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THE OSCILLATORY DISTRIBUTION OF DISTANCES
IN RANDOM TRIES

BY COSTASA. CHRISTOPHI AND HOSAM M. M AHMOUD

George Washington University

We investigate�n, the distance between randomly selected pairs of
nodes amongn keys in a randomtrie, which is a kind of digital tree.
Analytical techniques, such as the Mellin transform and an excursion between
poissonization and depoissonization, capture small fluctuations in the mean
and variance of these random distances. The mean increases logarithmically
in the number of keys, but curiously enough the variance remainsO(1), as
n → ∞. It is demonstrated that the centered random variable�∗

n = �n −
�2 log2 n� does not have a limit distribution, but rather oscillates between two
distributions.

1. Introduction. In this computer age that we are living in, digital data,
which are represented and accessed via their composition into digits, are quite
ubiquitous in science and technology. They are prevalent in computer files,
telecommunication signals, DNA and so forth. Digital searching deals with the
storage of information in a computer’s memory and its fast recovery [9]. Various
forms of digital trees are known to be super efficient for this purpose. The subject
of this investigation is thetrie, one popular such digital technology, initially
proposed independently by De La Briandais [2] and Fredkin [4] for information
retrieval.

In informatics, distances between nodes in a random combinatorial object are
of prime interest, because they are indicative of the speed of communication
within the structure. These distances have applications in many other fields too.
For example, the collective sum of all such distances in the graph underlying a
molecule is known in chemistry as theWiener index (see [5] and [19]).

In this paper we look at the distances between distinct pairs of keys in random
binary tries. The mean and variance and ultimately the asymptotic distribution (via
its moment generating function) are derived by analytical methods involving the
use of poissonization, as a mathematical transform, and of depoissonization, as
an asymptotic inverse transform. Although the chief interest lies in studying the
random tree for a fixed population ofn keys, the recurrence equations involved are
rather unwieldy. If a Poisson number of keys is assumed instead, the functional
equations involved can asymptotically be solved by the Mellin transform and its
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inverse. It can then be justified that the solution is a good approximation (with
quantifiable small errors) for the fixed-population problem, when the Poisson
parameter is taken to ben, asn → ∞.

Analogous studies have been conducted on binary search trees (a different
model of random trees), as, for example, the study of the Wiener index [14], and the
study of random distances [13] and its generalization to spanning trees of subsets
of nodes [15]. However, the methodology for binary search trees is essentially
different from the analytic tool-kit we employ here for tries.

Assume a standard Bernoulli probability model on data. Let�n be the distance
between two randomly chosen keys in a trie. Two of our results concern the mean
and variance, and the periodic fluctuations therein (the notation lg stands for log2):

E[�n] = 2 lgn + η(lgn) − ln2− 2γ

ln2
+ O

(
1

n0.4999

)
,

Var[�n] = 2π2 + 19 ln2 2− α

3 ln2 2
+ ξ(lgn) + O

(
1

n0.4999

)
,

where α ≈ 7.227113 is a constant explicitly found as a numerical series, and
η(·) andξ(·) are bounded functions of miniscule magnitude which are periodic in
their argument. The error terms include additional small periodic functions as well.
Note that the variance isO(1), a highly desirable feature in a data structure; this
property indicates robustness of random digital trees in spite of the large variation
in the data.

In view of theO(1) variance, one expects that if a nontrivial limit distribution
were to exist, it would require only centering, but no scaling. Our main result
is that a centered integer version of�n does not converge in distribution to
any random variable. Rather its distribution function assumes the form of a
discrete staircase distribution which oscillates between two distinct fixed discrete
distribution functions.

The main results have been sketched. The rest of the paper is organized in
sections as follows. In Section 2 the definition of a trie is given and illustrated by
an example, and the associated trie terminology is made precise. The probability
distribution assumed on the data is also discussed. At the end of Section 2,
notation that is used as a working language throughout is explained. The moments
are discussed in Section 3 and the moment generating function is derived in
Section 3.1. The poissonization-Mellin-inverse Mellin-depoissonization program
is illustrated in this context. The residue calculation is taken up in Section 3.2.
Some of the very lengthy calculations are relegated to Appendixes A and B. The
first two moments are pumped out from the Mellin transform of the moment
generating function. This is done thoroughly for the mean in Section 3.3 and only
sketched for the variance in Section 3.4. The oscillating nature of the moment
generating function elicits the nonexistence of a limit distribution. This is shown
in Section 3.5 by demonstrating explicit fluctuations in the moment generating
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function. Section 4 concludes the paper with an interpretation of the results and a
discussion of their scope.

2. Tries. A trie is a digital tree structure consisting ofinternal nodes that
have one or two children, andleaf nodes that hold data items (commonly called
keys). We shall assume our data to be binary (although our methods should work
well for larger alphabets too). Suppose we haven ≥ 0 keys given in their dyadic
representation. Data are scaled to be in the interval[0,1]. The trie grows by the
progressive insertion of keys. Ifn = 0, nothing needs to be done; the insertion
algorithm terminates. Ifn = 1, a leaf is allocated for the single key given. If
n ≥ 2, an internal node is allocated as aroot of the tree; keys with 0 as their most
significant bit go to the left subtree, and keys with 1 to the right. Subsequently,
in the subtrees the insertion algorithm is applied recursively, using the(� + 1)st
most significant bit of the key for branching at level�. At termination, each key
is stored in a leaf by itself, and the root-to-leaf paths in the tree correspond to
minimal prefixes sufficient to distinguish the keys. As an illustration, suppose that
n = 5 and that the data are the following:

X1 = 0.00111. . . ,

X2 = 0.11011. . . ,

X3 = 0.00011. . . ,

X4 = 0.01010. . . ,

X5 = 0.11111. . . .

The algorithm guidesX1,X3 andX4 to the left subtree, and it guidesX2 andX5
to the right one. Then, in the left subtreeX1 andX3 go to the left butX4 goes to
the right, whereas in the right subtree, bothX2 andX5 go to the right. The subtree
containingX1 andX3 is developed further into a left subtree withX3 being a leaf
node as it is the only node in the subtree, and a right subtree withX1 contained
in a leaf node as it is the only node in the subtree, and so on. The resulting trie is
depicted in Figure 1, with bullets indicating internal nodes and squares indicating
leaf nodes, where the keys are stored.

We assume a standard model of randomness, according to which keys are
independent and of infinite length; within each the bits are independent and
equiprobable. Thus, each key can be viewed as an infinite sequence of Bernoulli
trials. This probability model is often called theunbiased Bernoulli model.

We define�n as the distance (i.e., the number of tree edges) between two
randomly selected keys in a random trie of sizen, with random meaning that all(n
2

)
pairs of keys are equally likely choices. For example, in Figure 1 the distance

betweenX2 andX4 is 5. A recursive formulation for�n goes viaδn, the depth of
a randomly selected key in a random trie of sizen.
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FIG. 1. A trie with 5 keys.

