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LIMIT VELOCITY AND ZERO–ONE LAWS FOR DIFFUSIONS
IN RANDOM ENVIRONMENT

BY LAURENT GOERGEN

ETH Zurich

We prove that multidimensional diffusions in random environment have
a limiting velocity which takes at most two different values. Further, in the
two-dimensional case we show that for any direction, the probability to es-
cape to infinity in this direction equals either zero or one. Combined with our
results on the limiting velocity, this implies a strong law of large numbers in
two dimensions.

1. Introduction. Over the last 25 years, diffusions in a random medium have
been the object of many studies. They came as a natural way to generalize ho-
mogenization in a periodic medium and model disorder at a microscopic scale; see
[3, 16]. In spite of a large literature (see, e.g., [9–11, 13–15, 17–20, 23, 25, 26,
32, 35]), only partial results are known on such basic questions as zero–one laws,
recurrence–transience, the law of large numbers and central limit theorems.

The method of the environment viewed from the particle has been a power-
ful tool in the study of diffusions in a random medium, but many examples fall
outside its scope. Recently in the discrete setting, other methods, for instance
exploring renewal-type arguments, have contributed to a revival of the subject;
see [5, 6, 21, 29–31, 33, 34, 36–38]. It is natural, but not straightforward, to try
to build up on these ideas and make progress in the continuous framework. This
approach has proved successful notably in the ballistic case, that is, when the dif-
fusion has a nonvanishing limiting velocity; see, for instance, [12, 25, 26]. The
present article follows a similar endeavor. We prove in the general framework of
diffusions in a random environment (see below) the existence of a limiting velocity
as well as certain zero–one laws. Corresponding results are known in the discrete
framework; see [22, 34, 37, 38]. Our work is closer in spirit to the last two ref-
erences. It also draws on the renewal structure constructed by Shen [26] which is
more intricate than its discrete counterpart in [33].

Before we discuss our results any further, we first describe the model. The ran-
dom environment is specified by a probability space (�,A,P) on which acts
a jointly measurable group {tx;x ∈ R

d} of P-preserving transformations, with
d ≥ 1. The diffusion matrix and the drift of the diffusion in random environment
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are stationary functions a(x,ω), b(x,ω), x ∈ R
d , ω ∈ �, with respective values in

the space of nonnegative d × d matrices and in R
d , that is,

a(x + y,ω) = a(x, tyω),
(1.1)

b(x + y,ω) = b(x, tyω) for x, y ∈ R
d,ω ∈ �.

We assume that these functions are bounded and uniformly Lipschitz, that is, there
is a K̄ > 1, such that for x, y ∈ R

d,ω ∈ �,

|b(x,ω)| + |a(x,ω)| ≤ K̄,
(1.2)

|b(x,ω) − b(y,ω)| + |a(x,ω) − a(y,ω)| ≤ K̄|x − y|,
where | · | denotes the Euclidean norm for vectors and matrices. Further we assume
that the diffusion matrix is uniformly elliptic, that is, there is a ν > 1 such that for
all x, y ∈ R

d,ω ∈ �:

1

ν
|y|2 ≤ y · a(x,ω)y ≤ ν|y|2.(1.3)

The coefficients a, b satisfy a condition of finite range dependence: for A ⊂ R
d ,

we define

HA = σ
(
a(x, ·), b(x, ·);x ∈ A

)
,(1.4)

and assume that for some R > 0,

HA and HB are independent under P whenever d(A,B) ≥ R,(1.5)

where d(A,B) is the mutual Euclidean distance between A and B . With the above
regularity assumptions on a and b, for any ω ∈ �, x ∈ R

d , the martingale problem
attached to x and the operator

Lω = 1
2

d∑
i,j=1

aij (·,ω)∂2
ij +

d∑
i=1

bi(·,ω)∂i(1.6)

is well posed; see [28] or [2], page 130. The corresponding law Px,ω on
C(R+,R

d), unique solution of the above martingale problem, describes the diffu-
sion in the environment ω and starting from x. We write Ex,ω for the expectation
under Px,ω and we denote the canonical process on C(R+,R

d) with (Xt)t≥0.
Observe that Px,ω is the law of the solution of the stochastic differential equa-
tion

dXt = σ(Xt ,ω)dβt + b(Xt ,ω)dt,
(1.7)

X0 = x, Px,ω-a.s.,

where, for instance, σ(·,ω) is the square root of a(·,ω) and β is some d-dimen-
sional Brownian motion under Px,ω. The laws Px,ω are usually called “quenched
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laws” of the diffusion in random environment. To restore translation invariance,
we consider the so-called “annealed laws” Px , x ∈ R

d , which are defined as semi-
direct products:

Px
def= P × Px,ω.(1.8)

Of course the Markov property is typically lost under the annealed laws.
The goal of this article is to show the existence of a limiting velocity as well as

certain zero–one laws for this process. For any unit vector l ∈ R
d , denote with

Al =
{

lim
t→∞ l · Xt = +∞

}
(1.9)

the event that the diffusion escapes to infinity in direction l. We prove a weak
zero–one law saying that for any direction l, P0(Al ∪ A−l) equals either zero or
one; see Proposition 3.6. Then our main result for general dimension d ≥ 1 (cf.
Theorem 3.8) shows the existence of a deterministic unit vector l∗ and two deter-
ministic numbers v+, v− ≥ 0, such that

lim
t→∞

Xt

t
= (

v+1Al∗ − v−1A−l∗
)
l∗, P0-a.s.(1.10)

When d = 2, we also prove the following stronger zero–one law (cf. Theorem 4.2):

for any l ∈ S1, P0(Al) ∈ {0,1},(1.11)

which together with (1.10) implies the following strong law of large numbers:

When d = 2, there is a v ∈ R
2 such that P0-a.s., lim

t→∞
Xt

t
= v.(1.12)

In the context of random walks in ergodic environments, Zerner and Merkl give in
[37] an example, where in the statement corresponding to (1.10) two opposite ve-
locities occur with probability 1

2 each. This signals that an independence assump-
tion on the environment is of importance for the validity of the zero–one law (1.11)
or the law of large numbers (1.12). These questions remain open problems when
d ≥ 3.

To prove (1.10), we consider an arbitrary direction l and proceed differently
depending on the value of P0(Al ∪ A−l). In the oscillating case where P0(Al ∪
A−l) = 0, we show in Section 2 that limt→∞ l·Xt

t
= 0, P0-a.s.; see Corollary 2.6.

The argument relies on the fact that for any direction l ∈ Sd−1,

P0

(
lim sup
t→∞

l · Xt

t
> 0

)
> 0 implies P0(Al) > 0;(1.13)

see Theorem 2.4. The strategy used to derive (1.13) is similar to the article [38] by
Zerner. However, because of finite range dependence and space–time continuity,
the arguments are more involved. Nevertheless, we believe that we achieved some
simplifications, as our proof avoids infinite products of independent processes
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(cf. [38] and equation (13) therein). In the context of random walks in a discrete
mixing environment, an alternative way to handle the oscillating case can be found
in [22].

In order to analyze the case P0(Al ∪A−l) = 1, we use a renewal structure in the
spirit of Shen [26] (see Section 3), and prove that P0(Al) > 0 implies that on Al ,
P0-a.s., limt→∞ l·Xt

t
= vl . The number vl is either 0 or expressed in terms of a

certain regeneration time τ1; see (3.41). As in [26], we construct the successive re-
generation times τk , k ≥ 1, on an enlarged probability space which is obtained
by coupling the diffusion with a suitable sequence of auxiliary i.i.d. Bernoulli
variables; see Section 3.1. The quenched measure on the enlarged space, which
couples the diffusion to the Bernoulli variables, is denoted with P̂x,ω. In essence,
τ1 is the first time when the trajectory reaches a local maximum in direction l,
some auxiliary Bernoulli variable takes value 1 and from then on the diffusion
never backtracks; see Section 3.2. We generalize the results of Shen to the case
where 0 < P0(Al) ≤ 1 [instead of assuming P0(Al) = 1]; see Proposition 3.4 and
Theorem 3.5. In the discrete setting, couplings were first used by Zeitouni (cf.,
e.g., [36], Section 3), with the purpose to overcome the dependence structure of a
mixing environment. Another important ingredient for an effective application of
the renewal structure is a control on the first moment of l · Xτ1 ,

If P0(Al) > 0 then Ê0
[
l · Xτ1 |D = ∞]

< ∞,(1.14)

where Ê0 is the expectation under P × P̂0,ω and {D = ∞} is the event that the
diffusion never backtracks a distance R below its starting point. In the discrete
setting, a related result due to Zerner can be found in [36], Lemma 3.2.5. The ar-
gument we provide here, however, does not require Blackwell’s renewal theorem;
see also the comments preceding Proposition 3.7.

In the last section, we prove the zero–one law (1.11) in two dimensions. Our
strategy is similar to [37] in the discrete case. We consider two diffusion processes
under the law E(P0,ω × PyL,ω), where l · yL ≥ 3L and L is large. We assume
that P0(|l · Xt | → ∞) = 1 and deduce that the probability of a close encounter of
the two diffusions between 0 and yL vanishes as L → ∞; see Lemma 4.1. This
result holds in all dimensions. On the other hand, when d = 2, if we assume by
contradiction that P0(Al)P0(A−l) > 0, we can choose yL such that for large L, the
two diffusions intersect “between 0 and yL” with nonvanishing probability; see
Theorem 4.2. Then the zero–one law (1.11) follows.

The article is organized as follows. In Section 2 we prove (1.13); see Theo-
rem 2.4. This yields with Corollary 2.6 the main ingredient to prove (1.10) when
P0(Al ∪ A−l) = 0. In Section 3 we recall the coupling construction leading to
the measures P̂x,ω, define the regeneration times τk , k ≥ 1 (cf. Section 3.2) and
develop the theorems describing the renewal structure; see Section 3.3. We also
prove a weak zero–one law (cf. Proposition 3.6), as well as (1.14); see Proposi-
tion 3.7. Our main result shows for all d ≥ 1 the existence of a limiting velocity;
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see (1.10) or Theorem 3.8. In Section 4 we prove the two-dimensional zero–one
law (1.11); see Theorem 4.2. In the Appendix we provide for the reader’s conve-
nience the proof of a variation of Theorem 2.7 of [26] stated in Lemma 3.3.

Convention on constants. Unless otherwise stated, constants only depend on
the quantities d, K̄, ν,R. We denote with c positive constants with values changing
from place to place and with c0, c1, . . . positive constants with values fixed at their
first appearance. Dependence on additional parameters appears in the notation.

2. Oscillations and null directional speed. In this section we first introduce
some additional notation and then we start with the study of the case, where
the trajectory oscillates in some direction l ∈ Sd−1. This case corresponds to
P0[Al ∪ A−l] = 0 and we will see later that P0[Al ∪ A−l] equals either zero or
one; see Proposition 3.6. The main result is Theorem 2.4: Under the assumption
P0[lim supt→∞ l·Xt

t
> 0] > 0, the trajectories will not backtrack below a certain

level with positive probability and with Lemma 2.5, we deduce that P [Al] > 0.
It follows then easily that P0[Al ∪ A−l] = 0 implies zero asymptotic speed in the
direction l (see Corollary 2.6).

We now introduce some notation used throughout the article. We denote with
N the set of nonnegative integers. The integer part of a real t ≥ 0 and the smallest
integer larger than t are respectively denoted with 	t
 and �t�. Let Sd−1 stand
for the Euclidean unit sphere of R

d and B(x, r) for the open Euclidean ball with
radius r centered at x. For a < b two reals and l ∈ Sd−1, we define

S(a,b) = {x ∈ R
d;a < x · l < b}, S̄(a,b) = {x ∈ R

d;a ≤ x · l ≤ b},(2.1)

the open and closed slabs between a and b in the direction l. If A is a Borel set
of R

d , |A| stands for its Lebesgue measure.
For an open or closed set A ⊂ R

d , we denote with HA = inf{t ≥ 0;Xt ∈ A}
the entrance time into A and with TA = inf{t ≥ 0;Xt /∈ A} the exit time from A.
We will also use the following stopping times measuring absolute and relative
displacements of the trajectory. For u ∈ R,

Tu = H{z∈Rd : z·l≥u},

T̃u = H{z∈Rd : z·l≤u},
(2.2)

T rel
u = inf{t ≥ 0 : l · (Xt − X0) ≥ u},

T̃ rel
u = inf{t ≥ 0 : l · (Xt − X0) ≤ u}.

