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THE BRANCHING PROCESS WITH LOGISTIC GROWTH
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In order to model random density-dependence in population dynamics,
we construct the random analogue of the well-known logistic process in
the branching process’ framework. This density-dependence corresponds
to intraspecific competition pressure, which is ubiquitous in ecology, and
translates mathematically into a quadratic death rate. The logistic branching
process, or LB-process, can thus be seen as (the mass of ) a fragmentation
process (corresponding to the branching mechanism) combined with constant
coagulation rate (the death rate is proportional to the number of possible
coalescing pairs). In the continuous state-space setting, the LB-process is
a time-changed (in Lamperti’s fashion) Ornstein–Uhlenbeck type process.
We obtain similar results for both constructions: when natural deaths do
not occur, the LB-process converges to a specified distribution; otherwise,
it goes extinct a.s. In the latter case, we provide the expectation and the
Laplace transform of the absorption time, as a functional of the solution of a
Riccati differential equation. We also show that the quadratic regulatory term
allows the LB-process to start at infinity, despite the fact that births occur
infinitely often as the initial state goes to∞. This result can be viewed as
an extension of the pure-death process starting from infinity associated to
Kingman’s coalescent, when some independent fragmentation is added.

1. Introduction.

1.1. Presentation of the LB-process.The goal of this paper is to define
and study the random analogue of a demographic deterministic model which is
ubiquitous in ecology and widely known as the logistic growth model. It is defined
by the following ordinary differential equation:

dZt = bZt dt − cZ2
t dt, t > 0,(1)

whereb and c are real numbers (c > 0). The quadratic regulatory term has a
deep ecological meaning as it describes negative interactions between each pair
of individuals in the population. The stochastic version of the logistic process
we construct is a density-dependent continuous time branching process, in both
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continuous and discrete state-space. We call it the “branching process with logistic
growth” or “logistic branching process,” abbreviated as LB-process.

In the discrete state-space setting, individuals give birth as in the pure branching
case (independently, at constant rateρ, to i.i.d. numbers of offspring), but can
die either naturally (at constant rated) or by competition pressure [when the
total population has sizen: at ratec(n − 1), proportionally to the number of
extant conspecifics]. Therefore, when the total population has sizen, the first birth
arrives at rateρn and the first death at ratedn + cn(n − 1). This size-dependence
complies with the deterministic logistic growth model (1), in its formal definition
(quadratic death rate), as well as in its interpretation (negative interactions between
all possible pairs).

In the continuous state-space setting, the LB-process is a Markov process
with (nonnegative) real values. Its paths are a.s. càdlàg, that is, they are right-
continuous with left-hand limits. The general definition is inspired by Lamperti’s
transform [27] linking continuous-state branching processes and Lévy processes
(i.e., processes with independent and stationary increments), and is done by time-
changing Ornstein–Uhlenbeck type processes ([34], page 104). In the special case
when the LB-process has a.s. continuous paths, it is the unique strong solution
(when the initial state is fixed) of a stochastic differential equation (SDE) of the
following type:

dZt = bZt dt − cZ2
t dt + √

γZt dBt , t > 0,(2)

whereB is the standard Brownian motion andγ the so-called Gaussian coefficient.
In this case, we retain the name coined by Etheridge in [13] where she studies it in
a spatial setting: “Feller diffusion with logistic growth.”

1.2. Modeling density-dependence.In population biology, the most simple
process modeling the dynamics of a population is the Malthusian process. If
Zt ∈ [0,∞) denotes the total number of individuals at timet , then the Malthusian
process satisfiesdZt = bZt dt , where b is the mean birth–death balance per
individual and per time unit. The solutions are straightforward exponential
functions and whenb > 0, they rapidly go to∞, proving useless for long-term
models. Moreover, this model does not allow populations with positive growth to
become extinct.

This elementary model has a random counterpart, called the branching process,
where populations may have positive (expected) growth and become extinct. In
their discrete time and discrete state-space form, branching processes go back
to Lord Francis Galton and Irénée-Jules Bienaymé. The so-called Bienaymé–
Galton–Watson (BGW) process is a Markov chain, where time steps are the
nonoverlapping generations, with individuals behaving independently from one
another and each giving birth to a (random) number of offspring (belonging to
the next generation). These (random) offspring all have the same probability
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distribution. Here, the mean growth is geometric, but the process evolves randomly
through time, eventually dying out or tending to∞, with probability 1.

Despite its advantage of allowing extinctions while the mean growth is positive,
the BGW-process shares with the Malthusian process the shortcoming (from
an ecological standpoint) of being able to go to∞. In the deterministic case,
a celebrated improvement of the Malthusian process is the logistic process (1).
It is an elementary combination of geometric growth for small population sizes
and a quadratic density-dependent regulatory mechanism.

The main advantage of this model is thatZt converges to a finite limit as
t → ∞, namely,b/c (if b > 0) or 0 (if b ≤ 0). On the other hand, this model does
not allow the population to evolve once it has reached its stable state. A natural
continuation will then be for us to replace geometric growth in the logistic equation
by random branching (random growth with geometric mean). Alternatively, this
can be seen as improving the branching process by, loosely speaking, adding a
quadratic regulatory term to it (and thus prevent it from going to∞).

It is actually a general feature of numerous models in population dynamics that
the process describing the evolution of the population size through time either
goes to∞ or ultimately dies out [17]. In particular, this is the case for any integer-
valued Markov chain with 0 as an accessible, absorbing state, including (most)
BGW processes. As a consequence, the question of adding density-dependence to
branching processes is not a new concern, and answers can roughly be divided into
three types (a brief survey in this matter can be found in [18]). The first approach
sticks to the branching scheme in the discrete time setting: at each generation,
individuals have i.i.d. random numbers of offspring, but their common distribution
depends on the current population size (see, e.g., [23] and the references therein;
see also [14, 35]; a special Poisson case is treated in [7] where, despite the
title of his paper, the author acknowledges that the model is indeed a density-
dependent discrete time branching process, but has no relation to the logistic
growth model (1)). The second approach relies on stochastic difference equations,
giving rise to what is called the controlled BGW process (see, e.g., [16, 21, 33]).
The third approach consists in generalizing the birth and death rates of the
branching process in continuous time in various ways: by considering polynomial
rates as functions of the population size instead of linear rates, or by setting to
zero the birth rate outside a compact set of population sizes. This way of modeling
density dependence is popular among biologists (see, e.g., [11, 29, 30]).

The present work pertains to the latter approach, but here we are interested in
a specific phenomenon, namely, constant pairwise competition pressure, which
is a ubiquitous fundamental mechanism in biology in various space and time
scales, and thus deserves special attention. We will consider branching processes
in their continuous time form, in both continuous and discrete state-space (note,
nevertheless, that a similar construction in discrete time could be done, by sticking
to the branching scheme but letting the probability of having no child depend on
the population size in the same fashion).
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1.3. Statement of results.Because all properties of the integer-valued
LB-process are common to the real-valued LB-process and not conversely, we
state the results in the continuous setting. Roughly speaking, these results hold
under condition (L) that the logarithm of the offspring size at each birth time has
finite expectation.