Furthermore, the Mellin transform of a functionf (x) is∫ ∞
0

f (x)xs−1 dx,

and will be denoted byMellin{f (x); s} or, interchangeably, byf ∗(s). The Mellin
transform usually exists in vertical strips in thes complex plane of the form

a < �s < b,

for real numbersa < b. We shall denote such a domain of existence by〈a, b〉. The
functionf (x) can be recovered from its transform by a line integral

f (x) = 1

2πi

∫ c+i∞
c−i∞

f ∗(s)x−s ds,

for anyc ∈ (a, b).

3. Moments of the random distance. Let Ln andRn be, respectively, the
number of keys residing in the left and right subtrees, among then keys received
by the tree (so,Ln +Rn = n). In view of the unbiased Bernoulli model,Ln andRn

are both distributed like Bin(n, 1
2), a binomially distributed random variable onn

independent trials and rate of success1
2 per trial. Because of the probability

distribution of the keys and the recursive action of the insertion algorithm, each
of the left and the right subtree preserves the probabilistic structure of the trie.
The only difference is that they arerandom tries constructed onLn andRn keys,
respectively, instead ofn.

GivenLn, �n can be�Ln with probability
(Ln

2

)
/
(n
2

)
when both keys come from

the left subtree,̃�Rn with probability
(Rn

2

)
/
(n
2

)
when both keys come from the right

subtree or(δLn + 1) + (δ̃Rn + 1) with probabilityLnRn/
(n
2

)
when the keys come

from different subtrees [here a tilded random variable indicates an independent
copy (with the same distribution) of that random variable]. Hence, we have the
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conditional distribution

�n|Ln =




�Ln, with probability

(Ln

2

)
(n
2

) ,

�̃Rn, with probability

(Rn

2

)
(n
2

) ,

(δLn + 1) + (δ̃Rn + 1), with probability
LnRn(n

2

) ,

(1)

where the vector(�̃1, . . . , �̃n) denotes a copy of random distances independent
of the vector(�1, . . . ,�n); likewise, (δ̃1, . . . , δ̃n) and(δ1, . . . , δn) are vectors of
independent copies of random depths. It is important to note that�Ln and �̃Rn

aredependent through the dependency ofLn andRn, but given the value ofLn

(and, hence,Rn), the two areconditionally independent; the same applies to
δLn andδ̃Rn .

3.1. The moment generating function. From the conditional recursion (1), we
have a recurrence for the conditional moment generating function:(

n

2

)
E[e�nt |Ln] = e�Ln t

(
Ln

2

)
+ e�̃Rn t

(
Rn

2

)
+ e((δLn+1)+(δ̃Rn+1))tLnRn.

Taking expectation of both sides, we essentially get a recurrence for the moment
generating function:(

n

2

)
E[e�nt ] = E

[
e�Ln t

(
Ln

2

)]
+ E

[
e�̃Rn t

(
Rn

2

)]

+ E
[
e((δLn+1)+(δ̃Rn+1))tLnRn

]
.

We observe the symmetry of the left and the right subtrees, and the fact thatLn is
distributed like Bin(n, 1

2). After multiplying by zn and summing over all possible
values ofn, we get

∞∑
n=0

zn

(n
2

)
φ�n(t)

n! = 2
∞∑

n=0

n∑
�=0

zn

(�
2

)
φ��

(t)

�! (n − �)!2n

+
∞∑

n=0

n∑
�=0

znE
[
e(δ�+1)t �

�!
]
E

[
e(δn−�+1)t n − �

(n − �)!
]

1

2n
,

where for any generic random variableX, φX(t) := E[etX]. This gives


(t, z) = 2


(
t,

z

2

)
ez/2 +

{ ∞∑
j=0

E
[
e(δj+1)t j

j !
](

z

2

)j
}2

,(2)
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where
(t, z) := ∑∞
j=0 zj (j

2)φ�j
(t)

j ! .

Note that e−z
(t, z) has a poissonization interpretation. For, ifN(z) is
distributed like a Poisson random variable with meanz, then

e−z
(t, z) =
∞∑

j=0

(
j

2

)
φ�j

(t)P
(
N(z) = j

)

= E
[(

N(z)

2

)
e�N(z)t

]
.

Averaging
(N(z)

2

)
e�N(z)t is just like averaging

(n
2

)
e�nt , except that we assume

a Poisson number of keys instead of a fixed populationn. As we shall see,
the advantage of poissonization is that the Poisson model is amenable to the
formulation of functional equations that can be asymptotically solved by the
Mellin transform techniques. The various fixed-population problems are averaged
over cases with Poisson probabilities as weights. The fixed-population asymptotics
can be well approximated by their depoissonized counterparts.

When we multiply (2) throughout bye−z, we get the functional equation

e−z
(t, z) = 2e−z/2


(
t,

z

2

)
+ F

(
t,

z

2

)
,

whereF(t, z) := [ete−z ∑∞
j=0

jφδj
(t)

j ! zj ]2.
We want to study convergence issues of moment generating functions in a

neighborhood aroundt = 0 (via the Mellin transform). The Mellin transform of
the latter functional equation does not exist in such a neighborhood to recover the
moment generating function. For example, att = 0, the latter equation becomes

z2

2
= z2

4
+ z2

4
,

and we cannot take the Mellin transform of the equation becausez2 does not have
such a transform. Nevertheless, the same equation shifted down byz2/2 has a
Mellin transform. It turns out that for generalt , the factore2t z2

2 is a suitable shift.
Introduce this shift to get

e−z
(t, z) − e2t z
2

2
= 2

[
e−z/2


(
t,

z

2

)
− e2t (z/2)2

2

]
− e2t z

2

4
+ F

(
t,

z

2

)
,

that is,

P(t, z) = 2P

(
t,

z

2

)
+ F

(
t,

z

2

)
− e2t z

2

4
,(3)

whereP(t, z) := e−z
(t, z) − e2t z2

2 .
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LEMMA 1. The Mellin transform of P(t, z) (with respect to the variable z) is

P ∗(t, s) = e2t2s(1− et )2�(s + 2)

(1− 2s+1)(1− e2t2s+2)

×
(
− 2s+3et

1− et2s+2 − 2et
∞∑

k=0

etk

[
1− 1

(1+ 1/(2k+1))s+2

]
+ (1− 2s+3)

2s+2

)

+ 2s+1e2t (1− et )�(s + 2)

(1− 2s+1)(1− et2s+2)
,

well defined for 〈−3,−2− 2|t |
ln2〉, for |t | < 1

2 ln2.

