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ANALYSIS OF TOP TO BOTTOM-k SHUFFLES

BY SHARAD GOEL1

Cornell University

A deck of n cards is shuffled by repeatedly moving the top card to one
of the bottom kn positions uniformly at random. We give upper and lower
bounds on the total variation mixing time for this shuffle as kn ranges from a
constant to n. We also consider a symmetric variant of this shuffle in which at
each step either the top card is randomly inserted into the bottom kn positions
or a random card from the bottom kn positions is moved to the top. For this
reversible shuffle we derive bounds on the L2 mixing time. Finally, we trans-
fer mixing time estimates for the above shuffles to the lazy top to bottom-k
walks that move with probability 1/2 at each step.

1. Introduction. A deck of n cards can be shuffled by repeatedly removing
the top card and inserting it uniformly at random back into the deck. A coupling
argument shows that the total variation mixing time for this Markov chain is n logn

(see, e.g., [1, 2, 12]). In fact, a detailed analysis yields a closed form expression
for the distribution of this chain after any number of steps (see [3]).

Here we analyze a class of walks that generalizes the top to random chain,
namely, top to bottom-k shuffles. These shuffles are generated by moving the top
card uniformly at random to any of the bottom kn positions of the deck. For kn = n,
we recover the top to random walk. For kn = 2, this is the Rudvalis shuffle, and
upper and lower bounds of order n3 logn have been shown by Hildebrand [9] and
Wilson [15], respectively.

More formally, let Sn be the permutation group, and let σ ∈ Sn denote an el-
ement of this group, interpreting σ(i) = j to mean that position i holds the card
with label j . Fix n ≥ kn > 1, and denote a cycle permutation by

σl = (1,2, . . . , l),

where σl(i) = i + 1 for 1 ≤ i ≤ l − 1, σl(l) = 1, and σl(i) = i otherwise. Define
the probability measure qn,kn on Sn by

qn,kn(σ ) =



1

kn

, if σ = σl for some n − kn + 1 ≤ l ≤ n,

0, otherwise,
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and let π be the uniform distribution on Sn. Then the top to bottom-k shuffle driven
by qn,kn is nonreversible, aperiodic and irreducible with stationary distribution π .

Let q∗
n,kn

denote the bottom-k to top shuffle. It is well known that studying this
reversed shuffle is equivalent to studying qn,kn (see Section 2). Then for the top to
bottom-k walk qn,kn , and the reversible variant q̃n,kn = 1

2(qn,kn + q∗
n,kn

), we derive

bounds on the total variation and L2 mixing times T and T2. Finally, we show that
results for the nonreversible and reversible chains yield as corollaries bound on the
lazy top to bottom-k shuffle

q̂n,kn = 1
2

(
qn,kn + δe

)
,

where we put weight on the identity.
In particular, our main results are summarized below. In these statements, A(c),

B(c), and so on, denote positive, finite constants that may depend on the fixed
parameter c but not on n.

THEOREM 1.1. For the top to bottom-k shuffle qn,kn :

(1) if kn ≥ n − √
(n logn)/2, then

T
(
Sn, qn,kn

) ∼ n logn;
(2) if kn ≥ cn with c ∈ (0,1), then

A(c)n logn ≤ T
(
Sn, qn,kn

) ≤ B(c)n2 log2 n;
(3) if kn ≤ C, then

A(C)n3 ≤ T
(
Sn, qn,kn

) ≤ B(C)n3 logn;
(4) if kn = 2,3, then

An3 logn ≤ T
(
Sn, qn,kn

) ≤ Bn3 logn.

For Theorem 1.1(1), the notation ∼ indicates that the walk presents a total vari-
ation cut-off at time n logn. See Lemma 3.2 for a precise statement of the result.
After this paper was submitted, the author learned of the work of Jonasson [10],
who shows that nonreversible top to bottom-k shuffles have total variation mixing
time T (Sn, qn,kn) ≈ n3 logn/k2

n uniformly for all choices of kn.

THEOREM 1.2. Let q̃n,kn = 1
2(qn,kn + q∗

n,kn
) be the additive symmetrization of

the top to bottom-k shuffle. Then:

(1) if kn ≥ n − C, then

T
(
Sn, q̃n,kn

) ≤ T2
(
Sn, q̃n,kn

) ≤ B(C)n logn;
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(2) if kn ≤ cn with c ∈ (0,1), then

T2
(
Sn, q̃n,kn

) ≥ T
(
Sn, q̃n,kn

) ≥ A(c)n2;
and

T2
(
Sn, q̃n,kn

) ≥ A(c)n3

k2
n

logn;

(3) for any kn,

T
(
Sn, q̃n,kn

) ≤ T2
(
Sn, q̃n,kn

) ≤ Bn3 logn.

In particular, (2) and (3) show that if kn ≤ C, then

A(C)n3 logn ≤ T2
(
Sn, q̃n,kn

) ≤ Bn3 logn.

The two lower bounds in Theorem 1.2(2) are complimentary in the sense that the
first gives better estimates for kn ≈ cn, while the second works best for kn � cn.

THEOREM 1.3. For the lazy top to bottom-k shuffle q̂n,kn :

(1) if kn ≥ n − C, then

An logn ≤ T2
(
Sn, q̂n,kn

) ≤ B(C)n logn;
(2) if kn ≥ n − √

(n logn)/2, then

T
(
Sn, q̂n,kn

) ∼ 2n logn;
(3) if kn ≥ cn with c ∈ (0,1), then

A(c)n logn ≤ T
(
Sn, q̂n,kn

) ≤ B(c)n2 log2 n;
(4) if kn = 2,3, then

An3 logn ≤ T
(
Sn, q̂n,kn

) ≤ Bn3 logn;
(5) for any kn,

T2
(
Sn, q̂n,kn

) ≤ Bn3 logn.

For Theorem 1.3(2), the notation ∼ indicates that the walk presents a total vari-
ation cut-off at time 2n logn. See Remark 5.1 for a precise statement of the result.
Also observe that the estimates of Theorem 1.3(1)(2) bound the L2 mixing time
T2 and the total variation mixing time T , respectively.

As kn varies from a constant to n, these results are most satisfactory at the
extremes of the range. For large kn the walks behave like the top to random chain,
mixing in n logn steps. Theorem 1.1(1) proves mixing in the strongest possible
sense: cut-off at precisely n logn. Let us note here that the precise L2 cut-off time
is not yet known even for the top to random shuffle qn,n.
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For small kn, the walks behave like the Rudvalis shuffle, mixing in n3 logn

steps. Theorem 1.2 proves this for the reversible chain, whereas Theorems
1.1 and 1.3 give complete results only for kn = 2,3.