Consider the LB-process with continuous paths presented above (2). We will
show that this process is a time-change in Lamperti’s fashion [27] of the Ornstein–
Uhlenbeck process, which is itself defined from a positive real numberc, termed
the competititon rate, and the Lévy process(

√
γBt + bt, t ≥ 0). When the paths

need not be continuous, we will consider a general Lévy process with no negative
jumps instead of the previous Brownian motion with drift. The LB-process is
thus characterized byc > 0 and a real-valued functionψ , termed the branching
mechanism, which is the Lévy exponent of a Lévy process with no negative jumps.
In the case of Feller’s diffusion with logistic growth (2),ψ(λ) = γ

2λ2 − bλ, λ ≥ 0.
Let us briefly sum up the results. When the underlying branching mechanism

does not allow the population to decrease in the absence of competition pressure,
that is, there are no “natural deaths” (ψ is then the Lévy exponent of an increasing
Lévy process or subordinator), the LB-process is recurrent. It is null-recurrent
(continuous setting only) if it has zero drift (no “infinitesimal births”), Lévy
measure of finite massρ, further satisfyingρ < c, and, in that case, it converges
to 0 in probability. Otherwise it is positive-recurrent and its limiting distribution
is explicitly given via its Laplace transform (Theorem 3.4; Theorem 2.2 in the
discrete setting). When there are “natural deaths,” the LB-process goes extinct a.s.
We also display formulae for its resolvent measure and its extinction time (via
Laplace transform as well, Theorem 3.9).

Let us mention that in the latter case (continuous setting only), the LB-process
either goes to 0 but remains positive, or is absorbed at 0 in finite time, depending
solely on the branching mechanism (Theorem 3.5), that is, according to a criterion
that does not involve the competition ratec: absorption occurs with probability 1
if

∫ ∞
dλ/ψ(λ) < ∞, with probability 0 otherwise [where the last inequality has

the standard meaning that
∫ ∞
x dλ/ψ(λ) exists and is finite for somex].

Most of all, we are able to start the LB-process at+∞ (Corollary 3.10,
Theorem 2.3). In the discrete setting this should be compared to the total
mass process in the standard coalescent starting from infinity (see Section 2.3).
Specifically, we denote bywq the unique positive solution on(0,∞) vanishing at
+∞, of the following Riccati differential equation:

y′ − y2 = −qr2,

wherer is some positive function depending on the branching mechanismψ and
the competition ratec (Lemma 3.8, Lemma 2.1). Namely, set

θ(λ) =
∫ λ

0
dt exp

(∫ t

0

ψ(s)

cs
ds

)
, λ ≥ 0,
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andϕ its inverse function. Thenr = ϕ′/√cϕ. The standard LB-process (starting
from infinity) has entrance law given by

E∞
(
exp(−λZτ )

) = exp
(
−

∫ θ(λ)

0
wq(s) ds

)
, λ ≥ 0, q > 0,

whereτ is an independent exponential variable with parameterq. In particular, the
absorption timeTa has Laplace transform underP∞,

E∞
(
exp(−qTa)

) = exp
(
−

∫ ∞
0

wq(s) ds

)
, q > 0.

In addition, its expectation is finite and equal to

E∞(Ta) =
∫ ∞

0
sr2(s) ds.

A shortcoming of our logistic branching process is obviously that it leads to
much less tractable formulae than in the pure branching case. Though, we
claim that it is the most natural and realistic model for random self-regulatory
population dynamics. The simple definition in the discrete setting can easily
be handled by biologists to do simulations or to include these dynamics into
more complicated models, such as spatial or genetic ones. Indeed, in the case
when no natural deaths occur, the LB-process survives with probability 1 without
tending to∞, and might thus provide a fruitful framework for randomly evolving
large populations, as well as everlasting genealogies. Open questions are the
following: distributions of independent sums of LB-processes, conditioning of the
LB-process to survive and quasi-stationary distributions, underlying genealogy of
the LB-process, distribution of coalescence times. . . . In the pure branching case
the first of these questions has an obvious answer, the others have been studied in
particular in [2, 6, 10, 24–26, 28, 31].

The outline of the paper is straightforward. Section 2 is concerned with the
discrete setting, and is written in a way that is supposed to not scare biologists,
as it contains the results geared for potential applications. Section 3 gives a more
formal account of the general continuous setting, as well as further interesting
subtleties that do not appear in the discrete setting (null-recurrence, extinction
without absorption). Section 4 gathers the proofs of various theorems and lemmas.

2. The discrete setting. In this section we define and study the LB-process
living on the nonnegative integers. The definition differs from that of the
LB-process in the continuous setting, but both processes have very similar
properties. As a consequence, we will state the results in a rather straightforward
fashion, and proofs will be omitted (we leave the slight adaptations to the reader,
and refer her or him to the manuscript, to be found on the author’s website, for
details).
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2.1. A few definitions and a key result.Let us remind the reader that in
continuous time and in the pure branching case, individuals behave independently
as in the BGW-process, but give birth (rateρ > 0) and die (rated ≥ 0) at (random
exponential) independent times. The number of offspring born at each birth time is
k with probabilityπk/ρ, where(πk, k ≥ 1) is a sequence of nonnegative integers
such that ∑

k≥1

πk = ρ.

When the population size isn, the total birth rate is thusρn and the natural death
ratedn. In order to model competition pressure, we then add extra deaths at rate
cn(n−1) (c > 0), considering that each of then individuals is in competition with
then − 1 remaining others. These deaths occur as if each particle selected another
fixed particle at constant ratec and killed it. Observe also that these deaths due to
competition have the same kernel as the pure-death counting process associated to
Kingman’s coalescent [22], so that the LB-process can be viewed as (the mass of )
a combination of coagulation with independent fragmentation. This viewpoint will
be developed briefly in Section 2.3.

Set

ψ(s) = d − (ρ + d)s + ∑
i≥1

πis
i+1, s ∈ [0,1],

which characterizes completely the underlying branching mechanism.
The LB-processZ = (Zt , t ≥ 0) associated withψ and the positive real

number c is thus the (minimal Feller) process with infinitesimal generator
Q = (qij , i, j ≥ 0), where

qij =




iπj−i , if i ≥ 1 andj > i,

di + ci(i − 1), if i ≥ 1 andj = i − 1,

−i
(
d + ρ + c(i − 1)

)
, if i ≥ 1 andj = i,

0, otherwise.

From now on, we assume condition (L) is satisfied, that is,∑
i≥1

πi log(i) < ∞.(L)

Denote by(π̄i)i the tail of the measure(πi)i , that is, π̄k = ∑
i≥k πi , k ≥ 1,

and note that condition (L) is equivalent to
∑

k(π̄k/k) < ∞. It is easy to see
that ψ(s) = (1 − s)(d − ∑

k≥1 π̄ks
k), which allows, for anys ∈ (0,1] under

condition (L), the definition

m(s) =
∫ 1

s

ψ(v)

cv(1− v)
dv.
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Standard calculations yield

exp(m(s)) = βs−d/c exp

( ∑
k≥1

π̄ks
k

ck

)
, s ∈ (0,1],(3)

where

β = exp

(
− ∑

k≥1

π̄k

ck

)
.

Define the nonnegative decreasing functionθ : (0,1] �→ [0, ξ) by

θ(s) =
∫ 1

s
em(v) dv, v ∈ (0,1],

whereξ
.= ∫ 1

0 em(v) dv ∈ (0,+∞]. As a consequence of (3), we can assert that

ξ = ∞ ⇐⇒ d ≥ c.

The mappingθ is a bijection, whose inverse on[0, ξ) will be denoted byϕ. In
particular,

ϕ′(s) = −exp
(−m ◦ ϕ(s)

)
, s ∈ [0, ξ).

LEMMA 2.1. Assumed �= 0, and denote by(ε′
q ) the following Riccati

differential equation:

y′ − y2 = −qr2,(ε′
q )

where

r(s) = |ϕ′(s)|√
cϕ(s)(1− ϕ(s))

, s ∈ (0, ξ).

For any positiveq, (ε′
q ) has a unique nonnegative solutionwq defined on(0, ξ)

and vanishing atξ−. In addition, wq is positive on(0, ξ), and for anys suf-

ficiently small or large, wq(s) <
√

qr(s). As a consequence,
∫ ξ
0 wq converges, and

wq decreases initially and ultimately.

