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In order to model random density-dependence in population dynamics,
we construct the random analogue of the well-known logistic process in
the branching process’ framework. This density-dependence corresponds
to intraspecific competition pressure, which is ubiquitous in ecology, and
translates mathematically into a quadratic death rate. The logistic branching
process, or LB-process, can thus be seen as (the mass of) a fragmentation
process (corresponding to the branching mechanism) combined with constant
coagulation rate (the death rate is proportional to the number of possible
coalescing pairs). In the continuous state-space setting, the LB-process is
a time-changed (in Lamperti’s fashion) Ornstein—Uhlenbeck type process.
We obtain similar results for both constructions: when natural deaths do
not occur, the LB-process converges to a specified distribution; otherwise,
it goes extinct a.s. In the latter case, we provide the expectation and the
Laplace transform of the absorption time, as a functional of the solution of a
Riccati differential equation. We also show that the quadratic regulatory term
allows the LB-process to start at infinity, despite the fact that births occur
infinitely often as the initial state goes . This result can be viewed as
an extension of the pure-death process starting from infinity associated to
Kingman'’s coalescent, when some independent fragmentation is added.

1. Introduction.

1.1. Presentation of the LB-processThe goal of this paper is to define
and study the random analogue of a demographic deterministic model which is
ubiquitous in ecology and widely known as the logistic growth model. It is defined
by the following ordinary differential equation:

1) dZ;=bZ,dt —cZ?dt, >0,

whereb and ¢ are real numbersc(> 0). The quadratic regulatory term has a
deep ecological meaning as it describes negative interactions between each pair
of individuals in the population. The stochastic version of the logistic process
we construct is a density-dependent continuous time branching process, in both
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continuous and discrete state-space. We call it the “branching process with logistic
growth” or “logistic branching process,” abbreviated as LB-process.

In the discrete state-space setting, individuals give birth as in the pure branching
case (independently, at constant rateto i.i.d. numbers of offspring), but can
die either naturally (at constant rat§ or by competition pressure [when the
total population has size: at ratec(n — 1), proportionally to the number of
extant conspecifics]. Therefore, when the total population has:sibe first birth
arrives at rateon and the first death at ratb: + cn(n — 1). This size-dependence
complies with the deterministic logistic growth model (1), in its formal definition
(quadratic death rate), as well as in its interpretation (negative interactions between
all possible pairs).

In the continuous state-space setting, the LB-process is a Markov process
with (nonnegative) real values. Its paths are a.s. cadlag, that is, they are right-
continuous with left-hand limits. The general definition is inspired by Lamperti’s
transform [27] linking continuous-state branching processes and Lévy processes
(i.e., processes with independent and stationary increments), and is done by time-
changing Ornstein—Uhlenbeck type processes ([34], page 104). In the special case
when the LB-process has a.s. continuous paths, it is the unique strong solution
(when the initial state is fixed) of a stochastic differential equation (SDE) of the
following type:

2) dZ; =bZ;dt — cZ?dt +\/yZ; dB;, t>0,

whereB is the standard Brownian motion apdhe so-called Gaussian coefficient.
In this case, we retain the name coined by Etheridge in [13] where she studies itin
a spatial setting: “Feller diffusion with logistic growth.”

1.2. Modeling density-dependencdn population biology, the most simple
process modeling the dynamics of a population is the Malthusian process. If
Z; € [0, 00) denotes the total number of individuals at timéhen the Malthusian
process satisfiedZ;, = bZ,dt, whereb is the mean birth—death balance per
individual and per time unit. The solutions are straightforward exponential
functions and whe > 0, they rapidly go toco, proving useless for long-term
models. Moreover, this model does not allow populations with positive growth to
become extinct.

This elementary model has a random counterpart, called the branching process,
where populations may have positive (expected) growth and become extinct. In
their discrete time and discrete state-space form, branching processes go back
to Lord Francis Galton and Irénée-Jules Bienaymé. The so-called Bienaymé—
Galton—Watson (BGW) process is a Markov chain, where time steps are the
nonoverlapping generations, with individuals behaving independently from one
another and each giving birth to a (random) number of offspring (belonging to
the next generation). These (random) offspring all have the same probability
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distribution. Here, the mean growth is geometric, but the process evolves randomly
through time, eventually dying out or tendingdo, with probability 1.

Despite its advantage of allowing extinctions while the mean growth is positive,
the BGW-process shares with the Malthusian process the shortcoming (from
an ecological standpoint) of being able to gods. In the deterministic case,

a celebrated improvement of the Malthusian process is the logistic process (1).
It is an elementary combination of geometric growth for small population sizes
and a quadratic density-dependent regulatory mechanism.

The main advantage of this model is th&at converges to a finite limit as
t — oo, namely,b/c (if b > 0) or 0 (if b < 0). On the other hand, this model does
not allow the population to evolve once it has reached its stable state. A natural
continuation will then be for us to replace geometric growth in the logistic equation
by random branching (random growth with geometric mean). Alternatively, this
can be seen as improving the branching process by, loosely speaking, adding a
quadratic regulatory term to it (and thus prevent it from goingdp

It is actually a general feature of numerous models in population dynamics that
the process describing the evolution of the population size through time either
goes taoco or ultimately dies out [17]. In particular, this is the case for any integer-
valued Markov chain with 0 as an accessible, absorbing state, including (most)
BGW processes. As a consequence, the question of adding density-dependence to
branching processes is not a new concern, and answers can roughly be divided into
three types (a brief survey in this matter can be found in [18]). The first approach
sticks to the branching scheme in the discrete time setting: at each generation,
individuals have i.i.d. random numbers of offspring, but their common distribution
depends on the current population size (see, e.g., [23] and the references therein;
see also [14, 35]; a special Poisson case is treated in [7] where, despite the
title of his paper, the author acknowledges that the model is indeed a density-
dependent discrete time branching process, but has no relation to the logistic
growth model (1)). The second approach relies on stochastic difference equations,
giving rise to what is called the controlled BGW process (see, e.g., [16, 21, 33]).
The third approach consists in generalizing the birth and death rates of the
branching process in continuous time in various ways: by considering polynomial
rates as functions of the population size instead of linear rates, or by setting to
zero the birth rate outside a compact set of population sizes. This way of modeling
density dependence is popular among biologists (see, e.qg., [11, 29, 30]).

The present work pertains to the latter approach, but here we are interested in
a specific phenomenon, namely, constant pairwise competition pressure, which
is a ubiquitous fundamental mechanism in biology in various space and time
scales, and thus deserves special attention. We will consider branching processes
in their continuous time form, in both continuous and discrete state-space (note,
nevertheless, that a similar construction in discrete time could be done, by sticking
to the branching scheme but letting the probability of having no child depend on
the population size in the same fashion).
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1.3. Statement of results.Because all properties of the integer-valued
LB-process are common to the real-valued LB-process and not conversely, we
state the results in the continuous setting. Roughly speaking, these results hold
under condition (L) that the logarithm of the offspring size at each birth time has
finite expectation.