The worst gap in these results occurs when kn ≈ n/2. For these “top to bottom
half” shuffles, [10] shows a �(n logn) mixing time for the nonreversible shuffle,
and our results give an �(n2) lower bound for the reversible shuffle. In particular,
the nonreversible and reversible top to bottom half shuffles mix at different rates.
In this range, one difficulty in analyzing the reversible walk is that comparison
with random transposition, one of the best understood models of random walk,
can at best yield O(n3 logn) upper bounds (see Lemma 4.5).

A variety of methods are used to prove the results of this paper. The upper
bounds for the nonreversible top to bottom-k shuffle are found by coupling ar-
guments. The lower bound in Theorem 1.1(4) uses Wilson’s lemma (see, e.g.,
[13, 15]). For the reversible chain, we use comparison techniques for walks on
finite groups to prove both upper and lower bounds (see, e.g., [4]). Notably, com-
parison previously has been applied only to find upper bounds. It appears that this
is the first application of comparison techniques to prove lower bounds.

In Section 2 we introduce our notation and review basic Markov chain the-
ory. Sections 3 and 4 give proofs of Theorems 1.1 and 1.2, respectively. Finally,
Section 5 applies results from the previous sections to find bounds on the lazy
walk q̂n,kn .

2. Notation and basics. Let G be a finite group with probability measure q ,
and let {ηi} be G-valued independent random variables with distribution q . The
left-invariant walk on G driven by q is defined by X0 = e and

Xk+1 = Xk · ηk.

For the top to bottom-k measure qn,kn , this definition corresponds to the informal
card shuffling description given in the Introduction. See, for example, [12] for
more details. Define convolution powers of q by

qm(g) = qm−1 � q(g) = ∑
h∈G

qm−1(h)q(h−1g).

Equivalently, qm(g) can be thought of as the sum of weighted paths:

qm(g) = ∑ m∏
i=1

q(hi),

where, for each fixed g, the sum is taken over m-tuples (h1, . . . , hm) such that
h1 · · ·hm = g.

If supp(q) = {g :q(g) > 0} is not contained in a proper subgroup of G or in a
coset of a proper normal subgroup, then

qm(g) → 1

|G| as m → ∞.
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Our results give bounds on the rate of convergence for qn,kn and its variants. Intu-
itively, these results are estimates on the number of top to bottom-k shuffles needed
to mix a deck of cards. To make this statement more precise, we first need a way to
measure distance between the distribution of the chain at time m and the stationary
distribution. For probability measures q and π on a finite group G, define the total
variation distance as

‖q − π‖TV = sup
A⊂G

|q(A) − π(A)| = 1
2

∑
g∈G

|q(g) − π(g)|.

Alternatively, some of our results will be in terms of the Lp(π) distance

dπ,p(q) =
∥∥∥∥ q

π
− 1

∥∥∥∥
Lp(π)

=
(∑

g∈G

∣∣∣∣ q(g)

π(g)
− 1

∣∣∣∣
p

π(g)

)1/p

.

Observe that ‖q − π‖TV = 1
2dπ,1(q). Our results are for the cases p = 1,2.

We define the deck to be shuffled when the distance between the distribution of
the deck and the stationary distribution is small. Namely, the total variation mixing
time is given by

T (G,q) = inf
{
m|‖qm − π‖TV ≤ 1

2e

}

and the Lp mixing time by

Tp(G,q) = inf
{
m

∣∣∣∥∥∥∥qm

π
− 1

∥∥∥∥
Lp

≤ 1

e

}
.

With these definitions, by Jensen’s inequality,

T (G,q) = T1(G,q) ≤ T2(G,q).

Moreover, the functions k 
→ dπ,p(qk) are nonincreasing and sub-additive. In par-
ticular, for k ≥ Tp(G,q),

dπ,p(qk) ≤ e−�k/Tp(G,q)�.

This inequality motivates our somewhat arbitrary choice of 1/e in the definition of
mixing time. For details, see, for example, [6, 12].

The Markov operator Q associated to a probability measure q on G is given by
Qf = f � q∗, where q∗(g) = q(g−1). The reversed random walk is driven by q∗
and has as its associated operator the adjoint of Q. That is, q∗ has associated
Markov operator Q∗f = f � q .

Note that since we are on a group, the stationary measure π is uniform, and
furthermore,

∑
g∈G

∣∣∣∣ q(g)

π(g)
− 1

∣∣∣∣
p

π(g) = ∑
g∈G

∣∣∣∣q(g−1)

π(g)
− 1

∣∣∣∣
p

π(g).
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Consequently, dπ,p(q) = dπ,p(q∗), and with respect to analyzing mixing time, we
can study either the walk or its reversal.

For a sequence of numbers an, bn, we use the notation an � bn to indicate that
there is a universal constant C > 0 (independent of n) such that an ≤ Cbn. For the
two-sided bound, we use an ≈ bn to indicate that there are constants c,C > 0 such
that can ≤ bn ≤ Can. For mixing times T (n), the notation T (n) ∼ an indicates
cut-off at time an. For a precise definition of cut-off, see, for example, [11].

3. Proof of Theorem 1.1. In this section we present upper and lower bounds
for the mixing time of the nonreversible walk qn,kn , using primarily probabilistic
techniques. For kn = 3, we use the method of [15] to derive a lower bound.

To prove mixing time bounds for the top to bottom-k shuffle, we make extensive
use of the following well-known coupling result (see, e.g., [1, 2, 12]).

THEOREM 3.1. Let q be a probability measure on a finite group G. Let
(X1

n,X
2
n) be a coupling for the random walk driven by q with (X1

n) starting at the
identity and (X2

n) starting from the stationary distribution π [i.e., dist(X2
0) = π ].

Then

‖qm − π‖TV ≤ P(T > m),

where

T = inf{m|∀ k ≥ m, X1
k = X2

k}.
Furthermore, there exists a coupling such that the inequality above is an equality.

We will also make use of the following coupon-collectors lemma (see, e.g., [1]).

LEMMA 3.1 (Coupon-collectors lemma). Let Rm be the number of distinct
cards obtained in m uniform random draws with replacement from a deck of n

cards. That is, Rm = |{C1, . . . ,Cm}| with Ci i.i.d. uniform on {1, . . . , n}. Let Lj =
min{m|Rm = n − j}, that is, the number of draws before all but j cards have been
chosen. Then for fixed j ,

Lj

n logn
→ 1 in probability.

In the case of qn,n, that is, the top to random shuffle, the correct mixing time
n logn can be found using a coupling of the time reversed process q∗

n,n. For this
random to top shuffle, the coupling is as follows: choose a label uniformly at ran-
dom from {1, . . . , n} and in each deck move the card with this label to the top.
Clearly, this is a coupling, and the coupling time is given by the coupon-collectors
lemma (for details, see, e.g., [1]). The proof of Lemma 3.2 is by a similar coupling.
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LEMMA 3.2. For kn ≥ n −
√

1
2n logn, the walk (Sn, qn,kn) presents a total

variation cut-off at tn = n logn. That is, for ε ∈ (0,1),

lim
n→∞

∥∥q(1+ε)n logn
n,kn

− π
∥∥

TV = 0

and

lim
n→∞

∥∥q(1−ε)n logn
n,kn

− π
∥∥

TV = 1.

