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INDIVIDUAL VERSUS CLUSTER RECOVERIES WITHIN A
SPATIALLY STRUCTURED POPULATION

BY L. BELHADJI AND N. LANCHIER

CNRS—Université de Rouen

Stochastic modeling of disease dynamics has had a long tradition.
Among the first epidemic models including a spatial structure in the form
of local interactions is the contact process. In this article we investigate two
extensions of the contact process describing the course of a single disease
within a spatially structured human population distributed in social clusters.
That is, each site of the d-dimensional integer lattice is occupied by a cluster
of individuals; each individual can be healthy or infected. The evolution of the
disease depends on three parameters, namely the outside infection rate which
models the interactions between the clusters, the within infection rate which
takes into account the repeated contacts between individuals in the same clus-
ter, and the size of each social cluster. For the first model, we assume cluster
recoveries, while individual recoveries are assumed for the second one. The
aim is to investigate the existence of nontrivial stationary distributions for
both processes depending on the value of each of the three parameters. Our
results show that the probability of an epidemic strongly depends on the re-
covery mechanism.

1. Introduction. To study the course of a disease within a spatially structured
population, Harris [8] introduced a model known as the basic contact process. Each
site of the d-dimensional integer lattice is occupied by an individual either healthy
or infected; each individual gets infected at a rate that depends on the number of
infected individuals in some interaction neighborhood. Including spatial structure
in the form of local interactions has shown that, for a disease to spread, the infec-
tion rate needs to exceed a threshold that is greater than the one for a nonspatial
population. The smaller the size of the interaction neighborhood, the greater the
threshold for the disease to spread. The reason for this is the lack of sufficient
numbers of susceptible individuals near the location of a disease outbreak once the
disease starts spreading.

The study of the evolution of diseases within spatially structured populations,
including extensions of the contact process, is widespread in the particle system
literature. The first process we investigate in this article has been introduced by
Schinazi [12], and will be referred to as the cluster recovery process (CRP). His
model studies the spread of an infectious disease such as tuberculosis within a
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population grouped in social clusters, each of the clusters having the same size.
The second model we investigate assumes another recovery mechanism and will
be referred to as the individual recovery process (IRP).

For both CRP and IRP, the dynamics depends on three parameters, namely the
outside infection rate λ (the rate at which an individual infects healthy individuals
of other clusters), the within infection rate φ (the rate at which an individual in-
fects healthy individuals present in the same cluster) and the cluster size κ (which
is constant regardless of the location of the cluster on the lattice). The population
is divided into social clusters, the individuals belonging to the same cluster hav-
ing repeated contacts and the individuals belonging to neighboring clusters having
casual contacts only, which suggests that the infection spreads out faster vertically
within the clusters than horizontally between the clusters. In particular, it is as-
sumed for both models that, once a cluster has at least one infected individual,
infections within the cluster are much more likely than additional infections from
the outside so we neglect the latter. The cluster size can be seen as the mean num-
ber of individuals having sustained contacts with a given individual. Even if, in a
more realistic setting, this parameter should fluctuate significantly depending on
the social customs of each of the individuals, it is assumed for technical reasons
that all the clusters have the same size. In particular, whereas the infection rates
λ and φ are parameters linked to the nature of the disease, the cluster size κ de-
pends on the social customs of the individuals. The only difference between the
CRP and the IRP is the recovery mechanism. For the CRP, all the infected individ-
uals in a given cluster simultaneously recover at rate 1 thanks to an antidote. This
applies to places where there is a good tracking system of infectious diseases so
that, once an infected individual is discovered, its social cluster is rapidly tracked
down [12]. For the IRP, we deal with the other extreme case when at most one
infected individual recovers at once; that is, the tracking system is not effective
enough and the infection can spread within a given cluster before it is detected.
In particular, the CRP and the IRP can be considered as spatial stochastic models
for the transmission of infectious diseases in developed and developing countries,
respectively. As we will see further, this difference implies that, the cluster size
being fixed, an epidemic may occur for the IRP provided the outside infection rate
is strictly positive. In the CRP, the whole population always recovers if the outside
infection rate is smaller than some critical value depending on the cluster size.
Moreover, we obtain for the IRP that, when the within infection rate is greater
than 1, even if the outside infection rate is low, an epidemic is possible provided
the cluster size is large enough. The CRP exhibits the opposite behavior in the
sense that, the within infection rate being fixed, if the outside infection rate is low,
there is no epidemic whatever the cluster size.

To figure out the differences between individual and cluster recoveries, we now
introduce the explicit dynamics of both processes. The IRP is a continuous-time
Markov process in which the state at time t is a function ξt : Zd −→ {0,1, . . . , κ},
with κ denoting the common size of the clusters. The cluster at site x ∈ Z

d is said



INDIVIDUAL VERSUS CLUSTER RECOVERIES 405

to be healthy at time t ≥ 0 if ξt (x) = 0, and infected otherwise. More precisely,
ξt (x) indicates the number of infected individuals present in the cluster at time
t ≥ 0. To take into account the outside infections, we also introduce an interaction
neighborhood. For any x, z ∈ Z

d , x ∼ z indicates that site z is one of the 2d near-
est neighbors of site x. Then, the state of site x flips according to the following
transition rates:

0 → 1 at rate λ
∑
x∼z

ξ(z),

i → i + 1 at rate iφ, i = 1,2, . . . , κ − 1,

i → i − 1 at rate i, i = 1,2, . . . , κ.

In other words, a healthy cluster at site x gets infected, that is, the state of x flips
from 0 to 1, at rate λ times the number of infected individuals present in the neigh-
boring clusters. In other respects, if there are i infected individuals in the cluster,
i = 1,2, . . . , κ −1, then each of these individuals infects healthy individuals in the
cluster at rate φ. Finally, each infected individual recovers at rate 1 regardless of
the number of infected individuals in its cluster.