PROOF. The bulk of this computation is in the handling of the functionF(t, z),
which is a squared generating function. We relegate this lengthy computation to
Appendixes A and B. �

Note that, for negativet , the strip 〈−3,−2 − 2t
ln2〉 includes the entire strip

〈−3,−2〉, and, for all|t | < 1
2 ln2, the Mellin transform exists in〈−3,−2 − 2|t |

ln 2〉.
The inverse Mellin transform,

P(t, z) = 1

2πi

∫ c+i∞
c−i∞

P ∗(t, s)z−s ds,

recovers the (shifted) poissonized moment generating function, if we takec ∈
(−3,−2 − 2|t |

ln 2), with |t | < 1
2 ln2. The transformP ∗(t, s) has simple poles at

FIG. 2. The poles of the Mellin transform P ∗(t, s); × indicates a simple pole. The shaded area is
a domain free of poles, where P ∗(t, s) is well defined.
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s = −2, at s = −1 + 2πri
ln2 , for r = 0,±1, . . . , at s = −2 + −2t+2πji

ln2 , for t �= 0
and j = 0,±1, . . . , at s = −2 + −t+2πhi

ln2 , for t �= 0 andh = 0,±1, . . . and at
s = −3,−4, . . . .

We employ the method of “closing the box.” (This method is discussed in
[12] and [18].) In this method one takes the complex integration over the line
c − iM andc + iM , and then closes the box connecting the four cornersc ± iM

andd ± iM , for an arbitraryd > 0. The numberM is chosen in such a way that
no pole is crossed. For example, we can take it to beπi(2m+1)

ln2 , for integerm. The
residue theorem points out that

lim
M→∞

∮
P ∗(t, s)z−s ds = 2πi

∑
residues in〈c, d〉.(4)

The contour integral can be written as∮
P ∗(t, s)z−s ds =

∫ d−iM

c−iM
+

∫ d+iM

d−iM
+

∫ c+iM

d+iM
+

∫ c−iM

c+iM
.

As we letm → ∞ (hence,M → ∞), the line integrals at the top and bottom sides
of the box approach 0, as the magnitude of the� function decreases exponentially
fast with its imaginary part. Moreover, the integral at the right side of the box
introduces an error term of the order ofO(z−d). Hence, (4) gives

P(t, z) = O(z−d) − ∑
residues in〈c, d〉.

The problem has now been reduced to residue computation.

3.2. Residue computation. We have the following residue calculations:

Res
s=−1

[P ∗(t, s)z−s] = z(1− et )e2t

4(1− 2e2t ) ln2

×
[

4et
∞∑

k=0

etk(1− et )

2k+1 + 1
− 3et − 1

]
,

Res
s=−2

[P ∗(t, s)z−s] = 1
2z2e2t ,

Res
s=−2−t/ln2

[P ∗(t, s)z−s] = 0,

Res
s=−2−2t/ln 2

[P ∗(t, s)z−s] = z2+2t/ln 2�(−2t/ln 2)e3t (et − 1)

(1− 2e2t ) ln2

×
(

1

2
(e2t − et − 2)

− (et − 1)

∞∑
k=0

etk

[
1−

(
1+ 1

2k+1

)2t/ln 2])
,
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Res
s=−1+2πri/ln 2

[P ∗(t, s)z−s] = (et − 1)
2πirz�(2πir/ln 2)e−2πir lg z

(1− 2e2t ) ln2 2

×
(

e2t (et − 2)

1− 2et

− e3t (et − 1)

×
∞∑

k=0

etk

[
1−

(
1+ 1

2k+1

)−1−2πir/ln 2])
,

r �= 0,

Res
s=−2+(−t+2πhi)/ln 2

[P ∗(t, s)z−s] = 0, h �= 0,

and, forj �= 0,

Res
s=−2+(−2t+2πji)/ln2

[P ∗(t, s)z−s]

= z2+2t/ln 2e−2πij lg z�((−2t + 2πij)/ln2)(et − 1)

(1− 2e2t ) ln2

×
(

e2t − et − 2

2

− e3t (et − 1)

∞∑
k=0

etk

[
1−

(
1+ 1

2k+1

)(2t−2πij)/ln2])
.

Hence, for any arbitraryd > 0,

P(t, z) = − z(1− et )e2t

4(1− 2e2t ) ln2

×
[

4et
∞∑

k=0

etk(1− et )

2k+1 + 1
− 3et − 1

]

− 1

2
z2e2t − z2+2t/ln 2�(−2t/ln2)e3t (et − 1)

(1− 2e2t ) ln2

×
{

1

2
(e2t − et − 2)

− (et − 1)

∞∑
k=0

etk

[
1−

(
1+ 1

2k+1

)2t/ln 2]}

+ κ(t, lg z) + O(z−d),
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where

κ(t, lg z) = (et − 1)

× ∑
j �=0

(
2πijz�(2πij/ln2)e−2πij lg z

(1− 2e2t ) ln2 2

×
(

e2t (2− et )

1− 2et

+ e3t (et − 1)

∞∑
k=0

etk

[
1−

(
1+ 1

2k+1

)−1−2πij/ln 2])

− z2+2t/ln 2e−2πij lg z�((−2t + 2πij)/ln 2)

(1− 2e2t ) ln2

×
(

e2t − et − 2

2

− e3t (et − 1)

∞∑
k=0

etk

[
1−

(
1+ 1

2k+1

)(2t−2πij)/ln 2]))
.

Recall thatP(t, z) = e−z
(t, z) − e2t z2

2 to get

E
[(

N(z)

2

)
e�N(z)t

]

= z(et − 1)e2t

4(1− 2e2t ) ln2

[
4et

∞∑
k=0

etk(1− et )

2k+1 + 1
− 3et − 1

]

− z2+2t/ln 2�(−2t/ln 2)e3t (et − 1)

(1− 2e2t ) ln2

×
{

1

2
(e2t − et − 2) − (et − 1)

∞∑
k=0

etk

[
1−

(
1+ 1

2k+1

)2t/ln 2]}

+ κ(t, lg z) + O(z−d).

We next check the conditions of the depoissonization lemma [7]. For the
reader’s convenience, we state this lemma.

LEMMA 2 ([7]). Let {an}∞n=0 be a sequence of real numbers. Suppose that

the poissonized function P (z) = ∑∞
j=0

aj zj

j ! e−z exists and can be analytically
continued as an entire function of complex z. Fix θ ∈ (0, π/2) and let Sθ be the
cone {z : |argz| ≤ θ}. Suppose that there exist positive constants α < 1, β1, β2,
c and z0 such that the following conditions hold simultaneously:
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(i) For all z ∈ Sθ with |z| ≥ z0,

|P (z)| ≤ β1|z|c.
(ii) For all z /∈ Sθ with |z| ≥ z0,

|P (z)ez| ≤ β2|z|ceα|z|.