Consider the LB-process with continuous paths presented above (2). We will
show that this process is a time-change in Lamperti's fashion [27] of the Ornstein—
Uhlenbeck process, which is itself defined from a positive real numbermed
the competititon rate, and the Lévy procé€ssy B, + bt,t > 0). When the paths
need not be continuous, we will consider a general Lévy process with no negative
jumps instead of the previous Brownian motion with drift. The LB-process is
thus characterized by > 0 and a real-valued functiotr, termed the branching
mechanism, which is the Lévy exponent of a Lévy process with no negative jumps.
In the case of Feller’s diffusion with logistic growth (2),) = %/\2 —br, A >0.

Let us briefly sum up the results. When the underlying branching mechanism
does not allow the population to decrease in the absence of competition pressure,
that is, there are no “natural deathg’ {s then the Lévy exponent of an increasing
Lévy process or subordinator), the LB-process is recurrent. It is null-recurrent
(continuous setting only) if it has zero drift (no “infinitesimal births”), Lévy
measure of finite mass, further satisfyingo < ¢, and, in that case, it converges
to 0 in probability. Otherwise it is positive-recurrent and its limiting distribution
is explicitly given via its Laplace transform (Theorem 3.4; Theorem 2.2 in the
discrete setting). When there are “natural deaths,” the LB-process goes extinct a.s.
We also display formulae for its resolvent measure and its extinction time (via
Laplace transform as well, Theorem 3.9).

Let us mention that in the latter case (continuous setting only), the LB-process
either goes to 0 but remains positive, or is absorbed at 0 in finite time, depending
solely on the branching mechanism (Theorem 3.5), that is, according to a criterion
that does not involve the competition rateabsorption occurs with probability 1
if [*°dAr/y (L) < oo, with probability O otherwise [where the last inequality has
the standard meaning thAt® di /v (1) exists and is finite for some].

Most of all, we are able to start the LB-process-aso (Corollary 3.10,
Theorem 2.3). In the discrete setting this should be compared to the total
mass process in the standard coalescent starting from infinity (see Section 2.3).
Specifically, we denote by, the unique positive solution af®, co) vanishing at
+00, of the following Riccati differential equation:

y/_y2: _qr2,

wherer is some positive function depending on the branching mechapismd
the competition rate (Lemma 3.8, Lemma 2.1). Namely, set

A
o(L) :/0 dt exp</ot wc(sS) a’s), A >0,
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andg its inverse function. Then = ¢’/,/ce. The standard LB-process (starting
from infinity) has entrance law given by

0(%)
Eoo (EXP(—1Z7)) = exp(—/ Wy (s) ds>, A>0,g >0,
0

wherer is an independent exponential variable with paramegtén particular, the
absorption timeT,, has Laplace transform undk,,

Ex(exp(—qT,)) = exp(— /OOO wy (5) ds), q > 0.

In addition, its expectation is finite and equal to

Eoo(T,) = /Ooosrz(s)ds.

A shortcoming of our logistic branching process is obviously that it leads to
much less tractable formulae than in the pure branching case. Though, we
claim that it is the most natural and realistic model for random self-regulatory
population dynamics. The simple definition in the discrete setting can easily
be handled by biologists to do simulations or to include these dynamics into
more complicated models, such as spatial or genetic ones. Indeed, in the case
when no natural deaths occur, the LB-process survives with probability 1 without
tending tooo, and might thus provide a fruitful framework for randomly evolving
large populations, as well as everlasting genealogies. Open questions are the
following: distributions of independent sums of LB-processes, conditioning of the
LB-process to survive and quasi-stationary distributions, underlying genealogy of
the LB-process, distribution of coalescence timesIn the pure branching case

the first of these questions has an obvious answer, the others have been studied in
particular in [2, 6, 10, 24-26, 28, 31].

The outline of the paper is straightforward. Section 2 is concerned with the
discrete setting, and is written in a way that is supposed to not scare biologists,
as it contains the results geared for potential applications. Section 3 gives a more
formal account of the general continuous setting, as well as further interesting
subtleties that do not appear in the discrete setting (null-recurrence, extinction
without absorption). Section 4 gathers the proofs of various theorems and lemmas.

2. The discrete setting. In this section we define and study the LB-process
living on the nonnegative integers. The definition differs from that of the
LB-process in the continuous setting, but both processes have very similar
properties. As a consequence, we will state the results in a rather straightforward
fashion, and proofs will be omitted (we leave the slight adaptations to the reader,
and refer her or him to the manuscript, to be found on the author’s website, for
details).



THE LOGISTIC BRANCHING PROCESS 1511

2.1. A few definitions and a key resultLet us remind the reader that in
continuous time and in the pure branching case, individuals behave independently
as in the BGW-process, but give birth (rate- 0) and die (rate/ > 0) at (random
exponential) independent times. The number of offspring born at each birth time is
k with probability ;. / o, where(my, k > 1) is a sequence of nonnegative integers

such that
Z Tk =p.
k>1

When the population size is, the total birth rate is thusn and the natural death
ratedn. In order to model competition pressure, we then add extra deaths at rate
cn(n—1) (¢ > 0), considering that each of thhendividuals is in competition with
then — 1 remaining others. These deaths occur as if each particle selected another
fixed particle at constant rateand killed it. Observe also that these deaths due to
competition have the same kernel as the pure-death counting process associated to
Kingman'’s coalescent [22], so that the LB-process can be viewed as (the mass of)
a combination of coagulation with independent fragmentation. This viewpoint will
be developed briefly in Section 2.3.

Set

Y(s)=d—(p+d)s+ Y ms't s €[0,1],
i>1
which characterizes completely the underlying branching mechanism.
The LB-processZ = (Z,,t > 0) associated withyy and the positive real
number ¢ is thus the (minimal Feller) process with infinitesimal generator
0 =(gij.i, j = 0), where

inj_i, ifi>1andj > i,

di +ci(i —1), ifi>landj=i—1,
W= i@+ p+ei—1), ifi=landj=i,

0, otherwise.

From now on, we assume condition (L) is satisfied, that is,

(L) > milog(i) < oo.

i>1
Denote by (s;); the tail of the measurér;);, that is, 7y = > ;- 7w, k > 1,
and note that condition (L) is equivalent 0, (7/k) < oo. It is easy to see
that ¥ (s) = (1 — s)(d — Yx-17s%), which allows, for anys e (0,1] under
condition (L), the definition

A0 dv

m(s) = s cv(l—v)
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Standard calculations yield

(3) expim(s)) = Bs /¢ exp(Z m‘—) s €(0,1],

k>1
where
Tk
B = exp(— > —).
=1 ck
Define the nonnegative decreasing functarO, 1] — [0, &) by

1
9(s)=/ "W dy, v e (0,1],

whereg = [ ¢"® dv e (0, +o00]. As a consequence of (3), we can assert that
E=00 <— d=>c.

The mapping is a bijection, whose inverse dn, &) will be denoted byp. In
particular,

@' (s) = —exp(—m o ¢(s)), s €[0,§).