PROOF. Since dTV(p(n), u) = dTV(p∗(n), u), we can consider the reversed
random walk q∗

n,kn
. For this reversed walk, we define a coupling (Xm

1 ,Xm
2 ), where

X1 starts from the identity and X2 is drawn from the stationary distribution. Let

Am
j = {Xm

j (i)|n − kn < i ≤ n}, j = 1,2.

That is, Am
j is the set of cards that at time m are in the bottom kn positions of

deck j . At time m, in the first deck pick a card σa uniformly at random from Am
1

and move it to the top of the deck. If σa ∈ Am
2 , then move card σa in the second

deck to the top. If not, then in the second deck uniformly at random pick a card
from Am

2 \ Am
1 and move it to the top.

Clearly, deck one is driven by q∗
n,kn

. For the second deck, note that any card in
Am

1 ∩ Am
2 is chosen if and only if it is chosen in the first deck, and hence, with

probability 1/kn. And cards in Am
2 \ Am

1 are chosen with probability

kn − |Am
1 ∩ Am

2 |
kn

· 1

kn − |Am
1 ∩ Am

2 | = 1

kn

.

So this is, in fact, a coupling. Define

τ0 = inf{m|Xm
1 (i) = Xm

2 (i) for 1 ≤ i ≤ n − kn}.
That is, τ0 is the first time the top n − kn cards are matched in both decks. Then
for m > τ0, Am

1 = Am
2 , that is, the set of cards in the bottom kn positions are the

same in each deck. Consequently, after time τ0, new matches are not broken and
every time an unmatched card is chosen, a new match is made.

First we estimate τ0. Let L be the probability that, starting with all cards un-
matched, n − kn consecutive matches are made. Then,

L ≥
(

1 − n − kn

kn

)n−kn

≥
(

1 − 1√
n/

√
(1/2) logn − 1

)√
(1/2)n logn

≈ 1√
n
.
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Furthermore, by the Markov property, for fixed ε > 0,

P(τ0 ≥ εn logn) ≤ P

(
τ0 ≥ ε

√
n logn ·

√
1

2
n logn

)

≤
[

1 −
(

1 − 1√
n/

√
(1/2) logn − 1

)√
(1/2)n logn

]ε
√

n logn

n→∞−→ 0.

Let τ1 be the time it takes after τ0 for each card in A
τ0
1 = A

τ0
2 to be selected. That

is,

τ1 = inf{m|m > 0, each card in A
τ0
1 has been selected by time m + τ0}.

By the coupon-collectors lemma, for fixed ε > 0,

lim
n→∞P

(
τ1 ≥ (1 + ε)kn logkn

) = 0.

Finally, if T is the coupling time, then since

P
(
T > (1 + ε)n logn

) ≤ P

(
τ0 ≥ ε

2
n logn

)
+ P

(
τ1 ≥

(
1 + ε

2

)
n logn

)
n→∞−→ 0

by Theorem 3.1,

lim
n→∞

∥∥q(1+ε)n logn
n,kn

− π
∥∥

TV = 0.

The lower bound argument is analogous to that of the top to random shuffle (see,
e.g., [1]). Let Bj be the set of permutations σ for which the bottom j cards have
increasing labels. That is,

σ(n − j + 1) < σ(n − j + 2) < · · · < σ(n).

Then π(Bj ) = 1
j ! . Starting from the identity, let Lj be the number of shuffles until

all but j of the cards with labels in {n − kn + 1, . . . , n} have been chosen. Then,
if Lj > m, the bottom j cards after m bottom kn to top shuffles are in increasing
order. So for fixed ε > 0, there is an ε′ > 0 such that

lim
n→∞

∥∥q(1−ε)n logn
n,kn

− π
∥∥

TV ≥ lim
n→∞P

(
Lj > (1 − ε)n logn

) − 1

j !
≥ lim

n→∞P
(
Lj > (1 − ε′)kn log kn

) − 1

j !
since

lim
n→∞

kn log kn

n logn
= 1.
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Using the coupon-collectors lemma, the result follows. �

Lemmas 3.3 and 3.4 below bound the mixing time of qn,kn in the cases where
kn is relatively large and when kn is small. Both lemmas rely on the following
coupling.

We construct a coupling (Xm
1 ,Xm

2 ) where X1 starts from the identity and X2
is drawn from the uniform distribution. Recall that the notation Xm

s (i) = j can be
interpreted to mean that at time m position i in deck s holds the card with label j .
Let

Am
s = {Xm

s (i)|n − kn + 2 ≤ i ≤ n}, s = 1,2.

Note that Am
s is not the set of cards in the bottom kn positions (to which the top

card can be sent), but rather only the cards in the bottom kn − 1 positions.
We define a coupling as follows: first pick one of the two decks with equal prob-

ability. Say we picked deck one. Then X1 proceeds as usual by uniformly at ran-
dom moving the top card to one of the bottom kn positions; X2 mimics the moves
of X1 except in a couple of cases. If Xm

1 (1) ∈ Am
2 (i.e., the top card in the first deck

is in Am
2 ), and the first deck moves the top card to position (Xm

2 )−1(Xm
1 (1)), then

the second deck moves the top card to (Xm
2 )−1(Xm

1 (1)) − 1. And, if Xm
1 (1) ∈ Am

2
and the first deck moves the top card to (Xm

2 )−1(Xm
1 (1))− 1, then the second deck

moves the top card to (Xm
2 )−1(Xm

1 (1)). We have an analogous description if we
originally picked deck two. Accordingly, if card i is on the top of one deck and
in the bottom kn − 1 positions of the other deck, then, with probability 1/kn, it
will couple on the next move. Furthermore, matches between the decks are never
broken.

LEMMA 3.3. For c ∈ (0,1) and kn ≥ cn, there exist constants A(c) such that
the total variation mixing time for the walk driven by qn,kn satisfies

T
(
Sn, qn,kn

) ≤ An2 log2 n.

