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THE MAXIMUM OF A RANDOM WALK REFLECTED
AT A GENERAL BARRIER

BY NIELS RICHARD HANSEN

University of Copenhagen

We define the reflection of a random walk at a general barrier and derive,
in case the increments are light tailed and have negative mean, a necessary
and sufficient criterion for the global maximum of the reflected process to
be finite a.s. If it is finite a.s., we show that the tail of the distribution of
the global maximum decays exponentially fast and derive the precise rate of
decay. Finally, we discuss an example from structural biology that motivated
the interest in the reflection at a general barrier.

1. Introduction. The reflection of a random walk at zero is a well-studied
process with several applications. We mention the interpretation from queueing
theory—for a suitably defined random walk—as the waiting time until service for
a customer at the time of arrival; see, for example, [1]. Another important appli-
cation arises in molecular biology in the context of local comparison of two finite
sequences. To evaluate the significance of the findings from such a comparison,
one needs to study the distribution of the locally highest scoring segment from two
independent i.i.d. sequences, as shown in [8], which equals the distribution of the
maximum of a random walk reflected at zero.

The global maximum of a random walk with negative drift and, in particular,
the probability that the maximum exceeds a high value have also been studied
in details. A classical reference is [3], Chapter XI.6 and page 393. The proba-
bility that the maximum exceeds level x has an important interpretation as a ruin
probability—the probability of ultimate ruin—for a company with initial capital x.
It also turns out that the distribution of the global maximum coincides with the time
invariant distribution for the reflected random walk; see [1].

In this paper we deal with a situation somewhere in between the reflection at
zero and the unreflected random walk. We define the reflection of the random walk
at a general (negative) barrier. Then we study the global maximum of the reflected
process in case it is finite. This has an interpretation in the context of aligning
sequences locally as introducing a penalty on the length of the initial unaligned part
of the sequences. We discuss this type of application in greater detail in Section 4.
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We consider only random walks with light tailed increments, that is, increments
for which the distribution has exponential moments. The main result is Theo-
rem 2.3 stating that, if the global maximum is finite, the tail of the distribution
of the global maximum of the reflected process decays exponentially fast with the
same rate as for the global maximum of the ordinary random walk. The difference
is a constant of proportionality, which we characterize.

Let (Xn)n≥1 be a sequence of i.i.d. real-valued stochastic variables defined on
(�,F ,P) and define the corresponding random walk (Sn)n≥0 starting at 0 by
S0 = 0 and for n ≥ 1,

Sn =
n∑

k=1

Xk.

The reflection of the random walk at the zero barrier is the process (Wn)n≥0

defined recursively by W0 = 0 and for n ≥ 1,

Wn = max{Wn−1 + Xn,0}.(1)

A useful alternative representation of the reflected random walk is

Wn = Sn − min
0≤k≤n

Sk,(2)

for which the r.h.s. is easily verified to satisfy the recursion (1).
The purpose of this paper is to investigate the reflection at a general, possibly

curved, barrier. Assume therefore that a function

g : N → (−∞,0]
is given and define the process (W

g
n )n≥0 by W

g
0 = 0 and recursively for n ≥ 1, by

Wg
n = max{Wg

n−1 + Xn,g(n)}.(3)

We call (W
g
n )n≥0 the reflection of the random walk at the barrier given by g. It

satisfies W
g
n ≥ g(n) and W

g
n ≥ Sn for all n, and it is, like the reflection at zero,

a Markov chain, though, in general, a time-inhomogeneous Markov chain. For
g ≡ 0, we obtain the reflection at zero, but we are more interested in the situation
where g(n) → −∞ for n → ∞. Observe that a representation similar to (2) is
possible,

Wg
n = Sn − min

0≤k≤n
{Sk − g(k)} = Sn + max

0≤k≤n
{g(k) − Sk},(4)

which is seen by verifying that the r.h.s. of (4) satisfies (3). We will prefer the
second representation in (4).
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2. Results. We state the results obtained in this paper as Theorem 2.1 and
Theorem 2.3. The proofs are given in the next section. To state the results we need
a few assumptions and definitions.