LEMMA 2.1. Assumed # 0, and denote by(e;) the following Riccati
differential equation
() Y =yi=—gqr?,
where

o’ ()]
r(s) = , s €(0,8).
Vep(s)(L—o(s))
For any positiveg, (e;) has a unique nonnegative solutian, defined on(0, £)
and vanishing a¢—. In addition w, is positive on(0, &), and for anys suf-
ficiently small or largew, (s) < /qr(s).As a consequencﬁf w, convergesand
w, decreases initially and ultimately

When the coordinate process starts fronits law will be denoted by,..

2.2. Results. The behavior of the LB-process depends on whethspositive
or zero. As previously, assume condition (L) holds.

When d = 0, recall (3) to see that the function &xp can be extended
continuously tdo0, 1]. It is not difficult to show that one can define the probability
measurey on N by

expim(s)) =Y s, se[0,1].

i>1
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THEOREM 2.2. Whend = 0, the LB-process is positive-recurrent ¥, and
converges in distribution to the probability measurelefined by

-1
Mi=<2j_1\)j> i_ll)i, i>1

j=1

In the binary-splitting caséo = 1), this limiting distribution is that of a Poisson
variable of parametep /c conditioned on being positive

e~Plc (p/ec)
1—e—rlc j!

Wi = , i>1.

Recall the functiorw, defined in Lemma 2.1. LeI, denote the absorption
(extinction) time.

THEOREM 2.3. Whend > 0, the LB-process goes extinctsaMoreover
the probabilities (P, x > 0) converge weaklyas x — oo, to the law P, of
the standard LB-proces®r logistic branching process starting from infinity
UnderP, the extinction time, has Laplace transform

Eo(exp(—qT,)) = exp(— /05 wy (2) dz), q >0,

its expectation is finite and equal to

§ 1 d 1
Eoo(T,) = / sr2(s)ds = / D mw [ du "W).
0 0 cv(l—v) v

2.3. The link with fragmentation—coalescence process&call that when
¥ =0 andc > 0, the LB-process is merely the pure-death process associated
to Kingman’s coalescent [22], where the coagulation rate per pair of objects is a
constant equal to2 As a consequence, the LB-process can be regarded in general
as the mass of a coalescent process with independent fragmentation (corresponding
to the branching mechanism): components of the partition coalesce at ramiR
independently into a random number- 2 of subcomponents at ratg_1, and
may also disappear spontaneously at daferosion).

It is known that the pure-death process £ 0) can be started at infinity,
which stems from the fact that arrival times of coalescence events (coagulation
from i objects intoi — 1 objects) have summable expectations, proportional to
(i(i — 1))~ Then Theorem 2.3 asserts that it is still true even after adding
fragmentation. Nevertheless, undBg,, fragmentation events occur infinitely
often with probability 1 ag ~\, 0. Indeed, the following probabilities are not
summable:

IP; (a birth occurs before a death - P — ~ ﬁ_ asi — oo.
(p+d)i+cii—1) ci
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Let us mention a few recent results in this vein.

In the discrete reaction—diffusion model studied in [3], particles perform
independent random walks, die spontaneously and locally coalesce or split with
the same kernels as ours (in the special case of binary branching).

In [4], all exchangeable coalescence-fragmentation (EFC) processes living in
the partitions ofN are characterized. In a case of quick coalescence and slow
fragmentation (Kingman'’s coefficient is nonzero and fragments always come in
finite numbers), the mass of the EFC process has the same transition kernel as our
(discrete) logistic branching process. This allows Berestycki to use Theorem 2.3
to show that these EFC processes “come down from infinity,” in the sense that the
number of components of the partition is finite at any positive tinges., even
though the process starts from dustfat O, it is equal to the infinite collection
of singletons). Note, however, that Theorem 2.3 was stated under the assumption
thatd # 0. To be convinced that the EFC process still comes down from infinity
even wherd = 0, observe that when there are> 2 objects, the total death rate
is cn(n — 1) > sn(n — 1) + 5n, which is the total death rate associated to the
LB-process with competition rate/2 and death rate/2.

Other works have considered size-biased fragmentation—coalescence processes
(on the partitions of an interval; rates are proportional to the lengths of the
subintervals), when fragmentation is binary. These partitions have infinitely many
components and a ubiquitous equilibrium measure in this setup is the Poisson—
Dirichlet distribution [9, 32].

2.4. Convergence to the logistic Feller diffusionA convergence result is
easily obtained that links the discrete and continuous settings. Namely, Feller's
diffusion with logistic growth is the limit of a sequence (indexed by N)
of discrete logistic branching processes. Rigorously, denot@b’ﬂ},t > 0) the
Markov process living om 1N, started atz~! [nx], stopped at 0, and whose
transition kernels are as follows. The integé,f”) = nZt(”) is a binary-splitting
(w1 = p) LB-process with parameters (indexed by p, = %nz + An, d, =
%nz + én, ¢, = ¢, Wherec, §, y, A, are positive constants. In other words:

1. 2" is incremented by /in at rate(4n + })n?z.".
2. 7" is decremented by/k at rate(4n + 8§)n?Z{".
3. z™ is decremented by/4 at ratecn?z™ (z" —n=1).

Let b = A — §. Then standard results [20] show thatas> oo, the sequence
(Zt(”), t > 0),, converges weakly to the Feller diffusion with logistic growth started
at x and solution of (2),

dZt=btht—CZ,2dt+\/)/Z,dBt, t > 0.
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3. Thecontinuous setting.

3.1. Preliminaries. In the 1950s [19], the analogue of the BGW-process
was defined in continuous time and continuous state-space (CB-process). All
CB-processes are cadlag, and their jumps (if any) are a.s. positive. Those whose
paths are continuous satisfy an SDE of the following type:

dZt=bZ[dt+\/)/Z[dBt, t>0,

so that the definition of the LB-process in this case is clearly (2). Vher®, the
dynamics are referred to as quadratic branching. WherD andy = 4, Z is the
celebrated Feller diffusion or squared Bessel process of dimension 0.

Next we remind the reader of a celebrated result of Lamperti [27] which relates
CB-processes and Lévy processes with no negative jumps. This result will allow
us to give the appropriate definition of the branching process with logistic growth
in a second section.

A Lévy process is a cadlag Markov process with independent and stationary
increments. A Lévy process with continuous paths is the sum of a (scaled)
Brownian motion and a deterministic drift (possibly zero). Kebe a real-valued
Lévy process with no negative jumps. LBtbe the first hitting time of zero by .

Then define
tATo s
= Vv t Oa
Ui /O X, >

and(Cy, t > 0) its right-inverse. Lamperti’s result then states that if
Z;=X(Cy), t >0,
thenZ is a CB-process, and

t
C;=/ Z.ds, t>0.
0

Conversely, any CB-processis a time-changed Lévy processfis defined as
above, and is the right-inverse of’, thenZ o n is a Lévy process with no negative
jumps killed when it hits 0.

In the special case of quadratic branching, Lamperti’s result predicts that if we
time-change a Feller diffusion (i.e., a quadratic CB-process) in this fashion, we
obtain (up to a multiplicative constant) a killed Brownian motion. It is indeed
easy to check that i¥, = x + [ /Z; dBs, thenZ o 1 is a local martingale with
increasing process” Z,ds = t, and thus is a standard Brownian motion. Using
this last argument, it is elementary to prove the following proposition concerning
the LB-process.