When the coordinate process starts fromx, its law will be denoted byPx .

2.2. Results. The behavior of the LB-process depends on whetherd is positive
or zero. As previously, assume condition (L) holds.

When d = 0, recall (3) to see that the function exp(m) can be extended
continuously to[0,1]. It is not difficult to show that one can define the probability
measureν on N by

exp(m(s)) = ∑
i≥1

νis
i−1, s ∈ [0,1].
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THEOREM 2.2. Whend = 0, the LB-process is positive-recurrent inN, and
converges in distribution to the probability measureµ defined by

µi =
( ∑

j≥1

j−1νj

)−1

i−1νi, i ≥ 1.

In the binary-splitting case(ρ = π1), this limiting distribution is that of a Poisson
variable of parameterρ/c conditioned on being positive

µi = e−ρ/c

1− e−ρ/c

(ρ/c)i

i! , i ≥ 1.

Recall the functionwq defined in Lemma 2.1. LetTa denote the absorption
(extinction) time.

THEOREM 2.3. When d > 0, the LB-process goes extinct a.s. Moreover,
the probabilities(Px, x ≥ 0) converge weakly, as x → ∞, to the law P∞ of
the standard LB-process, or logistic branching process starting from infinity.
UnderP∞, the extinction timeTa has Laplace transform

E∞
(
exp(−qTa)

) = exp
(
−

∫ ξ

0
wq(z) dz

)
, q > 0,

its expectation is finite and equal to

E∞(Ta) =
∫ ξ

0
sr2(s) ds =

∫ 1

0

dv

cv(1− v)
e−m(v)

∫ 1

v
duem(u).

2.3. The link with fragmentation–coalescence processes.Recall that when
ψ ≡ 0 and c > 0, the LB-process is merely the pure-death process associated
to Kingman’s coalescent [22], where the coagulation rate per pair of objects is a
constant equal to 2c. As a consequence, the LB-process can be regarded in general
as the mass of a coalescent process with independent fragmentation (corresponding
to the branching mechanism): components of the partition coalesce at rate 2c, split
independently into a random numberk ≥ 2 of subcomponents at rateπk−1, and
may also disappear spontaneously at rated (erosion).

It is known that the pure-death process (ρ = 0) can be started at infinity,
which stems from the fact that arrival times of coalescence events (coagulation
from i objects intoi − 1 objects) have summable expectations, proportional to
(i(i − 1))−1. Then Theorem 2.3 asserts that it is still true even after adding
fragmentation. Nevertheless, underP∞, fragmentation events occur infinitely
often with probability 1 ast ↘ 0. Indeed, the following probabilities are not
summable:

Pi (a birth occurs before a death) = ρi

(ρ + d)i + ci(i − 1)
∼ ρ

ci
asi → ∞.
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Let us mention a few recent results in this vein.
In the discrete reaction–diffusion model studied in [3], particles perform

independent random walks, die spontaneously and locally coalesce or split with
the same kernels as ours (in the special case of binary branching).

In [4], all exchangeable coalescence-fragmentation (EFC) processes living in
the partitions ofN are characterized. In a case of quick coalescence and slow
fragmentation (Kingman’s coefficient is nonzero and fragments always come in
finite numbers), the mass of the EFC process has the same transition kernel as our
(discrete) logistic branching process. This allows Berestycki to use Theorem 2.3
to show that these EFC processes “come down from infinity,” in the sense that the
number of components of the partition is finite at any positive timet a.s., even
though the process starts from dust (att = 0, it is equal to the infinite collection
of singletons). Note, however, that Theorem 2.3 was stated under the assumption
thatd �= 0. To be convinced that the EFC process still comes down from infinity
even whend = 0, observe that when there aren ≥ 2 objects, the total death rate
is cn(n − 1) ≥ c

2n(n − 1) + c
2n, which is the total death rate associated to the

LB-process with competition ratec/2 and death ratec/2.
Other works have considered size-biased fragmentation–coalescence processes

(on the partitions of an interval; rates are proportional to the lengths of the
subintervals), when fragmentation is binary. These partitions have infinitely many
components and a ubiquitous equilibrium measure in this setup is the Poisson–
Dirichlet distribution [9, 32].

2.4. Convergence to the logistic Feller diffusion.A convergence result is
easily obtained that links the discrete and continuous settings. Namely, Feller’s
diffusion with logistic growth is the limit of a sequence (indexed byn ∈ N)
of discrete logistic branching processes. Rigorously, denote by(Z

(n)
t , t ≥ 0) the

Markov process living onn−1
N, started atn−1 �nx�, stopped at 0, and whose

transition kernels are as follows. The integerN
(n)
t = nZ

(n)
t is a binary-splitting

(π1 = ρ) LB-process with parameters (indexed byn) ρn = γ
2n2 + λn, dn =

γ
2n2 + δn, cn = c, wherec, δ, γ , λ, are positive constants. In other words:

1. Z
(n)
t is incremented by 1/n at rate(γ

2n + λ)n2Z
(n)
t .

2. Z
(n)
t is decremented by 1/n at rate(γ

2n + δ)n2Z
(n)
t .

3. Z
(n)
t is decremented by 1/n at ratecn2Z

(n)
t (Z

(n)
t − n−1).

Let b = λ − δ. Then standard results [20] show that asn → ∞, the sequence
(Z

(n)
t , t ≥ 0)n converges weakly to the Feller diffusion with logistic growth started

atx and solution of (2),

dZt = bZt dt − cZ2
t dt + √

γZt dBt , t > 0.
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3. The continuous setting.

3.1. Preliminaries. In the 1950s [19], the analogue of the BGW-process
was defined in continuous time and continuous state-space (CB-process). All
CB-processes are càdlàg, and their jumps (if any) are a.s. positive. Those whose
paths are continuous satisfy an SDE of the following type:

dZt = bZt dt + √
γZt dBt , t > 0,

so that the definition of the LB-process in this case is clearly (2). Whenb = 0, the
dynamics are referred to as quadratic branching. Whenb = 0 andγ = 4, Z is the
celebrated Feller diffusion or squared Bessel process of dimension 0.

Next we remind the reader of a celebrated result of Lamperti [27] which relates
CB-processes and Lévy processes with no negative jumps. This result will allow
us to give the appropriate definition of the branching process with logistic growth
in a second section.

A Lévy process is a càdlàg Markov process with independent and stationary
increments. A Lévy process with continuous paths is the sum of a (scaled)
Brownian motion and a deterministic drift (possibly zero). LetX be a real-valued
Lévy process with no negative jumps. LetT0 be the first hitting time of zero byX.
Then define

ηt =
∫ t∧T0

0

ds

Xs

, t > 0,

and(Ct , t ≥ 0) its right-inverse. Lamperti’s result then states that if

Zt = X(Ct), t ≥ 0,

thenZ is a CB-process, and

Ct =
∫ t

0
Zs ds, t > 0.

Conversely, any CB-processZ is a time-changed Lévy process: ifC is defined as
above, andη is the right-inverse ofC, thenZ ◦η is a Lévy process with no negative
jumps killed when it hits 0.

In the special case of quadratic branching, Lamperti’s result predicts that if we
time-change a Feller diffusion (i.e., a quadratic CB-process) in this fashion, we
obtain (up to a multiplicative constant) a killed Brownian motion. It is indeed
easy to check that ifZt = x + ∫ t

0
√

Zs dBs , thenZ ◦ η is a local martingale with
increasing process

∫ ηt

0 Zs ds = t , and thus is a standard Brownian motion. Using
this last argument, it is elementary to prove the following proposition concerning
the LB-process.