PROOF. We use the coupling described above. Let τj be the first time that the
cards with label j couple in the two decks. That is,

τj = inf{m|(Xm
1 )−1(j) = (Xm

2 )−1(j)}.
We estimate τj by first showing that, starting from any permutation of the decks,

any card j has probability at least C
n

to couple within 3n logn steps. Let τ
j
σ be the

first time card j reaches the top of deck one, starting from state σ . And let τσ be
the first time the bottom card reaches position n− kn. Then for n sufficiently large,

P(τ j
σ > 2n logn) ≤ P

(
τσ > 2n logn − (n − kn)

)
≤ kn exp

(
−2n logn − (n − kn)

kn

)

≤ 1

2
.
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The second inequality follows from the fact that τσ is the sum of independent geo-
metric waiting times with means kn, kn/2, . . . , kn/kn, and, consequently, is equiv-
alent to the coupon collectors problem. In particular, the above shows that, starting
from any state, there is positive probability independent of n and kn that card j

reaches the top of the first deck in 2n logn steps.
When card j gets to the top of the first deck, we are in one of three situations:

card j is already coupled, card j in the second deck is in the bottom kn − 1 posi-
tions, or card j in the second deck is in the top n − kn + 1 positions. In the first
two situations, card j will be coupled at the next step with probability at least 1/kn

(if j is already coupled, it will remain coupled at the next step). So we only need
to consider the third situation. Assume card j moves to one of the bottom �Bkn�
positions for some B ∈ (0,1) (which happens with probability at least B). Let τB

be the first time j leaves the bottom kn − 1 positions. Then τB is the sum of inde-
pendent geometric waiting times, and depends on the exact position in the bottom
�Bkn� to which card j moves. However, by construction, we have the lower bound

EτB ≥
kn−1∑

r=�Bkn�

kn

r

≥ kn log
1

B + 1/kn

.

And,

Var(τB) ≤
kn−1∑
r=1

kn(kn − r)

r2

≤ 2k2
n.

By Chebyshev’s inequality,

P

(
τB >

EτB

2

)
≥ 1 − 4 Var(τB)

(EτB)2

≥ 1 − 8

log2 1/(B + 1/kn)
.

Consequently, if we choose B and K such that

log
1

B + 1/K
≥ max

(
2(1 − c)

c
,3

)
,

where c is from the statement of the lemma, then there exists δ > 0 (independent
of n) such that, for kn ≥ K ,

P(τB > n − kn) ≥ P(τB > EτB/2) ≥ δ.

For instance, we can choose δ = 1/9. But if τB > n − kn, then j will still be in
the bottom kn − 1 positions of deck one when j reaches the top of deck two.
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Consequently, for each of the original three cases, after reaching the top of deck
one, card j couples within the next n − kn steps with probability at least δ/n.
Combining this with the bound on τ

j
σ , for the coupling time τj of card j , we have

P(τj ≤ 3n logn) ≥ δ

2n
.

Moreover, by the Markov property,

P(τj > An2 log2 n) ≤
(

1 − δ

2n

)An logn/3

≤ exp
(
−δA logn

6

)
.

Finally, if T is the coupling time for the two decks, then

P(T > An2 log2 n) ≤ n exp
(
−δA logn

6

)

and the result follows by taking A sufficiently large. �

REMARK 3.1. Using the lower bound argument of Lemma 3.2, we can show
that, for c ∈ (0,1), kn ≥ cn, there exist constants B(c) such that the mixing time
satisfies

T
(
Sn, qn,kn

) ≥ B(c)n logn.

The following lemma gives an upper bound on the mixing time for the walk
driven by qn,kn with kn ≤ C. The coupling used to prove the result is the same as
in Lemma 3.3, however, we analyze the coupling time by a different technique.

LEMMA 3.4. For kn ≤ C, there exist constants A(C) such that the total vari-
ation mixing time for the walk driven by qn,kn satisfies

T
(
Sn, qn,kn

) ≤ An3 logn.

PROOF. Using the coupling described above, we show that, starting from any
permutation of the decks, any card i has probability at least δ > 0 (independent
of n) to couple within n3 steps. Fix card i and let τ be the first time that card i is
on the top of one deck and in the bottom kn − 1 positions of the other. Then at the
next step, the cards have probability 1/kn to couple. Let

τ 1
j = inf{t |Xt

j (1) = i},
τm
j = inf{t > τm−1

j |Xt
j (1) = i}.
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That is, τm
j is the time when card i is on top of deck j for the mth time. Without

loss of generality, assume that τ 1
1 ≤ τ 1

2 . If τm
j ≤ τ , then

τm
1 ≤ τm

2 ≤ τm
1 + n − kn.

And if τm+1
j ≤ τ , then

τm+1
j ≤ τm

j + 2(n − kn).

Define the random variables dm
i = [(Xm

1 )−1(i)−(Xm
2 )−1(i)] mod n, which give

the oriented distance between the positions of the ith card in each deck. Note that
dm
i only changes when i is in the bottom kn − 1 positions in at least one deck. Let

τ ∗ = inf{t > τ 1
1 |Xt

1(i) = n − kn + 1}. Then define Y l
h as i.i.d. random variables

with distribution given by

P(Y l
h = t)

def= P(τ ∗ − τ 1
1 = t).

That is, Y l
h gives the amount of time it takes a card to get from the top of the deck

to the n − kn + 1 position. Furthermore, before τ , the distribution of the change in

distance is given by d
τm+1

1
i − d

τm
1

i

dist= Ym
1 − Ym

2 . Consequently,

P(τm+1
1 ≤ τ) ≤ P

(∣∣∣∣∣
m∑

l=1

Y l
1 − Y l

2

∣∣∣∣∣ ≤ n

)
.

Let σ 2 = Var(Y l
1 − Y l

2), and note that σ < ∞ since Y l
h can be realized as a fi-

nite sum of geometric waiting times. Then by the central limit theorem, by tak-

ing m = n2, we have that P(τn2+1
1 ≤ τ) ≤ 1 − ε independent of n. That is,

P(τ < τn2+1
1 ) > ε. Furthermore, since τ 1

1 ≤ n with positive probability indepen-
dent of n, P(τ < 3n3) > ε. Consequently, there is a δ > 0 such that if τi is the
coupling time for card i, then P(τi < 3n3) > δ. Finally, if T is the coupling time
for the two decks, then

P(T > An3 logn) ≤ nP (τi > An3 logn)

≤ n(1 − δ)A logn/3

A→∞−→ 0.

By taking A sufficiently large, the result follows from Theorem 3.1. �

REMARK 3.2. For kn ≤ C, the walk performed by one card under the measure
qn,kn is an example of a class of walks known as necklace chains. By results in [14],
this immediately yields the lower bound

B(C)n3 ≤ T
(
Sn, qn,kn

)
.



42 S. GOEL

In [9], the Rudvalis shuffle qn,2 is shown to have an upper bound of order
O(n3 logn). In [15], a matching lower bound for this shuffle is given by using The-
orem 3.2. Here we show that the method of [15] can also used to lower bound qn,3.

Given a chain Xt , we say that the chain (X̃t , Yt ) is a lifting of the original chain
if the marginal distribution of X̃t is the same as the distribution of Xt .

THEOREM 3.2. Suppose that a Markov chains Xt has a lifting (Xt , Yt ), and
that 
 is an eigenfunction of the lifted Markov chain: E[
(Xt+1, Yt+1)|(Xt ,

Yt )] = λ
(Xt, Yt ). Suppose that |
(x, y)| is a function of x alone, |λ| < 1,
�(λ) ≥ 1/2, and that we have an upper bound R on E[|
(Xt+1, Yt+1) −

(Xt,Yt )|2|(Xt , Yt )]. Let γ = 1−�(λ). Then when the number of steps t is bound
by

t ≤ log
max + (1/2) logγ ε/(4R)

− log(1 − γ )
,

the variation distance satisfies ‖Xt − π‖TV ≥ 1 − ε.