Then for large n,

an = P (n) + O(nc−1/2 lnn).

For the rest of the paper we restrictt to the interval[−0.1,0.1]. For any fixedt
in this range, we can think ofφn(t) as a sequence ofn. It is clear that for this range
of t , the poissonized functionP(t, z) is O(z2+2t/ln 2) inside the coneSθ , and is
O(|z|2+2t/ln2e|z|cosθ ) outside that cone.

By Lemma 2, E[(n2)e�nt ] is the same as the poissonized version, withn

replacingz. When we divide by
(n
2

)
, we get a depoissonization correction error

of the orderO(n2t/ln2−1/2 lgn) in the moment generating function. The Mellin
inversion gives an error term ofO(n−d) for arbitraryd > 0. Thus, combined, the
two errors cannot be brought belowO(n2t/ln 2−1/2 lgn). Therefore, we have

E[e�nt ] = 2n2t/ln 2�(−2t/ln 2)e3t (1− et )

(1− 2e2t ) ln2

×
(

1

2
(e2t − et − 2)

− (et − 1)

∞∑
k=0

etk

[
1−

(
1+ 1

2k+1

)2t/ln2])

+ 2

n2u(t, lgn) + O(n2t/ln 2−1/2 lgn),

(5)

where

u(t, lgn) = ∑
j �=0

−n2+2t/ln 2e−2πij lgn(et − 1)

(1− 2e2t ) ln2
�

(−2t + 2πij

ln2

)

×
(

e2t − et − 2

2

− e3t (et − 1)

∞∑
k=0

etk

[
1−

(
1+ 1

2k+1

)(2t−2πij)/ln2])
.

[Note that the rest of the terms ofκ(t, lg z) are subsumed by theO error term.]
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3.3. The mean. It may be possible to determine the moments of�n directly
from (5). However, the error requires subtle handling owing to the presence ofO

terms, which cannot be differentiated without some regularity conditions. It is
about the same effort to bypass these regularity conditions, and work indirectly
from the Mellin transforms of the moments.

The derivative∂kP ∗(t, s)/∂tk, evaluated att = 0, yields (a shifted version of )
the Mellin transform of the expectation of the poissonized quantity

(N(z)
2

)
�k

N(z).

We start with the mean (k = 1). Let e−zA(z) = E[(N(z)
2

)
�N(z)], and B(z) =

e−zA(z) − z2. Taking the first derivative ofP ∗(t, s) (cf. Lemma 1) and evaluating
it at t = 0, we get

B∗(s) = − 2s+1�(s + 2)

(1− 2s+1)(1− 2s+2)
,

well defined for〈−3,−2〉. The inverse Mellin transform is

B(z) = 1

2πi

∫ −5/2+i∞
−5/2−i∞

− 2s+1�(s + 2)

(1− 2s+1)(1− 2s+2)
z−s ds.

The transformB∗(s) has a double pole ats = −2, which will provide the
asymptotically dominant term (the major part of the complex integration), and
simple poles ats = −1 + 2πki

ln2 , for k = 0,±1, . . . , at s = −2 + 2πji
ln2 , for j =

±1, . . . , and ats = −3,−4, . . . . The corresponding graph with the poles ofB∗(s)
and the area where the function is well defined is depicted in Figure 3.

We use again the method of closing the box, as was done for the moment
generating function, to argue that the inverse Mellin transform ofB∗(s) is given
by the sum of the residues of poles lying to the right of the vertical line�s = −5

2
and a correction term of the orderO(z−d).

We have the following residues:

Res
s=−2

[B∗(s)z−s] = −z2 lg z + z23 ln 2− 2γ

2 ln2
,

Res
s=−1

[B∗(s)z−s] = − z

ln2
,

∑
k �=0

Res
s=−1+2πki/ln 2

[B∗(s)z−s] = −zη1(lg z)

and ∑
j �=0

Res
s=−2+2πji/ln 2

[B∗(s)z−s] = z2η2(lg z),

whereγ = 0.577215. . . is Euler’s constant,

η1(u) := 1

ln2

∑
k �=0

�

(
1+ 2πik

ln 2

)
e−2πiku
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FIG. 3. The poles of the Mellin transform B∗(s); × indicates a simple pole and ⊗ indicates a
double pole. The shaded area is the domain where B∗(s) is well defined.

and

η2(u) := 1

ln2

∑
j �=0

�

(
2πij

ln 2

)
e−2πiju.(6)

REMARK. The series in the functionsη1 andη2 are absolutely convergent, in
view of the fast asymptotic decay of the gamma function�(x + iy), for fixedx and
increasingy—it is well known that�(x + iy) is O(yx−1/2e−πy/2). For instance,
for some positive constantK , we have

∣∣η2(u)
∣∣ ≤ 1

ln2

∑
j �=0

∣∣∣∣�
(

2πij

ln2

)∣∣∣∣
= O(1) + K

ln2

∞∑
j=1

(
2πj

ln2

)−1/2

e−π2j/ln 2

< O(1) + K√
2π ln2

∞∑
j=1

e−π2j/ln 2

= O(1) + K

(1− e−π2/ln2)
√

2π ln2
.
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Hence, for any arbitraryd > 0,

B(z) = z2 lg z − z2η2(lg z)

− z23 ln2− 2γ

2 ln 2
+ z

[
1

ln2
+ η1(lg z)

]
+ O(z−d).

The two functionsη1 and η2 are oscillating functions of a truly ignorable
magnitude. For allz, the magnitude ofη1 is bounded by 0.1426024772× 10−4

and the magnitude ofη2 by 0.1573158429× 10−5. The oscillations occur in the
lower-order terms, anyway, and do not makeB(z) behave in any unstable way.
This means that, as a function ofz, the oscillations are just “waves” of a very
small amplitude, fluctuating around a “steady” component.

Recall thatB(z) = e−zA(z) − z2, and thatA(z) = ∑∞
n=0

(n
2

)E[�n]
n! zn. So,

E
[(

N(z)

2

)
�N(z)

]
= z2 lg z − z2η2(lg z) − z2 ln2− 2γ

2 ln2

+ z

[
1

ln2
+ η1(lg z)

]
+ O(z−d).

The right-hand side in the latter relation isO(z2+ε), for anyε > 0, and as in the
case of the moment generating function, one can check that the conditions of the
depoissonization lemma [7] hold. So, in depoissonized form, the result is

E
[(

n

2

)
�n

]
= n2 lgn − n2η2(lgn) − n2 ln2− 2γ

2 ln2

+ n

[
1

ln2
+ η1(lgn)

]
+ O(max{n−d, n3/2+ε lnn}),

for arbitraryε > 0. Asd > 0 is also arbitrary in the error term, we can take the error
to beO(n3/2+ε). When we divide by

(n
2

)
, we getO(n−1/2+ε) error term. For ease

of exposition, we takeε = 0.0001 and present the error in the orderO(n−0.4999).