We write (Ft )t≥0 and (θt )t≥0 for the canonical right-continuous filtration and for
the canonical time-shift on C(R+,R

d), respectively.
We turn now to the construction of the objects appearing in Proposition 2.1. We

consider some number L = 3L′ > 3R and define the successive times of entrance
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FIG. 1.

in S̄(mL+L′,mL+2L′) and departure from S(mL,(m+1)L) (cf. Figure 1): for m ∈ N,

R
(m)
1 = HS̄(mL+L′,mL+2L′) , S

(m)
1 = TS(mL,(m+1)L)

◦ θ
R

(m)
1

+ R
(m)
1 ,(2.3)

and by induction for k ≥ 2,

R
(m)
k = R

(m)
1 ◦ θ

S
(m)
k−1

+ S
(m)
k−1, S

(m)
k = S

(m)
1 ◦ θ

S
(m)
k−1

+ S
(m)
k−1.

We define, for integer α ≥ 2 (this integer will typically be large in the sequel)

N(m)
α =

∞∑
k≥1

1{R(m)
k +1≤S

(m)
k <T(m+α)L<∞},(2.4)

the number of entrances in S̄(mL+L′,mL+2L′) after which the trajectory stays at least
one time unit in S(mL,(m+1)L). Moreover, we consider

k(m)
α =




max
{
k ≥ 1 :R(m)

k + 1 ≤ S
(m)
k < T(m+α)L

}
,

if T(m+α)L < ∞ and {· · ·} �= ∅,

0, otherwise;
(2.5)

h(m)
α =




S
(m)

k
(m)
α

− TmL,

if T(m+α)L < ∞, with the convention S
(m)
0 = TmL,

∞, otherwise.

(2.6)

The quantity h
(m)
α is the time duration, beginning at TmL, after which the trajectory

does not make “long visits” to the slab S̄(mL+L′,mL+2L′) anymore. Note that h
(m)
α

is nondecreasing in α.
Let us give an outline of the steps leading to the main result of this section, that

is, Theorem 2.4. In Proposition 2.1 we show that a continuous path w satisfying
lim supt→∞ l·w(t)

t
> 0 has the property that there is a large asymptotic fraction of

slabs among the S(mL,(m+1)L), m ≥ 1, around which the oscillations of w that oc-
cur before reaching a level at a distance αL in direction l, last only some finite
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time h independent of α. An analogous result for a discrete path is stated in [38],
Lemma 3. In the next step, we deduce the existence of an h > 0 such that with
positive probability the following events, later called Cm [cf. (2.20)], happen with
a large asymptotic frequency: on Cm, the particle at time HS(mL,(m+1)L)

+ h is lo-
cated in a narrow slab “to the right of” S(mL,(m+1)L) and then moves to a level at
a distance αL without backtracking; see Lemma 2.3. Then we extract the crucial
information about the absence of backtracking. In essence for this purpose, we
condition each event Cm on the information prior to HS(mL,(m+1)L)

+ h, and transfer
our control on the asymptotic frequency of the Cm’s, to a control on the asymp-
totic mean of the conditional probabilities. This is done with the help of certain
martingales and Azuma’s inequality; see (2.33). Finally we dominate these con-
ditional probabilities by a sequence of i.i.d. variables under P, apply the law of
large numbers and conclude that the probability to never backtrack is positive by
letting α tend to infinity. This method bypasses the technique of infinite products
of probability spaces in [38] [cf. (13) therein], which is hard to implement in the
continuous setting.

PROPOSITION 2.1. Let w(·) be a continuous path in R
d starting at 0 and

satisfying lim supt→∞ l·w(t)
t

> 0; then there exists an integer h ≥ 1 such that for
all integers α ≥ 2,

lim sup
M→∞

1

M + 1

M∑
m=0

1{h(m)
α (w)≤h} ≥ 1

3
.(2.7)

PROOF. We choose δ > 0 such that lim supt→∞ l·w(t)
t

≥ δ. There is a sequence
(tk)k≥1 in R+ tending to infinity such that l · w(tk) > δtk . Thus, for all α ≥ 2,

T(δ/2)tk+αL(w) ≤ tk for all large enough k (depending on α).(2.8)

(For the sake of simplicity, we will drop w from the notation.) If we choose Mk in-
teger such that MkL ≤ δ

2 tk ≤ (Mk + 1)L, k ≥ 1, (2.8) implies that for all integers
α ≥ 2,

T(Mk+α)L ≤ 2(Mk + 1)L

δ
for all large enough k (depending on α).(2.9)

If R
(m)
k + 1 ≤ S

(m)
k < T(m+α)L and since T(m+α)L is finite for all m, the path

w spends at least one unit of time entirely in the slab S(mL,(m+1)L) before reaching
level (m + α)L. Hence, for all k large enough, we deduce from (2.9) that [cf. (2.4)
for the notation]

Mk∑
m=0

N(m)
α ≤ T(Mk+α)L ≤ 2(Mk + 1)L

δ
(2.10)
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and
Mk∑

m=0

h(m)
α ≤

α−1∑
j=0

∑
mmodα=j

m≤Mk

(
T(m+α)L − TmL

)
(2.11)

≤ αT(Mk+α)L ≤ 2α(Mk + 1)L

δ
,

for all large enough k. Assume now that (2.7) with real h does not hold, that is: for
all h ≥ 1, there is an integer α ≥ 2 such that lim supM→∞ 1

M+1
∑M

m=0 1{h(m)
α ≤h}<

1
3 .

We can construct inductively h0 = 1, α1 ≥ 2, hi = 6αiL
δ

, αi+1 > αi using that h
(m)
α

is nondecreasing in α, such that

for all i ≥ 1 lim sup
M→∞

1

M + 1

M∑
m=0

1{h(m)
αi+1≤hi} <

1

3
.(2.12)

On the other hand, (2.11) and the choice hi = 6αiL
δ

imply that

for all i ≥ 1 lim sup
k→∞

1

Mk + 1

Mk∑
m=0

1{h(m)
αi

>hi} ≤ 1

3
.(2.13)

Observe that for all i, k ≥ 1,

1 ≤ 1

Mk + 1

Mk∑
m=0

1{h(m)
αi+1≤hi} + 1{h(m)

αi
>hi} + 1{h(m)

αi
<h

(m)
αi+1 }.

This inequality together with (2.12) and (2.13) yields

for all i ≥ 1
1

3
≤ 1

Mk + 1

Mk∑
m=0

1{h(m)
αi

<h
(m)
αi+1 }

(2.14)
for all large enough k.

If h
(m)
αi < h

(m)
αi+1 , the trajectory, after reaching level (m + αi)L, has to return to the

slab S̄(mL+L′,mL+2L′) and stay in the slab S(mL,(m+1)L) for at least one unit of time,
all this before reaching level (m + αi+1)L. Therefore we see that

1{h(m)
αi

<h
(m)
αi+1 } ≤ N(m)

αi+1
− N(m)

αi
,

and hence for arbitrary i0 ≥ 1 and large k, we obtain

i0

3

(2.14)≤ 1

Mk + 1

Mk∑
m=0

i0∑
i=1

1{h(m)
αi

<h
(m)
αi+1 } ≤ 1

Mk + 1

Mk∑
m=0

N
(m)
αi0+1

(2.10)≤ 2L

δ
,

a contradiction. We have thus proved the existence of a real h ≥ 1 such that (2.7)
holds. By monotonicity, we can increase h to be an integer. �
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The next lemma comes as a preparation for the main result of this section,
namely Theorem 2.4. If S is any stopping time, we write Sk , k ≥ 0, for the iterates
of S, namely,

S0 = 0, S1 = S, Sk+1 = S ◦ θSk
+ Sk ≤ ∞.(2.15)

LEMMA 2.2. For every k ≥ 1, let Uk be an (Ft )t≥0-stopping time and
�k ∈ FUk . Denote with Uk

m, m ≥ 0, the iterates of Uk . If there exist numbers
γ1, γ2 > 0, such that

for all k ≥ 1, x ∈ R
d,ω ∈ � :Px,ω(�k) ≤ γ1e

−γ2k,(2.16)

then for each ε > 0, there is a k0(ε, γ1, γ2) ≥ 1, such that

for k ≥ k0,P0-a.s., lim sup
M→∞

1

M + 1

M∑
m=0

1�k
◦ θUk

m
≤ ε,(2.17)

with the convention that 1�k
◦ θUk

m
= 0, if Uk

m = ∞.

PROOF. Note that 1�k
◦ θUk

m
is FUk

m+1
-measurable. The strong Markov prop-

erty yields for M ≥ 1, k ≥ 1

Ex,ω

[
exp

(
M∑

m=0

1�k
◦ θUk

m

)
,Uk

M < ∞
]

= Ex,ω

[
exp

(
M−1∑
m=0

1�k
◦ θUk

m

)
EX

Uk
M

,ω

[
exp

(
1�k

)]
,Uk

M < ∞
]

(2.18)

= Ex,ω

[
exp

(
M−1∑
m=0

1�k
◦ θUk

m

)(
(e − 1)PX

Uk
M

,ω[�k] + 1
)
,Uk

M < ∞
]
.

Using (2.16) and iteration, we obtain for M ≥ 1, k ≥ 1,

Ex,ω

[
exp

(
M∑

m=0

1�k
◦ θUk

m

)
,Uk

M < ∞
]

≤ (
γ1e

−γ2k(e − 1) + 1
)M+1

.

Therefore, using Chebyshev’s inequality, we find

Px,ω

[
1

M

M−1∑
m=0

1�k
◦ θUk

m
> ε

]

≤ e−εM(
γ1e

−γ2k(e − 1) + 1
)M ≤ eM(−ε+(e−1)γ1e

−γ2k).

If k is large enough, the argument of the exponential becomes negative and our
claim follows from Borel–Cantelli’s lemma. �
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In the next lemma with two successive reduction steps, we replace {h(m)
α ≤ h}

appearing in (2.7) by an event Cm that has the following meaning: At the stopping
time TmL + h0, for some h0 ≥ 1, the position of the diffusion is located in the
slab S(mL+2L′,(m+K)L) and after this stopping time, the trajectory reaches level
(m + α)L without going below level mL + 2L′; see (2.20).

LEMMA 2.3. Assume that P0(lim supt→∞ l·Xt

t
> 0) > 0; then there exist an

integer h0 ≥ 1 and constants L = 3L′ > 3R,K = K(h0) ≥ 1, such that

P0

[
inf

α≥K
lim sup
M→∞

1

M + 1

M∑
m=0

1Cm ≥ 1

12

]
> 0,(2.19)

where

Cm = {
XTmL+h0 ∈ S(mL+2L′,(m+K)L)

} ∩ {
TmL + h0 < T(m+α)L

}
(2.20)

∩ θ−1
TmL+h0

{
T̃mL+2L′ > T(m+α)L

}
for m ≥ 0.