For a discussion of Theorem 3.2, see [13, 15, 16].

LEMMA 3.5. For ε > 0, there exist constants C(ε),N > 0 such that, for
n ≥ N ,

‖qm
n,3 − π‖TV ≥ 1 − ε

for m ≤ Cn3 logn.

PROOF. Let X−1
t (j ) = j ′ denote that the card with label j is at position j ′

at time t . First we lift the chain to (X−1
t , Yt ) = (X−1

t , t mod n). Let Zt(j) =
(X−1

t (j ) − X−1
0 (j) + Yt (j)) mod n and let η(t) ∈ {σn−2, σn−1, σn} denote the cy-

cle that is chosen at time t . Then,

(
X−1

t+1(j),Zt+1(j)
) =




(
X−1

t (j ),Zt(j) + 1
)
, ηt = σn−1,X

−1
t (j ) = n or

ηt = σn−2,X
−1
t (j ) ≥ n − 1,(

X−1
t (j ) − 1,Zt (j)

)
, ηt = σn or

ηt = σn−1,X
−1
t (j ) ≤ n − 1 or

ηt = σn−2,X
−1
t (j ) ≤ n − 2,(

n − 1,Zt (j) − 1
)
, ηt = σn−1,X

−1
t (j ) = 1,(

n − 2,Zt (j) − 2
)
, ηt = σn−2,X

−1
t (j ) = 1.

Define v(x) to be the xth number in the list

λn−3, . . . , λ,1, χ1, χ0
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and define the functions


j(X
−1
t , Yt ) = v(X−1

t (j )) exp
(
Zt(j)2πi/n

)
,


(X−1
t , Yt ) =

n∑
j=1


j(X
−1
t , Yt ).

Now we will find values for λ,χ1, χ0 that make 
j (and, hence, 
) an eigenfunc-
tion. Also note that |
(X−1

t , y1)| = |
(X−1
t , y2)| for all y1, y2. If 2 ≥ X−1

t (j ) ≥
n − 2, then


j(X
−1
t+1, Yt+1) = λ
i(X

−1
t , Yt ).

Let w = e2πi/n. By looking at what happens when X−1
t (j ) = 1, X−1

t (j ) = n, and
X−1

t (j ) = n − 1, we find that 
j is an eigenfunction with eigenvalue λ when the
equations

χ0 + χ1w
−1 + w−2 = 3λn−2,

χ1

χ0
+ 2w = 3λ,

2

χ1
+ w = 3λ

are satisfied. In particular,

χ0 = 2

(3λ − w)(3λ − 2w)
,

χ1 = 2

3λ − w

and λ is a root of the polynomial

f (λ) = 9λn − 9wλn−1 + 2wλn−2 − 3w−2λ2 + w−1λ.

We will use Newton’s method to approximate a root of f (λ) starting with z0 = 1
and zk+1 = zk − f (zk)/f

′(zk). By Taylor’s theorem,

|f (zk+1)| ≤ 1

2
max

0≤p≤1

∣∣f ′′(pzk + (1 − p)zk+1
)∣∣ · ∣∣∣∣ f (zk)

f ′(zk)

∣∣∣∣
2

.

Furthermore, since

f ′(λ) = 9nλn−1 − 9(n − 1)wλn−2 + 2w(n − 2)λn−3 − 6w−2λ + w−1,

f ′′(λ) = 9n(n − 1)λn−2 − 9(n − 1)(n − 2)wλn−3

+ 2w(n − 2)(n − 3)λn−4 − 6w−2
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if z = 1 + O(1/n2), then f ′(z) = 2n + O(1) and f ′′(z) = 2n + O(n). So if zk =
1 + O(1/n2) and zk+1 = 1 + O(1/n2), then

|f (zk+1)| ≤ 1 + O(1/n)

4
|f (zk)|2.

Furthermore,

f (z0) = 9 − 7w + w−1 − 3w−2

= 36π2

n2 − i
4π

n
+ O(1/n4).

Consequently, by induction,

|f (zk)| ≤ 4
(

π

n

)2k

+ O

(
1

n2k+1

)

|zk+1 − zk| = 2

n

(
π

n

)2k

+ O

(
1

n2k+2

)
.

So for n sufficiently large, the sequence {zk} converges to a point z∞ and by con-
tinuity, f (z∞) = 0. Furthermore, since

f ′(z0) = 9n − 9(n − 1)w + 2w(n − 2) − 6w−2 + w−1

= 2n − i14π + O(1/n),

Re(z1) = 1 − Re
(

f (z0)

f ′(z0)

)

= 1 − Re(f (z0))Re(f ′(z0)) + Im(f (z0)) Im(f ′(z0))

|f ′(z0)|2

= 1 −
(

18π2 + 14π

n3

)
+ O(1/n4).

Finally, since

|z1 − z∞| ≤ 2π2

n3 + O(1/n4),

there exist c2 > c1 > 0 such that

1 − c1

n3 + O(1/n4) ≥ Re(z∞) ≥ 1 − c2

n3 + O(1/n4).

With λ = z∞, χ0 = 1 + O(1/n), and χ1 = 1 + O(1/n). Consequently,


max = n + O(1/n).
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Now we estimate R. Since |λ − 1| = O(1/n2),


i(X
−1
t+1, Yt+1) − 
i(X

−1
t , Yt )

wZt (i)

=




(λ − 1)λX−1
t (i) = O(1/n2), 2 ≤ X−1

t (i) ≤ n − 2,
χ0 − λn−3 = O(1/n), Xt(i) = 1, ηt = σn,
χ1w

−1 − λn−3 = O(1/n), Xt(i) = 1, ηt = σn−1,
w−2 − λn−3 = O(1/n), Xt(i) = 1, ηt = σn−2,
χ1 − χ0 = O(1/n), Xt(i) = n,ηt = σn,
wχ0 − χ0 = O(1/n), Xt(i) = n,ηt = σn−1,
wχ0 − χ0 = O(1/n), Xt(i) = n,ηt = σn−2,
1 − χ1 = O(1/n), Xt(i) = n − 1, ηt = σn,
1 − χ1 = O(1/n), Xt(i) = n − 1, ηt = σn−1,
wχ1 − χ1 = O(1/n), Xt(i) = n − 1, ηt = σn−2.

Consequently,

|
(X−1
t+1, Yt+1) − 
(X−1

t , Yt )| = O(1/n)

and we can take R = O(1/n2). The result follows by Theorem 3.2. �

4. Proof of Theorem 1.2. In this section we focus on the reversible walk
1
2(qn,kn + q∗

n,kn
). For reversible chains, path comparison is a useful technique for

studying rates of convergence (see, e.g., [4–6, 8]). In particular, many of the ar-
guments in this section rely on the notion of a flow to compare top to bottom-k
shuffles with the well-studied random transposition walk. Together with estimates
on the least eigenvalue, this approach yields L2 mixing time bounds.