The CRP is a Markov process ηt : Zd −→ {0,1, . . . , κ}, with ηt (x) denoting
the number of infected individuals at site x at time t ≥ 0, and whose dynamics
is obtained by replacing the transitions i → i − 1, i = 1,2, . . . , κ , above by the
transitions

i → 0 at rate 1, i = 1,2, . . . , κ.

That is, all the infected individuals in a given cluster are now simultaneously re-
placed by healthy ones at rate 1, the infection mechanism being unchanged. For
more details, see [12].

The graphical representation. An argument of Harris [7] assures us of the ex-
istence and uniqueness of our spatially explicit, stochastic models. The idea is to
construct the processes from collections of independent Poisson processes, which
is referred to as Harris’ graphical representation. For each x, z ∈ Z

d with x ∼ z

and i = 1,2, . . . , κ , we let {T x,z,i
n :n ≥ 1} denote the arrival times of independent

Poisson processes with rate λ, and draw an arrow labeled with an i from site x to
site z at time T x,z,i

n to indicate that an outside infection may occur. To take into
account the within infections, we introduce, for x ∈ Z

d and i = 1,2, . . . , κ − 1,
a further collection of independent Poisson processes, denoted by {Ux,i

n :n ≥ 1};
each of them has rate φ. We put the symbol •i at (x,Ux,i

n ) to indicate that an in-
fection from the inside may occur. Finally, for each x ∈ Z

d and i = 1,2, . . . , κ , we
let {V x,i

n :n ≥ 1} be the arrival times of independent rate-1 Poisson processes, and
put a ×i at site x to indicate that a recovery may occur.

Given initial configurations ξ0 and η0, and the graphical representation intro-
duced above, the processes can be constructed as follows. If there are at least i
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infected individuals at site x at time T x,z,i
n and the cluster at z is healthy, then

the state of z flips from 0 to 1 for both processes. In other respects, if there are j

infected individuals, i ≤ j ≤ κ − 1, at site x at time Ux,i
n , then one more indi-

vidual gets infected in the cluster, that is, the state of x flips from j to j + 1, for
both processes. Finally, if there are j infected individuals, 1 ≤ j ≤ κ , at site x at
time V x,i

n , then the state of x flips from j to j − 1 if and only if i ≤ j for the IRP,
while it flips from j to 0 if and only if i = 1 for the CRP. In particular, ×i ’s,
i = 2,3, . . . , κ , have no effect on the CRP.

A nice feature of the graphical representation is that it allows us to couple sev-
eral processes starting from different initial configurations, which can be done
by using the same collections of Poisson processes. See [5], page 119 and [10],
page 32.

The mean-field model of the IRP. To figure out the properties of our spatial
models, the first step is to investigate their deterministic nonspatial versions called
the mean-field model; that is, we assume that all sites are independent and the
system is spatially homogeneous. This then results in a system of ordinary differ-
ential equations for the densities of healthy and infected clusters. The reason for
introducing this model is that the existence of locally stable fixed points for the
mean-field model may be symptomatic of the existence of stationary measures for
the original spatial model. See [6] for different possible studies of a model. Let
ui denote the density of clusters with i infected individuals, i = 0,1, . . . , κ . The
mean-field model of the IRP is then described by the following coupled system of
ordinary differential equations:

du0

dt
= u1 − λu0

κ∑
i=1

iui,

du1

dt
= λu0

κ∑
i=1

iui − (1 + φ)u1 + 2u2,

dui

dt
= (i − 1)φui−1 − i(1 + φ)ui + (i + 1)ui+1, i = 2,3, . . . , κ − 1,

duκ

dt
= (κ − 1)φuκ−1 − κuκ.

To find the condition for the existence of a nontrivial equilibrium, we start by set-
ting the right-hand side of each of the equations equal to 0. From the last equation,
we obtain

uκ = κ − 1

κ
φuκ−1.

By induction, we get

ui = i − 1

i
φui−1, i = 2,3, . . . , κ,
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from which it follows that

ui = φi−1

i
u1, i = 2,3, . . . , κ.

Reporting in the first equation then leads to

du0

dt
= u1 − λ

κ−1∑
i=0

φiu0u1 = 0.

The previous equation tells us that the condition for an epidemic to occur is given
by

λ(1 + φ + · · · + φκ−1) > 1.(1)

When (1) does not hold, the boundary equilibrium u0 = 1 and ui = 0 for i =
1,2, . . . , κ is the unique fixed point of the system of ordinary differential equations.
When (1) is satisfied, there is a nontrivial equilibrium characterized by

u0 = 1

λ
×

{
κ−1∑
i=0

φi

}−1

and ui = φi−1

i
u1, i = 2,3, . . . , κ.

First of all, note that, when λ > 1, condition (1) holds for all the values of φ ≥ 0
and κ ≥ 1. In other respects, when λ ≤ 1 and κ ≥ 2, there is a nontrivial equilib-
rium provided φ is sufficiently large. In the same way, when λ ≤ 1 and φ ≥ 1, there
is a nontrivial equilibrium if the cluster size κ is large enough. Moreover, numeri-
cal simulations indicate that, when condition (1) holds, the nontrivial equilibrium
is locally stable, which suggests the existence of a nontrivial stationary distribution
for the corresponding spatial model. See Figure 1 for a picture. For a description
of the mean-field model of the CRP, see [12], Section 3.