PROOF. With our assumption, Proposition 2.1 yields that for some integer h0

P0

[
inf
α≥2

lim sup
M→∞

1

M + 1

M∑
m=0

1{h(m)
α ≤h0} ≥ 1

3

]
> 0.(2.21)

In a first reduction step, we want to keep only those slabs S(mL,(m+1)L), where
after time TmL +h0 and before reaching level (m+α)L, the paths do not return to
the inner part S̄(mL+L′,mL+2L′) of the slab. More precisely we claim that if L′ > R

is large enough, then we obtain from (2.21)

P0

[
inf
α≥2

lim sup
M→∞

1

M + 1

M∑
m=0

1{h(m)
α ≤h0,R

′◦θTmL
+TmL>T(m+α)L} ≥ 1

6

]
> 0,(2.22)

where we used the notation

R′ = inf{t ≥ h0 : l · (Xt − X0) ∈ [L′,2L′]}.(2.23)

Indeed, consider for fixed α ≥ 2, m ≥ 0, a trajectory w starting in 0 and satisfying
h

(m)
α ≤ h0. If w visits the inner slab S̄(mL+L′,mL+2L′) between time TmL + h0 and

T(m+α)L, then it must exist from the outer slab S(mL,(m+1)L) within time 1 as oth-

erwise h
(m)
α becomes larger than h0. Note also that by definition, h(m)

α ≤ h0 implies
T(m+α)L < ∞,P0-a.s. Hence P0-a.s. we have{

h(m)
α ≤ h0,R

′ ◦ θTmL
+ TmL ≤ T(m+α)L

} ⊂ θ−1
TmL

(�L′,α) ∩ {TmL < ∞},
where we defined �L′,α = {sups≤1 |Xs − X0| ◦ θR′ ≥ L′,R′ ≤ T rel

αL < ∞}. By the
Markov property and Bernstein’s inequality (see [2], Proposition 8.1, page 23), we
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have for all x ∈ R
d , ω ∈ �,

Px,ω[�L′,α] ≤ Ex,ω

[
R′ < ∞,PXR′ ,ω

[
sup
s≤1

|Xs − X0| ≥ L′
]]

(2.24)

≤ c1e
−c2L

′2
.

We decompose the indicator-function 1{h(m)
α ≤h0} appearing in (2.21) as follows:

lim sup
M→∞

1

M + 1

M∑
m=0

1{h(m)
α ≤h0}

≤ lim sup
M→∞

1

M + 1

M∑
m=0

1{h(m)
α ≤h0}1{R′◦θTmL

+TmL>T(m+α)L}(2.25)

+ lim sup
M→∞

1

M + 1

M∑
m=0

1�L′,α ◦ θTmL
.

In order to apply Lemma 2.2 to the last term of (2.25), since θ−1
TmL

�L′,α ∈ FT(α+m)L
,

for m ≥ 0, we rewrite the sum in the last term as a double sum running over all
residue classes modulo α and obtain as an upper bound

1

α

α−1∑
j=0

lim sup
M→∞

1

M + 1

M∑
m=0

1�L′,α ◦ θT(mα+j)3L′ .(2.26)

With (2.24), we can apply Lemma 2.2 for every j = 0, . . . , α−1. The parameter L′
is chosen integer and plays the role of k in the lemma. Moreover we, respectively,
substitute T rel

α3L′ ◦ θTjL
+ TjL and θ−1

Tj3L′ (�L′,α) ∩ {Tj3L′ < ∞} for Uk and �k , and

use ε = 1
6 . Note that P0-a.s., for m ≥ 1, the mth iterate of T rel

α3L′ ◦ θTjL
+ TjL is

T(mα+j)3L′ . As the lower bound for L′ provided by Lemma 2.2 only depends on
the constants c1, c2 in (2.24), there exists a constant L′ > R, such that for all α ≥ 2
and all j = 0, . . . , α − 1, we obtain

lim sup
M→∞

1

M + 1

M∑
m=0

1�L′,α ◦ θT(mα+j)L
<

1

6
, P0-a.s.

Hence the last term of (2.25) is P0-a.s. for all integers α ≥ 2 smaller than 1
6 . In

view of (2.21), this estimate proves the claim (2.22) of the first reduction step.
In the second reduction step, we would like to keep only those slabs where the

trajectory stays in a big ball during time h0 after TmL. We claim that there exists a
constant K = K(h0,L) ≥ 1, such that

0 < P0

[
inf

α>K
lim sup
M→∞

1

M + 1

M∑
m=0

1{h(m)
α ≤h0,R

′◦θTmL
+TmL>T(m+α)L}

(2.27)

× 1{sups≤h0
|Xs−X0|◦θTmL

<KL} ≥ 1

12

]
.
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Indeed, define �′
k = {sups≤h0

|Xs − X0| ≥ kL}, for k ≥ 1. From Bernstein’s
inequality (see [2], Proposition 8.1, page 23), there exist positive constants
c3(h0), c4(h0), such that

Px,ω[�′
k] ≤ c3e

−c4(kL)2
for all x ∈ R

d,ω ∈ �.(2.28)

As before we decompose the indicator-function appearing in (2.22) according to
θ−1
TmL

(�′
k
c
) and θ−1

TmL
(�′

k). In view of an application of Lemma 2.2, since θ−1
TmL

�′
k ∈

FT(k+m)L
, m ≥ 0, we rewrite the sum

∑M
m=0 1�′

k
◦ θTmL

as a double sum running
over all the residue classes modulo k. As a result

lim sup
M→∞

1

M + 1

M∑
m=0

1�′
k
◦ θTmL

(2.29)

≤ 1

k

k−1∑
j=0

lim sup
M→∞

1

M + 1

M∑
m=0

1�′
k
◦ θT(mk+j)L

.

With (2.28), we apply Lemma 2.2 for every j = 0, . . . , k − 1 : θ−1
TjL

(�′
k) ∩ {TjL <

∞} and T rel
kL ◦ θTjL

+ TjL play the role of �k and Uk and we choose ε = 1
12 in

Lemma 2.2. P0-a.s., for m ≥ 1, the mth iterate of T rel
kL ◦ θTjL

+ TjL is T(mk+j)L.
Hence there is a constant K = K(h0,L) ≥ 1, such that for k = K the left-hand
side of (2.29) is P0-a.s. smaller than 1

12 . This proves (2.27). We conclude the proof

by noting that {h(m)
α ≤ h0, sups≤h0

|Xs −X0| ◦ θTmL
< KL,R′ ◦ θTmL

> T(m+α)L −
TmL} is P0-a.s. included in Cm. �

THEOREM 2.4. (d ≥ 1). For any l ∈ Sd−1, P0(lim supt→∞ l·Xt

t
> 0) > 0 im-

plies that there exists a number r0 > 0 such that P0(T̃
rel−r0

= ∞) > 0 and as a
consequence P0(Al) > 0.

(Note that r0 only depends on the quantities h0,L,K from Lemma 2.3.)

PROOF. Let us briefly outline the argument: We would like to apply the law
of large numbers to the sum

∑M
m=0 1Cm appearing in (2.19), but the dependence

structure of the sequence (Cm)m≥0 seems to be complicated. Therefore we will
replace this sequence by one that is i.i.d. with respect to P. This will be achieved
by constructing an appropriate martingale and using Azuma’s inequality.

We pick L = 3L′,K and h0 as in Lemma 2.3. We introduce the following fil-
trations: for integer α > K and j = 0, . . . , α − 1,

Gj
m = FT(mα+j)L

, m ≥ 1, G
j
0 = F0;

(2.30)
G̃j

m = FT((m+1)α+j)L∧(T(mα+j)L+h0), m ≥ 0.

Recall the definition of Cm (2.20) and observe that for α > K , j = 0, . . . , α − 1,
m ≥ 0:

Cmα+j ∈ G
j
m+1 and Gj

m ⊂ G̃j
m ⊂ G

j
m+1,(2.31)
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because T(mα+j)L ≤ T((m+1)α+j)L ∧ (T(mα+j)L + h0) ≤ T((m+1)α+j)L.
We define for j = 0, . . . , α − 1 and n ≥ 1

Mj
n =

n−1∑
m=0

1Cmα+j
− E0,ω

[
1Cmα+j

|G̃j
m

]
, M

j
0 = 0.(2.32)

By (2.31), M
j
n is G

j
n-measurable, for n ≥ 0, and integrable. It is a G

j
n martingale

under P0,ω, for any ω ∈ �, because P0,ω-a.s., for n ≥ 1 we have

E0,ω

[
1C(n−1)α+j

|Gj
n−1

] = E0,ω

[
E0,ω

[
1C(n−1)α+j

|G̃j
n−1

]|Gj
n−1

]
.

Since M
j
m has bounded increments Azuma’s inequality (see [1], Theorem 2.1)

applies and we find

P0,ω

[
lim

n→∞
M

j
n

n
= 0

]
= 1 for all j = 0, . . . , α − 1.

Hence for any ω ∈ �, P0,ω-a.s., for all α > K and j = 0, . . . , α − 1,

lim sup
M→∞

1

M + 1

M∑
m=0

1Cmα+j
= lim sup

M→∞
1

M + 1

M∑
m=0

E0,ω

[
1Cmα+j

|G̃j
m

]
.(2.33)

The strong Markov property yields that P0,ω-a.s., for α > K , j = 0, . . . , α − 1 and
m ≥ 0

E0,ω

[
1Cmα+j

|G̃j
m

] = 1{XT(mα+j)L+h0∈Im,j ,T(mα+j)L+h0<T((m+1)α+j)L}

× PXT(mα+j)L+h0 ,ω

[
T̃(mα+j)L+2L′ > T((m+1)α+j)L

]
(2.34)

≤ sup
y∈Im,j

Py,ω

[
T̃(mα+j)L+2L′ > T((m+1)α+j)L

]
,

where Im,j
def= S((mα+j)L+2L′,(mα+j+K)L).

Therefore, (2.19) together with (2.33) and (2.34) imply that

P

[
inf

α>K

1

α

α−1∑
j=0

lim sup
M→∞

1

M + 1

(2.35)

×
M∑

m=0

sup
y∈Im,j

Py,ω

[
T̃(mα+j)L+2L′ > T((m+1)α+j)L

]
>

1

12

]
> 0.

With respect to P, the variables fm,j
def= supy∈Im,j

Py,ω[T̃(mα+j)L+2L′ >

T((m+1)α+j)L], m ≥ 0, are i.i.d. for every j = 0, . . . , α − 1. Indeed the respective
slabs S̄((mα+j)L+2L′,((m+1)α+j)L) as m varies are separated by at least 2L′ > R,
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and one applies (1.5), as well as translation invariance. Hence, from the law of
large numbers and from (2.35) we deduce that

inf
α>K

E

[
sup

y∈I0,0

Py,ω[T̃2L′ > TαL]
]

> 1
12 ,

and by dominated convergence for α → ∞
1

12 < E

[
sup

y∈I0,0

Py,ω[T̃2L′ = ∞]
]

≤ E

[
sup

y∈I0,0

Py,ω

[
T̃ rel

−(KL−2L′) = ∞]]
.(2.36)

We define r0
2 = KL − 2L′. Assume now that P0[T̃ rel−r0

= ∞] = 0. It follows from
Fubini’s theorem that there is a P-null set � ⊂ �, such that

for ω ∈ �c Px,ω

[
T̃ rel−r0

= ∞] = 0,
(2.37)

except on a Lebesgue-negligible subset of R
d .

But then, for any y ∈ R
d,ω ∈ �,

Py,ω

[
T̃ rel−r0/2 = ∞]
= Py,ω

[
T̃ rel−r0/2 = ∞, sup

s≤1/n

|Xs − X0| ≤ r0

4

]
(2.38)

+ Py,ω

[
T̃ rel−r0/2 = ∞, sup

s≤1/n

|Xs − X0| > r0

4

]

≤ Py,ω

[
T̃ rel−r0

◦ θ1/n = ∞] + Py,ω

[
sup

s≤1/n

|Xs − X0| > r0

4

]
.