PROPOSITION3.1. As previously, assumeZ is a Feller diffusion with logistic
growth, that is, a diffusion solving(2),

dZt = bZt dt − cZ2
t dt + √

γZt dBt , t > 0.
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Defineη as the right-inverse ofC, whereCt = ∫ t
0 Zs ds. Then the processR =

Z ◦ η solves the following SDE:

dRt = dXt − cRt dt, t > 0,

whereX is a Brownian motion with drift, namely, γ −1/2(Xt − bt, t ≥ 0) is the
standard Brownian motion.

Conversely, let R be the(strong) solution of the last SDE whereX is a Brownian
motion with a possible drift, T0 its first hitting time of0 and C the right-inverse
of η, where

ηt =
∫ t∧T0

0

ds

Rs

, t > 0.

ThenZ = X ◦ C is a diffusion process killed when it hits0, and solves an SDE of
type(2).

This last proposition will enable us to extend the definition of branching process
with logistic growth to any kind of branching mechanism.

3.2. Construction of the logistic branching process.Let X denote a spectrally
positive Lévy process (i.e., with no negative jumps). The branching mechanism
function that interests us is the Lévy exponentψ of X defined by

E
(
exp(−λXt)

) = exp(tψ(λ)), t, λ ≥ 0.

It is specified by the Lévy–Khinchin formula ([5], Chapter VII)

ψ(λ) = αλ + γ

2
λ2 +

∫ ∞
0

(e−λr − 1+ λr1r<1)�(dr), λ ≥ 0,

where α is a real number,γ a positive real number termed the Gaussian
coefficient of X, and � is a positiveσ -finite measure on(0,∞) such that∫ ∞
0 (1∧ r2)�(dr) < ∞, termed the Lévy measure ofX.

We now provide the definition of the LB-process.

DEFINITION 3.2. For any positive real numberc and any spectrally positive
Lévy processX with Lévy exponentψ , we define the logistic branching process
LB(ψ,c) associated withψ andc starting fromx > 0 as follows.

Let R denote the unique strong solution, starting fromx, of the following SDE:

dRt = dXt − cRt dt, t > 0,(4)

T0 its first hitting time of 0 andC the right-inverse ofη, where

ηt =
∫ t∧T0

0

ds

Rs

, t > 0.
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Then the LB-processZ is the Feller process defined by

Zt =
{

R(Ct), if 0 ≤ t < η∞,

0, if η∞ < ∞ andt ≥ η∞.

If A (resp.Q) denotes the infinitesimal generator ofX (resp.Z), then, for any
differentiablef in the domain ofA,

Qf (z) = zAf (z) − cz2f ′(z), z ≥ 0.

Before continuing further, we prove some of the facts stated in this last
definition. SDEs of type (4) are well studied, see, for example, [34], pages
104–113. They have strong solutions which are càdlàg homogeneous strong
Markov processes, known as Ornstein–Uhlenbeck type processes. An explicit
formula for the unique strong solution of (4) with initial statex is

Rt = xe−ct + exp(−ct)

∫ t

0
exp(cs) dXs, t > 0.(5)

By standard theory of Markov processes (see, e.g., [12]),Z is then a càdlàg
time homogeneous strong Markov process. Furthermore, it is easily seen that the
infinitesimal generatorU of R is given, for any differentiablef in the domain
of A, by

Uf (z) = Af (z) − czf ′(z), z ∈ R.

As a consequence, for any timet and initial conditionx ≥ 0, with s = Cu,

Ex

(∫ t

0
Qf (Zu)du

)
= Ex

(∫ t

0
Uf (Zu)Zu du

)

= Ex

(∫ Ct

0
Uf (Rs) ds

)

= Ex

(
f (R(Ct))

) − f (x) = Ex(f (Zt )) − f (x),

which shows, indeed, thatQ is the infinitesimal generator ofZ.

3.3. Properties of the logistic branching process.In this section we are
interested in the law of the LB-process, and particularly in its long-term behavior.
This behavior depends on whetherX is a subordinator or not. We recall that a Lévy
process with positive jumps is called a subordinator if it has increasing paths a.s.
In that case, its paths have finite variation, its drift coefficient is nonnegative, and
its Gaussian coefficient is zero.

In contrast to the pure branching case, LB-processes eventually go to 0
with probability 0 or 1. In reference to population biology, this probability is
called the extinction probability (otherwise, absorption probability). WhenX is a
subordinator, this probability is 0, and the LB-process is recurrent. WhenX is not
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a subordinator, it is 1, and we characterize the law of the extinction time. Unless
otherwise specified, proofs of statements of this section are postponed to Section 4.

From now on, we assume condition (L) is satisfied, that is,

E(log(X1)) < ∞.(L)

We recall that condition (L) is equivalent to
∫ ∞ log(r)�(dr) < ∞ [5]. Accord-

ingly, it is easily seen that one can define

m(λ) =
∫ λ

0

ψ(s)

cs
ds, λ ≥ 0.

In the next statements, we consider the case whenX is a subordinator. We then
denote byδ ≥ 0 its drift coefficient, so that ([5], Chapter III)

ψ(λ) = −δλ −
∫ ∞

0
�(dr)(1− e−λr), λ ≥ 0.

We also introduce its Lévy tail̄�, that is,�̄(y) = ∫ ∞
y �(dr), y > 0.

LEMMA 3.3. AssumeX is a subordinator satisfying(L). Then m can be
expressed as

−m(λ) = δ

c
λ +

∫ ∞
0

(1− e−λr)
�̄(r)

cr
dr, λ ≥ 0,

and the following equation∫ ∞
0

ν(dr)e−λr = exp(m(λ)), λ ≥ 0

defines a unique probability measureν on (0,∞). This probability measure is
infinitely divisible andν((δ/c, ∞)) = 1.

REMARK. Note thatν is also self-decomposable. An r.v.S is said to be self-
decomposable if for anya < 1, there is an r.v.Sa independent ofS such that

aS + Sa
(d)= S.

In particular, any self-decomposable distribution is infinitely divisible. Conversely,
a real infinitely divisible distribution is self-decomposable if its Lévy measure is of
type |x|−1k(x) dx, wherek is increasing on(−∞,0) and decreasing on(0, ∞).

We introduce condition (∂), whereρ is defined as

ρ
·=

∫ ∞
0

�(dr) ≤ ∞.

We thus say that(∂) holds iff (at least) one of the following holds:

• δ �= 0,
• ρ = ∞,
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• c < ρ < ∞.

THEOREM 3.4. AssumeX is a subordinator satisfying(L).

(i) Assume(∂). Then the probabilityν defined in Lemma3.3 has
∫ ∞
0 r−1 ×

ν(dr) < ∞. The process LB(ψ,c) is positive-recurrent in(δ/c, ∞) and converges
in distribution to the probability measureµ whose size-biased distribution isν,
that is,

µ(dr) =
(∫

(δ/c,∞)
s−1ν(ds)

)−1

r−1ν(dr), r > 0.

In particular, the expectation of the stationary probability is∫
(δ/c,∞)

rµ(dr) =
(∫

(δ/c,∞)
s−1ν(ds)

)−1
< ∞.

(ii) Assume(∂) does not hold. Then the process LB(ψ,c) is null-recurrent in
(0, ∞) and converges to0 in probability.

From now on,X is assumed not to be a subordinator. In the next theorem, we
claim that the extinction probability is 1. We set a criterion to establish whether
the process remains positive or is absorbed, that is, reaches 0 in finite time. Note
that the criterion for absorption does not depend onc and is the same as for the
branching process (c = 0) [15].

