1), we may derive under the sum sign to show that

∇ξ

∫
X
π(x) log q̃ξ (x)λLeb(dx) =

∫
X
π(x)∇ξ log q̃ξ (x)λLeb(dx)

= −∇ξψ(ξ) + ∇ξφ(ξ)π(νξT ),

and thus, by the chain rule of derivations,

∇θw(θ) = −∇θ ξ̂ (θ)
(−∇ξψ(ξ̂ (θ)) + ∇ξφ(ξ̂ (θ))π

(
ν
ξ̂(θ)

T
))

.

For any θ ∈ �, ξ̂ (θ) is a stationary point of the mapping ξ → L(θ, ξ) and, thus,

∇ξL(θ, ξ̂ (θ)) = −∇ξψ(ξ̂ (θ)) + ∇ξφ(ξ̂ (θ))θ = 0.

Consequently, (63) implies that ∇θw(θ) = −∇θ ξ̂ (θ)∇ξφ(ξ̂ (θ))h(θ). We also no-
tice that ∇θ∇ξL(θ, ξ) = ∇ξφ(ξ)T. Differentiation with respect to θ of the mapping
θ �→ ∇ξL(θ, ξ̂ (θ)) yields

∇θ∇ξL
(
θ, ξ̂ (θ)

) = ∇ξφ(ξ̂ (θ))T + ∇θ ξ̂ (θ)∇2
ξ L

(
θ, ξ̂ (θ)

) = 0.

We finally have

〈∇θw(θ), h(θ)〉 = h(θ)T∇θ ξ̂ (θ)∇2
ξ L

(
θ, ξ̂ (θ)

)
(∇θ ξ̂ (θ))Th(θ),
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which concludes the proof, since, under (E1), ∇2
ξ L(θ, ξ̂ (θ)) ≤ 0, for any θ ∈ �.

�

PROOF OF PROPOSITION 18. For any x ∈ X,

|Hθ(x) − Hθ ′(x)| ≤ T (x)

∫
Z

∣∣ν
ξ̂(θ)

(x, z) − ν
ξ̂(θ ′)(x, z)

∣∣µ(dz) + |θ ′ − θ |.(77)

From Proposition 16 one has that, for any compact set K ⊂ �, there exists a con-
stant C such that, for all ξ, z ∈ K × Z,

|∇ξ logfξ (x, z)| ≤ C
(
1 + T (x)

)
and |∇ξ logq(x; ξ)| ≤ C

(
1 + T (x)

)
.

Thus,

|∇ξ logνξ (x, z)| ≤ |∇ξ logfξ (x, z)| + |∇ξ logqξ (x)| ≤ 2C
(
1 + T (x)

)
.

Hence, for all ξ, ξ ′ ∈ K and z ∈ Z,

|νξ (x, z) − νξ ′(x, z)| ≤ 2C
(
1 + T (x)

)|ξ − ξ ′|,
which, together with equation (77), concludes the proof. �

APPENDIX F: PROOFS OF PROPOSITIONS 19 AND 20

PROOF OF PROPOSITION 19. The minorization condition is a classical result;
see [26]. Now notice that

P IMH
q V (x) =

∫
X
αq(x, y)V (y)q(y)λLeb(dy)

+ V (x)

∫
X
[1 − αq(x, y)]q(y)λLeb(dy)

≤
(

1 −
∫

X

(
q(x)

π(x)
∧ q(y)

π(y)

)
π(y)λLeb(dy)

)
V (x) + q(V ),

where αq is given in (55). The drift condition follows.
From the definition of the transition probability, and for any f ∈ LV ,

|P IMH
q f (x) − P IMH

q ′ f (x)|

≤ ‖f ‖V

{∫
X
|αq(x, y)q(y) − αq ′(x, y)q ′(y)|V (y)λLeb(dy)

+ V (x)

∫
X
|αq ′(x, y)q ′(y) − αq(x, y)q(y)|λLeb(dy)

}
≤ 2‖f ‖V V (x)

∫
X
|αq(x, y)q(y) − αq ′(x, y)q ′(y)|V (y)λLeb(dy).
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We therefore bound

I =
∫

X

∣∣∣∣ q(y)

π(y)
∧ q(x)

π(x)
− q ′(y)

π(y)
∧ q ′(x)

π(x)

∣∣∣∣π(y)V (y)λLeb(dy).

We introduce the following sets:

Aq(x) =
{
y :

q(y)

π(y)
≤ q(x)

π(x)

}
and Bq(x) =

{
y :

q(y)

π(y)
≤ q ′(x)

π(x)

}
,

and note that the following inequalities hold:

∀y ∈ Ac
q ′(x) ∩ Ac

q(x) π(y) <
π(x)

q(x)
q(y) ∧ π(x)

q ′(x)
q ′(y) and

(78)

∀y ∈ Ac
q ′(x) ∩ Bc

q(x) π(y) <
π(x)

q ′(x)

(
q ′(y) ∧ q(y)

)
.