To begin, consider a symmetric probability measure q on a finite group G and
fix a symmetric set S that generates G and such that q(s) > 0 for s ∈ S. Define
paths in the Cayley graph (G,S) to be sequences δ = (e, y1, y2, . . . , yk), where e

is the group identity and y−1
i yi+1 ∈ S. Given such a path, define its length to be

|δ| = k, and for each s ∈ S, let

N(s, δ) = ∣∣{i ∈ {0, . . . , k − 1}|y−1
i yi+1 = s

}∣∣.
That is, N(s, δ) is the number of times the generator s is used in the path δ. Fur-
thermore, let dS(x, y) denote the graph distance on (G,S) between x and y.

DEFINITION 4.1. Fix two symmetric probability measures q̃, q on a finite
group G and a symmetric set generating S ⊂ supp(q). A (q̃, q)-flow is a nonneg-
ative function η on the set of all paths P in the Cayley graph (G,S) such that∑

δ∈Py

η(δ) = q̃(y),

where Py is the set of all paths from the group identity e to y contained in P .
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4.1. The least eigenvalue. This section presents a lower bound on the smallest
eigenvalue of the chain 1

2(qn,kn +q∗
n,kn

). The proof relies on a geometric result that
bounds the eigenvalues of symmetric chains by considering loops at the identity
of odd length. (See [6] for details.) Together with comparison, Lemma 4.1 will be
used to derive estimates on mixing time in Section 4.2.

The following definition of an odd flow is analogous to that of a flow, but re-
stricted to paths of odd length.

DEFINITION 4.2. Fix two symmetric probability measures q̃, q on a finite
group G and a symmetric set S ⊂ supp(q). A (q̃, q)-odd flow is a nonnegative
function η on the set of paths of odd length O in the Cayley graph (G,S) such that∑

δ∈Oy

η(δ) = q̃(y),

where Oy is the set of all paths of odd length from the group identity e to y con-
tained in O.

Note that we are not assuming that S generates G, that is, the Cayley graph
(G,S) need not be connected. However, the existence of a (q̃, q)-odd flow implies
that, for each y with q̃(y) > 0, there is at least one path from e to y in O.

THEOREM 4.1 ([6]). Fix two symmetric probability measures q̃, q on a
group G and a symmetric set S ⊂ supp(q). For any (q̃, q)-odd flow η,

βmin ≥ −1 + 1 + β̃min

A(η)
,

where βmin and β̃min are the smallest eigenvalues of q and q̃ respectively, and

A(η) = max
s∈S

1

q(s)

∑
δ∈O

|δ|N(s, δ)η(δ).

It is well known that a chain q is aperiodic if and only if the least eigenvalue
satisfies βmin = −1. As a trivial application of Theorem 4.1, by taking S = {e} and
q̃(e) = 1, we have βmin ≥ −1+2q(e). When our chain puts no weight on the iden-
tity, the above result provides a way to capture more subtle effects of aperiodicity
on the least eigenvalue.

LEMMA 4.1. Let βmin be the smallest eigenvalue of the symmetric chain
q̃n,kn = 1

2(qn,kn + q∗
n,kn

). Then

βmin ≥ −1 + kn − 1

kn(n − kn + 2)(n + 1)
.
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PROOF. We will apply Theorem 4.1 with q̃(e) = 1 and q̃(g) = 0 otherwise. In
this case, β̃min = 1. Let S = supp(q̃n,kn). For l odd and such that n−kn+1 ≤ l ≤ n,
define paths

δ±1
l = (e, σl, σ

2
l , . . . , σ l

l )
±1

and set O = {δ±1
l |l odd, n − kn + 1 ≤ l ≤ n}. Let

η(δ±1
l ) ≡ 1

2
∑

n−kn+1≤m≤n

m odd
1/m2 · 1

|δ±1
l |2

≤
∫ n+1

n−kn+2

1

x2 · 1

l2

= (n − kn + 2)(n + 1)

kn − 1
· 1

l2

and η(δ) = 0 otherwise. Then,

A(η) ≤ 2kn(n − kn + 2)(n + 1)

kn − 1
max
s∈S

∑
δ∈O

N(s, δ)

|δ|

= 2kn(n − kn + 2)(n + 1)

kn − 1
.

The result follows from Theorem 4.1. �

Theorem 4.1 gives the best results when we can use short paths. In the case
of 1

2(qn,kn + q∗
n,kn

), for paths δ with |δ| ≤ �n−kn

2 �, the card originally in position

�n−kn

2 � + 1 moves distance ±1 at each step along the path. Consequently, the
shortest loops at the identity with odd length have length ≈ n − kn.

4.2. Bounds on mixing times. The following lemma gives a lower bound on
the mixing time of 1

2(qn,kn + q∗
n,kn

) for kn sufficiently small by looking at the
motion of an individual particle.

LEMMA 4.2. Let q̃n,kn = 1
2(qn,kn + q∗

n,kn
) with kn ≤ cn, 0 < c < 1. Then there

is a constant N(c) such that, for n ≥ N , and l ≤ c(1−c)2n2

12 ,

∥∥q̃ l
n,kn

− π
∥∥

TV ≥ c

2
.

In particular, there is a constant A(c) such that the total variation mixing time
satisfies

T
(
Sn, q̃n,kn

) ≥ An2.
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PROOF. Note that the card originally in position � (1−c)n
2 � + 1 performs a sim-

ple random walk on {1, . . . , �(1 − c)n�} before hitting any of the bottom �cn�
positions. Call this card a and define the event

A = {σ |n − �cn� < σ−1(a) ≤ n},
that is, a is in the bottom �cn� positions. Then π(A) ≥ c − 1/n. For l =
� c(1−c)2n2

12 �, let X1, . . . ,Xl be an i.i.d. random variable with P(Xi = ±1) = 1
2 ,

and let Sj = ∑j
1 Xi . Then

q̃ l
n,kn

(A) ≤ P

[
max

1≤j≤l
|Sj | ≥ (1 − c)n

2

]

≤ 4l

(1 − c)2n2 (by Kolmogorov’s maximal inequality)

≤ c

3
.

Since ‖q̃ l
n,kn

− π‖TV = maxA⊂Sn |q̃ l
n,kn

(A) − π(A)|, the result follows by taking
n sufficiently large. The mixing time bound follows from the fact that, for n suffi-
ciently large,

c ≤ 2
∥∥q̃ l

n,kn
− π

∥∥
TV ≤ e−�l/T (Sn,q̃n,kn )�.

In particular,

T
(
Sn, q̃n,kn

) ≥ l

1 − log c
. �

Now we will derive an upper bound on the mixing time of 1
2(qn,kn + q∗

n,kn
) with

n−kn ≤ C independent of n. That is, the symmetric version of the walk that moves
the top card uniformly at random to any but a finite number of the top positions.
The proof is by comparison and is based on the following two results. For proofs
of these results, see, for example, [4–6].