PrROPOSITION3.1. As previouslyassume” is a Feller diffusion with logistic
growth that is a diffusion solving?2),

dZ[=bZ[dt—CZt2dt+\/)/thB[, t>0.
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Definen as the right-inverse o€, whereC, = fé Zyds. Then the proces® =
Z o n solves the following SDE

dR[=dXt—Ctht, t>0,

where X is a Brownian motion with driftnamely y ~Y2(X, — bt,t > 0) is the
standard Brownian motian

Converselylet R be the(strong solution of the last SDE whef€ is a Brownian
motion with a possible driftTy its first hitting time of0 and C the right-inverse

of n, where
tA\To (s
’7’:/ — t > 0.
0 Ry

ThenZ = X o C is a diffusion process killed when it his and solves an SDE of
type(2).

This last proposition will enable us to extend the definition of branching process
with logistic growth to any kind of branching mechanism.

3.2. Construction of the logistic branching procesd.et X denote a spectrally
positive Lévy process (i.e., with no negative jumps). The branching mechanism
function that interests us is the Lévy expongnof X defined by

E(exp(—AX;)) = expty (X)), t,1>0.
It is specified by the Lévy—Khinchin formula ([5], Chapter VII)

o
lﬁ(k)zak+gk2+/() (e_)‘r — 1+ Ard, )II(dr), A>0,

where « is a real number,y a positive real number termed the Gaussian
coefficient of X, and IT is a positive o-finite measure on(0, co) such that
Js2 (LA r?)I(dr) < oo, termed the Lévy measure &f.

We now provide the definition of the LB-process.

DEFINITION 3.2. For any positive real numberand any spectrally positive
Lévy processX with Lévy exponent), we define the logistic branching process
LB(v, ¢) associated withy andc starting fromx > 0 as follows.

Let R denote the unique strong solution, starting fropof the following SDE:

4) dR, =dX, — cR, dt, t>0,

Ty its first hitting time of 0 and’ the right-inverse of), where

tA\To (s
n,:f —, t>0.
0 Ry
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Then the LB-procesZ is the Feller process defined by

"o, if 1oo < 00 ANd? > 7.

If A (resp.Q) denotes the infinitesimal generator ¥f(resp. Z), then, for any
differentiable f in the domain ofA,

Of(2) =zAf(2) — cz°f'(z),  z=0.

Before continuing further, we prove some of the facts stated in this last
definition. SDEs of type (4) are well studied, see, for example, [34], pages
104-113. They have strong solutions which are cadlag homogeneous strong
Markov processes, known as Ornstein—Uhlenbeck type processes. An explicit
formula for the unique strong solution of (4) with initial statés

1
(5) R, =xe ' + exq—ct)/ exp(cs) d X, t>0.
0

By standard theory of Markov processes (see, e.g., [12])s then a cadlag

time homogeneous strong Markov process. Furthermore, it is easily seen that the
infinitesimal generatot/ of R is given, for any differentiablef in the domain

of A, by

Uf(z)=Af(2) —czf'(2), zeR.

As a consequence, for any timand initial conditionx > 0, withs = C,,,
t t
B [ of@oau) ==.( [ vr @)z, du)

=Ex</oct Uf(Rs)ds>

=E(f(R(C)) — f(x) =Ex(f(Z))) — f(x),
which shows, indeed, tha is the infinitesimal generator &f.

3.3. Properties of the logistic branching procesdn this section we are
interested in the law of the LB-process, and particularly in its long-term behavior.
This behavior depends on wheth€éis a subordinator or not. We recall that a Lévy
process with positive jumps is called a subordinator if it has increasing paths a.s.
In that case, its paths have finite variation, its drift coefficient is nonnegative, and
its Gaussian coefficient is zero.

In contrast to the pure branching case, LB-processes eventually go to 0
with probability O or 1. In reference to population biology, this probability is
called the extinction probability (otherwise, absorption probability). WKes a
subordinator, this probability is 0, and the LB-process is recurrent. Vithismot
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a subordinator, it is 1, and we characterize the law of the extinction time. Unless

otherwise specified, proofs of statements of this section are postponed to Section 4.
From now on, we assume condition (L) is satisfied, that is,

(L) E(log(X1)) < oo.

We recall that condition (L) is equivalent 6™ log(r)I1(dr) < oo [5]. Accord-
ingly, it is easily seen that one can define

A
m()»):/0 W(SS) ds, A>0.

C

In the next statements, we consider the case whias a subordinator. We then
denote bys > 0 its drift coefficient, so that ([5], Chapter IlI)

o0
Y(h) = —81 — / Mdry(1—e*), 1>0.
0
We also introduce its Lévy talll, that is,[1(y) = /;° TT(dr), y > 0.

LEMmMA 3.3. AssumeX is a subordinator satisfyingL). Thenm can be
expressed as

—M) @ d
cr

S o
—m(k):—k+/ 1—e r, A >0,
C 0

and the following equation
o
/ v(dr)e ™" =expim(})), A>0
0

defines a unique probability measuveon (0, co). This probability measure is
infinitely divisible andv((8/c, 00)) = 1.

REMARK. Note thatv is also self-decomposable. An r&.s said to be self-
decomposable if for any < 1, there is an r.vS, independent of such that

aS+5,29s.

In particular, any self-decomposable distribution is infinitely divisible. Conversely,
a real infinitely divisible distribution is self-decomposable if its Lévy measure is of
type|x|~1k(x) dx, wherek is increasing orf{—oo, 0) and decreasing ofD, co).

We introduce conditiond), wherep is defined as

. o0
P :/ I1(dr) < o0.
0
We thus say thatd) holds iff (at least) one of the following holds:

e §#£0,
® p =00,
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e ¢ < p<o00.

THEOREM3.4. AssumeX is a subordinator satisfying).

() Assume(d). Then the probability defined in Lemma&.3 has /5 r~1x
v(dr) < co. The process LB/, ¢) is positive-recurrent in§/c, oo) and converges
in distribution to the probability measurg whose size-biased distribution is
that is,

-1
u(dr) = (/(5/ oo)s_lv(ds)) r_lv(dr), r>0.

In particular, the expectation of the stationary probability is

-1
/ ru(dr) = (/ slv(ds)) < 0.
(8/c, 00) (8/c, 00)

(i) Assumed) does not holdThen the process L, ¢) is null-recurrent in
(0, o0) and converges t0 in probability.

From now on,X is assumed not to be a subordinator. In the next theorem, we
claim that the extinction probability is 1. We set a criterion to establish whether
the process remains positive or is absorbed, that is, reaches 0 in finite time. Note
that the criterion for absorption does not dependt@and is the same as for the
branching process & 0) [15].

THEOREM 3.5. AssumeX satisfies(L) and is not a subordinatoiThen the
process LBy, ¢) goes td0 a.s., and if T, denotes the absorption time

T,=inf{r >0:Z;, =0},

then P(T, < oo) = 1 or 0 according to whether/* d/y (1) converges or
diverges

The last two theorems will be proved in Section 4.