FIG. 1. Solution curves of the mean-field model of the IRP in the case κ = 2. Left: λ = 1 and
φ = 0.5. Right: λ = 0.5 and φ = 2.
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The stochastic models. We now discuss the effects of each of the three parame-
ters, namely the outside infection rate λ, the cluster size κ and the within infection
rate φ, on the probability of an epidemic for both models. We will prove that the
behavior predicted by the mean-field model above holds as well for the IRP, and
provide comparisons between both processes. Except for Theorem 6 whose proof
is carried out in this paper, all the results regarding the CRP can be found in [12],
so we now focus especially on the IRP, but the following definitions and basic
properties hold for the CRP as well.

We say that an epidemic may occur for the IRP with parameters (λ, κ,φ) if

P 0
ξ (|ξt | ≥ 1 for all t ≥ 0) > 0,

where P 0
ξ denotes the law of the process starting from one infected individual

at the origin, and where |ξt | is the total number of infected individuals at time
t ≥ 0. The previous property is equivalent to the existence of a nontrivial stationary
distribution, where nontrivial means �= δ0, the “all 0” configuration. We say, on the
contrary, that there is no epidemic if δ0 is the unique stationary distribution.

As in [12], one of the keys of our results is monotonicity. A crucial feature of
the CRP that ensures monotonicity is the fact that the transition i → 0 occurs at
a constant rate (actually, any transition rate which is decreasing in i would work).
For the IRP, this follows from the fact that we have at most one recovery at any
fixed time. The following monotonicity result can be checked by using a coupling
argument if we think of the process as being generated by Harris’ graphical repre-
sentation introduced above.

LEMMA 1.1. The IRP is attractive and monotone with respect to λ, κ and φ.

Here attractivity means that if ξ1
0 (x) ≤ ξ2

0 (x) for any x ∈ Z
d at time 0, then

ξ1
t and ξ2

t can be constructed in the same probability space in such a way that

P 1,2(∀x ∈ Z
d, ξ1

t (x) ≤ ξ2
t (x)

) = 1 for any t ≥ 0,

with P 1,2 denoting the law of the coupled process starting from (ξ1
0 , ξ2

0 ).
In order to introduce our results, we first observe that, when κ = 1, each of

the clusters is only in one of the two states 0 = healthy or 1 = infected, and the
process ξt reduces to a basic contact process with parameter λ. In this case, there
exists a critical value λc ∈ (0,∞) such that if λ ≤ λc, then the process converges in
distribution to the “all 0” configuration; otherwise, an epidemic may occur. See [2]
or [10], Theorem 2.25. This, together with Lemma 1.1, implies that, when λ > λc,
an epidemic may occur for any κ ≥ 1 and φ ≥ 0. This case corresponds to the case
λ > 1 of the mean-field model.

To figure out the intuition behind our first result, we start by removing the in-
teractions between clusters by setting λ = 0. This makes the IRP a system of inde-
pendent random walks with absorbing state 0; each of them represents the number
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of infected individuals in the associated cluster. Since each of these random walks
returns to 0 with probability 1, the process converges in distribution to the “all 0”
configuration. By relying on a perturbation argument, the result can be extended
to the region λ > 0 small. More precisely, we have the following

THEOREM 1. For all κ ≥ 1 and φ ≥ 0, there is λc(κ,φ) ∈ (0,∞) such that if
λ < λc(κ,φ) there is no epidemic for the IRP, while if λ > λc(κ,φ) an epidemic
may occur.

Note that, due to the monotonicity with respect to κ , we get λc(κ,φ) ≤
λc(1, φ) = λc. The analogue of Theorem 1 for the CRP is given by

THEOREM 2 ([12]). For all κ ≥ 1 and φ ≥ 0, if λ ≤ λc/κ there is no epidemic
for the CRP, while if λ > λc an epidemic may occur.

The next step is to set λ < λc and κ ≥ 2, and to discuss the probability of an
epidemic depending on the value of the within infection rate φ. To begin with,
when φ = 0 the IRP reduces to a basic contact process with parameter λ. In par-
ticular, since λ < λc, there is no epidemic. The other extreme formal case φ = ∞
corresponds to a Richardson model with parameter λκ so that an epidemic may
occur provided λ > 0. To see that the previous two conclusions still hold when
φ ∈ (0,∞), we will first rely on a rescaling argument to estimate the rate of conver-
gence of Pξ (ξt (x) = 0) in the two limiting cases φ = 0 and φ = ∞, respectively,
where Pξ denotes the law of the IRP. These estimates will have to be good enough
so that a perturbation argument can be applied. This, together with Lemma 1.1,
implies that

THEOREM 3. For all κ ≥ 2 and λ ∈ (0, λc), there is φc(λ, κ) ∈ (0,∞) such
that if φ < φc(λ, κ) there is no epidemic for the IRP, while if φ > φc(λ, κ) an
epidemic may occur.

The CRP exhibits a quite different behavior since such a critical value exists if
and only if the outside infection rate belongs to (λc/κ,λc), that is:

THEOREM 4 ([12]). For all κ ≥ 2 and λ ∈ (λc/κ,λc), there is φc(λ, κ) ∈
(0,∞) such that if φ < φc(λ, κ) there is no epidemic for the CRP, while if
φ > φc(λ, κ) an epidemic may occur.

The last step is to investigate the effects of the cluster size κ on the probability of
an epidemic for both models. For the mean-field model of the IRP, we have seen
that, in the case λ > 0 and φ ≥ 1, condition (1) holds provided κ is sufficiently
large. The assumption φ ≥ 1 is to make sure that the sequence 1 + φ + · · · + φκ−1

diverges as κ → ∞. The analogous result for the spatial version is given by the
following
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FIG. 2. Phase diagram of the stochastic models. The continuous curve refers to the IRP and the
dashed one to the CRP. For the IRP, Theorems 1 and 3 imply that the straight line λ = 0 is an
asymptote of the phase transition curve, and Theorem 5 that, when φ > 1, λc(κ,φ) → 0 as κ → ∞.
For the CRP, Theorem 6 implies that λc(κ,φ) → λc(φ) > 0 as κ → ∞. The monotonicity follows
from Lemma 1.1 and Proposition 1 of [12] while we conjecture the continuity of the two curves.