THEOREM 3.5. AssumeX satisfies(L) and is not a subordinator. Then the
process LB(ψ,c) goes to0 a.s., and ifTa denotes the absorption time

Ta = inf{t ≥ 0 :Zt = 0},
then P(Ta < ∞) = 1 or 0 according to whether

∫ ∞
dλ/ψ(λ) converges or

diverges.

The last two theorems will be proved in Section 4.
Next we intend to give deeper insight into the law of the LB-process. We will

simultaneously be able to define the standard LB-process or LB-process starting
from infinity.

Defineθ : [0,+∞) �→ [0,+∞) by

θ(λ) =
∫ λ

0
em(s) ds, λ ≥ 0.

Recall [5] that whenX is not a subordinator, lim infλ→∞ λ−1ψ(λ) > 0. As a
consequence, the mappingθ is a strictly increasing bijection, whose inverse will
be denoted byϕ. In particular,

ϕ′(λ) = exp
(−m ◦ ϕ(λ)

)
, λ ≥ 0.
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Define also for any nonnegativex and positiveq, the Laplace transformGq,x of
theq-resolvent measure of the LB-process(Zt , t ≥ 0) started atx,

Gq,x(λ) =
∫ ∞

0
dt e−qt

Ex(e
−λZt ), λ ≥ 0.

Note that from Definition 3.2, ifA still denotes the infinitesimal generator of the
Lévy processX, then for any differentiable real function in the domain ofA,

q

∫ ∞
0

dt e−qt
Ex(f (Zt))

(6)
= f (x) +

∫ ∞
0

dt e−qt
Ex

(
Zt Af (Zt) − cZ2

t f
′(Zt )

)
.

Before stating the main theorem of this section, we display three lemmas, the last
of which is the key result for the theorem. The first two help understand where
the third one comes from. These lemmas are also proved in Section 4 (except
Lemma 3.8 whose proof is replaced by the more general proof of Lemma 2.1).

LEMMA 3.6. As a function ofλ ∈ (0,∞), Gq,x is twice continuously
differentiable and solves the second-order linear differential equation(Eq ), where
y is the unknown function andλ is the scalar variable

−cλy′′ + ψy′ + qy = e−xλ.(Eq )

LEMMA 3.7. If (E
(h)
q ) is the homogeneous differential equation associated

to (Eq ), then:

(i) For any solution(I, fq) of (E(h)
q ), for any open subintervalI0 of I on which

fq does not vanish, the functiongq defined as

gq(λ) = −f ′
q(λ)

fq(λ)
, λ ∈ I0

solves onI0 the Riccati differential equation(εq )

−y′ + y2 + ψ

cλ
y = q

cλ
.(εq )

(ii) For any solution(J, gq) of (εq ), the functionhq defined as

hq(λ) = e−m◦ϕ(λ)gq ◦ ϕ(λ), λ ∈ θ(J )

solves onθ(J ) the Riccati differential equation(ε′
q )

y′ − y2 = −qr2,(ε′
q )

where

r(λ) = ϕ′(λ)√
cϕ(λ)

, λ > 0.
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LEMMA 3.8. For any positiveq, the Riccati differential equation(ε′
q ) has

a unique nonnegative solutionwq defined on(0,∞) and vanishing at∞. In
addition, wq is positive on(0,∞), and for anyλ sufficiently small or large,
wq(λ) <

√
qr(λ). As a consequence,

∫
0 wq converges, andwq decreases initially

and ultimately.

Now we are able to state the main results of this section.

THEOREM 3.9. Recall the functionwq defined in Lemma3.8. For any
nonnegativeλ and positiveq, an expression forGq,x(λ) is given by

qGq,x(λ) = 1−
∫ θ(λ)

0
dt e− ∫ θ(λ)

t wq(z) dz

(7)
×

∫ ∞
t

ds qr2(s)
(
1− e−xϕ(s))e− ∫ s

t wq(z) dz.

In particular, if
∫ ∞

dλ/ψ(λ) converges, then the absorption timeTa is a.s. finite
and has Laplace transform underPx ,

Ex

(
exp(−qTa)

)
= 1−

∫ ∞
0

dt e− ∫ ∞
t wq(z) dz

(8)

×
∫ ∞
t

ds qr2(s)
(
1− e−xϕ(s))e− ∫ s

t wq(z) dz, q > 0.

In addition, its expectation is finite and is equal to

Ex(Ta) =
∫ ∞

0
ds sr2(s)

(
1− e−xϕ(s))

(9)

=
∫ ∞

0

dt

ct
(1− e−tx)e−m(t)

∫ t

0
ds em(s).

COROLLARY 3.10. The probabilities (Px, x ≥ 0) converge weakly, as
x → ∞, to the lawP∞ of the standard LB-process or logistic branching process
starting from infinity. The standard LB-process is the Markov process that has the
same transition kernels as the LB-process considered previously, and entrance law
given by

E∞
(
exp(−λZτ )

) = exp
(
−

∫ θ(λ)

0
wq(s) ds

)
, λ ≥ 0, q > 0,(10)

whereτ is an independent exponential variable with parameterq. In particular,
if

∫ ∞
dλ/ψ(λ) converges, then underP∞ the absorption timeTa is a.s. finite and

has Laplace transform

E∞
(
exp(−qTa)

) = exp
(
−

∫ ∞
0

wq(s) ds

)
, q > 0.(11)
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In addition, its expectation is finite and equal to

E∞(Ta) =
∫ ∞

0
sr2(s) ds =

∫ ∞
0

dt

ct
e−m(t)

∫ t

0
ds em(s).(12)

PROOF OFTHEOREM 3.9. As in Lemma 3.7, definegq as

gq(s) = em(s)wq ◦ θ(s), s ≥ 0.

Then the functiongq solves the Riccati differential equation (εq ) and by
Lemma 3.8 is integrable at 0, for∫ λ

0
gq(s) ds =

∫ θ(λ)

0
wq(t) dt, λ ≥ 0,

by the changet = θ(s). Then define the functionsFq,x andKq,x as

Fq,x(λ) = Gq,x(λ)exp
(∫ λ

0
gq(s) ds

)
, λ ≥ 0,

Kq,x(λ) = F ′
q,x(λ)exp−

(
m(λ) + 2

∫ λ

0
gq(s) ds

)
, λ ≥ 0.

By Lemma 3.6 and after some algebra, we get

cλK ′
q,x(λ) = −exp−

(
λx + m(λ) +

∫ λ

0
gq(s) ds

)
, λ > 0.

Next integrate the last equation to obtain

Kq,x(λ) = K0 +
∫ ∞
λ

dt

ct
e−tx−m(t)−∫ t

0 gq(s) ds

= K0 +
∫ ∞
θ(λ)

dv
ϕ′2(v)

cϕ(v)
e−xϕ(v)−∫ v

0 wq(u)du, λ > 0,

where the last equality stems from the changesu = θ(s) andv = θ(t), andK0 is
an integration constant. Therefore, by the same kind of change, we get

F ′
q,x(λ) = K0e

m(λ)+2
∫ θ(λ)
0 wq(z) dz

+ em(λ)+∫ θ(λ)
0 wq(z) dz

∫ ∞
θ(λ)

ds
ϕ′2(s)
cϕ(s)

e−xϕ(s)−∫ s
θ(λ) wq(z) dz, λ > 0.