Next we intend to give deeper insight into the law of the LB-process. We will
simultaneously be able to define the standard LB-process or LB-process starting
from infinity.

Defined : [0, +o0) — [0, +00) by

A
o)) :/ " ds, A >0.
0

Recall [5] that whenX is not a subordinator, liminf,., 2 2y (1) > 0. As a
consequence, the mappifigs a strictly increasing bijection, whose inverse will
be denoted by. In particular,

@' (L) =exp(—m o p(1)), A>0.
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Define also for any nonnegativeand positiveg, the Laplace transforny, , of
theg-resolvent measure of the LB-process, ¢ > 0) started aty,

o0
Ggx(A) = / dte "B, (e %), 1> 0.
0

Note that from Definition 3.2, ifA still denotes the infinitesimal generator of the
Lévy processX, then for any differentiable real function in the domaindf

g /o dt e E (£(Z)
©) N
=f(x)+ /0 dt e_ntx(Zt Af(Z;) — Cthf,(Z,)).

Before stating the main theorem of this section, we display three lemmas, the last
of which is the key result for the theorem. The first two help understand where
the third one comes from. These lemmas are also proved in Section 4 (except
Lemma 3.8 whose proof is replaced by the more general proof of Lemma 2.1).

LEMMA 3.6. As a function ofx € (0,00), G, is twice continuously
differentiable and solves the second-order linear differential equdtin, where
y is the unknown function andis the scalar variable

(Eq) —chy" + Yy +qy=e".
LEMMA 3.7. If (Eg(,h)) is the homogeneous differential equation associated
to (E,), then

(i) Forany solution(/, f) of (EC(]h)), for any open subintervdlp of I on which
f4 does not vanisfthe functiong, defined as

T
g =—"—, el
fg)
solves on/p the Riccati differential equatio(e,)
v q
€ -y 24y y=2L,
(¢¢) YAy oy=—

(if) For any solution(/, g,) of (¢,), the function:,, defined as
hg(A) =e Mg 0 p(), reb(J)
solves or¢(J) the Riccati differential equatio(r;)
(e)) Y = yi=—qr?,
where
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LEmMmA 3.8. For any positiveg, the Riccati differential equatim(leé) has
a unigue nonnegative solutiom, defined on(0, co) and vanishing atco. In
addition, w, is positive on(0, co), and for any i sufficiently small or large
wy (X)) < \/qr(X). As a consequencg, w, convergesand w, decreases initially
and ultimately

Now we are able to state the main results of this section.

THEOREM 3.9. Recall the functionw, defined in Lemma3.8. For any
nonnegative. and positiveg, an expression foG, (1) is given by

0 (1)

o(1)
qu,x()"):l—/ dte_ft wgy(z)dz
(7) 0 N |
X f ds qrz(s)(l — e—xtp(s))e—fﬁ wg(2)dz
t

In particular, if /*°dx/y (L) convergesthen the absorption timé, is as. finite
and has Laplace transform unde,

E, (eX[X—C] Ta))

o0
®) o ¢

o0 s
X / ds qr(s)(1— e_x‘”(s))e_ff wq (D) dz g > 0.
t
In addition, its expectation is finite and is equal to

E(T,) = /OOO ds Sr2(s)(1 — e—xw(s))

X dJt t
:/ —(l—e_tx)e_m(t)/ dse™®.
0o ct 0

COROLLARY 3.10. The probabilities (P,,x > 0) converge weaklyas
x — o0, to the lawP,, of the standard LB-process or logistic branching process
starting from infinity The standard LB-process is the Markov process that has the
same transition kernels as the LB-process considered prevj@mslyentrance law

given by

(9)

o(r)
(10) Exo(exp(—rZ;)) = exp(—/o wy (5) ds), A>0,9g>0,

wherezt is an independent exponential variable with parametem particular,
if [°°dx/y (1) convergesthen undefP,, the absorption timd, is as. finite and
has Laplace transform

(11) Eso(exp(—qT,)) = eXp(— /OOO Wy (s)ds), g > 0.
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In addition, its expectation is finite and equal to
oo 2 o0 d[ t
(12) Eoo(Ty,) :/ sro(s)ds =/ —e_’"(’)/ ds ™.
0 0 ct 0

PROOF OFTHEOREM3.9. AsinLemma 3.7, defing, as
8q(s) = em(s)wq 06(s), s>0.

Then the functiong, solves the Riccati differential equatiore,j and by
Lemma 3.8 is integrable at O, for

A 108)
/ gq(s)ds = / wy (1) dt, A>0,
0 0

by the change = 6(s). Then define the functiong, , andk, . as

A
Fu00)=Gy(M) exp( fo 24 (s)ds), A>0,

A
Ky (1) = Fé’x(k) exp— (m()») + 2/0 g4 (s) ds), A>0.

By Lemma 3.6 and after some algebra, we get

A
C)\.Ké (M) =—exp— <Ax +m(A) + / gq(s) ds>, 2> 0.
’ 0
Next integrate the last equation to obtain
Kgx(A) =Ko+ /OO ﬂe""_’”(f)—fé 8q(s)ds
B Ao ct

=Ko+ > dv @e—w(v)—fd’ wg ) du. A >0,
00y cpv)
where the last equality stems from the changesé(s) andv = 6(¢), andKg is
an integration constant. Therefore, by the same kind of change, we get

F) () = Koe" W2l wg(@) dz

+ em(k)+f3(” wq(z)dz > ds gp/z(s)e—?“ﬂ(s)—fév(x) wq(Z)dZ, %> 0.
o) cp(s)
Check that this last function is integrable at 0. IndeEg’,x(A) ~ K4x(1) as
A\ 0, and the first expression we got f&y, , provides the equivalerk, , (1) ~
¢ 1In(»). Then becausé, ,(0) = G, . (0) = 1/4, the integration oiF(;,x reads

1 o) ;
Fyx(1) = g + Ko/o dt e2Jowqg()dz

O 2
+ / i / ¥ as ) e frwg@dz: 5 5 g
0 : co(s) ’ -
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We thus get the following expression for, .:

000 1eS) ()
Gyx () = gL 16" wa@dz | ko=l w,,(z)dz/o dt o2 S wg@)dz

) o

4o h? wq(z)dzf @ dt s wq(z)dz/oods F2(s) e 0= wy @) dz.
0 t

A>0.