THEOREM 5. For all φ > 1 and λ ∈ (0, λc), there is κc(λ,φ) ≥ 2 such that if
κ < κc(λ,φ) there is no epidemic for the IRP, while if κ > κc(λ,φ) an epidemic
may occur.

To understand the assumption φ > 1, we observe that when the interactions be-
tween the clusters are removed, that is, when λ = 0, the process becomes a system
of independent random walks with absorbing state 0. When φ > 1 and only in this
case, these random walks have a drift to the right so that the infection in a given
cluster can persist a very long time. As we will see further, the previous observa-
tion is the key for proving Theorem 5. Our last result tells us that the CRP exhibits
the opposite behavior in the sense that, φ being fixed, when λ is too small, there is
no epidemic whatever the cluster size. More precisely, we have the following

THEOREM 6. For all φ ≥ 0 there exists λc(φ) ∈ (0,∞) such that for any κ ≥ 1
there is no epidemic for the CRP provided λ ≤ λc(φ).
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The key idea of the proof is that, contrary to the IRP in which the number
of infected individuals in a given cluster performs a random walk with a drift to
the right when φ > 1, for the CRP, the clusters globally recover sufficiently often
so that the number of infected individuals between two recoveries cannot exceed
some threshold κ0(φ) with probability close to 1. In particular, by taking λ > 0
smaller than some critical value depending on κ0(φ), but independent of κ , the
disease dies out. All our results are summarized in Figure 2 above.

The rest of the article is devoted to proofs. In Section 2 we rely on a rescaling
argument to prove Theorem 1. In Section 3 we use the fact that, when λ ∈ (0, λc),
the contact process with parameter λ converges to the “all 0” configuration while
the Richardson model with growth rate λκ has a nontrivial stationary distribution,
to deduce Theorem 3. The proof of Theorem 5, partially based on random walks
estimates, is carried out in Section 4. Finally, Section 5 is devoted to the proof of
Theorem 6.

2. Proof of Theorem 1. In Section 1 we have seen that when λ > λc an epi-
demic may occur whatever the size of the clusters and the value of the within
infection rate. In view of the monotonicity of the IRP with respect to the outside
infection rate λ, if in addition we prove that, κ ≥ 1 and φ ≥ 0 being fixed, there
exists λ0 > 0 such that, when λ ≤ λ0, the “all 0” configuration is the unique sta-
tionary distribution, Theorem 1 will follow.

In order to prove the existence of such a λ0 > 0, we use a rescaling argu-
ment to compare our stochastic process with an oriented percolation process
on G = Z

d × Z+. The rescaling argument has been invented by Bramson and
Durrett [3] and is reviewed in [5]. To make the connection between the particle
system and an oriented percolation process, the basic idea is to turn the space–
time of the process into a brick wall, and to associate each brick with a certain
good event Ez,n, (z, n) ∈ G. For any (z, n) ∈ G, we consider the vertical segment

Sz,n = {(z, t) :nT ≤ t ≤ (n + 1)T }(2)

as well as the space–time cylinder

Cz,n = {(x, t) ∈ Z
d × R+ :x ∼ z and nT ≤ t ≤ (n + 1)T }(3)

where T is a large integer to be fixed later. We say that a site (z, n) ∈ G is good if
the cluster at site z is healthy at time (n + 1)T . We want the good event Ez,n to be
measurable with respect to the graphical representation in Sz,n ∪Cz,n and such that
on Ez,n site (z, n) is good regardless of the value of ξnT (z) or the configuration of
the system in the cylinder Cz,n. We want this event to have a probability close to 1.

To define Ez,n we start by setting λ = 0 to make our process a collection of
independent random walks. Moreover, to be in the worst case, we assume that
ξnT (z) = κ . Let T z

0 be the first time ξt (z) hits 0 after time nT . Since κ < ∞, the
stopping time T z

0 is finite with probability 1. This, together with the Beppo–Lévi
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theorem, implies that, for any ε > 0, there is a large enough T , fixed from now on,
such that

Pξ (T
z

0 − nT ≤ T ) ≥ 1 − ε/2,(4)

where Pξ denotes the law of the particle system. To define the event Ez,n, we first
require that T z

0 ≤ (n + 1)T (which can be defined, in terms of Poisson processes,
as a certain succession of ×’s and •’s at site z) so that on Ez,n site (z, n) is good
provided λ = 0. To take into account the local interactions between the clusters
when λ > 0, we complete the definition of Ez,n by requiring no arrow to come
from the cylinder Cz,n to the segment Sz,n. Finally, now that T is fixed so that (4)
holds, we can find λ0 > 0 so small that

Pξ

(
(z, n) is good

) ≥ Pξ (Ez,n) ≥ 1 − ε if λ ≤ λ0.

To complete the comparison, we now position oriented edges between sites in G in
order to obtain an oriented percolation model. For (x, n), (y,m) ∈ G, we draw an
edge from (x, n) to (y,m) if and only if x ∼ y and n = m, or x = y and m = n+1.
In that way, we may define a 1-dependent oriented percolation process on G for
which sites are open with probability 1 − ε. By choosing ε > 0 sufficiently small,
the probability of a path of length n of closed sites within this percolation process
decreases exponentially fast with n (see (8.2) in [1]). Since the existence of an
infected site at time (n + 1)T implies the existence of a path of length n of closed
sites, Theorem 1 follows.