Check that this last function is integrable at 0. Indeed,F ′
q,x(λ) ∼ Kq,x(λ) as

λ ↘ 0, and the first expression we got forKq,x provides the equivalentKq,x(λ) ∼
c−1 ln(λ). Then becauseFq,x(0) = Gq,x(0) = 1/q, the integration ofF ′

q,x reads

Fq,x(λ) = 1

q
+ K0

∫ θ(λ)

0
dt e2

∫ t
0 wq(z) dz

+
∫ θ(λ)

0
dt e

∫ t
0 wq(z) dz

∫ ∞
z

ds
ϕ′2(s)
cϕ(s)

e−xϕ(s)−∫ s
t wq(z) dz, λ ≥ 0.
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We thus get the following expression forGq,x :

Gq,x(λ) = q−1e− ∫ θ(λ)
0 wq(z) dz + K0e

− ∫ θ(λ)
0 wq(z) dz

∫ θ(λ)

0
dt e2

∫ t
0 wq(z) dz

+ e− ∫ θ(λ)
0 wq(z) dz

∫ θ(λ)

0
dt e

∫ t
0 wq(z) dz

∫ ∞
t

ds r2(s) e−xϕ(s)−∫ s
t wq(z) dz,

λ ≥ 0.

Recall thatqr2 = w2
q − w′

q , so that an integration by parts yields
∫ θ(λ)

0
dt e

∫ t
0 wq(z) dz

∫ ∞
t

ds qr2(s) e− ∫ s
t wq(z) dz

(13) =
∫ θ(λ)

0
dt wq(t)e

∫ t
0 wq(z) dz

= e
∫ θ(λ)
0 wq(z) dz − 1.

SinceqGq,0 is constant equal to 1, the constant integrationK0 must be 0. In
addition, the previous display yields for any nonnegativeλ,

qGq,x(λ) = e− ∫ θ(λ)
0 wq(z) dz

+
∫ θ(λ)

0
dt e− ∫ θ(λ)

t wq(z) dz

×
∫ ∞
t

ds qr2(s)e−xϕ(s)e− ∫ s
t wq(z) dz(14)

= 1−
∫ θ(λ)

0
dt e− ∫ θ(λ)

t wq(z) dz

×
∫ ∞
t

ds qr2(s)
(
1− e−xϕ(s))e− ∫ s

t wq(z) dz,

which ends the proof of (7). For (8), recall thatTa is a.s. finite upon the condition
given in Theorem 3.5. Observe that

Gq,x(λ) =
∫ ∞

0
dt e−qt

Ex

(
1Zt=0 + e−λZt 1Zt>0

)
, λ ≥ 0.

By a double application of Lebesgue’s convergence theorem, this quantity
converges to ∫ ∞

0
dt e−qt

Px(Zt = 0),

so that, integrating by parts the last quantity,

lim
λ→∞qGq,x(λ) = Ex

(
exp(−qTa)

)
.
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For the expectation ofTa (9), we have to handle the Laplace exponentH(t, λ) of
the marginal distribution of the LB-process. Fubini’s theorem and Beppo Levi’s
theorem, indeed, yield

lim
λ→∞

∫ ∞
0

(
1− H(t, λ)

)
dt = E

∫ ∞
0

1Zt �=0 dt = E(Ta).

It is clear (see proof of Lemma 3.6) that

∂H

∂t
= −ψ(λ)

∂H

∂λ
+ cλ

∂2H

∂λ2 , t, λ ≥ 0,

which yields, by integrating∂H
∂λ

e−m(λ) w.r.t. λ,

∂H

∂λ
= −em(λ)

∫ ∞
λ

ds

cs

∂H

∂t
(t, s)e−m(s), t, λ ≥ 0.

Integrate this last equation w.r.t.λ and then w.r.t.t , and recall thatH(t,0) = 1, to
get, by Fubini’s theorem,∫ ∞

0

(
1− H(t, λ)

)
dt =

∫ λ

0
duem(u)

∫ ∞
u

ds

cs
e−m(s)(1− e−sx), λ ≥ 0.

The result follows by lettingλ go to ∞ and applying Lebesgue’s convergence
theorem. An elementary variable change yields (9).�

PROOF OFCOROLLARY 3.10. Equations (10) and (11) of the corollary follow
from the same arguments that supported the theorem.

Let us prove the convergence ofEx(exp(−λZτ )) to (12). Observe that ifτ is an
independent exponential r.v. with parameterq, thenEx(exp(−λZτ )) = qGq,x(λ).
The convergence then stems from (14) and the integration by parts used in (13).
Namely,

0 ≤ Ex

(
exp(−λZτ )

) − e− ∫ θ(λ)
0 wq(z) dz

≤
∫ θ(λ)

0
dt e− ∫ θ(λ)

t wq(z) dze−xϕ(t)
∫ ∞
t

ds qr2(s)e− ∫ s
t wq(z) dz

=
∫ θ(λ)

0
dt e− ∫ θ(λ)

t wq(z) dze−xϕ(t)wq(t).

Now the function

t �→ wq(t)e− ∫ θ(λ)
t wq(z) dz

is integrable on[0, θ(λ)], so that, by Lebesgue’s convergence theorem, the last
displayed upper bound converges to 0 asx → ∞.

Finally, the existence of (and weak convergence to) the LB-process starting from
infinity stem from the previous convergence of Laplace transforms and standard
theory [8]. �
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4. Proofs.

4.1. Proofs of Lemma3.3,Theorems3.4and3.5.

PROOF OFLEMMA 3.3. First observe that

−m(λ) =
∫ λ

0

ds

cs

(
δs +

∫ ∞
0

�(dr)(1− e−rs)

)

= δλ

c
+

∫ ∞
0

�(dr)

∫ λr

0
du

1− e−u

cu

= δ

c
λ +

∫ ∞
0

(1− e−λr)
�̄(r)

cr
dr.

Note that the positive measure� defined by�(dr) = (cr)−1�̄(r) dr , r > 0, is,
under condition (L), a Lévy measure. Indeed,∫ ∞

1
�(dr) = c−1

∫ ∞
1

ln(u)�(du) < ∞,

∫ 1

0
r�(dr) = c−1

∫ ∞
0

(1∧ u)�(du) < ∞,

so that one can defineY as the subordinator with Laplace exponent−m ([5],
Chapter III). As a consequence, the probability measureν is well defined as the
law of Y1 (so it is infinitely divisible), and the measure� always has infinite mass
so thatY1 > δ/c a.s. �

PROOF OFTHEOREM 3.4. To see that

(∂) ⇔
∫ ∞

0
r−1ν(dr) < ∞,(15)

we use the following equality (where both sides can be infinite):∫ ∞
0

r−1ν(dr) =
∫ ∞

0
em(λ) dλ,

so that (15) reduces to(∂) ⇔ ∫ ∞
dλ exp(m(λ)) < ∞.

Recall thatm(λ) = ∫ λ
0 (cs)−1ψ(s) ds ≤ 0, λ ≥ 0. It is clear from Lemma 3.3

that wheneverδ �= 0,
∫ ∞

dλ exp(m(λ)) is finite.
Next assume that� has finite massρ. Since the case when� has infinite mass

can easily be derived from the caseρ > c by a truncation argument, it only remains
to prove that whenδ = 0,

∫ ∞
dλ exp(m(λ)) < ∞ iff ρ > c. Then recall Lemma 3.3

and write, for anyλ > 1,

−m(λ) =
∫ ∞

0
(1− e−λr)

�̄(r)

cr
dr.
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Next pick x > 0, divide (0,∞) into (0, x/λ], (x/λ, x] and (x,∞), and change
variables (u = λr), to get

−m(λ) −
∫ x

x/λ

�̄(r)

cr
dr

=
∫ x

0
(1− e−u)

�̄(u/λ)

cu
du

−
∫ λx

x
e−u �̄(u/λ)

cu
du +

∫ ∞
x

(1− e−λr)
�̄(r)

cr
dr.