We will assume that the Laplace transform φ(θ) = E(exp(θX1)) is finite for θ

in an open interval (a, b) containing 0. In particular, X1 has mean value, which we
denote by µ = E(X1) = ∂θφ(0). We will assume that µ < 0 and that φ(θ) → ∞
for θ → b. In this case there exists a solution θ∗ > 0 to the equation φ(θ) = 1,
which is unique due to convexity of φ. The stochastic process (L∗

n)n≥0 defined by

L∗
n = exp(θ∗Sn)

is a positive martingale w.r.t. the filtration (Fn)n≥0 generated by the X-process
(F0 = {∅,�}). Furthermore, E(L∗

n) = 1 so L∗
n defines a probability measure P

∗
n

on Fn with Radon–Nikodym derivative L∗
n w.r.t. the restriction of P to Fn. Let-

ting P
∗ denote the set function defined on the algebra

⋃
n Fn by its restriction

to Fn being P
∗
n, then P

∗ is, in fact, a probability measure on the algebra and
it has a unique extension to F∞ = σ(

⋃
n Fn)—the least σ -algebra generated by

the filtration; see [10], Section I.5. The probability measure P
∗ is called the ex-

ponentially changed or tilted measure. That P
∗ is a probability measure and, in

particular, that it is σ -additive, can be seen as follows. Let ν = X1(P
∗
1) denote

the distribution of X1 under P
∗
1, then, for F ∈ ⋃

n Fn, there exists B ∈ B
⊗N such

that F = ((Xn)n≥1 ∈ B), hence, P
∗(F ) = ν⊗N(B), where ν⊗N is the infinite prod-

uct measure on (RN,B
⊗N). Then σ -additivity of P

∗ on
⋃

n Fn follows from
σ -additivity of ν⊗N. In addition, we see that, under P

∗, the stochastic variables
(Xn)n≥1 are i.i.d. with mean µ∗ = E

∗(X1) = ∂θφ(θ∗) > 0. A more general treat-
ment of exponential change of measure techniques can be found in [1], Chap-
ter XIII.

We denote the maximum of the random walk reflected at the barrier g by

Mg = sup
n

Wg
n(5)

and we define

D = sup
n

{g(n) − Sn},(6)

which may be infinite with positive P-probability, but D is always P
∗-a.s. finite.

THEOREM 2.1. It holds that

P(Mg > u) ≤ exp(−θ∗u)E∗(exp(θ∗D)),(7)

and P(Mg < ∞) = 1 if and only if

E
∗(exp(θ∗D)) < ∞.(8)

Moreover, with g(0) = 0

E
∗(exp(θ∗D)) ≤

∞∑
n=0

exp(θ∗g(n)).(9)
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REMARK 2.2. The second inequality provides us with an applicable, suffi-
cient criterion for almost sure finiteness of Mg , namely,

∞∑
n=1

exp(θ∗g(n)) < ∞.

Interestingly, this infinite sum and the corresponding finiteness criterion occurred
in [9] in the analysis of local sequence alignment. In their setup g denotes a gap
penalty function.

The ascending ladder height distribution G∗+ of the random walk (Sn)n≥0 un-
der P

∗ is defined by

G∗+(x) = P
∗(

Sτ+ ≤ x
)
,

with τ+ = inf{n ≥ 0|Sn > 0}. Note that since µ∗ > 0, it follows that τ+ < ∞
P

∗-a.s. so that G∗+ is a well-defined probability measure.

THEOREM 2.3. If (8) holds, if the distribution of X1 is nonarithmetic, and if
B is a stochastic variable with distribution

P
∗(B ≤ x) = 1

E∗(Sτ+)

∫ x

0
1 − G∗+(y) dy,(10)

then

P(Mg > u) ∼ exp(−θ∗u)E∗(exp(θ∗D))E∗(exp(−θ∗B))(11)

for u → ∞.

REMARK 2.4. The stochastic variable D has an alternative representation.
Define the sequence of stopping times (τ

g
−(n))n≥0 by τ

g
−(0) = 0 and for n ≥ 1,

τ
g
−(n) = inf

{
k > τ

g
−(n − 1)|Sk − g(k) ≤ Sτ

g
−(n−1) − g

(
τ

g
−(n − 1)

)}
.

For τ
g
−(n) < ∞, define, in addition, the corresponding “undershoot” by

Un = g(τ
g
−(n)) − g

(
τ

g
−(n − 1)

) + Sτ
g
−(n−1) − Sτ

g
−(n).