3. Proof of Theorem 3. In this section we first prove that, given λ ∈ (0, λc)

and κ ≥ 2, for the spatial model with parameters (λ, κ,φ), there is no epidemic
when φ = 0 while an epidemic may occur when φ = ∞. Then, by using a pertur-
bation argument, we will deduce from the behavior of the IRP in the two extreme
cases that there exist φ1 > 0 and φ2 < ∞ such that if φ < φ1 there is no epidemic,
while if φ > φ2 an epidemic may occur. In view of the monotonicity of the model
with respect to the parameter φ, this will imply the existence of a φc ∈ [φ1, φ2]
such that Theorem 3 holds.

To prove the existence of φ1 > 0 small, we let L be a large integer to be fixed
later and, for any site (z, n) ∈ G, introduce the space–time regions

Az,n = (Lz,Ln) + {[−2L,2L]d × [0,2L]}
and

Bz,n = (Lz,Ln) + {[−L,L]2 × [L,2L]}.
A site (z, n) ∈ G is said to be good if ξt (x) = 0 for any (x, t) ∈ Bz,n, that is, there
is no infected individual in Bz,n. When λ < λc and φ = 0, the IRP reduces to a
subcritical contact process, which implies, by Section 5 of [12], the existence of
an event Fz,n measurable with respect to the graphical representation of ξt in Az,n
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such that on Fz,n site (z, n) is good. Moreover, for any ε > 0 there exists a large
enough L, fixed from now on, such that

Pξ

(
(z, n) is good

) ≥ Pξ (Fz,n) ≥ 1 − ε/2 if φ = 0.

Now that L is fixed, we can find φ1 > 0 small such that there is no occurrence of
Poisson processes with rate φ inside Az,n with probability at least 1−ε/2 provided
φ ≤ φ1. In conclusion,

Pξ

(
(z, n) is good

) ≥ 1 − ε if φ ≤ φ1.

To complete the comparison with oriented percolation, we now position oriented
edges between sites in G as follows: For (x, n), (y,m) ∈ G we draw an oriented
edge from (x, n) to (y,m) if and only if n ≤ m and Ax,n ∩ Ay,m �= ∅. In that
way, we define a 2-dependent oriented percolation process on G for which sites
are open with probability 1 − ε. Since ε > 0 can be chosen arbitrarily small, we
can conclude, as in Section 2, that there is no epidemic when φ ≤ φ1.

To get the existence of φ2 < ∞, we now deal with the limiting case φ = ∞
for which our process becomes a Richardson model ξt : Zd −→ {0, κ} with growth
rate λκ (see [11]). If we think of the process as a set-valued process in which
the state at time t is the set of infected sites, and start the evolution with one
infected cluster at the origin, then the following shape theorem holds ([4], Theo-
rem 6, Chapter 1): there exists a convex set A such that, for any δ > 0, there are
constants C1 < ∞ and γ1 > 0 such that

Pξ

(
(1 − δ)tA ⊂ ξt ⊂ (1 + δ)tA

) ≥ 1 − C1 exp(−γ1t).(5)

Let L and 	 denote two large integers to be fixed later, set

H = {(z, n) ∈ Z
2 : z + n is even and n ≥ 0},

and, for z ∈ Z, introduce the spatial box

Bz = Lze1 + [−L,L]d,(6)

where e1 denotes the first unit vector of the d-dimensional lattice. We say that
a site (z, n) ∈ H is occupied if each of the clusters in the spatial box Bz has κ

infected individuals at time n	L. Then, the shape theorem (5) implies that, for any
ε > 0, we can pick L and 	 sufficiently large so that the set of occupied sites for
the Richardson model ξt dominates the set of wet sites in a 1-dependent oriented
percolation process with parameter 1 − ε/2.

To extend the result to φ < ∞ sufficiently large, we require the following
good event, denoted by Gz,n. For any x ∈ Bz−1 ∪ Bz+1, we follow the line
{x} × [n	L, (n + 1)	L] by going forward in time. Each time we encounter a ×,
we require the next • to appear before a new × or κ-arrow is encountered. This
good event assures us that the model with parameters (λ, κ,φ) exhibits the same
behavior as the Richardson model introduced above in the spatial box Bz−1 ∪Bz+1
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from time n	L to time (n + 1)	L. To estimate the probability of our good event,
we first observe that, in view of the parameters of the Poisson processes involved
in our graphical representation, the probability of going through a • before any ×’s
or κ-arrow is given by

(κ − 1)φ

(κ − 1)φ + 2dλ + κ
.

Let M denote the number of ×’s contained in {Bz−1 ∪Bz+1}× [n	L, (n+ 1)	L].
In view of the properties of the exponential distribution, we get

Eξ(M) = κ(4L + 1)(2L + 1)d−1	L

since there are (4L + 1)(2L + 1)d−1 sites in Bz−1 ∪ Bz+1. Finally, by decom-
posing the event to be estimated according to whether M > 2Eξ(M) or not, large
deviation estimates imply that

Pξ (Gz,n) ≥ 1 − C2 exp(−γ2	L)

− 2κ(4L + 1)(2L + 1)d−1	L × 2dλ + κ

(κ − 1)φ + 2dλ + κ

for appropriate C2 < ∞ and γ2 > 0. In particular, by setting φ = exp(	L), and
then choosing L sufficiently large, Pξ (Gz,n) can be made greater than 1 − ε/2.
Putting things together, it follows that the set of occupied sites for the model with
parameters (λ, κ,φ) dominates the set of wet sites in a 1-dependent oriented per-
colation process with parameter 1 − ε.

To construct our nontrivial stationary distribution, we start ξt from the “all κ”
configuration, run the process to time S, take the Cesaro average of the distribution
at times 0 ≤ s ≤ S and extract a convergent subsequence. By Liggett ([9], Proposi-
tion 1.8) the limit µ is a stationary measure. Since percolation occurs with positive
probability when ε > 0 is small enough,

lim inf
n→∞ µ

(
(z, n) is occupied

) ≥ lim inf
n→∞ Pε

(
(z, n) is wet

)
> 0,

where Pε denotes the law of the oriented percolation process with parameter 1−ε,
which implies that µ concentrates on configurations with infinitely many infected
clusters.