Since �̄ is positive and decreases from̄�(0+) = ρ, an appeal to Lebesgue’s
convergence theorem yields

lim
λ→∞−m(λ) −

∫ x

x/λ

�̄(r)

cr
dr

(16) = ρ

∫ x

0
(1− e−u)

du

cu
− ρ

∫ ∞
x

e−u du

cu
+

∫ ∞
x

�̄(r)

cr
dr

·= k(x),

andk(x) is finite. Now the same properties of�̄ ensure that

�̄(x)

c
ln(λ) ≤

∫ x

x/λ

�̄(r)

cr
dr ≤ ρ

c
ln(λ), x > 0, λ > 1.(17)

Using (16) and the left-hand side inequality in (17), we get

lim sup
λ→∞

em(λ)λ�̄(x)/c ≤ exp(−k(x)) < ∞.

Assume first thatρ > c and pickx small enough to havē�(x)/c > 1, then the last
equation shows that

∫ ∞
dλ exp(m(λ)) < ∞.

Using (16) and the right-hand side inequality in (17), we get

lim inf
λ→∞ em(λ)λρ/c ≥ exp(−k(x)) > 0.

If ρ ≤ c, the last equation then shows that
∫ ∞

dλ exp(m(λ)) = ∞. This ends the
proof of (15).

We next point out that, (∂) holding or not,Z is recurrent in(δ/c, ∞). Indeed,
it is known [34] thatR oscillates in(δ/c, ∞) and converges in distribution toν,
so thatT0 = ∞ a.s., limt→∞ ηt = ∞ a.s., andC is defined on the entire[0,∞), so
Z = R ◦ C also oscillates in(δ/c, ∞).

Let us characterize the invariant measures. According to Definition 3.2, the
infinitesimal generatorQ of Z satisfies, for any positiveλ,

Qeλ(z) = zAeλ(z) − cz2e′
λ(z) = (

ψ(λ) + cλz
)
zeλ(z), z ≥ 0,



THE LOGISTIC BRANCHING PROCESS 1527

whereeλ(z) = e−λz. Now for any positive measureζ on [0,∞), let χ denote the
Laplace transform ofrζ(dr). Thenζ is invariant forZ iff ζQ = 0 and

ζQ = 0 ⇐⇒ ζQeλ = 0 ∀λ > 0

⇐⇒
∫ ∞

0
ζ(dz)

(
ψ(λ) + cλz

)
zeλ(z) = 0 ∀λ > 0

⇐⇒ ψ(λ)χ(λ) − cλχ ′(λ) = 0, λ > 0.

The resolution of this ordinary differential equation proves thatχ(λ) =
k exp(m(λ)) for some constantk, so that

rζ(dr) = kν(dr), r > 0,(18)

with a possible Dirac mass at 0 forζ . We can now prove the dichotomy between
(i) (convergence in distribution) and (ii) (convergence to 0 in probability).

(i) Thanks to (15), since (∂) holds, we know that
∫ ∞
0 r−1ν(dr) < ∞. Equa-

tion (18) then ensures thatµ is the unique invariant probability measure.
(ii) In the case when (∂) does not hold,

∫ ∞
0 r−1ν(dr) = ∞ and all invariant pos-

itive measures on(0,∞) are nonintegrable at 0+, so that limt→∞ P(Zt > ε) = 0
for any positiveε.

Recall thatZ oscillates in(0,∞) to conclude it is null-recurrent.�

PROOF OF THEOREM 3.5. In the case whenX is not a subordinator, the
Ornstein–Uhlenbeck type processR still oscillates [34] with stationary measureν,
but this timeν charges the negative half-line so that lim inft→∞ Rt < 0 a.s., and
T0 < ∞ a.s. It is thus clear that limt→∞ Zt = 0 a.s., the absorption depending on
whether the integral

∫ T0
0 ds/Rs(= Ta) converges or not. To check the criterion for

absorption given in the theorem, we make use of the functionGq,x . First define
the positive functiongq,x as

gq,x(λ) = −G′
q,x

Gq,x

(λ), λ ≥ 0.

In the rest of the proof, we will drop the indices whenever it is not ambiguous to
do so. Recall that

E
(
exp(−qTa)

) = lim
λ→∞qG(λ).

SinceqG(λ) = exp(− ∫ λ
0 g(s) ds), it suffices to show that∫ ∞

g(λ)dλ and
∫ ∞

dλ/ψ(λ) have the same nature.

Thanks to Lemma 3.6, it is not difficult to prove thatg solves

cλ(−y′ + y2) + ψy = q − e−λx

G(λ)
, λ > 0.
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We first show thatG decreases more slowly than any negative exponential function
of parameter, say,z

lim
λ→∞

e−zλ

G(λ)
= 0.

To this aim, define

σ = sup{t > 0 :Zt > z/2},
which is finite a.s. sinceZ goes to 0. Next observe that

G(λ) ≥
∫ ∞

0
dt e−qt

E(e−λZt , t > σ)

≥ e−λz/2
∫ ∞

0
dt e−qt

P(t > σ)

= e−λz/2 q−1
E(e−qσ ),

which proves our claim. SinceX is not a subordinator,λ/ψ(λ) is bounded from
above (and positive for sufficiently largeλ), so that

h(λ)
·= e−λx

ψ(λ)G(λ)
= o(e−λx/2) asλ → ∞.

We will use this last comparison along with the following rearrangement of the
differential equation thatg solves

ψ(λ)(g + h)(λ) − q − cλg′(λ) = −cλg2(λ), λ > 0.(19)

On the vector spaceCP of continuous real functions defined on[0,∞) with (at
most) polynomial growth at∞, define the scalar product〈·, ·〉 by

〈u, v〉 =
∫ ∞
0 dt e−qt

Ex(u(Zt)v(Zt )e
−λZt )

Gq,x(λ)
, u, v ∈ CP .

In particular, if 1̄ denotes the constant function equal to 1 andI the identity
function on[0,∞), then〈1̄, 1̄〉 = 1 and

g′(λ) = −G′′

G
(λ) +

(
G′

G
(λ)

)2

= −〈1̄, 1̄〉〈I, I 〉 + 〈I, 1̄〉2 ≤ 0,

by the Cauchy–Schwarz inequality. Thus, the positive functiong is decreas-
ing on [0,∞). If l ≥ 0 is its limit at ∞, since lim supλ→∞ g′(λ) = 0 and
limλ→∞ λ/ψ(λ) ∈ [0,∞), (19) yieldsl ≤ 0, so thatl = 0.

Thanks to this same equation, and becausel = 0, note that

lim
λ→∞g(λ)−1(g(λ) + h(λ) − ψ(λ)−1(q + cλg′(λ)

)) = − lim
λ→∞

cλ

ψ(λ)
g(λ) = 0.
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As a consequence,∫ ∞
g(λ)dλ and

∫ ∞(
ψ(λ)−1(q + cλg′(λ)

) − h(λ)
)
dλ have the same nature.

But h(λ) = o(e−λx/2), limλ→∞ λ/ψ(λ) ∈ [0,∞) and limλ→∞ ↓ g(λ) = l = 0, so
that ∫ ∞

λψ(λ)−1g′(λ) dλ and
∫ ∞

h(λ)dλ both converge,

which reduces the comparison to
∫ ∞

dλ/ψ(λ). �

4.2. Proofs of Lemmas3.6, 3.7and2.1.

PROOF OF LEMMA 3.6. Recall (6), and apply it to the functioneλ defined
aseλ(z) = e−λz. It is well known thateλ is in the domain ofA and that, for any
positiveλ,

Aeλ(z) = ψ(λ)eλ(z), z ≥ 0.

As a consequence,

qGq,x(λ) = eλ(x) +
∫ ∞

0
dt e−qt

Ex

(
ψ(λ)Zte

−λZt + cλZ2
t e

−λZt
)

= eλ(x) − ψ(λ)G′
q,x(λ) + cλG′′

q,x(λ),

which concludes the proof.�

PROOF OFLEMMA 3.7. Sincefq solves the homogeneous equation(E
(h)
q )

associated to (Eq ), we have

−cλf ′′
q (λ) + ψ(λ)f ′

q(λ) + qfq(λ) = 0, λ ∈ I.