By the Markov property, the first term on the right-hand side equals
∫
Rd pω(y, x,

1
n
)Px,ω[T̃ rel−r0

= ∞]dx, where pω(y, ·, 1
n
) denotes the transition density of the dif-

fusion starting in y in the environment ω at time 1/n with respect to the Lebesgue
measure. This density exists under the assumptions (1.2), (1.3); see [4], Theo-
rem 4.5. Hence using (2.37), this term equals 0 for all ω ∈ �c, y ∈ R

d . The second
term on the right-hand side of (2.38) converges to 0 as n → ∞ by continuity of
the trajectories. And so it would follow that for all ω ∈ �c, y ∈ R

d, Py,ω[T̃ rel−r0/2 =
∞] = 0. But this contradicts (2.36) and hence

P0
[
T̃ rel−r0

= ∞]
> 0.(2.39)

To show that P0(Al) > 0, we need the following useful lemma:

LEMMA 2.5. Consider l in Sd−1. For u, v ∈ R, u < v, define the stopping
times βl,u = inf{t ≥ 1; l · Xt ≥ u} and denote their iterates with β

l,u
k , k ≥ 0. Then

one has for all x ∈ R
d , ω ∈ �

Px,ω[βl,u
k < ∞, for all k ≥ 0 and Tv = ∞] = 0.(2.40)
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PROOF. By the support theorem (see [2], page 25), there is a constant c =
c(v − u) > 0 such that for all x ∈ S̄(u,v), ω ∈ � :Px,ω[Tv ≤ 1] > c. Then the
Markov property shows that for all x ∈ R

d , ω ∈ �, k ≥ 1,

Px,ω[βl,u
k < ∞, Tv = ∞] ≤ Px,ω[0 ≤ β

l,u
k < Tv]

≤ Px,ω

[
0 ≤ β

l,u
k−1 < Tv,Tv ◦ θ

β
l,u
k−1

> 1
]

≤ (1 − c)Px,ω[0 ≤ β
l,u
k−1 < Tv].

After iteration and letting k tend to infinity, we obtain the claim. �

We are now ready to finish the proof of Theorem 2.4. We observe that for any
v > 0

{T̃−v = ∞} ⊂ Al, P0-a.s.(2.41)

Indeed, we have in view of Lemma 2.5 with −l in the role of l

P0[Ac
l , T̃−v = ∞] = P0[for some u ∈ Z, u < v :β−l,u

k < ∞ and T̃−v = ∞] = 0.

It thus follows from (2.39) and (2.41) that P0(Al) > 0. �

COROLLARY 2.6 (d ≥ 1). Let l ∈ Sd−1. If P0[Al ∪ A−l] = 0, then P0-a.s.,
limt→∞ l·Xt

t
= 0.

PROOF. If P0[Al] = 0, Theorem 2.4 implies that lim supt
l·Xt

t
≤ 0, P0-a.s. The

same argument for −l implies that lim inft
l·Xt

t
≥ 0,P0-a.s., and the claim follows.

�

3. Limit velocity. The aim of this section is to prove the existence of a pos-
sibly nondeterministic asymptotic velocity; see Theorem 3.8. As a preparation we
need to revisit some of the theorems proven in [26], now in the absence of the
assumption P0(Al) = 1 made in [26]. For this reason we will consider in the fol-
lowing probabilities conditioned on the event that the diffusion is unbounded in
a direction l or that it escapes to infinity in a direction l. But first we recall the
definitions of the regeneration times τk, k ≥ 1, and the coupling measure P̂x,ω in-
troduced in [26].

3.1. The coupling measure. For x ∈ R
d and l ∈ Sd−1, we consider

Bx = B(x + 9Rl,R), Ux = B(x + 5Rl,6R),(3.1)

where R is the range of dependence of the environment. See Figure 2.
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FIG. 2.

We denote by λj the canonical coordinates on {0,1}N. Further, we let (Sm)m≥0

denote the canonical filtration on {0,1}N and S the canonical σ -algebra. On the
enlarged space C(R+,R

d) × {0,1}N, we consider the following σ -fields:

Zt
def= Ft ⊗ S�t� with t ≥ 0, and Z

def= F ⊗ S = σ

{ ⋃
m∈N

Zm

}
.(3.2)

On the enlarged space, the shift operators θ̂m, m ≥ 0, are defined so that
θ̂m(X·, λ·) = (Xm+·, λm+·). Then from Theorem 2.1 in [26], one has the follow-
ing measures, coupling the diffusion in random environment with a sequence of
Bernoulli variables:

PROPOSITION 3.1. There exists ε > 0, such that for every l ∈ Sd−1, ω ∈ �

and x ∈ R
d , there exists a probability measure P̂x,ω on (C(R+,R

d) × {0,1}N,Z)

depending measurably on ω and x, such that:

Under P̂x,ω, (Xt)t≥0 is Px,ω-distributed, and the λm, m ≥ 0,
are i.i.d. Bernoulli variables with success probability ε.

(3.3)

For m ≥ 1, λm is independent of Fm ⊗ Sm−1 under P̂x,ω. Condi-
tioned on Zm, X· ◦ θ̂m has the same law as X· under P̂

λm

Xm,ω, where

for y ∈ R
d , λ ∈ {0,1}, P̂ λ

y,ω denotes the law P̂y,ω[·|λ0 = λ].
(3.4)

P̂ 1
x,ω almost surely, Xs ∈ Ux for s ∈ [0,1] [recall (3.1)].(3.5)

Under P̂ 1
x,ω, X1 is uniformly distributed on Bx [recall (3.1)].(3.6)

We then introduce the new annealed measures on (� × C(R+,R
d) × {0,1}N,

A ⊗ Z):

P̂x
def= P × P̂x,ω and Êx

def= E × Êx,ω.(3.7)
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3.2. The regeneration times τk . We follow [26] and [25] to define the first
regeneration time τ1. To this end, we introduce a sequence of integer-valued
(Zt )t≥0-stopping times Nk , for which the condition λNk

= 1 holds, and at these
times the process (l · Xs)s≥0 reaches essentially a local maximum (within a small
variation). Then τ1, when finite, is the first Nk + 1, k ≥ 1, such that the process
(l · Xt)t≥0 never goes below l · XNk+1 − R after time Nk + 1. In fact, the pre-
cise definition of τ1 relies on several sequences of stopping times. First, for a > 0,
introduce the (Ft )t≥0-stopping times Vk(a), k ≥ 0 [recall Tu in (2.2)]:

V0(a)
def= TM(0)+a ≤ ∞, Vk+1(a)

def= TM(�Vk(a)�)+R ≤ ∞
(3.8)

where M(t)
def= sup{l · Xs : 0 ≤ s ≤ t}.

In view of the Markov property [see (3.4)], we require the stopping times
Nk(a), k ≥ 1, to be integer-valued and with this in mind, introduce as an inter-
mediate step the (integer-valued) stopping times Ñk(a) where the process Xt · l

essentially reaches a maximum:

Ñ1(a)
def= inf

{
�Vk(a)� : k ≥ 0, sup

s∈[Vk,�Vk�]
∣∣l · (Xs − XVk

)∣∣ < R

2

}
,

(3.9)
Ñk+1(a)

def= Ñ1(3R) ◦ θ̂
Ñk(a)

+ Ñk(a), k ≥ 1.

By convention we set Ñ0 = 0 and Ñk+1 = ∞ if Ñk = ∞ and then define N1(a) as

N1(a)
def= inf

{
Ñk(a) : k ≥ 1, λ

Ñk(a)
= 1

}
.(3.10)

Now we can define the (Zt )t≥0-stopping times:

S1
def= N1(3R) + 1, R1

def= S1 + D ◦ θ̂S1(3.11)

with D
def= �T̃ rel−R�.(3.12)

(By convention we set R0 = 0.) The (Zt )t≥0-stopping times Nk+1, Sk+1 and Rk+1
are defined in an iterative way for k ≥ 1:

Nk+1
def= Rk + N1(ak) ◦ θ̂Rk

with ak
def= M(Rk) − XRk

· l + R,
(3.13)

Sk+1
def= Nk+1 + 1, Rk+1

def= Sk+1 + D ◦ θ̂Sk+1

(the shift θ̂Rk
is not applied to ak in the above definition).

For k ≥ 1, observe that on the event {Nk < ∞}, λNk
= 1 and sups≤Nk

Xs · l ≤
XNk

· l +R. Notice that for all k ≥ 1, the (Zt )t≥0-stopping times Nk , Sk and Rk are
integer-valued, possibly equal to infinity, and we have 1 ≤ N1 ≤ S1 ≤ R1 ≤ N2 ≤
S2 ≤ R2 ≤ · · · ≤ ∞.

The first regeneration time τ1 is defined, as in [25] and [26] (see also [33]), by

τ1
def= inf{Sk :Sk < ∞,Rk = ∞} ≤ ∞.(3.14)
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3.3. Renewal structure and limit velocity. We first develop the main theorems
describing the renewal structure and then present a weak zero–one law, which says
that for any unit vector l, P0(Al ∪ A−l) is either 0 or 1; see Proposition 3.6. We
then prove finiteness of Ê0[l · Xτ1 |D = ∞] under the condition P0(Al) > 0 (cf.
Proposition 3.7) and derive the existence of a possibly random asymptotic velocity
in Theorem 3.8. We begin with an easy lemma which refines (2.41).

LEMMA 3.2. For any l ∈ Sd−1, P0(Al) > 0 ⇔ P0(T̃−R = ∞) > 0.

PROOF. In view of (2.41), we only need to prove that P0(Al) > 0 implies
P0(T̃−R = ∞) > 0. Assume by contradiction that P0(T̃

rel−R = ∞) = 0. Using trans-
lation invariance of P, and Fubini’s theorem, we see that for almost all ω ∈ �

Px,ω(T̃ rel−R = ∞) = 0 except on a Lebesgue-negligible subset of R
d .

A calculation similar to (2.38) shows that for almost all ω and every x ∈ R
d , we

have that Px,ω(T̃ rel−R/2 < ∞) = 1. The strong Markov property implies at once that

P0,ω(T̃ rel−kR/2 < ∞) = 1, P-a.s., for all k ≥ 1. This contradicts P0(Al) > 0. �

In the sequel, we will use the following additional notation. For any l ∈ Sd−1,

Bl
def=

{
sup
s≥0

l · Xs = ∞
}
.(3.15)

From (2.41) and the definition of D [see (3.12)], we have of course for any l ∈
Sd−1

{D = ∞} ⊂ Al ⊂ Bl, P0-a.s.(3.16)

We will see later that if P0(Al) > 0, then Al = Bl , P0-a.s.; see Theorem 3.5.
The next lemma shows that the first renewal time τ1 is finite on the event Bl , if
P0(Al) > 0.

LEMMA 3.3. Consider l ∈ Sd−1 and assume P0(Al) > 0; then Bl ⊂ {τ1 < ∞},
P̂0-a.s., with the notation (3.15).

The proof is similar to the proof of Proposition 2.7 in [26] and is included in the
Appendix for the convenience of the reader.

On the space � × C(R+,R
d) × {0,1}N, we introduce the sub-σ -algebra G of

A ⊗ Z∞ that is generated by sets of the form

{τ1 = m} ∩ Om−1 ∩ {l · Xm−1 > a} ∩ {Xm ∈ G} ∩ Fa,(3.17)

where m ≥ 2, a ∈ R,Om−1 ∈ Zm−1,G ⊂ R
d open, Fa ∈ H{z∈Rd : l·z≤a+R}.

Loosely speaking, G contains information on the trajectories up to time τ1 − 1
and at time τ1 as well as information on the environment that has possibly been
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visited by the diffusion up to time τ1 − 1. Note that no information between time
τ1 − 1 and τ1 is included. This is crucial when one exploits the finite range depen-
dence property of the environment with the help of the coupling measure P̂0, as
we saw already in the proof of Lemma 3.3; see (A.2).

The next proposition is a variation on Theorem 2.4 in [26], and provides the
base for the renewal structure presented in Theorem 3.5.

PROPOSITION 3.4. Consider l in Sd−1 and assume P0(Al) > 0. Then
for any x ∈ R

d , any bounded functions f,g,h respectively Z,H{z∈Rd : l·z≥−R},
G-measurable, one has

Êx

[
f
(
Xτ1+· − Xτ1, λτ1+·

)
g ◦ tXτ1

h|Bl

]
(3.18)

= Êx[h|Bl]Ê0[f (X·, λ·)g|D = ∞],
with Bl as in (3.15) and ty the spatial shift; see the beginning of the Introduction.

[We will later see that Al = Bl , if P0(Al) > 0; see Theorem 3.5.]