4. Proof of Theorem 5. In this section we prove that if λ ∈ (0, λc) and φ > 1
there exists a critical value κc ≥ 2 such that if κ < κc the IRP converges to the
“all 0” configuration, while if κ > κc there is a nontrivial equilibrium. First of all, if
κ = 1 the value of φ is irrelevant and the process reduces to a basic contact process
with parameter λ < λc so that the “all 0” configuration is the unique stationary
distribution. In particular, in view of the monotonicity of the IRP with respect to κ ,
it suffices to prove the existence of a large κ0 such that the process with parameters
(λ, κ0, φ) has a nontrivial stationary distribution. This will imply Theorem 5.
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To prove the existence of such a κ0, the strategy is to compare the particle sys-
tem with a 1-dependent oriented percolation process on H . To rescale the particle
system, we let Tκ = κ2, and say that a site (z, n) ∈ H is occupied if at any time
t ∈ [nTκ, (n + 1)Tκ ] there is at least one infected individual at site ze1, where e1

denotes the first unit vector of the d-dimensional lattice. Theorem 5 then follows
from the following.

LEMMA 4.1. Let λ > 0 and φ > 1. Then, for any ε > 0, there exists a large
enough κ such that the set of occupied sites dominates the set of wet sites in a
1-dependent oriented percolation process with parameter 1 − ε.

The first step is to investigate the behavior of an isolated cluster when the out-
side infection rate is set to 0. More precisely, we need some estimates on the first
recovery time of a large cluster, the main ingredient (given in Lemma 4.4) be-
ing that, with probability close to 1, the infection dies out quickly or persists at
least 2Tκ units of time.

Random walk estimates. To figure out the behavior of an isolated cluster, we
first consider the continuous-time random walk Xt ∈ {0,1, . . . , κ} that makes tran-
sitions

i →
{

i + 1, at rate iφ,
i − 1, at rate i,

when 1 ≤ i ≤ κ − 1,

and κ → κ − 1 at rate κ . In particular, Xt is equal in distribution to ξt (x), the
number of infected individuals at site x ∈ Z

d , when λ = 0. To estimate the recovery
time of a given cluster, we also introduce the stopping time

τ0 = inf{t ≥ 0 :Xt = 0}
and the good event

�κ = {Xt = κ for some t < 2Tκ}.
The aim is to prove that, with probability close to 1 when κ is large, τ0 > 2Tκ

on the event �κ while the random walk returns quickly to 0 on the event �c
κ . By

convention, all through this section the subscripts and superscripts on the proba-
bilities denote the process and its initial state respectively (e.g., P κ

X for the law of
the process Xt starting from X0 = κ).

LEMMA 4.2. Let φ > 1. Then there exist C3 < ∞ and γ3 > 0 such that

P κ
X(τ0 < 2Tκ) ≤ 4κφTκφ−κ + C3 exp(−γ3Tκ).
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PROOF. The basic idea is to deduce the result from similar estimates for the
asymmetric discrete-time random walk Xn that makes transitions

i →
{

i + 1, with probability φ/(1 + φ),
i − 1, with probability 1/(1 + φ),

when i ≤ κ − 1,

and κ → κ − 1 with probability 1. Let Yn ∈ Z be the backward random walk with
transitions

i →
{

i + 1, with probability 1/(1 + φ),

i − 1, with probability φ/(1 + φ),

and, for any i ≤ 0, pi the probability that Yn = 0 for some n ≥ 0 when starting
from Y0 = i. Decomposing according to whether Yn first jumps to i − 1 or i + 1
leads to

pi = φ

1 + φ
pi−1 + 1

1 + φ
pi+1 and p0 = 1.

Since pi → 0 as i → −∞, it follows that pi = φi , which implies that, for any
n ≥ 0,

P κ
X(Xn ≤ 0) ≤ P −κ

Y (Yj = 0 for some j ≥ 0) = p−κ = φ−κ .

Let Kt denote the number of times the process Xs jumps by time t . Since Xs

makes transitions at rate at most κφ, large deviation estimates imply that

P κ
X(Kt > 2κφt) ≤ C3 exp(−γ3t/2)

for appropriate C3 < ∞ and γ3 > 0. Putting things together and decomposing
according to whether K2Tκ is smaller or greater than 4κφTκ , we obtain

P κ
X(τ0 < 2Tκ) ≤ P κ

X

(
τ0 < 2Tκ ;K2Tκ < 4κφTκ

) + P κ
X

(
K2Tκ ≥ 4κφTκ

)
≤ P κ

X(Xn ≤ 0 for some n < 4κφTκ) + P κ
X

(
K2Tκ ≥ 4κφTκ

)

≤
4κφTκ∑
n=1

P κ
X(Xn ≤ 0) + C3 exp(−γ3Tκ)

≤ 4κφTκφ−κ + C3 exp(−γ3Tκ).

This completes the proof of the lemma. �

LEMMA 4.3. Let φ > 1. Then there exist C4 < ∞ and γ4 > 0 such that for
any t < 2Tκ

P 1
X(τ0 > t;�c

κ) ≤ C4 exp(−γ4t).
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PROOF. To begin with, we prove the analogous result for the asymmetric ran-
dom walk Zn ∈ Z that makes transitions

i →
{

i + 1, with probability φ/(1 + φ),

i − 1, with probability 1/(1 + φ).