DEFINITION 4.3. Given a finite group G and a symmetric probability mea-
sure q , define the Dirichlet form

Eq(f, f ) = 1

2|G|
∑
x,y

|f (xy) − f (x)|2q(y).

Note that Eq(f, f ) = ((I − Q)f,f )L2(π), where Qf 
→ f � q is the Markov
operator associated to q .

PROPOSITION 4.1. Assume that Ẽ ≤ AE . Then,

T (G,q) ≤ T2(G,q) � max
{
AT2(G, q̃),A log |G|, 1

− logβ−

}
,

where β− = max{0,−βmin}.
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THEOREM 4.2. For any (q̃, q)-flow, Ẽ ≤ A(η)E with

A(η) = max
s∈S

1

q(s)

∑
δ∈P

|δ|N(s, δ)η(δ).

The proofs of the following two mixing time bounds are by comparison with
the random transposition measure on Sn:

qRT,n(g) =



1/n, if g = e,
2/n2, if g = (i, j), i �= j ,
0, otherwise.

LEMMA 4.3. For kn ≥ n − C, there exist constants B(C) such that

T2
(
Sn, q̃n,kn

) ≤ Bn logn.

PROOF. Let S = {σ±1
l :n− kn + 1 ≤ l ≤ n}. First we define paths δi,j , 1 ≤ i <

j ≤ n from e to (i, j) in the Cayley graph (Sn, S):

δi,j =




σ−1
i σjσ

−1
j−1σi, C + 1 ≤ i < j ≤ n,

(σ−1
n )C−i+1σ−1

C+1σj+C−i+1σ
−1
j+C−iσC+1σ

C−i+1
n , 1 ≤ i ≤ C,

i < j ≤ n − C,
(σ−1

n−C)C−i+1σ−1
C+1σjσ

−1
j−1σC+1σ

C−i+1
n−C , 1 ≤ i ≤ C,

j > n − C.

Define a (qRT,n, q̃n,kn) flow by η(δi,j ) = 1
n2 . For i ≤ C, |δi,j | ≤ 2(C −2). And each

s ∈ S is used in at most n paths δi,j with i > C. Consequently,

A(η) ≤ 8[C(C + 2)2 + 1].
Since T (Sn, qRT) ∼ n

2 logn (see [7] for details), the result follows by applying
Lemma 4.1 and Proposition 4.1 together with Theorem 4.2. �

The following lemma bounds the mixing time of q̃n,kn = 1
2(qn,kn + q∗

n,kn
) for

arbitrary kn. The proof is by comparison with the random transposition measure,
but while the flow defined in Lemma 4.3 used only one path for each transposition,
here, for most transpositions, we define k − 1 paths.

LEMMA 4.4. There exists a constant A such that the mixing time satisfies

T2
(
Sn, q̃n,kn

) ≤ An3 logn.

PROOF. Let S = {σ±1
l :n − kn + 1 ≤ l ≤ n}. The proof is by comparison with

the random transposition measure qRT. For j > i > n − kn, define the path

δi,j = σ−1
i σjσ

−1
j−1σi.
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For i < n − kn, we define kn − 1 distinct paths δl
i,j with n − kn < l < n. For j > l,

let

δl
i,j ≡ (σ−1

l )l−iδl,j σ
l−i
l

and for i < j ≤ l, let

δl
i,j ≡ (σ−1

l )l−j δl,l+1(σl)
j−iδl,l+1σ

j−i
l δl,l+1σ

l−j
l .

So |δl
i,j | ≤ 2n + 12 ≤ 3n. Define a (qRT, q̃n,kn)-flow by η(δi,j ) = 1

n2 and η(δl
i,j ) =

1
(kn−1)n2 . Then,

A(η) ≤ 6

n
max

s

∑
δl
i,j

N(s, δl
i,j ) + 8kn

n2 max
s

∑
δi,j

N(s, δi,j )

≤ 18n2 + 8k2
n

n2 .

Since T (Sn, qRT) ∼ n
2 logn (see [7] for details), the result follows by applying

Lemma 4.1, Proposition 4.1 and Theorem 4.2. �

The following lemma shows the difficulty in applying path comparison via The-
orem 4.2 to bound mixing time.

LEMMA 4.5. Consider a (q̃, q)-flow η on (G,S). For

A(η) = max
s∈S

1

q(s)

∑
δ∈P

|δ|N(s, δ)η(δ),

we have the lower bound

A(η) ≥ ∑
g∈G

d2
S(e, g)q̃(g).

In particular, for X ⊂ G, A(η) ≥ d2
S(e,X)q̃(X).

PROOF. By averaging over s,

A(η) ≥ ∑
s,δ

|δ|N(s, δ)η(δ)

= ∑
δ

|δ|2η(δ)

≥ ∑
g

d2
S(e, g)q̃(g).

�
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Observe that we can always choose a (q̃, q)-flow η such that

A(η) ≤
(

max
s∈S

1

q(s)

) ∑
g∈G

d2
S(e, g)q̃(g).

Lemma 4.5 shows that the upper bounds on mixing time that we derive in this
section are the best one can do using comparison with the random transposition
walk.

Consider a symmetrized variant of the Rudvalis shuffle driven by the measure rn
which is uniform on the generating set {σn,σ

−1
n , (1, n), id}. This walk was ana-

lyzed in [15] and an O(n3 logn) lower bound was derived for the total variation
mixing time (see, e.g., [12] for a matching upper bound). Here we use comparison
to extend this result to lower bounds for symmetrized top to bottom-k walks.

LEMMA 4.6. For 0 < c < 1 and kn ≤ cn, there exists a constant C > 0 such
that the L2 mixing time satisfies

T2
(
Sn, q̃n,kn

) ≥ Cn3

k2
n

logn.

PROOF. Let S = {σ±1
n , τ }, where τ = (1, n) and observe that

σl = σn · (σ−1
n−1)

n−l · σn−l
n

= σn · (σ−1
n · τ)

n−l · σn−l
n .

For n − kn < l ≤ n, define paths δ
σ±1

l
in the Cayley graph (Sn, S) as above, and a

corresponding simple (q̃n,kn, rn)-flow η. Then

A(η) ≤ 4

kn

∑
n−kn<l≤n

|δσl
|2

= 4

kn

∑
n−kn<l≤n

[3(n − l) + 1]2

≤ Bk2
n

for some universal constant B . By Theorem 4.2, Eq̃n,kn
≤ Bk2

nErn . By Proposi-
tion 4.1, together with the lower bound on the mixing time for q̇n given in [15], we
have

n3 logn � max
{
AT2(G, q̃),A log |G|, 1

− logβ−

}
.