PROOF. We only discuss the salient features of the proof, which is a variation
on that of Theorem 2.4 in [26]. As in the proof of this theorem, it suffices to prove
(3.18) for h = 1{τ1=m}1Fa1Om−11{Xm∈G}1{l·Xm−1>a}, with m ≥ 2, a ∈ R,Om−1 ∈
Zm−1,G ⊂ R

d open, Fa ∈ H{z∈Rd : l·z≤a+R}, since (3.17) constitutes a π -system.

Note that there is a Õm−1 ∈ Zm−1, such that

{τ1 = m} ∩ Om−1 ∩ Bl = Õm−1 ∩ {D ◦ θ̂m = ∞} ∩ θ̂−1
m (Bl)

= Õm−1 ∩ θ̂−1
m ({D = ∞} ∩ Bl)

= Õm−1 ∩ θ̂−1
m ({D = ∞}),

where the last step follows from (3.16). As Bl disappears from the calculations, the
rest of the argument is identical to the proof of Theorem 2.4 in [26]; see also [27].

�

On the event {τ1 < ∞}, we define inductively a nondecreasing sequence of ran-
dom variables τk ≤ ∞, via

τk+1
(
(X·, λ·)

) def= τ1
(
(X·, λ·)

) + τk

((
Xτ1+·, λτ1+·

))
, k ≥ 1.(3.19)

We are able to reconstruct in our context an analogue of the renewal structure of
Theorem 2.5 in [26].

THEOREM 3.5. Consider l in Sd−1 and assume P0(Al) > 0. Then P̂0 -a.s.,
{D = ∞} ⊂ Al = Bl = {τk < ∞, for all k ≥ 1} [recall (3.12), (1.9), (3.16)] and
under P̂0[·|Al], the random variables

Zk
def= (

X(τk+·)∧(τk+1−1) − Xτk
,Xτk+1 − Xτk

, τk+1 − τk

)
, k ≥ 0,(3.20)
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are independent. Moreover under P̂0[·|Al], the random variables Zk , k ≥ 1 have
the same distribution as Z0 under P̂0[·|D = ∞].

PROOF. We use induction over the index n ≥ 0, of the filtration Gn
def=

σ(Z0, . . . ,Zn). From Proposition 3.4 and the fact that G0 ⊂ G [cf. (3.17)], we
know that for any C in the product σ -algebra on C(R+,R

d) × R
d × R+ and any

bounded G0-measurable h0,

Ê0
[
1{Z1∈C}h0|Bl

] = Ê0[h0|Bl]P̂0[Z0 ∈ C|D = ∞].(3.21)

It follows that on Bl , τ2 is P̂0-a.s. finite, because P̂0[τ2 < ∞|Bl] = P̂0[τ1 <

∞|D = ∞] = 1 by Lemma 3.3 and (3.16). Assume now that for some n ≥ 1,
τn < ∞, on Bl and that for any C as above and any bounded Gn−1-measurable
hn−1:

Ê0
[
1{Zn∈C}hn−1|Bl

] = Ê0[hn−1|Bl]P̂0[Z0 ∈ C|D = ∞].(3.22)

As above we see that P̂0[τn+1 < ∞|Bl] = 1. We will prove an identity similar
to (3.22) with (n+1) in place of n. By the definition of τn+1, Gn ∩{τ1 < ∞} is gen-
erated by a π -system consisting of intersections between events in G0 ∩ {τ1 < ∞}
and θ̂−1

τ1
Gn−1. With Dynkin’s lemma (see [7], page 447), it suffices therefore to

consider bounded, Gn-measurable functions hn satisfying

hn = h0 · hn−1 ◦ θ̂τ1, P̂0-a.s. on {τ1 < ∞},(3.23)

for some bounded G0-measurable, respectively Gn−1-measurable, functions h0 and
hn−1. Let us now prove the induction step with hn as in (3.23). By Proposition 3.4,
we have for any C as above

Ê0
[
1{Zn+1∈C}hn|Bl

] = Ê0
[(

hn−11{Zn∈C}
) ◦ θ̂τ1h0|Bl

]
(3.24)

= Ê0[h0|Bl]
P0[D = ∞] Ê0

[
1{Zn∈C}hn−11{D=∞}

]
.

Let us admit for the time being that

hn−11{D=∞} is indistinguishable from a Gn−1-measurable variable(3.25)

and conclude the induction step. It follows from (3.22), (3.25) and the fact P0-a.s.,
{D = ∞} ⊂ Bl [cf. (3.16)] that the left-hand side of (3.24) equals

Ê0[h0|Bl]Ê0[hn−1|D = ∞]P̂0[Z0 ∈ C|D = ∞].(3.26)

Replacing C with C(R+,R
d) × R

d × R, we obtain

Ê0[hn|Bl] = Ê0[h0|Bl]Ê0[hn−1|D = ∞].
Inserting this into (3.26) yields Ê0[1{Zn+1∈C}hn|Bl] = Ê0[hn|Bl]P̂0[Z0 ∈ C|D =
∞]. In other words, (3.22) holds with (n+1) in place of n. Note that the induction
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argument shows that if P0(Al) > 0, then P̂0-a.s., Bl ⊂ {τk < ∞, for all k ≥ 0} and
thus P̂0-a.s., Bl = Al = {τk < ∞, for all k ≥ 0}. [We will see later that in fact
P̂0-a.s, Al = {τ1 < ∞}, if P0(Al) > 0; cf. Proposition 3.6.]

It remains to prove (3.25): Observe that P̂0-a.s., {D = ∞} = {T̃−R = ∞} =
{T̃−R ≥ τ1}. Further it is clear that the last event is included in {D ≥ τ1}; see (3.12).
They are in fact equal P̂0-a.s., because the converse inclusions stems from the
following facts: {D ≥ τ1} ∩ {τ1 = ∞} is a P̂0 null-set by (3.16) and Lemma 3.3,
and {D ≥ τ1} ∩ {τ1 < ∞} ⊂ {T̃−R > τ1 − 1}, P̂0-a.s. But on {τ1 < ∞}, P̂0-a.s.
l · Xτ1−1+s ≥ 2R, for all s ≥ 0, by construction of τ1. Therefore {T̃−R > τ1 − 1} ⊂
{T̃−R = ∞} ⊂ {T̃−R ≥ τ1}, P̂0-a.s.

We thus see that P̂0-a.s., {D = ∞} = {D ≥ τ1} = {D ≤ τ1 − 1}c which is
G0-measurable and thus hn−11{D=∞} is indistinguishable from a Gn−1-measurable
variable. �

PROPOSITION 3.6 (Weak zero–one law, d ≥ 1). For any l ∈ Sd−1,P0(Al ∪
A−l) ∈ {0,1}. Moreover if P0(Al) > 0, then P̂0-a.s., Bl = Al = {τ1 < ∞}, where
Bl is defined in (3.15).

PROOF. Assume that P0(Al) > 0, and consider any L > 0. Let Hk, k ≥ 0, be
the iterates of HS̄(−L,L)

◦ θ1 + 1. We claim that P0[Hk < ∞, for all k ≥ 0] = 0.
Indeed, using the notation from Lemma 2.5, we see that

P0[{Hk < ∞, for all k ≥ 0} ∩ Bc
l ]

≤ P0

[ ⋃
v∈N

{βl,−L
k < ∞, for all k ≥ 0 and Tv = ∞}

]
= 0.

From Theorem 3.5, we know that Bl = Al,P0-a.s. and therefore we find

P0[{Hk < ∞, for all k ≥ 0} ∩ Bl] = 0.

This proves the claim and as L is arbitrary, we see that P0[limt→∞ |l · Xt | =
∞] = 1, and hence P0(Al ∪ A−l) = 1, under the assumption P0(Al) > 0. The
case where P0(A−l) > 0 is treated analogously and the 0–1 law follows. Finally
observe that under the assumption P0(Al) > 0, we have that P̂0-a.s., {τ1 < ∞} =
({τ1 < ∞} ∩ Al) ∪ ({τ1 < ∞} ∩ A−l), where the second set in the union is empty.
Hence {τ1 < ∞} ⊂ Al, P̂0-a.s. The converse inclusion follows from Lemma 3.3.

�

The next proposition proves that P0(Al) > 0 implies that l · Xτ1 has a finite
first moment under P̂0[·|D = ∞]. In the discrete i.i.d. setting where the renewal
structure is technically less intricate (cf., e.g., [33]) and under the assumption that
l is a coordinate direction, one can show a stronger result, namely the equality
E0[l · Xτ1 |D = ∞] = P0[D = ∞]−1; see, for instance, [36], Lemma 3.2.5. Let
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us now give an outline of the argument we use. We find an L > 0 for which
there is a positive lower bound, uniform in r > 0, for the annealed probability
that the interval [r, r + L] contains one of the l · Xτm,m ≥ 1. This yields a pos-
itive lower bound on the linear growth in M of the expected number of renewal
points l · Xτm smaller than M . But by the elementary renewal theorem this linear
growth coincides with Ê0[l · Xτ1 |D = ∞]−1. We thus obtain the desired upper
bound on Ê0[l · Xτ1 |D = ∞]. Whereas the construction of an L as above is rel-
atively straightforward in the discrete setup, it is somewhat involved in the con-
tinuous setting because of the more delicate nature of the regeneration times. Let
us incidentally point out that the use of the elementary renewal theorem bypasses
the arithmeticity conditions of Blackwell’s renewal theorem used in [36]. This is
an advantage when working with a general direction l (both in the discrete and
continuous setups).

PROPOSITION 3.7. Consider l in Sd−1 and assume that P0(Al) > 0. Then
there is a constant c0 > 0 such that if L is large enough, for any r ≥ 0 one has

P̂0
[

for some m ≥ 1, l · Xτm ∈ [r, r + L]|Al

]
> c0,(3.27)

Ê0
[
l · Xτ1 |D = ∞] ≤ L

c0
.(3.28)

PROOF. We first prove (3.27). Consider any r ≥ 0, 0 < δ < R
10 and define T =

Tr+R/4; see (2.2). The heart of the matter is to construct an event E [cf. (3.30)],
forcing the occurrence of some l · Xτm,m ≥ 1, in an interval. More precisely we
will show that

P̂0-a.s., on the event E, some l · Xτm,m ≥ 1, belongs to [r, r + 18R],(3.29)

where E is defined as

E =
{
T < ∞, sup

s∈[T ,�T �]
|Xs − XT | ≤ R

4
,

sup
0≤s≤2

|Xs − X0 − ψ(s)| ◦ θ̂�T � < δ,(3.30)

λ�T �+2 = 1,D ◦ θ̂�T �+3 = ∞
}
,

and ψ : R+ → R
d is the function

ψ(s) =
{

5Rls, s ≤ 1,

5Rl + (s − 1)5
4Rl, 1 < s ≤ 2.

The intuitive idea behind the construction of E is the following (see Figure 3):
in essence after first reaching level r + R/4 at time T , the trajectory is forced—in
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FIG. 3. A realization of the event E [cf. (3.30)] and the corresponding speed of the trajectory.

the next unit of time after �T �—to move 5R “to the right” and—in the subsequent
unit of time—to move an additional distance R “to the right.” Then either �T �
coincides with a regeneration time, or as we will see, some time “of type V” [af-
ter suitable time shift, see (3.8)] occurs during the first interval [�T �, �T � + 1].
Rounding up this time to the next integer yields �T � + 1 and the constraints im-
posed on the trajectory during the second unit of time [�T �+1, �T �+2] as well as
on the Bernoulli variables, ensure that �T � + 2 is “of type N”; see (3.10). Because
of the no-backtracking condition in E, �T � + 3 is then a regeneration time and we
have a good control on how far “to the right” the trajectory has moved at that time.