Let σ0 denote the first time Zn = 0 and p = φ/(1 + φ). First of all, since

E1
Z[Zn − Z0] = (2p − 1)n,

large deviation estimates on Zn imply that, for any δ > 0,

P 1
Z

(
Zn ≤ (2p − 1 − δ)n

) ≤ C5 exp(−γ5n)

for appropriate C5 < ∞ and γ5 > 0. In other respects, since φ > 1, and so p > 0.5,
we can find a sufficiently small δ > 0 such that 2p − 1 − δ > 0, which implies that

P 1
Z(n < σ0 < ∞) =

∞∑
k=n+1

P 1
Z(σ0 = k)

≤
∞∑

k=n+1

P 1
Z(Zk ≤ 0)

≤ C5

∞∑
k=n+1

exp(−γ5k)

≤ C6 exp(−γ5n).

To deduce the result for Xs , we first observe that, on �c
κ and by time min(τ0,2Tκ),

the continuous-time random walk Xs is just a time change of Zn. Since Xs jumps
at rate at least 1 by time τ0, the probability that Kt < t (where Kt denotes the num-
ber of jumps by time t) when τ0 > t is smaller than C7 exp(−γ7t). In conclusion,
for any t < 2Tκ , we get

P 1
X(τ0 > t;�c

κ) ≤ P 1
X(τ0 > t;�c

κ;Kt ≥ t) + P 1
X(�c

κ;Kt < t)

≤ P 1
Z(t < σ0 < ∞) + P 1

X(�c
κ;Kt < t)

≤ C6 exp(−γ5t) + C7 exp(−γ7t) ≤ C4 exp(−γ4t)

for appropriate C4 < ∞ and γ4 > 0. This completes the proof. �

LEMMA 4.4. Let φ > 1 and Tκ = κ2. Then there exist C8 < ∞ and γ8 > 0
such that

P 1
X(t < τ0 < 2Tκ) ≤ C8 exp(−γ8κ) + C8 exp(−γ8t).
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PROOF. To begin with, we observe that, on the event �κ , the first time Xs

hits 0 when X0 = κ is bounded in distribution by the first time it hits 0 when
X0 = 1 so that

P 1
X(τ0 < 2Tκ;�κ) ≤ P κ

X(τ0 < 2Tκ).

In particular, by decomposing the event to be estimated according to whether �κ

occurs or not, it follows from Lemma 4.2 and Lemma 4.3 that

P 1
X(t < τ0 < 2Tκ) ≤ P 1

X(t < τ0 < 2Tκ;�κ) + P 1
X(t < τ0 < 2Tκ ;�c

κ)

≤ P 1
X(τ0 < 2Tκ ;�κ) + P 1

X(τ0 > t;�c
κ)

≤ 4κ3φ1−κ + C3 exp(−γ3κ
2) + C4 exp(−γ4t)

≤ C8 exp(−γ8κ) + C8 exp(−γ8t)

for suitable C8 < ∞ and γ8 > 0. This completes the proof of the lemma. �

PROOF OF LEMMA 4.1. To deduce Lemma 4.1, we show that if the cluster at
site 0 has at least one infected individual from time 0 to time Tκ , that is, site (0,0)

is occupied, then this individual gives birth at site z ∼ 0 and by time Tκ to an
infection that survives at least 2Tκ units of time, so that (z,1) is occupied. The
probability of this event has to be greater than 1 − ε for κ sufficiently large.

Each time the infected individual at site 0 gives rise to a new infection at site z,
we call this infection a strong infection if it lives at least 2Tκ units of time (at
site z). Let σz denote the first time a strong infection is born at site z, that is,

σz = inf{t ≥ 0 : ξs(z) �= 0 for any t ≤ s ≤ t + 2Tκ}.
Then, Lemma 4.1 follows from the following.

LEMMA 4.5. Let λ > 0, φ > 1 and Tκ = κ2. Then Pξ (σ
z > Tκ) → 0 as

κ → ∞.

PROOF. The proof relies on a restart argument. The basic idea is that each time
the cluster at site z gets infected (between time 0 and time Tκ ), the infection dies
out quickly or lives at least 2Tκ units of time. In particular, the number of trials
before having a strong infection can be made arbitrarily large by choosing κ large
enough. Since a geometrical number of trials suffices, the first strong infection will
appear by time Tκ with probability close to 1. To make this argument precise, we
introduce, for any i ≥ 1, the stopping times

ρi = inf{t ≥ ρ̄i−1 : ξt (z) = 1} and ρ̄i = inf{t ≥ ρi : ξt (z) = 0}
with the convention ρ̄0 = 0. That is, ρi is the ith time the cluster at site z gets
infected, and ρ̄i is the ith time the cluster recovers. Let

N = inf{i ≥ 1 : ρ̄i − ρi > 2Tκ}
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so that ρN = σz, the first time a strong infection is born at site z. By decomposing
the event to be estimated according to the number of trials N , we get

Pξ (σ
z > Tκ) =

∞∑
n=1

Pξ (ρn > Tκ |N = n)Pξ (N = n)

≤
∞∑

n=1

Pξ (ρi+1 − ρi > Tκ/n and ρ̄i − ρi ≤ 2Tκ for some i ≤ n − 1)

× Pξ (N = n)

≤
∞∑

n=1

n−1∑
i=1

Pξ (ρi+1 − ρi > Tκ/n and ρ̄i − ρi ≤ 2Tκ)Pξ (N = n)

≤
∞∑

n=1

nPξ (ρ2 − ρ1 > Tκ/n and ρ̄1 − ρ1 ≤ 2Tκ)Pξ (N = n).

To prove that the previous series can be made arbitrarily small by taking κ large
enough, we first observe that, since Xt has a drift to the right, there is a constant
q = q(φ) > 0 such that

P 1
X(�κ) > q for any κ ≥ 1.