Recall thatyr? = w7 — w/, so that an integration by parts yields

o) s
/ dr elows(@dz /oo ds qré(s) e Ji wa@dz
0 t

60, ,
(13) = /0 dt wy (1)efowa@ 4z

— oM w@dz _ 4

SincegG, 0 is constant equal to 1, the constant integration must be 0. In
addition, the previous display yields for any nonnegatiye

(Gan(09 = B 10

O(r
+ f @ gt e HP w1z
0
o0 S
(14) X / ds gr(s)e= "W = i wq (@) dz
t
000
=1— / die— iV we@dz
0

> A
X / ds qrz(s)(l — e—xw(s))e—f,‘ wq(Z)dZ’
t

which ends the proof of (7). For (8), recall thBt is a.s. finite upon the condition
given in Theorem 3.5. Observe that

o0
Gya(h) = / dt e~ B (17 o+ e *%15.0),  1>0.
0

By a double application of Lebesgue’s convergence theorem, this quantity
converges to

o0
/ dte 1'P,(Z; =0),
0

so that, integrating by parts the last quantity,
Ali—>moo qu,x ()\) = Ex (eXp(—q Ta)) .
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For the expectation df, (9), we have to handle the Laplace expon#fit, 1) of
the marginal distribution of the LB-process. Fubini’'s theorem and Beppo Levi's
theorem, indeed, yield

o o0
lim (L—H(t, 1)) dt =E/ 1z7,40dt =E(T,).
0

r—00 J0
It is clear (see proof of Lemma 3.6) that
oH w(x)aHJr AazH t,A>0
= A CA——>, ) - Y
ot N 012

which yields, by integratinge =™ w.r.t. 1,

o0
oH _ _em(k)/ d_sa_H(t’ $)e"O), 1,1>0.
oA » cs 0t

Integrate this last equation w.rit.and then w.r.tz, and recall tha# (¢, 0) = 1, to
get, by Fubini's theorem,

00 A 00 s
/ (1—H(,»))dt = f du e'"<“>/ —e ML —e),  A=0.
0 0 u cS

The result follows by letting. go to co and applying Lebesgue’s convergence
theorem. An elementary variable change yields (9).

PROOF OFCOROLLARY 3.10. Equations (10) and (11) of the corollary follow
from the same arguments that supported the theorem.

Let us prove the convergencelbf (exp(—AZ;)) to (12). Observe that if is an
independent exponential r.v. with parametethenkE, (exp(—AZ;)) = gG4 (1).
The convergence then stems from (14) and the integration by parts used in (13).
Namely,

O(1)
0

0<E,(exp(—ArZ,)) — e/

0(1) , o0 ]
</ dre= " wq(Z)dze_w(t)/ ds gré(s)e”Jr wa@dz
t

wy(z)dz

~Jo
o) .

:/ ( dte— té(k)wq(z)dze—xw(t)wq(t)‘
0

Now the function
= wy (t)e™ f’f?(/\) wg(z)dz

is integrable on0, #(A)], so that, by Lebesgue’s convergence theorem, the last
displayed upper bound converges to ras co.

Finally, the existence of (and weak convergence to) the LB-process starting from
infinity stem from the previous convergence of Laplace transforms and standard
theory [8]. O
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4. Proofs.
4.1. Proofs of Lemm&.3, Theorems3.4and 3.5.

PROOF OFLEMMA 3.3. First observe that

A d o]
—m(/\)=/0 C—j<5s+/0 l'[(dr)(l—e‘”))

5 oo Y PP
- f I(dr) / du=——¢
C 0 0

cu

i
e,
cr

8 o0
_ —,\+/ (1= ey
c 0

Note that the positive measure defined byA (dr) = (cr)~1(r)dr, r > 0, is,
under condition (L), a Lévy measure. Indeed,

/oo Adr) = 6_1/00 In(u)T1(du) < oo,
1 1

1 00
/ rA(dr) = c*lf (LA uw)TI(du) < oo,
0 0

so that one can definE as the subordinator with Laplace exponent: ([5],
Chapter Ill). As a consequence, the probability measuiewell defined as the
law of Y1 (so it is infinitely divisible), and the measurealways has infinite mass
so thatY; > §/ca.s. O

PROOF OFTHEOREM3.4. To see that
o0
(15) (9) <:>/ r~lu(dr) < oo,
0

we use the following equality (where both sides can be infinite):
o o
f r~Yu(dr) :f "™ dy,
0

0

so that (15) reduces @) < [ di exp(m(X)) < oco.

Recall thatm (1) = f&(cs)‘lw(s)ds <0,1>0.ltis clear from Lemma 3.3
that wheneves # 0, [ dA exp(m (1)) is finite.

Next assume thdi has finite masg. Since the case whdi has infinite mass
can easily be derived from the case- ¢ by a truncation argument, it only remains
to prove that whed = 0, [ d expim (1)) < oo iff p > c¢. Thenrecall Lemma 3.3
and write, for anyx > 1,

—m(}) = /000(1 — e—“)¥ dr.



1526 A. LAMBERT

Next pick x > 0, divide (0, co) into (0, x/A], (x/A, x] and (x, c0), and change
variables § = Ar), to get

—m(L) — /‘X () d

/n o cr

_/(1— —”M

_/Axe_uﬂ(u/k) du+/00(1_ _M)Hc(r)

cu r

Since Il is positive and decreases frof(0+) = p, an appeal to Lebesgue’s
convergence theorem yields

. x T1(r)
lim —m(}) —/ dr
A—00 x/r» cr
(16) X d 00 d o I
= [a-en oy [Tty [T,
0 cu x cu X Ccr
=k(x),
andk(x) is finite. Now the same properties Of ensure that
x 1
(17) Q In(v) < / @ 4y <PinGy,  x>0i>1
x/» cr c

Using (16) and the left-hand side inequality in (17), we get

limsupe™ M A/ < exp(—k(x)) < 0.

A—00
Assume first thap > ¢ and pickx small enough to havB (x)/c > 1, then the last
equation shows that™ da exp(m (1)) < oco.

Using (16) and the right-hand side inequality in (17), we get

liminf ™™ Af/¢ > exp(—k(x)) > 0.

A—00
If p <c, the last equation then shows that d exp(m (1)) = oo. This ends the
proof of (15).

We next point out that,d) holding or not,Z is recurrent in(§/c, co). Indeed,
it is known [34] thatR oscillates in(§/c, co) and converges in distribution tg
so thatTy = oo a.s., lim_. » n; = o0 a.s., and’ is defined on the entird, co), so
Z = R o C also oscillates ir{é/c, 00).

Let us characterize the invariant measures. According to Definition 3.2, the
infinitesimal generato@ of Z satisfies, for any positive,

Qe (z) = zAex(2) — cz%€, (z) = (¥ (L) + cAz)zen(z), z>0,
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wheree, (z) = e~*2. Now for any positive measure on [0, c0), let x denote the
Laplace transform ofz (dr). Then¢ is invariant forZ iff ¢ Q0 =0 and

{0=0 < ¢Qe,=0 V1>0
— /ooog“(dz)(t//()»)—i-ckz)zek(z):O VA>0

= YRx) —crx' () =0, 1 >0.

The resolution of this ordinary differential equation proves thet) =
kexp(m (1)) for some constart, so that

(18) r¢(dr) =kv(dr), r >0,

with a possible Dirac mass at 0 for We can now prove the dichotomy between
() (convergence in distribution) and (ii) (convergence to 0 in probability).

() Thanks to (15), sinced) holds, we know that;” r~Yv(dr) < co. Equa-
tion (18) then ensures thatis the unique invariant probability measure.