We now proceed with the proof of (3.29). Let τm < �T �,m ≥ 0, be the last
regeneration time strictly before �T �, with m = 0 by convention when �T � = 0,
which is a P̂0-negligible event. We define

k = sup
{
n ≥ 0 :Rn ◦ θ̂τm + τm ≤ �T �};(3.31)

see (3.11), (3.13) for the notation. On the event E, the following two cases can
occur:

(i) Either Nk+1 ◦ θ̂τm + τm < �T �, then we claim that

Nk+1 ◦ θ̂τm + τm + 1 = τm+1 = �T �.(3.32)

Indeed, according to the definition (3.14), (3.19) of τm+1, the first equality
in (3.32) automatically holds if Rk+1 ◦ θ̂τm is infinite. Assume by contradiction,
that Rk+1 ◦ θ̂τm < ∞. By the definition of k, Rk+1 ◦ θ̂τm + τm > �T � and by
the definition of Rk+1 [cf. (3.11)], the trajectory would have to return to level

u∗ def= l · X
Nk+1◦θ̂τm+τm+1 − R strictly after time �T �. But under our assumption,

Nk+1 ◦ θ̂τm + τm + 1 ≤ �T � and hence with the second condition in the definition
of E, u∗ ≤ l · X�T � − 3R

4 . On E, however, after time �T �, the trajectory always

stays strictly above level l · X�T � − R
2 . This contradiction proves that Rk+1 ◦ θ̂τm is

infinite and hence the first equality of (3.32) follows. The second equality simply
stems from the fact that Nk+1 ◦ θ̂τm + τm +1 ≤ �T � ≤ τm+1 in the considered case.
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(ii) Or �T � ≤ Nk+1 ◦ θ̂τm + τm; then we first note that �T � = Nk+1 ◦ θ̂τm + τm is
P̂0-negligible as {λ�T � = 1} ∩ E is a P̂0 null-set by (3.6). We claim that

�T � + 3 = τm+1.(3.33)

To see this, we first determine below a random time N̄ ≤ �T � “of type τ , R or Ñ ,”
serving as starting point for the construction of a new generation of stopping times
“of type V ;” see Section 3.2. With k as in (3.31), we define

ρ = Rk ◦ θ̂τm + τm, N̄j = Ñj ◦ θ̂ρ + ρ, j ≥ 0,

j0 = sup{j ≥ 0 : N̄j ≤ �T �}, N̄ = N̄j0 .

Since on E the trajectory visits a new half plane once it reaches level r + R
2 , there

exists a smallest i ≥ 0, such that V
def= Vi(a) ◦ θ̂N̄ + N̄ [where a equals either 3R

or M(ρ) − Xρ · l + R according to the type of N̄ ; cf. (3.8), (3.9), (3.11), (3.13)],
satisfies

�T � < V ≤ (
Nk+1 ◦ θ̂τm + τm

) ∧ (�T � + 1)

and

l · X�T � < l · XV < l · X�T � + 4R.

Note that �V � = �T �+1 �= N̄j0+1 because l ·(X�V � −XV ) > R
2 ; see also (3.9). But

the “next” V , namely V ′ def= Vi+1(a) ◦ θ̂N̄ + N̄ > �T � + 1, is reached by definition
of E near level l · X�T � + 6R, and �V ′� coincides with

Nk+1 ◦ θ̂τm + τm = �T � + 2,

since l · (X�V ′� − XV ′) ≤ R
2 and λ�T �+2 = 1. We obtain that �T � + 3 is the next

regeneration time τm+1, since on E the trajectory never backtracks after �T � + 3.
This proves (3.33).

So far we have shown (3.29) and there remains to prove that the probability
P̂0[E|Al] is bounded away from 0, independently of r . The claim (3.27) will then
follow. To this end, we observe that

P̂0[E ∩ Al] =
∞∑

n=0

EÊ0,ω

[
�T � = n, sup

T ≤s≤�T �
|l · (Xs − XT )| ≤ R

4
,

sup
0≤s≤2

|Xs − X0 − ψ(s)| ◦ θ̂n < δ,λn+2 = 1,(3.34)

P̂0,ω[D ◦ θ̂n+3 = ∞, θ̂−1
n+3(Al)|Zn+2]

]
.
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With the Markov property (3.4) as well as (3.6) and the first inclusion in (3.16),
we find that for P-a.e. ω

P̂0,ω[D ◦ θ̂n+3 = ∞, θ̂−1
n+3(Al)|Zn+2]

= P̂
λn+2
Xn+2,ω

[D ◦ θ̂1 = ∞](3.35)

= 1

|B(0,R)|
∫

Py,ω[D = ∞]1{BXn+2 }(y) dy.

We insert (3.35) into (3.34) and use the following facts:

(a) {λn+2 = 1} has probability ε and is independent of Fn+2 ⊗ Sn+1; see
(3.3) and (3.4).

(b) ω �→ P0,ω[�T � = n, supT ≤s≤�T � |l · (Xs − XT )| ≤ R
4 , sup0≤s≤2 |Xs − X0 −

ψ(s)| ◦ θn < δ, y ∈ BXn+2] is H{z∈Rd : z·l≤y·l−8R+δ}-measurable [recall the defini-
tion of Bx , (3.1)]. ω �→ Py,ω[D = ∞] is H{z∈Rd : z·l≥y·l−R}-measurable. Therefore
by the finite range dependence property (1.5) both maps are P independent.

Moreover from Lemma 3.2, we have that P0[D = ∞] > c > 0 and hence we
obtain

P̂0[E ∩ Al] = ε

|B(0,R)|

×
∞∑

n=0

∫
Rd

dy EP0,ω

[
�T � = n, sup

T ≤s≤�T �
|l · (Xs − XT )| ≤ R

4
,

sup
0≤s≤2

|Xs − X0 − ψ(s)| ◦ θn < δ, y ∈ BXn+2

]

× EPy,ω[D = ∞]

≥ εc

∞∑
n=0

EE0,ω

[
�T � = n, sup

T ≤s≤�T �
|l · (Xs − XT )| ≤ R

4
,

PXn,ω

[
sup

0≤s≤2
|Xs − X0 − ψ(s)| ≤ δ

]]

≥ εcc′(δ,ψ)P0[T < ∞] ≥ εcc′(δ,ψ)P0(Al),

where the constant c′(δ,ψ) stems from the support theorem (see [2], page 25).
This proves (3.27).

We now prove (3.28). From Theorem 3.5, we know that l · (Xτm+1 − Xτk
),

m ≥ 0, are independent under P̂0[·|Al] and have for m ≥ 1 the same distribution
as l · Xτ1 under P̂0[·|D = ∞]. Moreover P̂0[τ1 < ∞|Al] = 1. Thus the elementary
renewal theorem in the delayed case (see [24], Theorem 3.3.3) can be applied and
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yields

Ê0
[
l · Xτ1 |D = ∞]−1

(3.36)

= lim inf
k→∞

Ê0[max{m ≥ 1 : l · Xτm ≤ kL}|Al]
kL

≥ c0

L
.

This proves (3.28). �

We now turn to the main result in this section, which describes the limiting
velocity of the diffusion process.

THEOREM 3.8 (Limit velocity d ≥ 1). There exist a deterministic direction
l∗ ∈ Sd−1 and two numbers v+, v− ≥ 0, such that

P0-a.s., lim
t→∞

Xt

t
= (

v+1Al∗ − v−1A−l∗
)
l∗,(3.37)

and P(Al∗ ∪ A−l∗) ∈ {0,1}. (If this last quantity is 0, the velocity is 0 and thus the
values of v+, v− are immaterial.)

PROOF. We first prove that for any fixed direction l ∈ Sd−1, there are nonneg-
ative numbers vl, v−l , such that

P0-a.s., lim
t→∞

l · Xt

t
= vl1Al

− v−l1A−l
.(3.38)

If P0(Al ∪ A−l) = 0, it follows from Corollary 2.6 that (3.38) holds with vl =
v−l = 0. In view of the weak zero–one law, Proposition 3.6, we only have to
consider the case P0(Al ∪ A−l) = 1. We assume without loss of generality that
P(Al) > 0. On Al , P̂0-a.s., τk < ∞, k ≥ 1 (cf. Theorem 3.5) and we define for
t > 0, a nondecreasing, integer-valued function k(t) tending to infinity P̂0-a.s.,
such that

τk(t) ≤ t < τk(t)+1,

with the convention τ0 = 0. Observe that on Al , we have P̂0-a.s.,

l · Xτk(t)
− R

k(t)

k(t)

τk(t)+1
≤ l · Xt

t
≤ l · Xτk(t)+1 + 3R

k(t) + 1

k(t) + 1

τk(t)

.(3.39)

By (3.28), the i.i.d. structure of the increments l · (Xτk
− Xτk−1), k ≥ 2, under

P̂0[·|Al] (see Theorem 3.5) and the usual law of large numbers, we find

lim
k→∞

l · Xτk

k
= Ê0

[
l · Xτ1 |D = ∞]

< ∞, P̂0[·|Al]-a.s.(3.40)

(i) Either Ê0[τ1|D = ∞] = ∞, and then the positivity and the i.i.d. structure
of the increments τk − τk−1, k ≥ 2 (see Theorem 3.5) imply that 1

n

∑n
k=1 τk −
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τk−1 −→ ∞, P̂0[·|Al]-a.s. Passing to the limit in (3.39), we obtain in this case
vl = 0 in (3.38).

(ii) Or Ê0[τ1|D = ∞] < ∞;
(3.41)

then we obtain vl = Ê0[l · Xτ1 |D = ∞]
Ê0[τ1|D = ∞] > 0.

If P(A−l) is also positive, then the same argument determines v−l ; otherwise we
set v−l = 0. This proves (3.38).

Applying (3.38) to a basis of R
d , we obtain

Xt/t −→ v, P0-a.s.,(3.42)

where v is a random vector taking at most 2d values.
In the next step we show that in fact v takes at most two parallel and oppo-

site values. Indeed, assume that there are v1, v2 noncolinear, nonzero vectors with
P̂0[v = vi] > 0, i = 1,2. Define ei = vi|vi | , i = 1,2 and

lα
def= αe1 + (1 − α)e2,

for α ∈ (0,1). From (3.42) and (3.38) we see that P0-a.s.,

v · lα = vlα1Alα
− v−lα1A−lα

for α ∈ (0,1).

Therefore if for some α ∈ (0,1), lα ·vi > 0, for i = 1,2, then since P̂0[v = vi] > 0,
we find

lα · v1 = lα · v2.(3.43)

If we can choose α in a nonempty open interval such that lα · vi > 0, i = 1,2,
holds, we may take derivatives with respect to α in (3.43) and deduce

0 = (e1 − e2)(v1 − v2)

= (e1 − e2)(|v1|e1 − |v2|e2)

= (1 − e1 · e2)(|v1| + |v2|).
By assumption, |e1 · e2| < 1, which produces a contradiction. Let us check that
indeed lα · vi > 0, i = 1,2, is true for α in a nonempty open interval:

lα · v1 > 0 ⇐⇒ lα · e1 > 0 ⇐⇒ α >
−e1 · e2

1 − e1 · e2
,

lα · v2 > 0 ⇐⇒ lα · e2 > 0 ⇐⇒ α <
1

1 − e1 · e2
.

Both bounds define a nonempty open interval as |e1 · e2| < 1. As a result, there is
an l∗ ∈ Sd−1 such that P0[v ∈ Rl∗] = 1. The application of (3.38) with l∗ together
with (3.42) completes the proof. �
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4. Zero–one law when d = 2. In this section we prove that in the two-
dimensional case, for any direction l, P0(Al) is either 0 or 1. Note that this re-
sult combined with Theorem 3.8 implies at once a law of large numbers, that is,
Xt

t
converges P0-a.s. to a deterministic velocity, which is possibly 0. Our strategy

is inspired by that of Zerner and Merkl in [37], where they proved an analogous
zero–one law for random walks in two-dimensional i.i.d. environments. Note that
Lemma 4.1 and the beginning of the proof of Theorem 4.2 are valid for all dimen-
sions.