We now decompose I into four terms I
def= ∑4

i=1 Ii , where

I =
∫

Aq∩Aq′

∣∣∣∣ q(y)

π(y)
− q ′(y)

π(y)

∣∣∣∣π(y)V (y)λLeb(dy)

+
∫

Ac
q∩Ac

q′

∣∣∣∣ q(x)

π(x)
− q ′(x)

π(x)

∣∣∣∣π(y)V (y)λLeb(dy)

+
∫

Aq∩Ac
q′

∣∣∣∣ q(y)

π(y)
− q ′(x)

π(x)

∣∣∣∣π(y)V (y)λLeb(dy)

+
∫

Ac
q∩Aq′

∣∣∣∣ q(x)

π(x)
− q ′(y)

π(y)

∣∣∣∣π(y)V (y)λLeb(dy).

Here we have dropped x in the set notation for simplicity. We now determine
bounds for Ii , i = 2,3. Notice that, since y ∈ Ac

q ∩ Ac
q ′ ,

I2 ≤
{∣∣∣∣1 − q ′(x)

q(x)

∣∣∣∣ ∫
Ac

q∩Ac
q′

V (y)q(y)λLeb(dy)

}

∧
{∣∣∣∣1 − q(x)

q ′(x)

∣∣∣∣ ∫
Ac

q∩Ac
q′

V (y)q ′(y)λLeb(dy)

}

≤
{∣∣∣∣1 − q ′(x)

q(x)

∣∣∣∣∧ ∣∣∣∣1 − q(x)

q ′(x)

∣∣∣∣}

×
{∫

Ac
q∩Ac

q′
V (y)q(y)λLeb(dy) ∨

∫
Ac

q∩Ac
q′

V (y)q ′(y)λLeb(dy)

}
,

and it can easily be checked that∣∣∣∣1 − q ′

q

∣∣∣∣∧ ∣∣∣∣1 − q

q ′
∣∣∣∣ ≤ {

1 ∧
∣∣∣∣1 − q ′

q

∣∣∣∣}∨
{

1 ∧
∣∣∣∣1 − q

q ′
∣∣∣∣}.
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The term I3 can be bounded as follows:

I3 ≤
{∫

Aq∩Ac
q′∩Bc

q

q(y)V (y)λLeb(dy)

}

∧
{(

q(x)

π(x)
− q ′(x)

π(x)

)∫
Aq∩Ac

q′∩Bc
q

V (y)π(y)λLeb(dy)

}

+
∫

Aq∩Ac
q′∩Bq

(
q ′(y)

π(y)
− q(y)

π(y)

)
V (y)π(y)λLeb(dy),

and using (78) we find that

I3 ≤
{

1 ∧
(

q(x)

q ′(x)
− 1

)}∫
Aq∩Ac

q′∩Bc
q

q(y)V (y)λLeb(dy)

+
∫

Aq∩Ac
q′∩Bq

|q ′(y) − q(y)|V (y)λLeb(dy).

The bound for I4 follows from that of I3 by swapping q and q ′. �

PROOF OF PROPOSITION 20. The first claim follows directly from Proposi-
tion 19 and the assumptions. Now denote

ϒξ,ξ ′,α(x)
def= (1 − α)q̃ξ (x) + αζ(x)

(1 − α)q̃ξ ′(x) + αζ(x)
= 1 + q̃ξ (x) − q̃ξ ′(x)

ζ(x)[q̃ξ ′(x)/ζ(x) + α/(1 − α)] .

Therefore, from (65), for any convex compact set K ⊂ �, there exists C < ∞ such
that, for any ξ, ξ ′, x ∈ K2 × X,

|1 − ϒξ,ξ ′,α(x)| ≤ 1 − α

α

|q̃ξ (x) − q̃ξ ′(x)|
ζ(x)

≤ C|ξ − ξ ′|supξ∈K q̃ξ (x)(1 + T (x))

ζ(x)
,

which, with (71), implies that, for all ξ, ξ ′ ∈ K and for λLeb-almost all x, there
exists C < ∞ such that(

1 ∧ |1 − ϒξ,ξ ′,α(x)|)∨ (
1 ∧ |1 − ϒξ ′,ξ,α(x)|) ≤ C|ξ − ξ ′|.

Now, as a direct consequence of equation (67), one can show that there exists
C such that for any ξ, ξ ′ ∈ K and r ∈ [0,1],∫

X
|q̃ξ (x) − q̃ξ ′(x)|W(x)rλLeb(dx) ≤ C|ξ − ξ ′|.

The proof is concluded by application of Proposition 19. �
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