PROPOSITION1. In a trie of n random keys following the unbiased Bernoulli
model, the distance �n between two randomly selected keys has the mean value

E[�n] = 2 lgn + η(lgn) − ln 2− 2γ

ln2
+ O

(
1

n0.4999

)
,

where η(·) = −2η2(·), with η2(·) being the small oscillating function given in (6).

3.4. The variance. One can continue pumping moments by taking derivatives
of P ∗(t, s). The derivation of higher moments follows the same general prin-
ciples that were used for the mean: fixed-population recurrence, poissonization,
asymptotic solution by the Mellin transform and its inverse, then depoissoniza-
tion. However, the task becomes too daunting, even for the second moment. This
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combinatorial explosion phenomenon is common folklore in random graphs. Let

L(z) := E
[(

N(z)

2

)
�2

N(z)

]
− 2z2.

Hence,

L∗(s) = ∂2P ∗(t, s)
∂t2

∣∣∣∣
t=0

= 2s+1�(s + 2)

(1− 2s+1)(1− 2s+2)

×
(
− 2s+4

1− 2s+2 + 1− 7 · 2s+2

2s+2 − 2
∞∑

k=0

[
1− 1

(1+ 1/2k+1)s+2

])
,

well defined in〈−3,−2〉.
The inverse Mellin transform is

L(z) = 1

2πi

∫ −5/2+i∞
−5/2−i∞

L∗(s)z−s ds,

which again we handle by shifting the line of integration to the right and account
for the shift by the residue of the poles introduced. The transformL∗(s) has a
triple pole ats = −2, which provides the asymptotically dominant term, double
poles ats = −2 + 2πji

ln2 , for j = ±1, . . . , and simple poles ats = −1 + 2πki
ln2 , for

k = 0,±1, . . . and ats = −3,−4, . . . .

We have the following residue contributions:

Res
s=−2

[L∗(s)z−s] = −2z2 lg2 z − 2z2 lg z

(
2γ

ln2
− 1

)

− z2

ln2 2

[
1

3
π2 + 2γ 2 − 2γ ln2+ 5

3
ln2 2

− 2 ln 2
∞∑

k=0

ln
(

1+ 1

2k+1

)]
,

Res
s=−1

[L∗(s)z−s] = z

ln2

(
3

2
− 2

∞∑
k=0

1

1+ 2k+1

)
,

∑
j �=0

Res
s=−2+2πji/ln 2

[L∗(s)z−s] = −z2ξ1(lg z),

∑
k �=0

Res
s=−1+2πki/ln 2

[L∗(s)z−s] = zξ2(lg z),
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whereξ1(·) anξ2(·) are oscillating function given by

ξ1(u) := 1

ln2

∑
j �=0

�

(
2πij

ln2

)
e−2πiju

×
(

10− 2
∞∑

k=0

[
1− 1

(1+ 1/2k+1)2πij/ln 2

]

+ 4ψ(2πij/ln 2)

ln2
− 4u

)
,

ξ2(u) := 1

ln2

∑
k �=0

�

(
1+ 2πik

ln2

)
e−2πiku

×
(

3

2
− 2

∞∑
j=0

[
1− 1

(1+ 1/2j+1)1+2πik/ln 2

])
,

andψ(·) is the digamma function.
Hence, for any arbitraryθ > 0,

L(z) = 2z2 lg2 z + 2z2 lg z

(
2γ

ln2
− 1

)

+ z2

ln2 2

[
1

3
π2 + 2γ 2 − 2γ ln2+ 5

3
ln2 2− 2 ln 2

∞∑
k=0

ln
(

1+ 1

2k+1

)]

− z

ln 2

(
3

2
− 2

∞∑
k=0

1

1+ 2k+1

)
+ z2ξ1(lg z) − zξ2(lg z) + O(z−θ ).

Recall thatL(z) is a shifted poissonized version of the problem, with a number
of keysN(z) that follows a Poisson distribution with parameterz. Therefore,

E
[(

N(z)

2

)
�2

N(z)

]
= 2z2 lg2 z + 2z2 lg z

(
2γ

ln2
− 1

)

+ z2

ln2 2

[
1

3
π2 + 2γ 2 − 2γ ln2+ 11

3
ln2 2

− 2 ln2
∞∑

k=0

ln
(

1+ 1

2k+1

)]

− z

ln2

(
3

2
− 2

∞∑
k=0

1

1+ 2k+1

)

+ z2ξ1(lg z) − zξ2(lg z) + O(z−θ ).

(7)
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The depoissonization of (7) by the depoissonization lemma [7] finally gives us
the second moment for the fixed population in the same form withn replacingz;
the depoissonization introduces a small error of the orderO(n−0.4999); the genesis
of this particular representation of error is discussed in the paragraphs preceding
Proposition 1. The entire validity of depoissonization bears on arguments similar
to those discussed in some more detail prior to Proposition 1. The variance follows
by subtracting the square of the mean (cf. Proposition 1). Interestingly, the lg2 n

and lgn terms both disappear, leaving behind only aO(1) function, consisting of
a steady component and negligible oscillations.

THEOREM 1. In a trie of n random keys following the unbiased Bernoulli
model, the distance �n between two randomly selected keys has the variance

Var[�n] = 2π2 + 19 ln2 2− 12 ln2
∑∞

k=0 ln(1+ 1/2k+1)

3 ln2 2

+ ξ(lgn) + O

(
1

n0.4999

)
,

where ξ(·) is an oscillating function given by

ξ(u) = 16 ln 2+ 8γ

ln 2
η2(u) − 4η2

2(u) − 4ξ3(u),

with η2(·) given in (6) and ξ3(·) given by

ξ3(u) := 1

ln2

∑
j �=0

�

(
2πij

ln 2

)
e−2πiju

×
( ∞∑

k=0

[
1− 1

(1+ 1/2k+1)2πij/ln 2

]
− 2ψ(2πij/ln 2)

ln2

)
.

The functionξ3 in Theorem 1 is absolutely convergent, by arguments that are
essentially the same as those given for the functionη1 andη2 that appear in the
mean; see the remark following (6). In fact,ξ offers only negligible oscillations;
its magnitude is bounded by 0.5654042648× 10−4. The arguments in [16] may
suggest a way to simplifyξ . In view of the sharpO(1) variance concentration
of �n, a concentration law is an immediate corollary (by Chebyshev’s inequality).

COROLLARY 1. As n → ∞,

�n

lgn

P→2.
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3.5. The oscillatory distribution. The presence of the oscillating function
κ(t, lgn) in the moment generating function of�n indicates that a limit
distribution does not exist. In this section we make this argument more explicit.
We have determined in Section 3.3 that the mean has 2 lgn leading asymptotic
term. We have also seen in Section 3.4 that the variance isO(1). One then looks
into the behavior of the integer random variable of�∗

n = �n − �2 lgn�, if there is
a chance for convergence. The main result of this paper answers this question in
the negative.