We will use the following notation: for every environment ω, we consider two
independent diffusions, called X. and Y.. Stopping times with superscript 1, re-
spectively 2, refer to X., respectively Y.. We define for ω ∈ �,x, y ∈ R

d the prod-
uct measure P ω

x,y = Px,ω × Py,ω as well as Px,y = EP ω
x,y . We recall that the first

entrance time in a set B is called HB ; see above (2.2). For every ω ∈ �,x ∈ R
d

we write

r(x,ω) = Px,ω(l · Xt → ∞).(4.1)

The basic idea is to first show that under the assumption P0(Al ∪ A−l) = 1, the
two diffusions starting, respectively, in 0 and yL, with l · yL large, are unlikely to
visit a same small ball located between their starting points; see Lemma 4.1. On
the other hand, when d = 2, if we assume that P0(Al)P0(A−l) > 0, we can choose
yL such that for large L, the two diffusions intersect “between 0 and yL” with
nonvanishing probability, thus leading to a contradiction; see Theorem 4.2.

Lemma 4.1 relies on the fact that for every ω, r(Xt ,ω) and r(Yt ,ω) are
Px,ω-martingales by the Markov property, and they converge to 1Al

, Px,ω-a.s.
Loosely speaking, X· and Y· cannot meet in a region between their respective
starting points if they are far apart, because r(Xt ,ω) and r(Yt ,ω) would have
to approach 1, respectively 0, in the same region.

LEMMA 4.1 (d ≥ 1). Consider l ∈ Sd−1 and assume P0(Al ∪ A−l) = 1. Then
for any sequence yL,L ≥ 4R, satisfying l · yL ≥ 3L, we have

lim
L→∞P0,yL

[
there exists z ∈ S(L,l·yL−L) :H 1

B(z,R) < ∞,H 2
B(z,R) < ∞] = 0.(4.2)

PROOF. The considered set in (4.2) is measurable because it suffices to con-
sider a countable, dense subset of S(L,l·yL−L) in the union, since we use entrance
times into open balls. For any integer L ≥ 4R, its probability is bounded from
above by

P0

[
∃ z ∈ S(L,l·yL−L) :H 1

B(z,R) < ∞, sup
y∈B(z,R)

r(y,ω) < 1
2

]
(4.3)

+ PyL

[
∃ z ∈ S(L,l·yL−L) :H 2

B(z,R) < ∞, sup
y∈B(z,R)

r(y,ω) ≥ 1
2

]
.
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By Harnack’s inequality (see [8], page 250), we have infy∈B(z,R) r(y,ω) ≥
c supy∈B(z,R) r(y,ω) and since P0(Al ∪A−l) = 1, the expression in (4.3) is smaller
than

P0

[
∃ z ∈ S(L,l·yL−L) :H 1

B(z,R) < ∞, sup
y∈B(z,R)

r(y,ω) <
1

2
,Al

]

+ P0[TL−R < ∞,A−l]
(4.4)

+ PyL

[
∃ z ∈ S(L,l·yL−L) :H 2

B(z,R) < ∞, inf
y∈B(z,R)

r(y,ω) ≥ c

2
,A−l

]

+ PyL
[T̃ rel−L+R < ∞,Al].

The second and last terms converge to 0 as L → ∞. The first term is smaller than

P0

[
H 1{z∈S(L−R,l·yL−L+R) : r(z,ω)<1/2} < ∞,Al, TL−R >

L − R

2K̄

]
(4.5)

+ P0

[
TL−R ≤ L − R

2K̄

]
,

where K̄ , defined in (1.2), denotes a uniform bound on the drift. From the mar-
tingale convergence theorem we know that limt→∞ r(Xt ,ω) = 1Al

, P0,ω-a.s. This
implies that the first term of (4.5) tends to 0 as L → ∞ since P0,ω-a.s.,{

L − R

2K̄
< H 1{z∈S(L−R,l·yL−L+R) : r(z,ω)<1/2} < ∞,Al

}

⊂
{

inf
s≥(L−R/2K̄)

r(Xs,ω) <
1

2
, lim
s→∞ r(Xs,ω) = 1

}
.

The second term of (4.5) tends to 0 by Bernstein’s inequality (see [2], Proposi-
tion 8.1, page 23). Using translation invariance, the third term in (4.4) is treated
similarly. �

THEOREM 4.2 (d = 2). For any direction l ∈ S1,

P0[Al] ∈ {0,1}.(4.6)

PROOF. Assume by contradiction that P0(Al)P0(A−l) > 0. For any integer
L ≥ 4R, we denote with �L the probability in (4.2) and recall that R is defined
in (1.5). We claim that there exists a sequence yL ≥ 3L, with L ≥ 4R such that

lim inf
L→∞ �L > 0.(4.7)

This with (4.2) yields a contradiction and Theorem 4.2 will follow. We already
specify that yL · l = 3L + 22R. The component orthogonal to l will be chosen



LIMIT VELOCITY 1115

in Lemma 4.3 below; see (4.28) and (4.31). In the first step we will use inde-

pendence to separate the inner slab ISL
def= S(L+13/2R,l·yL−L−13/2R) from the half-

spaces {x ∈ R
d :x · l ≤ L} and {x ∈ R

d :x · l ≥ l · yL − L}. To achieve this, we
use the coupling measure P̂ ω

x starting at x for the direction l on the enlarged
path-space C(R+,R

d) × {0,1}N; see Section 3.1. For the direction −l, we denote
the coupling measure starting at y with P̃y,ω. We introduce the product measure
P̂ ω

x,y = P̂x,ω × P̃y,ω. The Bernoulli variables, respectively, associated with X· and

Y· are called λ1· and λ2· , and P̂x,ω(λ1 = 1) = P̃y,ω(λ2 = 1) = ε. For any L ≥ 4R,
we define the events

D1 =
{
T

rel,1
L < T̃

rel,1
−R , sup

T
rel,1
L ≤s≤�T rel,1

L �

∣∣Xs − X
T

rel,1
L

∣∣ ≤ R

2

}
,

(4.8)

D2 =
{
T̃

rel,2
−L < T

rel,2
R , sup

T̃
rel,2
−L ≤s≤�T̃ rel,2

−L �

∣∣Ys − Y
T̃

rel,2
−L

∣∣ ≤ R

2

}
,

and recall that TISL
denotes the exit time from ISL. For any L ≥ 4R, we have the

following lower bound for �L obtained by controlling the trajectories of X· and Y·
in a symmetric way before we (almost surely) send them into the inner slab ISL

by requiring λ1
�T 1

L�, λ
2
�T̃ rel,2

−L � to equal 1 [cf. (3.6)]:

�L ≥ EP̂ ω
0,yL

[
D1, λ1

�T 1
L� = 1,D2, λ2

�T̃ rel,2
−L � = 1, ∃ z ∈ ISL,

H 1
B(z,R) ◦ θ̂�T 1

L�+1 < T 1
ISL

◦ θ̂�T 1
L�+1,(4.9)

H 2
B(z,R) ◦ θ̂�T̃ rel,2

−L �+1 < T 2
ISL

◦ θ̂�T̃ rel,2
−L �+1

]
.

With property (3.4), the latter expression equals

ε2
EÊω

0,yL

[
D1,D2, g

(
ω,X�T 1

L�, Y�T̃ rel,2
−L �

)]
,(4.10)

where for ω ∈ �,u, v ∈ R
d , we have defined

g(ω,u, v)

= P̂
λ1

0=1
u,ω × P̃

λ2
0=1

v,ω

[∃ z ∈ ISL,H 1
B(z,R) ◦ θ̂1 < T 1

ISL
◦ θ̂1,(4.11)

H 2
B(z,R) ◦ θ̂1 < T 2

ISL
◦ θ̂1

]
.

Using the fact that under P̂ 1
u,ω,X1 is uniformly distributed on the ball Bu = B(u+

9Rl,R), and accordingly under P̃ 1
v,ω, Y1 is uniformly distributed on the ball B̃v def=

B(v − 9Rl,R) [cf. (3.6)], we obtain from (4.11), for any ω ∈ �,u, v ∈ R
d ,

g(ω,u, v) = 1

|B(0,R)|2
∫∫

h(ω,x, y)1{x∈Bu}1{y∈B̃v} dx dy,(4.12)



1116 L. GOERGEN

where for ω ∈ �,x, y ∈ R
d , we have defined

h(ω,x, y) = P ω
x,y

[∃ z ∈ ISL,H 1
B(z,R) < T 1

ISL
,H 2

B(z,R) < T 2
ISL

]
.(4.13)

For x ∈ S̄(L+(15/2)R,L+(21/2)R) and y ∈ S̄(l·yL−L−(21/2)R,l·yL−L−(15/2)R), ω �→
h(ω,x, y) is HISL

⊂ HS̄(l·x−4R,l·y+4R)
-measurable. On the other hand, the map

ω �→ P ω
0,yL

[
D1,D2, x ∈ B

X�T 1
L

�, y ∈ B̃
Y�T̃ rel,2

−L
�]

is H{z∈Rd : l·z≤l·x−7R}∪{z∈Rd : l·z≥l·y+7R} measurable. Hence, when we insert (4.12)
into (4.10), finite range dependence [see (1.5)] yields

�L ≥ ε2

|B(0,R)|2
(4.14)

×
∫∫

P0
[
D1, x ∈ B

X�T 1
L

�]PyL

[
D2, y ∈ B̃

Y�T̃ rel,2
−L

�]
Eh(ω,x, y) dx dy,

where the double integral in fact is only over S̄(L+(15/2)R,L+(21/2)R) ×
S̄(l·yL−L−(21/2)R,l·yL−L−(15/2)R). This stems from the definition of Bu and B̃v ,
and the fact that on the event D1, L − R

2 ≤ l · X�T 1
L� ≤ L + R

2 and simi-

larly on D2 for Y�T̃ rel,2
−L �. Observe that for any x ∈ S̄(L+(15/2)R,L+(21/2)R), y ∈

S̄(l·yL−L−(21/2)R,l·yL−L−(15/2)R), we have

Eh(ω,x, y) = 1 − EP ω
x,y

[
inf

0≤s≤T 1
ISL

,0≤t≤T 2
ISL

|Xs − Yt | ≥ 2R

]
.(4.15)

Using a discretization with cubes of side-length R

2
√

d
of the sets X[0,T 1

ISL
] and

Y[0,T 2
ISL

] and with the help of finite range dependence, we see that (4.15) is larger

than

h̃(x, y)
def= Px × Py

[
inf

0≤s≤T 1
ISL

,0≤t≤T 2
ISL

|Xs − Yt | < R

]
.(4.16)

In view of (4.14) and (4.16), we have thus obtained the following lower bound for
the initial probability: for any L ≥ 4R,

�L ≥ ε2cP0[T̃−R = ∞]P0[TR = ∞]
|B(0,R)|2

(4.17)
×

∫∫
µ+

L

(
B(x − 9lR,R)

)
µ−

L

(
B(y − yL + 9lR,R)

)
h̃(x, y) dx dy,

where

µ+
L(·) = P0

[
X�T 1

L� ∈ ·|D1] and µ−
L(·) = P0

[
Y�T 2−L� ∈ ·|D2],(4.18)
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with D1,D2 defined in (4.8) and where the positive constant c is a lower bound
for Pz,ω[supTL≤s≤�TL� |Xs − XTL

| ≤ R
2 ]Pz′,ω[sup

T̃−L≤s≤�T̃−L� |Xs − X
T̃−L

| ≤ R
2 ],

stemming from the support theorem (see [2], page 25).
The conclusion of the proof relies on the following lemma.

LEMMA 4.3 (d = 2). If P0(Al)P0(A−l) > 0, then there exists p ∈ (0,1), such
that for any integer L ≥ 4R, there are two measurable sets A+,A− ⊂ R

2 and a
point yL ∈ R

2, with l · yL ≥ 3L, for which

h̃(x, y) ≥ p whenever x ∈ A+ and y ∈ A−(4.19)

and ∫
A+

µ+
L

(
B(x − 9lR,R)

)
dx > p,

∫
A−

µ−
L

(
B(y − yL + 9lR,R)

)
dy > p.(4.20)

µ+
L,µ−

L are defined in (4.18).