(ii) Inthe case whend) does not hold/;° r~Lv(dr) = oo and all invariant pos-
itive measures o010, oo) are nonintegrable at40, so that lim_, .. P(Z; >¢) =0
for any positivee.

Recall thatZ oscillates in(0, co) to conclude it is null-recurrent.Cd

PROOF OF THEOREM 3.5. In the case wheX is not a subordinator, the
Ornstein—Uhlenbeck type proceRsstill oscillates [34] with stationary measure
but this timev charges the negative half-line so that liminf, R; < 0 a.s., and
Tp < oo a.s. Itis thus clear that lim. o, Z; = 0 a.s., the absorption depending on
whether the integra}oT0 ds/Rs(=T,) converges or not. To check the criterion for
absorption given in the theorem, we make use of the fundfign. First define
the positive functiorg, . as

G/
gq,x()b) =27 ), A>0.
Gq’x

In the rest of the proof, we will drop the indices whenever it is not ambiguous to
do so. Recall that
E(exp(—gT,)) = lim gG(%).
A—00
SinceqgG (L) = exp(— [& g(s)ds), it suffices to show that

o0 o0
/ gl dxr and f d)/ P (A) have the same nature.

Thanks to Lemma 3.6, it is not difficult to prove thasolves

e—xx

A=y +y) +¥y=q— G’
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We first show thaG decreases more slowly than any negative exponential function
of parameter, say,

e~

lim =0.
r—o00 G ()

To this aim, define
o=supr>0:Z,>z/2},

which is finite a.s. sinc& goes to 0. Next observe that

o0
G(») z/ die " E(e ™, 1t > o)
0

o0
> ¢ 42/2 / dte T"P(t > o)
0

— e—)»z/zq—lE(e—qo')’

which proves our claim. Sinc& is not a subordinatop, /v (1) is bounded from
above (and positive for sufficiently largg, so that

. —AX
CYWGH)
We will use this last comparison along with the following rearrangement of the
differential equation thag solves

(19) YW +MA) —q —crg' (W) = —crg?(h),  r>0.

o(e™**1?) asi — oo.

h(})

On the vector spac€p of continuous real functions defined ¢@, oc) with (at

most) polynomial growth ato, define the scalar produ¢t -) by

(. 0) J5C dt e "By (u(Z,)v(Zy)e *2r)

u,v)= )
Ggx(2)

u,veCp.

In particular, if 1 denotes the constant function equal to 1 dnthe identity
function on[0, co), then(1, 1) =1 and

4

, _ G/ 2_ _ o
gm——g(xw(gm) — LA+ (D)2 <0,

by the Cauchy—Schwarz inequality. Thus, the positive funcgors decreas-
ing on [0,00). If [ >0 is its limit at oo, since limsup_, ¢ () = 0 and
lim; o A/ (1) € [0, 00), (19) yieldsl <0, so that =0.

Thanks to this same equation, and becdus®, note that

A
lim - ¢() =0.

Jim g()7H () +hG) — () THg +crg'(W)) = — lim AN,
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As a consequence,

/oo gA)dr and

/oo(w(k)‘l(q +crg' (L) —h(V))dA have the same nature.

But 2(1) = o(e=*/2), lim)_ oo A/¥ (1) € [0, 00) and lim o0 | g(1) =1 =0, SO
that

o o0
/ AW tg’ (M) dr and / h(\)d»  both converge
which reduces the comparison f8° di /vy (1). O
4.2. Proofs of Lemma8.6, 3.7and 2.1

PROOF OFLEMMA 3.6. Recall (6), and apply it to the functien defined
asey (z) = e %, It is well known thate;, is in the domain ofd and that, for any
positive,

Ae; (z) =Y (M)en(z), z>0.
As a consequence,

o0
qGyx (M) = en(x) + /0 dt e 1"E (v (M) Ze % 4 caz2e 1)

= (x) =Y (MG, (W) +cAG) (L),
which concludes the proof.(]

PROOF OFLEMMA 3.7. Sincef, solves the homogeneous equati (E)Eh)
associated toK,), we have

—c)»f(;’()\)—i—l//()»)f(;(k)—i—qfq(k):o, rel.
Itis an old trick to consideg, = —f,/f,, forthen f7'/f = —g; + (fé/fq)z. For
A e Io [ fy () #0], divide the previously displayed equality byeA f, (1), and get

—g,(A) + g 200 + & ¢ =—, 1 € Io.

For anyg, satisfying the last equatlon on some open intetkjalve consider the
change of functiork, (1) = e ™M g, 0 (1), A € 0(J), so that

h, () = 72" (—m’ 0 (1) gq 0 p(1) + g} 0 p(R))
72mo<p()x ° _
< ) (A))
q¢

'(3)?

( )~ cp(r)
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which indeed proves that, solves (;21) oné(J). O
PROOF OFLEMMA 2.1.
NOTATION. For any real numberand real functiong, ¢ which do not vanish

in a pointed neighborhood of we will write f(s) ~ g(s) [resp.f(s) < g(s)] as
s — t tomean

lim AC) =1 (resp= some nonzero, finite real number).
s—>t g(s)
Recall that éé) is the following Riccati differential equation:
(e)) Y —y2=—qr?
where
¢’ ()]

r(s)=

, 0.6),
Jema-goy €O

andé < oo & d < c¢. By the Cauchy-Lipschitz theorem (see, e.g., Corollaries
1 and 2, Chapter 7.2, page 93 in [1]), for afye (0,&) anda € R, there is a
unique maximal solutior(/, f) to (ej]) with boundary conditionf (T) = a. We
denote byf(r ) this maximal solution and byr 4 the corresponding maximal
interval. We will use repeatedly, and sometimes implicitly, the fact that the orbits
of different solutions never intersect, therefore inducing a total ordering on any set
of solutions defined on the same interval.

Let us give the outline of the proof. We state three lemmas and then provide
the proof of Lemma 2.1. The first lemma studies the graph @ihd shows,
in particular, thatr is monotone on neighborhoods of-Oand £—, and that
lim;_.04 7 (t) = +00. The second one is a technical result ensuring, in particular,
that, for anyT" € (0, £), the maximal intervalr o) is the entire(0, £). The third
lemma asserts that the familyr o)) 7 is uniformly increasing and bounded from
above, allowing us to define, as their increasing limit a — & —.

The rest of the section will then be devoted to proving tisgtsolves é(’]),
and that it is the unique nonnegative solution vanishing-atand to studying its
behavior at @- andé —.

LEMMA 4.1. The functionr is monotone on a neighborhood é6f and
monotone increasing on a neighborhoodef. Furthermore

lim r(s) = +o0,
s—0+

+00, ifd <c/2,

Iir? r(s) =1 1/B4/c, ifd=c/2,
s—>E—

0, ifd >c/2.
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We point out that wheni > ¢, one hast = 400, lim;_ 1 r(s) =0, and
lims_ 04 r(s) = +00, which is the same situation as in the continuous setting.
The sequel of the proof in the case wheérr ¢ is thus exactly the same in the
continuous setting.