THEOREM 2. Let �n be the distance between two randomly selected keys
in a trie of n random keys following the unbiased Bernoulli model. Then �n −
�2 lgn� has an oscillating moment generating function, and, consequently, does
not converge in distribution to any random variable.

PROOF. One finds from (5) that�∗
n has the moment generating function

E
[
e�∗

nt ] = (
G(t) + Hn(t)

)
et(2 lgn−�2 lgn�) + O

(
lgn√

n
et(2 lgn−�2 lgn�)

)
,(8)

where

G(t) = 2�(−2t/ln 2)e3t (1− et )

(1− 2e2t ) ln2

×
(

1

2
(e2t − et − 2) − (et − 1)

∞∑
k=0

etk

[
1−

(
1+ 1

2k+1

)2t/ln 2])

and

Hn(t) = ∑
j �=0

−2e−2πij lgn(et − 1)

(1− 2e2t ) ln2
�

(−2t + 2πij

ln2

)

×
(

e2t − et − 2

2

− e3t (et − 1)

∞∑
k=0

etk

[
1−

(
1+ 1

2k+1

)(2t−2πij)/ln 2])
.

Let {x} denote the fractional part ofx, that is,

{x} = x − �x�.
Using this notation in (8), we find

E
[
e�∗

nt ] = (
G(t) + Hn(t)

)
e{2 lgn}t + O

(
lgn√

n
e{2 lgn}t

)
,
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for the range|t | < 1
2 ln2. For the rest of the proof, we restrictt to the interval

[−0.1,0.1]. For any fixedt from this range, the functionHn(t) provides small
ignorable oscillations aroundG(t), and, of course, theO(n−1/2 lgne{2 lgn}t ) term
can be made arbitrarily small. It is well known that the function{2 lgn} is dense in
the interval[0,1); see, for example, [10]. The term{2 lgn} is genuinely oscillating.
Also, for t > 0,

inf
n≥0

G(t)e{2 lgn}t = G(t) and sup
n≥0

G(t)e{2 lgn}t = etG(t)

and, fort < 0,

inf
n≥0

G(t)e{2 lgn}t = etG(t) and sup
n≥0

G(t)e{2 lgn}t = G(t).

Then, for largen, the moment generating functionE[e�∗
nt ] itself comes infinitely

often very close to the two functionsG(t) andG(t)et . These two “envelopes” are
distinct for all values oft with the exception of that oft = 0, where both values
are equal toG(0) = 1. Namely,∣∣(G(t) + Hn(t)

)
e{2 lgn}t ∣∣ ≥ (

G(t) − |Hn(t)|)e{2 lgn}t ,
and for nonnegativet in the range of interest, we have

|Hn(t)| ≤ 2|1− et |
|1− 2e2t | ln2

×
(∣∣∣∣e

2t − et − 2

2

∣∣∣∣ + e3t |et − 1|
∞∑

k=0

etk

[(
1+ 1

2k+1

)2t/ln 2

− 1
])

× ∑
j �=0

∣∣∣∣�
(−2t + 2πij

ln 2

)∣∣∣∣
≤ 2|1− et |

|1− 2e2t | ln2

×
(∣∣∣∣e

2t − et − 2

2

∣∣∣∣ + e3t |et − 1|
∞∑

k=0

etk

[(
1+ 1

2k+1

)
− 1

])

× ∑
j �=0

∣∣∣∣�
(−2t + 2πij

ln 2

)∣∣∣∣
≤ 2|1− et |

|1− 2e2t | ln2

(∣∣∣∣e
2t − et − 2

2

∣∣∣∣ + e3t |1− et |
|2− et |

) ∑
j �=0

∣∣∣∣�
(−2t + 2πij

ln2

)∣∣∣∣
≤ 3× 10−4.

The latter numerical bound follows from maximizing the part outside the sum by
standard calculus arguments, and working out a numerical value for the sum as
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was done for the mean [see the remarks following (6)]. Similarly, for negativet in
the range of interest,

|Hn(t)| ≤ 2|1− et |
|1− 2e2t | ln2

×
(∣∣∣∣e

2t − et − 2

2

∣∣∣∣ + e3t |et − 1|
∞∑

k=0

etk

[
1−

(
1+ 1

2k+1

)2t/ln 2])

× ∑
j �=0

∣∣∣∣�
(−2t + 2πij

ln2

)∣∣∣∣

≤ 2|1− et |
|1− 2e2t | ln2

(∣∣∣∣e
2t − et − 2

2

∣∣∣∣ + e3t |et − 1|
∞∑

k=0

etk

)

× ∑
j �=0

∣∣∣∣�
(−2t + 2πij

ln2

)∣∣∣∣
≤ 2|1− et |

|1− 2e2t | ln2

(∣∣∣∣e
2t − et − 2

2

∣∣∣∣ + e3t

) ∑
j �=0

∣∣∣∣�
(−2t + 2πij

ln2

)∣∣∣∣
≤ 3× 10−4.

The numerical bound is found in a manner similar to that in the case oft ≥ 0.
In either case, 3×10−4 is an upper bound. Hence, fort > t0 [where 0< t0 < 0.1

is the point where(G(t) − 0.0003)et andG(t) + 0.0003 intersect],

lim sup
n→∞

E
[
e�∗

nt ] ≥ lim sup
n→∞

(
G(t) − 0.0003

)
e{2 lgn}t

= (
G(t) − 0.0003

)
et .

Similarly,

lim inf
n→∞ E

[
e�∗

nt ] ≤ G(t) + 0.0003.

The two bounds are different, asG(t) ≥ 0.98, uniformly int . For instance, letting
t = 1

10 gives

lim inf
n→∞ E

[
e(1/10)�∗

n
] ≤ 1.148< 1.267≤ lim sup

n→∞
E

[
e(1/10)�∗

n
]
. �

In principle, one can invert a moment generating function. For integerr , we
have

Pr(�∗
n = r) = 1

2π

∫ 2π

0
e−iurE

[
eiu�∗

n
]
du.
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The integrals may not be easy to work through. For example, forr = 0, we have

Pr(�∗
n = 0) = 1

2π

∫ 2π

0
G(iu)e{2 lgn}iu du + 1

2π

∫ 2π

0
Hn(iu)e{2 lgn}iu du

+ O

(
lgn√

n

)
.

The functionsG(·) andHn(·) are complicated, but it is clear thatPr(�∗
n = 0) is

oscillating.