Since µ∗ > 0, it holds that Sn → +∞ P
∗-a.s., and we have that τ

g
−(n) = ∞ even-

tually P
∗-a.s. If we define ρ = inf{k|τg

−(k) = ∞} − 1, then

D =
ρ∑

k=1

Uk.
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REMARK 2.5. If we assume that the distribution of X1 is arithmetic with
span δ, say, the random walk is restricted to the lattice δZ, but the reflected process
may be pushed out of the lattice by the reflection. The best result obtainable for a
general g is then

E
∗(exp(θ∗D))E∗(exp(−θ∗B)) exp(−θ∗δ)

≤ lim inf
u→∞ exp(θ∗u)P(Mg > u)

≤ lim sup
u→∞

exp(θ∗u)P(Mg > u)

≤ E
∗(exp(θ∗D))E∗(exp(−θ∗B)).

However, if g takes values in δZ only, (11) holds provided that u → ∞ within δZ.

EXAMPLE 2.6. The linear barrier g(n) = −αn for α > 0 is particularly simple
to handle. First we find that

∞∑
n=1

exp(−θ∗αn) < ∞

and it follows from Theorem 2.1 that Mg < ∞ almost surely. Moreover, from (6)
we obtain that

D = sup
n

{−αn − Sn},

so D is, in fact, the maximum of a random walk (S̃n)n≥0 with increments −α −Xn

for n ≥ 1. The distribution of D can be found explicitly in terms of the ascending
ladder height distribution for (S̃n)n≥0. That is, with G̃+ denoting the (defective)
ascending ladder height distribution given by

G̃+(x) = P
∗(

S̃τ̃+ ≤ x, τ̃+ < ∞)
,

where τ̃+ = inf{n ≥ 0|S̃n > 0}, we have that

P
∗(D ≤ x) = P

∗(τ̃+ = ∞)

∞∑
n=0

(G̃+)∗n(x),

see Theorem VIII.2.2 in [1]. Note that this representation is, in fact, equivalent to
the representation D = ∑ρ

k=1 Uk in Remark 2.4, since we can identify the ascend-
ing ladder epochs for (S̃n)n≥0 with the stopping times (τ

g
−(n))n≥0. The conclusion

is that D is a sum of a geometrically distributed number of i.i.d. variables each
with distribution P

∗(τ̃+ < ∞)−1G̃+.

EXAMPLE 2.7. With g(n) = −ρ logn for ρ > 0, we get an interesting class of
barriers, for which the maximum Mg is finite or infinite a.s. according to whether
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ρ > 1/θ∗ or ρ < 1/θ∗. Indeed, we observe that

max
0≤m≤n

Wg
m = max

0≤m≤n

{
Sm + max

1≤k≤m
{−ρ log k − Sk}

}

≥ max
0≤m≤n

{
Sm − min

1≤k≤m
Sk

}
− ρ logn

= max
0≤m≤n

Wm − ρ logn,

where (Wn)n≥0 is the reflection at zero. Since

max
0≤m≤n

Wm − 1

θ∗ logn

converges in distribution [7, 8] (in the arithmetic case, the sequence is tight), we
get for ρ < 1/θ∗ that Mg = ∞ a.s. On the other hand, we find that

∞∑
n=1

exp(−θ∗ρ logn) =
∞∑

n=1

n−θ∗ρ,

which is finite precisely when ρ > 1/θ∗. Hence, for ρ > 1/θ∗, it follows from
Theorem 2.1 that Mg < ∞ a.s. and Theorem 2.3 holds.

3. Proofs. The proofs of Theorems 2.1 and 2.3 are based on the exponential
change of measure technique as introduced in the previous section. We briefly
review how this technique is used to obtain similar results for the maximum of an
ordinary random walk. For more details, we refer to [1], Sections XIII.3 and XIII.5.

We first observe that, for any stopping time τ and any Fτ -measurable, positive
stochastic variable Y , it holds that

E
∗(Y ; τ < ∞) = E(YL∗

τ ; τ < ∞).(12)

This follows easily by (τ < ∞) = ⋃
n(τ = n) and that P

∗
n has Radon–Nikodym

derivative L∗
n w.r.t. P on Fn, see also [1], Theorem XIII.3.2. A useful consequence

for Y = exp(−θ∗Sτ ), in which case YL∗
τ = 1, is that

E
∗(

exp(−θ∗Sτ ); τ < ∞) = P(τ < ∞).(13)

We let

M = sup
n

Sn

denote the global maximum of the random walk, which is finite due to the negative
drift under P. Defining τ(u) = inf{n ≥ 0|Sn > u} and using (13), we get, since
P