PROOF OFLEMMA 4.1. Set
eme(s)

H(S)irZOQ(S)Zm,

s€(0,1),

and recall (3) to see that

1
H(s) ~ —ﬁzsz”’/c‘1 ass >0+ and H(s)~ ass — 1— .
C,

c(1—y)
Then differentiate to check that it is monotone on neighborhoods of 0 and
so that the same holds fer by monotonicity ofd. O

LEMMA 4.2, ()ForanyT € (0,&) anda € R,

a<0 = [T,&) C I and fir ) is negative o7, &),
a>0 = (0,T]C I, and f(r 4 is positive on0, T'].

(i) If d <c/2,there is a neighborhoo® of & such that for any" € 'V and
a eR,

a<.qr(Ty =— [T,§)ClIlr,, and Iir? fr.a)(t) exists and is finite
t—E&E—

PROOF  First note that for anyl" € (0, &), fir.0(T) =0 and f(’T?O)(T) =

—qr?(T) < 0. Consequently, a maximal solution ef ] vanishes, at most, once
on its interval of definition.

(i) Leta < 0. We just saw whyf = f(r ) remains negative for > 7. Now
assume that the supremummof /(7 ,) is in (T, £). Since f is a maximal solution
and is negative onT, &), we deduce that lim,,_ f () = —o0. But this would
mean thatf is below—,/gr on some neighborhood of, and thus increasing. This
shows thatr = £. The same arguments hold for the other implicati@or-(0).

(i) Assumea € [—.,/qr(T), \/qr(T)]. Whend < c¢/2 (Lemma 4.1),r in-
creases on some neighborhoBaf & < oo, and goes teo até —. For this reason,
f = fir.a) decreasesf( = f2—gr?), soitremains below/qr, but never reaches
—./qr, since at a hitting time of-,/qr, f/ would vanish, whereas-,/qr de-
creases. S¢ is defined, as claimed, at least @h &) even ifa > 0, and for any
in a neighborhood of, f2(t) < qr?(t). The same holds when< —./gr(T), for
then f increases until it reaches,/gr.
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To get the existence of a finite limit t, it is thus equivalent, by’ — f2 =
—gr? and|f’| < qr?, to prove that/® r2 < cc. To see this, use (3) and get, as
s — &E—,

9(s) =< (£ =)A=/ sothat?(s) < (& — )~ 12/ A=d/e),

The result follows by observing thatdfe (0, ¢/2), then— 11__26;1/06 e(-1,0. O

As a consequence of the previous lemma, for @&ny (0, ), f(r,0) is defined
on the entirg0, £), that is,/(r,0) = (0, £). Next set

KT = f(T,0)s T €(0,%).

LEMMA 4.3. The sequencéxr)r is uniformly increasing and uniformly
bounded from above ox0, £). One can then define the functian, as the
uniformly increasing limit

wy =lim 1 kp.
i
The functionw,, is positive on(0, &) andlim;_. s _ w, (t) = 0.

ProoOF The orbits(x7)7 are totally ordered because they never intersect, and
increase ag’ increases becausg (T') = —qr¥(T) < 0.

We next intend to prove that the familx7)r is uniformly bounded from
above.

(i) d = c. In this case§ = oo, and there is ap such thatr decreases on
[0, 00). Thanks to Lemma 4.2(iYi0 = f(1o, /5r(10)) IS defined (at least) o(D, 7]
and is positive. Since different orbits cannot intersect, for Argy (0, 00), 7 IS
below ig on (O, 7]. Conclude by noticing that ofrg, o0), k7 < ,/qr (otherwise
x7 would increase oifrg, o0), which contradicts Lemma 4.2(i)).

(i) d €lc/2,c). Recall Lemma 4.1 to see thatan be extended continuously
to (0, £]. In the same vein as in Lemma 4.2(i), the maximal solukgrof (e;)
vanishing at is defined on(0, £]. It is then obvious thatr is belowk; for any
T <E&.

(i) d < c/2. Thanks to Lemma 4.2(ii), there ig@close enough fron§ such
that hg = ftto. Jar (o) has a positive limit aE —. This function’g is defined on
(0, &) and since it never vanishes, it never intersects@nyAs a consequence, the
family (k7)r is bounded from above byp.

Now for anyr € (0, &) andT > ¢, k7 (¢) > O [Lemma 4.2(i)]. Sincev, (1) is the
increasing limit ofk7 () asT increasesw, () > 0. The functionw, vanishes at
& — by continuity of the flow. [J

We hereafter conclude the proof of Lemma 2.1. We first prove that for any
positive ¢, w, is the unique nonnegative solution czij]I defined on(0, &) and
vanishing at —.
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Let us show the uniqueness of such a solution. Assémend k are two

nonnegative solutions ofe{p on a neighborhood of, who both vanish af —.
If there is someg such thath(zg) # k(tg), sayh(tg) > k(tg), thenu =h — k is
positive on(zg, £) and so isv = h + k. Sinceh andk are both solutions ofe(]),
u andv are such that’ = uv, so thatu is positive and increasing di, £). This
contradicts the fact that lim,s_ u(¢) = 0.

To show thatw, is the solution of (,;), fix e in (0,&), and setn = wy(¢)
and h, = f(¢ . Next suppose that for somg € /. ,, to > ¢ and h.(tg) #
wy (o). Sincewy, is by construction the supremum of a family of orbits indexed
by a continuous set, it is necessary thaf(ro) > w,(t0). Pick then some
a € (wy(to), he(t0)). We know from Lemma 4.2(i) thayf = f(;,.«) is defined
at least on(0, fo]. Since f(t0) > wy(to), f(to) > kr(to) for all T e (0,§).
This last inequality certainly holds for all € (0, o], and thus, in particular,
f(e) = wy(e) =n. Reasoning in the same fashion with, we see thatf(¢) <
he(e). But h.(¢) = n, which brings the contradictiom(< f(¢) < n), and proves
thatw, (t) = he(¢t) for all t € I, ), t > . Now by the same reasoning as in the
proof of Lemma 4.2h, is defined (at least) ofz, &), since otherwise it would go
to 4o in finite time and there would, indeed, be somsuch that, (rg) > w, (to).

As a consequencey, = h, on [g,&). This ends the proof, sinceis arbitrarily
small.

We complete the proof of Lemma 2.1 by studying the behaviomwgfat
0+ andé—.

First note that because/, = w2 — gr?, w, increases when it is aboyggr, and
thatw’ vanishes when both graphs intersect. Recallpositive and monotone on
neighborhoods of 0 angl. As a consequence, the graphuaf may intersect that
of ./qr at most once on each of these two neighborhoods. On the other hand, it
cannot remain abovg/qgr on a whole neighborhood:

(i) of 0+, because it would be increasing but tenaxoasr N\ 0+;
(ii) of £—, because it would be increasing and tend to B as¢ —.

Now sincew, < ,/qr on neighborhoods of-f and £ —, it decreases on these
neighborhoods, anﬂf w, converges becaugfé r does so. Indeed,

r(s)”%(f;(s)) ass >0+ and r(s)~ _Zip((i)) ass — £—,

which are both integrable on their respective neighborhoods, gintas finite
limits at 4+ andé—. 0O
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