4. Discussion. Tries offer many applications in different areas, such as
computer science, telecommunications and computational biology. Applications
include a variety of pattern matching algorithms on words, as well as a model
for analyzing the periodicities and autocorrelation between the substrings of a
string. This is an area of interest to the study of DNA sequences (digital data on an
alphabet of four letters) in computational biology, when the sequences are almost
random.

By purely analytic methods, we investigated distances between pairs of keys in
a random trie onn keys. The average value is 2 lgn (modulated by some small
oscillations), the variance isO(1), and the centered distance does not have a limit
distribution, but rather oscillates between two extremal values. The nonexistence
of limits in the context of digital trees has been noted before in [3], who studied the
height of random incomplete tries by a mix of probabilistic and analytic methods.
The probabilistic behavior of other related parameters can be obtained from our
results. For example, it is a corollary to our results that the Wiener index

Wn = ∑
Dij ,

the sum of all pairs of distances (Dij is the distance between theith andj th keys),
has an average value equal to

E[Wn] = n2 lgn −
(

ln2− 2γ

2 ln2
+ η2(lgn)

)
n2 + O(n1.5001).

To put this result in appropriate perspective, compare with [14].
A trie is said to becomplete when it is fully grown at each level (except possibly

the last one). All the levels in a complete trie are filled with internal nodes, except
the last two (or one) where the keys reside. Thus, in such a complete trie, the keys
are at distance�lgn� or 1+�lgn�. This balance is usually a desired feature for the
fast retrieval of data on average. In the complete trie, if pairs of leaves are chosen
at random, both will always be at depth lgn+O(1). It can be shown by a recursive
argument that the distance between a pair of keys has an asymptotic average 2 lgn

and varianceO(1). Thus, our results confirm that the trie is an excellent choice for
random digital data; it tends to naturally balance itself, behaving rather closely as
an ideally balanced complete trie.
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It appears to us that the results can be extended without introducing essential
difficulty to the case of data on alphabets larger than binary, which can be useful
for DNA studies. The problem that can possibly be of different structure, giving
an interesting offshoot, is that where the Bernoulli model is biased. In the binary
case, for example, one would consider an ergodic source emitting bits of 1’s with
probability p �= 1

2, and 0’s with probabilityq = 1 − p �= 1
2. Several symmetries

employed in the balanced Bernoulli case cease to exist. Under a biased Bernoulli
model, the functional equations obtained, both under a fixed-population model and
a poissonized data model, will be markedly different. We leave this as a topic for
future research.

APPENDIX A

A Mellin viewpoint of the random depth. There are several known results
for the random depth derived by probabilistic methods [see [1] for exact analysis].
See also the related studies of asymptotics in [6, 8, 17]; these results are surveyed
in [11]. However, we need the Mellin transform viewpoint of these results to plug
in the functional equations arising for�n.

We start from

δn|Ln =




δLn + 1, with probability
Ln

n
,

δ̃Rn + 1, with probability
Rn

n
.

As in the formulation of the functional equation (2) for�n, we use the symmetry
of the left and the right subtrees and the fact thatLn is distributed like Bin(n, 1

2).
After multiplying by zn and summing over all possible values ofn, we get

�(t, z) = 2etez/2�

(
t,

z

2

)
+ z(1− et ),

where�(t, z) := ∑∞
j=0 zj

jφδj
(t)

j ! . Multiplying further bye−z to poissonize, we get

e−z�(t, z) = 2ete−z/2�

(
t,

z

2

)
+ ze−z(1− et ).

We then introduce a shift ofz (to ensure the existence of the Mellin transform) to
get

e−z�(t, z) − z = 2et

[
e−z/2�

(
t,

z

2

)
− z

2

]
+ zet − z + ze−z(1− et ),

that is,

Q(t, z) = 2etQ

(
t,

z

2

)
− z(1− e−z)(1− et ),(9)
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whereQ(t, z) := e−z�(t, z) − z.
One can recover the asymptotic result of Jacquet and Régnier [6] or Pittel [17]

by completing a Mellin inversion and a depoissonization program. However, our
purpose is specific to the task of developing a functional equation for

�(t, z) := Q2(t, z),

as we need its transform inP ∗(t, s). Hence, square (9) above to get

Q2(t, z) = 4e2tQ2
(
t,

z

2

)

− 4etz(1− e−z)(1− et )Q

(
t,

z

2

)
+ z2(1− e−z)2(1− et )2,

that is,

�(t, z) = 4e2t�

(
t,

z

2

)

− 4etz(1− e−z)(1− et )Q

(
t,

z

2

)
+ z2(1− e−z)2(1− et )2.

Therefore,

�∗(t, s) = 4e2t2s�∗(t, s) − Mellin
{
4etz(1− e−z)(1− et )Q

(
t,

z

2

)
; s

}

+ Mellin{z2(1− e−z)2(1− et )2; s},
which means that

�∗(t, s) =
(
−Mellin

{
4etz(1− e−z)(1− et )Q

(
t,

z

2

)
; s

}

+ Mellin{z2(1− e−z)2(1− et )2; s}
)/

(1− e2t2s+2).

APPENDIX B

Mellin transform of P(t, z). Taking the Mellin transform of (3), we get

P ∗(t, s) = 2s+1P ∗(t, s) + Mellin
{
F

(
t,

z

2

)
− e2t z

2

4
; s

}
.

That is,

P ∗(t, s) = Mellin{F(t, z/2) − e2t z2/4; s}
1− 2s+1 .(10)
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However,

F

(
t,

z

2

)
− e2t z

2

4
= e2t e−z

[
z

2
+

∞∑
j=2

jφδj
(t)

j !
(

z

2

)j
]2

− e2t z
2

4

= e2t e−z

[ ∞∑
j=2

jφδj
(t)

j !
(

z

2

)j
]2

+ ze−ze2t
∞∑

j=2

jφδj
(t)

j !
(

z

2

)j

− e2t z
2

4
(1− e−z).

(11)

In order to get the Mellin transform of the first part of the right-hand side of (11),
we first let

f (t, z) := e−z
∞∑

j=0

jφδj
(t)

j ! zj .

Hence,[
e−z/2

∞∑
j=2

jφδj
(t)

j !
(

z

2

)j
]2

= f 2
(
t,

z

2

)
+ z2

4
e−z − ze−z/2f

(
t,

z

2

)

= Q2
(
t,

z

2

)
+ z(1− e−z/2)Q

(
t,

z

2

)

+ z2

4
(1+ e−z − 2e−z/2),

with Q(t, z) = f (t, z) − z. Therefore, for the first part on the right-hand side
of (11), we have the Mellin transform

Mellin

{
e2t e−z

[ ∞∑
j=2

jφδj
(t)

j !
(

z

2

)j
]2

; s
}

= Mellin
{
e2tQ2

(
t,

z

2

)
; s

}

+ Mellin
{
ze2t (1− e−z/2)Q

(
t,

z

2

)
; s

}

+ Mellin
{
z2

4
e2t (1+ e−z − 2e−z/2); s

}
.