∗(τ (u) < ∞) = 1 due to the positive drift of the random walk under P
∗, that

P(M > u) = P
(
τ(u) < ∞) = E

∗(
exp

(−θ∗Sτ(u)

))
(14)

= exp(−θ∗u)E∗(
exp

(−θ∗(
Sτ(u) − u

)))
.
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For the overshoot of level u at time τ(u), it holds that

Sτ(u) − u
D−→ B(15)

under P
∗ for u → ∞, see Theorem VIII.2.1 in [1], with B a stochastic variable

with distribution given by (10). (If the distribution of X1 is arithmetic with span δ,
say, the limit has to go through multiples of δ.) This implies that

P(M > u) ∼ exp(−θ∗u)E∗(exp(−θ∗B))

for u → ∞.

PROOF OF THEOREM 2.1. Introduce the stopping time

τg(u) = inf{n ≥ 0|Wg
n > u}(16)

for u ≥ 0. Since W
g
n ≥ Sn and Sn → ∞ P

∗-a.s., we find that P
∗(τ g(u) < ∞) = 1

and (13) gives that

P(Mg > u) = P
(
τg(u) < ∞)

= E
∗(

exp
(−θ∗Sτg(u)

))
(17)

= exp(−θ∗u)E∗(
exp

(−θ∗(
Sτg(u) − u

)))
.

Write Sτg(u) − u as

Sτg(u) − u = W
g
τg(u) − u − (

W
g
τg(u) − Sτg(u)

) = Bu − Du

with Du = W
g
τg(u) − Sτg(u) and Bu = W

g
τg(u) − u ≥ 0.

It follows from (4) that Du ≤ D. Especially, since exp(−θ∗Bu) ≤ 1,

P(Mg > u) ≤ exp(−θ∗u)E∗(exp(θ∗Du))

≤ exp(−θ∗u)E∗(exp(θ∗D))

and (7) follows. If E
∗(exp(θ∗D)) < ∞, this implies that P(Mg < ∞) = 1. On the

contrary, if P(Mg = ∞) > 0, it follows that

exp(θ∗u)P(Mg = ∞) ≤ E
∗(exp(θ∗D))

with the l.h.s. tending to infinity as u → ∞ so E
∗(exp(θ∗D)) = ∞.

The second part of the proof consists of verifying (9). By partial integration,

E
∗(exp(θ∗D)) =

∫ ∞
−∞

θ∗ exp(θ∗u)P∗(D > u)du.

Introducing

τ̃ (u) = inf{n ≥ 0|g(n) − Sn > u},
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an application of (12) with Y = 1 yields

P
∗(D > u) = P

∗(
τ̃ (u) < ∞) = E

(
exp

(
θ∗Sτ̃(u)

))
.

Hence,

E
∗(exp(θ∗D)) =

∫ ∞
−∞

E
(
exp

(
θ∗Sτ̃(u)

))
θ∗ exp(θ∗u)du

=
∞∑

n=0

E

(
exp(θ∗Sn)

∫ ∞
−∞

θ∗ exp(θ∗u)1
(
τ̃ (u) = n

)
du

)
.

To bound the inner integral, we introduce for n ≥ 0 the variable

Un = sup{u|τ̃ (u) = n}
with the usual convention that the supremum of the empty set is −∞. By defini-
tion,

g(τ̃ (u)) − Sτ̃(u) > u,

hence, for all u with τ̃ (u) = n, it holds that Sn + u < g(n) and, in particular,

Sn + Un ≤ g(n).(18)

A moments reflection should convince the reader that we have equality whenever
Un > −∞, but the inequality holds for all n. Since∫ ∞

−∞
θ∗ exp(θ∗u)1

(
τ̃ (u) = n

)
du ≤

∫ Un

−∞
θ∗ exp(θ∗u)du = exp(θ∗Un),

we obtain, using (18), the inequality

E
∗(exp(θ∗D)) ≤

∞∑
n=0

E
(
exp

(
θ∗(Sn + Un)

)) ≤
∞∑

n=0

exp(θ∗g(n)).
�

The proof of Theorem 2.3 relies on the following lemma.