By Lemma 4.1, −1/ logβ− = O(n2), and so either AT2(G, q̃) or A log |G| is
bounded below by n3 logn. By Lemma 4.2, n2 � T2(G, q̃), and so AT2(G, q̃) >

A log |G|. Consequently, for n sufficiently large,

n3 logn ≤ AT2(G, q̃)
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and the result follows. �

5. Proof of Theorem 1.3. We show that our estimates on the mixing times
for q̃n,kn and qn,kn yield bounds for the lazy top to bottom-k shuffles. In order to
transfer mixing time results for the reversible walk q̃n,kn to the present case of

q̂n,kn = 1
2

(
qn,kn + δe

)
,

we recall the following result.

PROPOSITION 5.1 ([6]). Let q be a probability measure on G and set q∗ =
q � q∗. Then

T (G,q) ≤ T2(G,q) ≤ 2T2(G,q∗).
More generally, if qv = qv � q∗v , then T2(G,q) ≤ 2vT2(G,qv). Finally, q∗v � qv

can be used instead of qv .

LEMMA 5.1. For kn ≥ n − C, there exist constants B(C) such that

T2
(
Sn, q̂n,kn

) ≤ Bn logn.

For arbitrary kn, there is a constant A such that

T2
(
Sn, q̂n,kn

) ≤ An3 logn.

PROOF. By Proposition 5.1, it is sufficient to prove the bounds for

pn,kn = q̂∗
n,kn

� q̂n,kn .

Observe that

pn,kn = 1
2

(
q∗
n,kn

+ δe

)
� 1

2

(
qn,kn + δe

)
= 1

2

[
q̃n,kn + 1

2

(
q∗
n,kn

� qn,kn + δe

)]
≥ 1

2 q̃n,kn .

Consequently, Eq̃n,kn
(f, f ) ≤ 2Epn,kn

(f, f ). Note that pn,kn is a positive opera-
tor and, consequently, has nonnegative eigenvalues. The result then follows from
Proposition 4.1, together with the L2 mixing time bounds for q̃n,kn derived in Sec-
tion 4.2. �

To transfer total variation mixing time results for qn,kn to the lazy top to
bottom-k shuffle, we make the following elementary observation.

DEFINITION 5.1. Let q drive a walk on G. Then for p ∈ (0,1), the associated
p-lazy walk is driven by measure

q̂p = pq + (1 − p)δe.
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LEMMA 5.2. Let q drive a walk on G with stationary distribution π , and fix
p, ε ∈ (0,1). Then there exists a constant C(p, ε) such that mixing times for q and
the associated p-lazy walk q̂p satisfy

T (G, q̂p) ≤ max
[

2 + ε

p
T (G,q),C

]
.

Specifically, we can take C = 80/(pε2).

PROOF. Let Sm be a binomial(m,p) random variable. Then

‖q̂m
p − π‖TV = 1

2

∑
g∈G

|q̂m
p (g) − π(g)|

= 1

2

∑
g∈G

∣∣∣∣∣
∑
k

P (Sm = k)
(
qk(g) − π(g)

)∣∣∣∣∣
≤ ∑

k

P (Sm = k) · ‖qk − π‖TV

≤ P
(
Sm ≤ 2T (G,q)

) + 1

2e2 .

Taking m̄ ≥ 2+ε
p

T (G,q), by Chebyshev’s inequality,

P
(
Sm̄ ≤ 2T (G,q)

) ≤ P

(
|Sm̄ − ESm̄| ≥

(
1 − 2

2 + ε

)
ESm̄

)

≤ 1 − p

m̄p(1 − 2/(2 + ε))2 .

And consequently,

‖q̂m̄
p − π‖TV ≤ 1 − p

m̄p(1 − 2/(2 + ε))2 + 1

2e2

≤ 1

2e

for m̄ ≥ 80/(pε2). �

Now we can transfer the mixing time results for qn,kn to q̂n,kn .

COROLLARY 5.1. For kn ≥ n − √
(n logn)/2, there exists a constant C such

that

T
(
Sn, q̂n,kn

) ≤ Cn logn.

For c ∈ (0,1) and kn ≥ cn, there exist constants A(c) such that

T
(
Sn, q̂n,kn

) ≤ An2 log2 n.
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REMARK 5.1. For kn ≥ n − √
(n logn)/2, instead of using Lemma 5.2, we

can adapt the coupling of Lemma 3.2 to show T (Sn, q̂n,kn) ∼ 2n logn. The cou-
pling (Xm

1 ,Xm
2 ) of qn,kn yields the coupling

(X̃m
1 , X̃m

2 ) = (X
Sm

1 ,X
Sm

2 )

of q̂n,kn , where Sm is an independent binomial(1/2,m) random variable. Then, if
T is the coupling time for (Xm

1 ,Xm
2 ),

P(X̃m
1 �= X̃m

2 ) ≤ P

(
Sm ≤

(
1 + ε

2

)
n logn

)
+ P

(
T >

(
1 + ε

2

)
n logn

)
.

For m = 2(1 + ε)n logn, the first term goes to 0 by Chebyshev’s inequality, and
the second term goes to 0 by the cut-off shown in Lemma 3.2.

The lower bound is also analogous to that given in Lemma 3.2, where we now
make the observation that

P(L̂j > m) ≥ P

(
Lj >

(
1 − ε

2

)
n logn

)
· P

(
Sm ≤

(
1 − ε

2

)
n logn

)
.

So for kn ≥ n − √
(n logn)/2 and ε ∈ (0,1),

lim
n→∞

∥∥q̂(1−ε)2n logn
n,kn

− π
∥∥

TV = 1

and

lim
n→∞

∥∥q̂(1+ε)2n logn
n,kn

− π
∥∥

TV = 0.

Finally, transferring the lower bounds for kn = 2,3, which were derived using
Wilson’s lemma, also requires only a simple argument. Let {ηi} be i.i.d. Bernoulli
random variables with p = 1/2, and let Nt = ∑t

i=1 ηi . Then if Xt is the top to
bottom-k process, the lazy top to bottom-k process is given by X̃t = XNt . Using the
notation of Theorem 3.2, if (Xt , Yt ) is a lifting of Xt , then (X̃t , Ỹt ) = (XNt , YNt )

is a lifting of X̃t . It is not hard to check that the assumptions of the theorem are
met with 
̃ = 
 , λ̃ = 1/2 + 1/2λ, R̃ = R/2, and γ̃ = γ /2. Then

log 
̃max + (1/2) log γ̃ ε/(4R̃)

− log(1 − γ̃ )
= log
max/2 + (1/2) logγ ε/(4R)

− log(1 − γ /2)
.

Using the estimates in Lemma 3.5 and [15], we have the following lower bounds.

COROLLARY 5.2. For kn = 2,3 and ε > 0, there exist constants C(ε), N > 0
such that, for n ≥ N , the lazy top to bottom-k shuffle satisfies∥∥q̂m

n,kn
− π

∥∥
TV ≥ 1 − ε

for m ≤ Cn3 logn.
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