(12)

Moreover, the relation

Q(t, z) = 2etQ

(
t,

z

2

)
− z(1− e−z)(1− et )
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gives, by recursion,

Q

(
t,

z

2

)
= −

∞∑
k=0

(2et )k
z

2k+1

(
1− e−z/2k+1)

(1− et ).(13)

Hence,

Mellin
{
4etz(1− e−z)(1− et )Q

(
t,

z

2

)
; s

}

= −4et (1− et )2
∫ ∞

0
(1− e−z)

∞∑
k=0

(2et )k
z

2k+1

(
1− e−z/2k+1)

zs dz

= −2et (1− et )2
∞∑

k=0

etk

[∫ ∞
0

(1− e−z)zs+1 dz

−
∫ ∞

0
e−z/2k+1

zs+1 dz +
∫ ∞

0
e−ze−z/2k+1

zs+1 dz

]

= −2et (1− et )2�(s + 2)

∞∑
k=0

etk

[
−1− (2k+1)s+2 + 1

(1+ 1/2k+1)s+2

]
.

In addition,

Mellin{z2(1− e−z)2(1− et )2; s}
= (1− et )2

∫ ∞
0

z2(1− e−z)2zs−1 dz

= (1− et )2
[∫ ∞

0
2(1− e−z)zs+1 dz −

∫ ∞
0

(1− e−2z)zs+1 dz

]

= (1− et )2 (1− 2s+3)�(s + 2)

2s+2 .

Hence, we have

�∗(t, s) = 1

1− e2t2s+2

(
2et (1− et )2�(s + 2)

×
∞∑

k=0

etk

[
−1− (2k+1)s+2 + 1

(1+ 1/2k+1)s+2

]

+ (1− et )2 (1− 2s+3)�(s + 2)

2s+2

)
,
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which means that the Mellin transform of the first part on the right-hand side
of (12) is

Mellin
{
e2tQ2

(
t,

z

2

)
; s

}

= e2t2s�∗(t, s)

= e2t2s

1− e2t2s+2

(
2et (1− et )2�(s + 2)

×
∞∑

k=0

etk

[
−1− (2k+1)s+2 + 1

(1+ 1/2k+1)s+2

]

+ (1− et )2(1− 2s+3)�(s + 2)

2s+2

)
.

Now, using (13), we note that by similar steps we have

Mellin
{
ze2t e−z/2Q

(
t,

z

2

)
; s

}

=
∞∑

k=0

1

2
e(k+2)t (1− et )

×
∫ ∞

0
−z2e−z/2(1− e−z/2k+1)

zs−1 dz

= −2s+1e2t (1− et )�(s + 2)

∞∑
k=0

etk

[
1− 1

(1+ 1/2k)s+2

]
.

Hence, the second Mellin transform on the right-hand side of (12) can be calculated
as

Mellin
{
ze2t (1− e−z/2)Q

(
t,

z

2

)
; s

}

= Mellin
{
ze2tQ

(
t,

z

2

)
; s

}

− Mellin
{
ze2t e−z/2Q

(
t,

z

2

)
; s

}

= 2s+1e2t (1− et )�(s + 2)

×
∞∑

k=0

etk

[
2k(s+2) + 1− 1

(1+ 1/2k+1)s+2

]
.
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Finally, the third Mellin transform on the right-hand side of (12) is

Mellin
{
z2

4
e2t (1+ e−z − 2e−z/2); s

}

= Mellin
{

z2

4
e2t [(1− e−z/2) − e−z/2(1− e−z/2)]; s

}

=
(

1

4
− 2s+1

)
e2t�(s + 2).

Therefore, putting the three pieces together, we obtain the first part of the right-
hand side of (11) as

Mellin

{
e2t e−z

[ ∞∑
j=2

jφδj
(t)

j !
(

z

2

)j
]2

; s
}

= e2t2s

1− e2t2s+2

{
2et (1− et )2�(s + 2)

×
∞∑

k=0

etk

[
−1− (2k+1)s+2 + 1

(1+ 1/2k+1)s+2

]

+ (1− et )2 (1− 2s+3)�(s + 2)

2s+2

}

+ 2s+1e2t (1− et )�(s + 2)

×
∞∑

k=0

etk

[
2k(s+2) + 1− 1

(1+ 1/2k+1)s+2

]

+
(

1

4
− 2s+1

)
e2t�(s + 2).

(14)

For the second part of the right-hand side of (11), we start from

ze2t e−z
∞∑

j=2

jφδj
(t)

j !
(

z

2

)j

= ze2t e−z/2f

(
t,

z

2

)
− z2

2
e2t e−z

= ze2t e−z/2Q

(
t,

z

2

)
+ z2

2
e2t e−z/2 − z2

2
e2t e−z.
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Hence,

Mellin

{
ze−ze2t

∞∑
j=2

jφδj
(t)

j !
(

z

2

)j

; s
}

= Mellin
{
ze2t e−z/2Q

(
t,

z

2

)
; s

}

+ Mellin
{

z2

2
e2t e−z/2; s

}

− Mellin
{

z2

2
e2t e−z; s

}
.

Dealing with each piece separately and utilizing results from before, we obtain the
following results for the first two pieces:

Mellin
{
ze2t e−z/2Q

(
t,

z

2

)
; s

}

= −2s+1e2t (1− et )�(s + 2)

∞∑
k=0

etk

[
1− 1

(1+ 1/2k)s+2

]

and

Mellin
{
z2

2
e2t e−z/2; s

}
= 2s+1e2t�(s + 2).

The last piece gives

Mellin
{
z2

2
e2t e−z; s

}
= 1

2
e2t

∫ ∞
0

e−zzs+1 dz

= 1

2
e2t�(s + 2).

Therefore, the second part on the right-hand side of (11) gives

Mellin

{
ze−ze2t

∞∑
j=2

jφδj
(t)

j !
(

z

2

)j

; s
}

= −2s+1e2t (1− et )�(s + 2)

×
∞∑

k=0

etk

[
1− 1

(1+ 1/2k)s+2

]

+ 2s+1e2t�(s + 2) − 1

2
e2t�(s + 2).

(15)

For the third and last part of the right-hand side of (11), we get that

Mellin
{
e2t z

2

4
(1− e−z); s

}
= 1

4
e2t

∫ ∞
0

(1− e−z)zs+1 dz

= −1

4
e2t�(s + 2).

(16)
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After putting (14), (15) and (16) together and doing some algebra, equation (10)
results in Lemma 1.

Acknowledgment. The authors are indebted to Dr. Ralph Neininger for sound
advice on the scope of the contraction method in the presence of oscillation.
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