LEMMA 3.1. With τg(u) defined by (16), then if X1 is nonarithmetic, if

h : [0,∞) → R

is a bounded, continuous function, and if B is a stochastic variable with distribu-
tion given by (10), it holds that

E
∗(

h
(
W

g
τg(u) − u

)|Fτg(u/2)

) E
∗−→ E

∗h(B)(19)

for u → ∞.
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PROOF. First we make a general observation. If X and X′ are two identically
distributed stochastic variables that take values in a space E, if G is a σ -algebra
such that X′ is independent of G, if Y is a G-measurable, real valued stochastic
variable, and, finally, if k :E × R → R is a bounded, measurable function, then
with

H(u) = E
(
k(X,u)

)
,

it holds that

E
(
k(X′, Y )|G) = H(Y).(20)

For convenience, extend h to be defined on R by h(u) = 0 for u < 0.
Let E = R

N, X = (Xn)n≥1, X′ = (Xτg(u/2)+n)n≥1, G = Fτg(u/2) and Y =
u − W

g
τg(u/2). Obviously X and X′ have the same distribution, X′ is inde-

pendent of G (under P
∗) and Y is G measurable. Recalling the definition

τ(u) = inf{n ≥ 0|Sn > u} and defining σ(u) = inf{n ≥ 0|∑n
k=1 Xτg(u/2)+k > u −

W
g
τg(u/2)}, it follows from (20) that

E
∗
(
h

(
σ(u)∑
k=1

Xτg(u/2)+k − (
u − W

g
τg(u/2)

))∣∣∣Fτg(u/2)

)
= H

(
u − W

g
τg(u/2)

)
,

where

H(u) = E
∗(

h
(
Sτ(u) − u

))
.

From (15) it follows that H(u) → E
∗(h(B)) for u → ∞ with the distribution

of B given by (10). Note that here we use the nonarithmetic assumption for this
limit to hold when u → ∞ arbitrarily. Since

0 ≤ W
g
τg(u) − u = Sτg(u) − u + Du ≤ Sτ(u) − u + D,

where the r.h.s. is P
∗-tight due to (15), we find that

u − W
g
τg(u/2) = u/2 − (

W
g
τg(u/2) − u/2

) P
∗−→ ∞.

We conclude that

H
(
u − W

g
τg(u/2)

) E
∗−→ E

∗(h(B)).(21)

Recall that

Du = W
g
τg(u) − Sτg(u) = max

1≤k≤τg(u)
{g(k) − Sk}

and note that since τg(u) → ∞ P
∗-a.s. for u → ∞, it follows that Du = D even-

tually with P
∗-probability one. Letting Ku = (Du/2 = D), then 1(Kc

u) → 0 for
u → ∞ P

∗-a.s. and, in particular, P
∗ (Kc

u) → 0 for u → ∞. On the event Ku it
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holds that τg(u) = τg(u/2) + σ(u) and that W
g
τg(u/2) − Sτg(u/2) = Du/2 = Du =

W
g
τg(u) − Sτg(u). In particular, on Ku

σ(u)∑
k=1

Xτg(u/2)+k = Sτg(u) − Sτg(u/2) = W
g
τg(u) − W

g
τg(u/2).

Then

E
∗∣∣E∗(

h
(
W

g
τg(u) − u

)|Fτg(u/2)

) − H
(
u − W

g
τ(u/2)

)∣∣
≤ E

∗
(∣∣∣∣∣h(

W
g
τg(u) − u

) − h

(
σ(u)∑
k=1

Xτg(u/2)+k − (
u − W

g
τ(u/2)

))∣∣∣∣∣1(Kc
u)

)

≤ 2‖h‖∞P
∗(Kc

u) → 0

and this together with (21) completes the proof. �

REMARK 3.2. It follows from Lemma 3.1 that

W
g
τg(u) − u

D−→ B(22)

for u → ∞ under P
∗. This is a well-known result from nonlinear renewal the-

ory, see [11], Theorem 9.12 or [13], Theorem 4.1. The condition that needs to be
fulfilled is that the difference

Wg
n − Sn = max

1≤k≤n
{g(k) − Sk}

must be slowly changing, which is indeed the case since it is P
∗-a.s. converging

to a finite limit. If we use (22) in the proof above, we can avoid the tightness
argument.