This, together with Lemma 4.2, implies that P 1
X(τ0 > 2Tκ) = qκ > q/2 for all κ

sufficiently large. In particular, for any ε > 0, there exists a large enough nε such
that

∞∑
n=nε

nPξ (N = n) =
∞∑

n=nε

nqκ(1 − qκ)n−1 ≤ ε/2.

To show that the first nε terms tend to 0 as κ → ∞, we first observe that

Pξ (ρ2 − ρ1 > Tκ/n and ρ̄1 − ρ1 ≤ 2Tκ)

≤ Pξ (ρ2 − ρ̄1 > Tκ/2n) + Pξ (Tκ/2n < ρ̄1 − ρ1 ≤ 2Tκ).

Since there is at least one infected individual at site 0, we get

Pξ (ρ2 − ρ̄1 > Tκ/2n) ≤ exp(−λTκ/2nε) for n ≤ nε.

In other respects, Lemma 4.4 implies that Pξ (Tκ/2n < ρ̄1 − ρ1 ≤ 2Tκ) tends to 0
as κ → ∞. In conclusion,

nε∑
n=1

nPξ (ρ2 − ρ1 > Tκ/n and ρ̄1 − ρ1 ≤ 2Tκ) ≤ ε/2

for κ sufficiently large, which completes the proof. �
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Lemma 4.5 implies that if there is an infected individual at site 0 at any time
t ∈ [0, Tκ ], then, with probability close to 1 when κ is large, the clusters at sites z,
z ∼ 0, have each at least one infected individual at any time t ∈ [Tκ,2Tκ ], which
proves Lemma 4.1. The existence of a nontrivial stationary distribution can then
be deduced from Lemma 4.1 as in Section 3. �

5. Proof of Theorem 6. In this section we now deal with the CRP, that is, the
recovery mechanism is now described by the transitions i → 0, i = 1,2, . . . , κ , at
rate 1. We prove that, contrary to the IRP, for any within infection rate φ ≥ 0, we
can find a critical value λc(φ) such that, provided λ ≤ λc(φ), there is no epidemic
whatever the cluster size. As explained in Section 1, the key idea of the proof
is that the state of each cluster returns to 0 sufficiently often so that, between two
consecutive recoveries, the number of infected individuals in a given cluster cannot
exceed some threshold κ0 with probability close to 1.

As previously, we rely on a rescaling argument to compare the particle system
with the oriented percolation process introduced in Section 1. For any (z, n) ∈
G = Z

d × Z+, let Sz,n be the vertical segment and let Cz,n be the space–time
cylinder given by (2) and (3), respectively. The good event, denoted by Hz,n, we
now consider has to be measurable with respect to the graphical representation
in Cz,n and assure us that, at time (n + 1)T , the cluster at site z is healthy.

To construct the good event Hz,0, we first require the clusters at sites x, x ∼ z,
to recover at least once between time 0 and time T/2 (which corresponds to at
least one occurrence of Poisson processes with rate 1 by time T/2), and the cluster
at site z to recover at least once between time T/2 and time T . The probability of
this event can be estimated

Pη(there is at least one ×1 on the segment {x} × [0, T /2] for any x ∼ z

and at least one ×1 on the segment {z} × [T/2, T ])
≥ 1 − (2d + 1) exp(−T/2),

where Pη denotes the law of the CRP. In particular, given ε > 0, there is a large
enough T , fixed from now on, so that the previous event has probability at least
1 − ε/3. The reason why we want the neighboring clusters of z to recover at least
once by time T/2 is to control the number of infected individuals around z until
time T ; the aim is to prevent infections at site z coming from the outside.

To estimate the number of infected individuals in the neighborhood of z un-
til time T , we introduce the continuous-time random walk Zt ∈ Z

∗+ that makes
transitions

i →
{

i + 1, at rate iφ,
1, at rate 1.

By monotonicity of the sequence {Zt ≤ n,∀ t ≤ T }, n ≥ 1, the Beppo–Lévi theo-
rem implies that

lim
n→∞P 1

Z(Zt ≤ n for all t ≤ T ) = P 1
Z(Zt < ∞ for all t ≤ T ) = 1,
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where P 1
Z denotes the law of the process Zt starting from Z0 = 1. In particular,

we can find a sufficiently large κ0 < ∞ depending on φ and T , fixed from now on,
such that

P 1
Z(Zt ≥ κ0 for some 0 ≤ t ≤ T ) ≤ ε/6d.

Moreover, since the neighboring clusters of z recover at least once by time T/2,
for any x ∼ z and any time t ∈ [T/2, T ], we get ηt (x) ≤ Zt in distribution so that

Pη

(
ηt (x) ≥ κ0 for some x ∼ z and some T/2 ≤ t ≤ T

) ≤ ε/3.

We now fix λc(φ) so that, with high probability, no epidemic may occur provided
λ ≤ λc(φ). When κ ≤ κ0, the result follows from Theorem 2 by taking λc(φ) =
λc/κ0. To deal with the nontrivial case κ > κ0, we complete the construction of
our good event Hz,0 by requiring no infection of site z coming from the outside,
that is, from a site x with x ∼ z, until time T . Since each of the neighboring clusters
of z has at most κ0 infected individuals, this occurs if no i-arrow with 1 ≤ i ≤ κ0
points at site z between time T/2 and time T , an event with probability

exp(−dλκ0T ),

which can be made greater than 1 − ε/3 by choosing λ > 0 sufficiently small.
Since there is no outside infection at site z and the cluster at z recovers at least once
between times T/2 and T , the event Hz,0 assures us that z is healthy at time T .
Finally, the probability of Hz,0 being greater than 1 − ε with ε > 0 arbitrarily
small, Theorem 6 follows from a comparison with the oriented percolation process
introduced in Section 2.
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