PROOF. Choose e2 ∈ S1 with e2 · l = 0. Let ak ∈ R, k = 1,2,3, be respective
k
4 -quantiles of the “second marginal” of µ+

L , chosen to be the smallest number
such that µ+

L(Rl + (−∞, ak]e2) ≥ k
4 . Let bk ∈ R, k = 1,2,3, be the correspond-

ing quantiles for µ−
L . Define Ak = [ak−1, ak],Bk = [bk−1, bk], k = 2,3. Choose

i, j ∈ {2,3} such that |Ai | = min(|A2|, |A3|), |Bj | = min(|B2|, |B3|). We define
for integer L ≥ 4R,

A+ = [
L + 15

2 R,L + 21
2 R

]
l + [ai−1 − U,ai + U ]e2,(4.21)

A− = [−L − 21
2 R,−L − 15

2 R
]
l + [bj−1 − U,bj + U ]e2 + yL,(4.22)

where U =
√

2
2 R (half the side-length of a square fitting into a ball of radius R)

and where we recall that yL ·e1 = 3L+22R. The component yL ·e2 will be chosen
below (4.28). It is easy to check that∫

A+
µ+

L

(
B(x − 9lR,R)

)
dx

≥ 4U2µ+
L

([
L − 3

2R + U,L + 3
2R − U

]
l + [ai−1, ai]e2

)
≥ U2,

where we recall that the first marginal of µ+
L is supported by S̄(L−R/2,L+R/2). The

same lower bound holds for
∫
A− µ−

L(B(y − yL + 9lR,R)) dy. This proves (4.20).
We next show (4.19). Adding the following two inequalities a3 − a1 ≥

2|Ai |, b3 − b1 ≥ 2|Bj | yields (a3 + b3) + (−a1 − b1) ≥ 2|Ai | + 2|Bj |. Therefore
at least one of the two following inequalities must hold:

a3 + b3 ≥ |Ai | + |Bj |, case I,(4.23)

a1 + b1 ≤ −(|Ai | + |Bj |), case II.(4.24)
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Let us now examine case I. We derive a lower bound for h̃(x, y) defined in
(4.16) by producing a crossing of the trajectories of X and Y in a way that
brings into play D1 and D2 [defined in (4.8)]. This allows us to use the mea-
sures u+

L,u−
L and their quantiles to estimate the crossing probability. For L ≥ 4R,

x ∈ S̄(L+(15/2)R,L+(21/2)R) and y ∈ S̄(l·yL−L−(21/2)R,l·yL−L−(15/2)R):

h̃(x, y) ≥ Px × Py

[
D1,X�T rel,1

L � · e2 > y · e2 + R,

sup
s≤1

|Xs − X0 − 9lRs| ◦ θ�T rel,1
L � ≤ R

2
,

(4.25)

D2, Y�T̃ rel,2
−L � · e2 > x · e2 + R,

sup
s≤1

|Ys − Y0 − (−9lRs)| ◦ θ�T̃ rel,2
−L � ≤ R

2

]
.

Indeed, on the above event (see Figure 4), the set HSx
def= [L + 13

2 R,L +
21
2 R]l+(−∞, e2 ·x+ R

2 ]e2 is connected to the line {z ∈ R
2 : l ·z = l ·yL−L− 13

2 R}
by a part of the trajectory of X·, that leaves the slab ISL = S(L+(13/2)R,yL−L−(13/2)R)

through the “right” boundary without entering the set HSy
def= [yL − L − 21

2 R,

yL − L − 13
2 R]l + (−∞, e2 · y + R

2 ]e2 containing y. This part of the trajectory
divides the set ISL \ HSx and gives rise to two connected, unbounded compo-
nents, the lower one containing y. As the trajectory of Y· leaves the slab ISL

through the “left” boundary without entering HSx , it has to intersect the part of
the X·-trajectory separating the two connected components.

So we can bound h̃(x, y) using the conditional measures µ+
L,µ−

L . Indeed
with the support theorem (see [2], page 25) and translation invariance, it follows

FIG. 4.
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from (4.25) that

h̃(x, y) ≥ cP0[T̃ rel−R = ∞]P0[T rel
R = ∞]

× µ+
L

(
Rl + (

(y − x)e2 + R,∞)
e2

)
µ−

L

(
Rl + (

(x − y)e2 + R,∞)
e2

)
.

If we choose yL · e2 such that for all x ∈ A+, y ∈ A−,

(y − x) · e2 ≤ a3 + 2U
def= ã3 and (x − y) · e2 ≤ b3 + 2U

def= b̃3,(4.26)

then we obtain for all x ∈ A+, y ∈ A−:

h̃(x, y) ≥ ρµ+
L

(
Rl + (ã3 + R,∞)e2

)
µ−

L

(
Rl + (b̃3 + R,∞)e2

)
,

with ρ = cP0[T̃ rel−R = ∞]P0[T rel
R = ∞] > 0, by Lemma 3.2.

It remains to be checked that (4.26) is possible for suitable yL · e2 and that

(i) lim inf
L→∞ µ+

L

(
Rl + (ã3 + R,∞)e2

)
> 0,

(ii) lim inf
L→∞ µ−

L

(
Rl + (b̃3 + R,∞)e2

)
> 0.

(4.27)

We first see from (4.21) and (4.22) that (4.26) is satisfied for all x ∈ A+, y ∈ A− if

yL · e2 + bj + U − ai−1 + U ≤ ã3 and
(4.28)

ai + U − yL · e2 − bj−1 + U ≤ b̃3.

Hence we have to choose yL · e2 in [ai − bj−1 − b3, ai−1 − bj + a3], which is
possible since (ai − ai−1) + (bj − bj−1) ≤ a3 + b3 in case I; see (4.23).

Finally let us check (4.27). For any L ≥ 4R, we have [cf. (4.18)]

µ+
L

(
Rl + (ã3 + R,∞)e2

) ≥ cP0

[
XTL

· e2 ≥ ã3 + 3R

2
, TL < T̃−R

]
,(4.29)

using the support theorem and the strong Markov property. The function x �→
Px,ω[XTL

· e2 ≥ ã3 + 3R
2 , TL < T̃−R] is Lω-harmonic in the box (−3R

4 , 3R
4 )l +

(−R,2U + 3R)e2. Thus, Harnack’s inequality (see [8], page 250) implies that for
some constant c > 0, the left-hand side of (4.29) is bigger than

cEP(2U+2R)e2,ω

[
XTL

· e2 ≥ ã3 + 3R

2
, TL < T̃−R

]
transl. inv.= cP0

[
XTL

· e2 ≥ a3 − R

2
, TL < T̃−R

]
(4.30)

≥ cP0
[
X�TL� · e2 ≥ a3|D1]P0[D1],

and finally the support theorem and the definition of a3 yield

µ+
L

(
Rl + (ã3 + R,∞)e2

) ≥ cP0[T̃−R = ∞] Lemma 3.2
> 0.



1120 L. GOERGEN

This proves (4.27)(i). We show (4.27)(ii) in the same way. In case II [cf. (4.24)],
crossings are produced by requiring instead X�T rel,1

L � · e2 < y · e2 −R and Y�T̃ rel,2
−L � ·

e2 < x · e2 − R in (4.25). Moreover yL · e2 has to be chosen in such a way that for
all x ∈ A+, y ∈ A−,

(y − x) · e2 ≥ a1 − 2U and (x − y) · e2 ≥ b1 − 2U.(4.31)

These conditions are satisfied when yL · e2 ∈ [a1 + ai − bj−1, ai−1 − bj − b1],
which is nonempty under (4.24). The rest of the argument has to be adjusted ac-
cordingly. This completes the proof of (4.19).

We have now proved (4.7) and as noted before Theorem 4.2 follows. �

APPENDIX

We now give the proof of Lemma 3.3.

PROOF OF LEMMA 3.3. Define the event �0 = {sup0≤s≤1 |l · (Xs − X0)| >
R
2 }. The support theorem ([2], page 25) shows that there is a constant c > 0, such
that Px,ω(�0) < 1 − c, for all x ∈ R

d , ω ∈ �.
On the event Bl [cf. (3.15)], for any a > 0, all the stopping times Vk(a), k ≥ 1,

are finite [recall (3.8)]. For simplicity, we drop a from the notation. Define �k =
{Vk < ∞, supVk≤s≤�Vk� |l · (Xs −XVk

)| > R
2 }. On the event Bl , Ñ1 is finite P0-a.s.,

because for n tending to infinity,

P0

[
n⋂

k=1

�k

]
≤ EE0,ω

[
n−1∏
k=1

1�k
PXVn,ω[�0]

]
≤ (1 − c)n

n→∞−→ 0.

With the help of the strong Markov property, we obtain iteratively

P0[Ñk < ∞ for all k ≥ 1|Bl] = 1.

The next step is to observe that on the event Bl , N1 is finite P̂0-a.s. Indeed, for any
n ≥ 1 using independence of λj and Fj ⊗Sj−1 with respect to P̂x,ω [cf. (3.4)], we
obtain

P̂x[Bl ∩ {N1 = ∞}]
≤ P̂0

[
Ñm < ∞, λ

Ñm
= 0, for all m ≤ n

]
= ∑

j∈N

P̂0
[
Ñm < ∞, λ

Ñm
= 0, for all m ≤ n − 1, Ñn = j,︸ ︷︷ ︸

∈Fj⊗Sj−1

λj = 0︸ ︷︷ ︸
∈Sj

]

induction≤ (1 − ε)n −→ 0 as n → ∞.

Again, by the strong Markov property, we see that on the event Bl , if Rk < ∞,
then Nk+1 = N1(ak) ◦ θRk

+ Rk is finite. ak is not time-shifted in the formula
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for Nk+1 [recall (3.13)]. The assumption P0(Al) > 0 and Lemma 3.2 ensure that
P0(D = ∞) > 0. In the next step we show that since P0(D = ∞) > 0, the path
cannot backtrack a distance R after time Nk + 1 for every k ≥ 1

P̂0[{Rk < ∞} ∩ Bl] ≤ P̂0
[
Nk < ∞,D ◦ θ̂Nk+1 < ∞]

(A.1)
= EP̂0,ω

[
Nk < ∞, P̂ 1

XNk
,ω

[
P̂

λ1
X1,ω

[D < ∞]]].
The last equality follows from (3.4). From (3.6), we see that for any x ∈ R

d,ω ∈ �,

P̂ 1
x,ω

[
P̂

λ1
X1,ω

[D < ∞]] = 1

|B(0,R)|
∫
Bx

Py,ω[D < ∞]dy.

Inserting this expression into (A.1), we find that for k ≥ 1

P̂0[{Rk < ∞} ∩ Bl]
(A.2)

≤ 1

|B(0,R)|
∫

E
[
P̂0,ω[Nk < ∞, y ∈ BXNk ]Py,ω[D < ∞]]dy.

The random variable ω �→ P̂0,ω[Nk < ∞, y ∈ BXNk ] is measurable with respect
to H{z:z·l≤y·l−4R}, because of [27], equation (3) therein, and the fact that for any
m ≥ 1, there is a Um ∈ Fm ⊗ Sm−1, with Um ⊂ {supt≤m l · Xt ≤ l · y − 7R},
such that {Nk < ∞, y ∈ BXNk } = ⋃

m≥1 Um ∩ {λm = 1}. The random variable
ω �→ Py,ω[D < ∞] = 1 − P0,ω[D = ∞] is measurable w.r.t. H{z : z·l≥y·l−R}. Thus
we can use the finite range dependence property (1.5) and obtain

P̂0[{Rk < ∞} ∩ Bl] ≤ P̂0[Nk < ∞]P0[D < ∞]
≤ P̂0[Rk−1 < ∞]P0[D < ∞]

induction≤ P0[D < ∞]k → 0 as k → ∞.

We conclude that P̂0[for some j ≥ 1 :Nj < Rj = ∞|Bl] = 1, or in other words:
P̂0[τ1 < ∞|Bl] = 1. �
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