PROOF OF THEOREM 2.3. We use notation as in the proof of Theorem 2.1.
From (17) we have that

P(Mg > u) = exp(−θ∗u)E∗(exp(−θ∗Bu) exp(θ∗Du)).(23)

With Ku = (Du/2 = D), then since Du/2 = Du on Ku, since Bu ≥ 0, and since
Du ≤ D, we see that

E
∗| exp(−θ∗Bu) exp(θ∗Du) − exp(−θ∗Bu) exp(θ∗Du/2)|

≤ E
∗(exp(θ∗D)1(Kc

u)) → 0,

using dominate convergence and that 1(Kc
u) → 0 P

∗-a.s. as noted in the proof
of Lemma 3.1. Since exp(θ∗Du/2) ↗ exp(θ∗D) with E

∗(exp(θ∗D)) < ∞, by as-
sumption, it follows from Lemma 3.1, using that exp(−θ∗Bu) ≤ 1, that

exp(θ∗Du/2)E
∗(

exp(−θ∗Bu)|Fτg(u/2)

) E
∗−→ exp(θ∗D)E∗(exp(−θ∗B)).
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Collecting these observations yields

lim
u→∞ E

∗(exp(−θ∗Bu) exp(θ∗Du))

= lim
u→∞E

∗(exp(−θ∗Bu) exp(θ∗Du/2))

= lim
u→∞E

∗(
exp(θ∗Du/2)E

∗(
exp(−θ∗Bu)|Fτg(u/2)

))
= E

∗(exp(θ∗D)E∗(exp(−θ∗B)))

= E
∗(exp(θ∗D))E∗(exp(−θ∗B)). �

4. An application to structural biology. An interesting application of the
random walk reflected at a general barrier arises when trying to measure whether
certain structural features are present in an RNA-molecule. An RNA-molecule is
built from four building blocks—the nucleotides—denoted a, c, g and u. They are
connected in a linear sequence, and a typical representation of an RNA-molecule
is as a string of letters, for example, aaggaacaaccuu. These molecules are, fur-
thermore, capable of forming hydrogen bonds between nonadjacent nucleotides,
which makes the molecule fold into a three-dimensional structure. The hydrogen
bonds are usually (and energetically preferably) formed between Watson–Crick
pairs, that is, between a and u and between c and g. For the short sequence above,
it is evident that we can pair up the first four letters, aagg, with the last four let-
ters inverted, uucc, to form Watson–Crick pairs—leaving the five letters aacaa
unpaired, see Figure 1.

A real example is shown in Figure 2. That molecule, which belongs to a class of
small RNA-molecules known as microRNA (miRNA), is still of rather moderate
length. Many RNA-molecules are larger and form more complicated structures,
but the essential building blocks are always groups of adjacent Watson–Crick pairs
similar to the structure shown in Figure 2.

One can suggest the following procedure to search for the local occurrence
of structures within a possibly much longer sequence y = y1, . . . , yn. Pick a pair
(yi, yj ), say, with i < j and compute, for 1 ≤ m ≤ min{i − 1, n − j}

Si,j
m =

m∑
k=0

f (yi−k, yj+k)

FIG. 1. A schematic picture of a structure formed by the example RNA-molecule
aaggaacaaccuu. The vertical lines pairing up letters represent hydrogen bonds between
the corresponding nucleic acids. The segment of five letters at the r.h.s. is called a loop.
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FIG. 2. An RNA-molecule from the nematode C. elegans known as mir-1, which form a structure
by Watson–Crick pairing. A few non-Watson–Crick u–g pairs are also formed in this structure. There
is a large loop to the right consisting of unpaired letters [2].

for some score function f . The score function could, for instance, take the val-
ues +1 for Watson–Crick pairs and −1 otherwise, but for the present section, it
is only important that the mean score under the random model introduced below
is negative. We search for high values of S

i,j
m as this implies a high number of

(rather coherent) Watson–Crick pairs. However, if j − i is large, there is a large
loop in between the letters that pair up nicely, and this is not reasonable. Therefore,
we introduce a penalty function g̃ : N0 → (−∞,0] [assume, for convenience, that
g̃(0) = g̃(1) = 0] and define

M(y) = max
i,j,m

{Si,j
m + g̃(j − i − 1)}.

If Y = Y1, . . . , Yn is a finite sequence of i.i.d. stochastic variables taking values
in {a, c, g, u}, we are, for example, computing P(M(Y) > u). What we will
show here is that M(Y) is, in fact, the maximum of partial maxima of (dependent)
random walks reflected at barriers given in terms of g̃.

Assume first that j − i is even and let n0 = i + (j − i)/2. Define

g1(k) = g̃(2k + 1)

together with

Wg1
n0,m

= max
0≤k≤m

{
g1(k) +

m∑
l=k+1

f
(
Yn0−l , Yn0+l

)}
.

We observe that, for each n0,

max
i,j,m : (j−i)/2=n0

Si,j
m + g̃(j − i) = max

m
Wg1

n0,m
.

With X
n0
l = f (Yn0−l , Yn0+l), which for fixed n0 are i.i.d. variables, we observe

that

Wg1
n0,m

= max
0≤k≤m

{
g1(k) +

m∑
l=k+1

X
n0
l

}

= max

{
max

0≤k≤m−1

{
g1(k) +

m−1∑
l=k+1

X
n0
l

}
+ Xn0

m ,g1(m)

}

= max
{
W

g1
n0,m−1 + Xn0

m ,g1(m)
}
.
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That is, the process (W
g1
n0,m)m≥0 is a random walk reflected at the barrier given

by g1. A completely analogous derivation can be carried out if j − i is odd using
the reflection barrier

g2(k) = g̃(2k),

which for n0 = i + (j − i − 1)/2 leads to the reflected random walk

Wg2
n0,m

= max
0≤k≤m

{
g2(k) +

m∑
l=k

f
(
Yn0−l , Yn0+1+l

)}

fulfilling

max
i,j,m : (j−i−1)/2=n0

Si,j
m + g̃(j − i) = max

m
Wg2

n0,m
.

This shows that M(Y) is indeed the maximum of partial maxima of reflected ran-
dom walks.

Let (Xn)n≥1 be i.i.d. with X1
D= f (Y1, Y2) and E(X1) < 0, and let

Di = sup
n

{
gi(n) −

n∑
k=1

Xk

}

together with

K∗ = (
E

∗(exp(θ∗D1)) + E
∗(exp(θ∗D2))

)
E

∗(exp(−θ∗B)).

Using Theorem 2.3, we arrive at the approximation

E

(∑
n0

1
(

max
m

Wg1
n0,m

> u

)
+ 1

(
max

m
Wg2

n0,m
> u

))
 nK∗ exp(−θ∗u)(24)

for n,u suitably chosen. Note that there are two approximations here. First we
approximate the partial maxima of the random walks with the global maxima, and
then we use Theorem 2.3 to approximate the tail of the distribution of the global
maxima. Admittedly, we have ignored the arithmetic nature of the variables Xn. It
is beyond the scope of this paper to deal thoroughly with the distribution of M(Y).
A Poisson approximation of the stochastic variable∑

n0

1
(

max
m

Wg1
n0,m

> u

)
+ 1

(
max

m
Wg2

n0,m
> u

)
that also provides a formal justification of (24) can be found in [5]. Such a Poisson
approximation shows, in addition, that

P
(
M(Y) > u

)  1 − exp(−nK∗ exp(−θ∗u)).(25)
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FIG. 3. An alternative structure of mir-1 from Figure 2. It has more Watson–Crick pairs that are
obtained by allowing nucleotides to be skipped.

5. A final remark. In terms of the indices, the structures considered in this
paper take the form

(i, j), (i − 1, j + 1), . . . , (i − m,j + m).

It should be remarked that real RNA-structures are more complicated, and one
would, for instance, also consider structures of the form

(i1, j1), (i2, j2), . . . , (im, jm)

with im < im−1 < · · · < i1 < j1 < · · · < jm. Such structures allow for nucleotides
in the sequence to be skipped, see Figure 3. Finding the optimal score, with a suit-
able penalty on skips, over such more general sets of structures constitutes a com-
binatorial optimization problem that can be solved rather efficiently by dynamic
programming techniques. A theoretical understanding of the distributional behav-
ior for the resulting optimal score seems, however, to be a challenging problem.
The development for the similar problem of local sequence alignment, see [12, 4],
illustrates some of the difficulties that arise.

Admittedly, the present paper makes no attempt to handle the general problem
with skips, nor can we expect that the presented results about reflected random
walks can contribute much to solving that problem. However, we do illustrate in
the simple case with no skips how the introduction of a hairpin-loop penalty can
affect the optimal score, as indicated by (25), when compared to no hairpin-loop
penalty; see [6]. One important difference is that n enters linearly in (25), whereas
n enters quadratically in the corresponding result with no hairpin-loop penalty.

Acknowledgments. The author thanks the referees for pointing out several
places where additional details made the arguments more transparent. Thanks are
also due to an Associate Editor, who provided some valuable suggestions.
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