It is an old trick to considergq = −f ′
q/fq , for thenf ′′

q /f = −g′
q + (f ′

q/fq)2. For
λ ∈ I0 [fq(λ) �= 0], divide the previously displayed equality by−cλfq(λ), and get

−g′
q(λ) + g2

q(λ) + ψ(λ)

cλ
gq(λ) = q

cλ
, λ ∈ I0.

For anygq satisfying the last equation on some open intervalJ , we consider the
change of functionhq(λ) = e−m◦ϕ(λ)gq ◦ ϕ(λ), λ ∈ θ(J ), so that

h′
q(λ) = e−2m◦ϕ(λ)(−m′ ◦ ϕ(λ)gq ◦ ϕ(λ) + g′

q ◦ ϕ(λ)
)

= e−2m◦ϕ(λ)

(
g2

q ◦ ϕ(λ) − q

cϕ(λ)

)

= h2
q(λ) − qϕ′(λ)2

cϕ(λ)
,
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which indeed proves thathq solves (ε′
q ) on θ(J ). �

PROOF OFLEMMA 2.1.

NOTATION. For any real numbert and real functionsf,g which do not vanish
in a pointed neighborhood oft , we will write f (s) ∼ g(s) [resp.f (s) � g(s)] as
s → t to mean

lim
s→t

f (s)

g(s)
= 1 (resp.= some nonzero, finite real number).

Recall that (ε′
q ) is the following Riccati differential equation:

y′ − y2 = −qr2,(ε′
q )

where

r(s) = |ϕ′(s)|√
cϕ(s)(1− ϕ(s))

, s ∈ (0, ξ),

and ξ < ∞ ⇔ d < c. By the Cauchy–Lipschitz theorem (see, e.g., Corollaries
1 and 2, Chapter 7.2, page 93 in [1]), for anyT ∈ (0, ξ) and a ∈ R, there is a
unique maximal solution(I, f ) to (ε′

q ) with boundary conditionf (T ) = a. We
denote byf(T ,a) this maximal solution and byI(T ,a) the corresponding maximal
interval. We will use repeatedly, and sometimes implicitly, the fact that the orbits
of different solutions never intersect, therefore inducing a total ordering on any set
of solutions defined on the same interval.

Let us give the outline of the proof. We state three lemmas and then provide
the proof of Lemma 2.1. The first lemma studies the graph ofr and shows,
in particular, thatr is monotone on neighborhoods of 0+ and ξ−, and that
limt→0+ r(t) = +∞. The second one is a technical result ensuring, in particular,
that, for anyT ∈ (0, ξ), the maximal intervalI(T ,0) is the entire(0, ξ). The third
lemma asserts that the family(f(T ,0))T is uniformly increasing and bounded from
above, allowing us to definewq as their increasing limit asT → ξ−.

The rest of the section will then be devoted to proving thatwq solves (ε′
q ),

and that it is the unique nonnegative solution vanishing atξ−, and to studying its
behavior at 0+ andξ−.

LEMMA 4.1. The functionr is monotone on a neighborhood ofξ− and
monotone increasing on a neighborhood of0+. Furthermore,

lim
s→0+ r(s) = +∞,

lim
s→ξ− r(s) =




+∞, if d < c/2,

1/β
√

c, if d = c/2,

0, if d > c/2.
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We point out that whend ≥ c, one hasξ = +∞, lims→+∞ r(s) = 0, and
lims→0+ r(s) = +∞, which is the same situation as in the continuous setting.
The sequel of the proof in the case whend ≥ c is thus exactly the same in the
continuous setting.

PROOF OFLEMMA 4.1. Set

H(s)
·= r2 ◦ θ(s) = e−2m(s)

cs(1− s)
, s ∈ (0,1),

and recall (3) to see that

H(s) ∼ 1

cβ2s2d/c−1 ass → 0+ and H(s) ∼ 1

c(1− s)
ass → 1−.

Then differentiateH to check that it is monotone on neighborhoods of 0 andξ ,
so that the same holds forr , by monotonicity ofθ . �

LEMMA 4.2. (i)For anyT ∈ (0, ξ) anda ∈ R,

a ≤ 0 �⇒ [T , ξ) ⊂ I(T ,a) andf(T ,a) is negative on[T , ξ),

a ≥ 0 �⇒ (0, T ] ⊂ I(T ,a) andf(T ,a) is positive on(0, T ].
(ii) If d < c/2, there is a neighborhoodV of ξ such that for anyT ∈ V and

a ∈ R,

a ≤ √
qr(T ) �⇒ [T , ξ) ⊂ I(T ,a) and lim

t→ξ−f(T ,a)(t) exists and is finite.

PROOF. First note that for anyT ∈ (0, ξ), f(T ,0)(T ) = 0 andf ′
(T ,0)(T ) =

−qr2(T ) < 0. Consequently, a maximal solution of (ε′
q ) vanishes, at most, once

on its interval of definition.

(i) Let a ≤ 0. We just saw whyf .= f(T ,a) remains negative fort > T . Now
assume that the supremumσ of I(T ,a) is in (T , ξ). Sincef is a maximal solution
and is negative on(T , ξ), we deduce that limt→σ− f (t) = −∞. But this would
mean thatf is below−√

qr on some neighborhood ofσ , and thus increasing. This
shows thatσ = ξ . The same arguments hold for the other implication (a ≥ 0).

(ii) Assume a ∈ [−√
qr(T ),

√
qr(T )]. When d < c/2 (Lemma 4.1),r in-

creases on some neighborhoodV of ξ < ∞, and goes to∞ atξ−. For this reason,
f

.= f(T ,a) decreases (f ′ = f 2 − qr2), so it remains below
√

qr , but never reaches
−√

qr , since at a hitting time of−√
qr , f ′ would vanish, whereas−√

qr de-
creases. Sof is defined, as claimed, at least on[T , ξ) even ifa > 0, and for anyt
in a neighborhood ofξ , f 2(t) < qr2(t). The same holds whena < −√

qr(T ), for
thenf increases until it reaches−√

qr .
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To get the existence of a finite limit atξ−, it is thus equivalent, byf ′ − f 2 =
−qr2 and |f ′| < qr2, to prove that

∫ ξ
r2 < ∞. To see this, use (3) and get, as

s → ξ−,

ϕ(s) � (ξ − s)1/(1−d/c) so thatr2(s) � (ξ − s)−(1−2d/c)/(1−d/c).

The result follows by observing that ifd ∈ (0, c/2), then−1−2d/c
1−d/c

∈ (−1,0). �

As a consequence of the previous lemma, for anyT ∈ (0, ξ), f(T ,0) is defined
on the entire(0, ξ), that is,I(T ,0) = (0, ξ). Next set

κT
.= f(T ,0), T ∈ (0, ξ).

LEMMA 4.3. The sequence(κT )T is uniformly increasing and uniformly
bounded from above on(0, ξ). One can then define the functionwq as the
uniformly increasing limit

wq = lim
T ↑ξ

↑ κT .

The functionwq is positive on(0, ξ) and limt→ξ− wq(t) = 0.

PROOF. The orbits(κT )T are totally ordered because they never intersect, and
increase asT increases becauseκ ′

T (T ) = −qr2(T ) < 0.
We next intend to prove that the family(κT )T is uniformly bounded from

above.

(i) d ≥ c. In this case,ξ = ∞, and there is at0 such thatr decreases on
[t0,∞). Thanks to Lemma 4.2(i),h0

.= f(t0,
√

qr(t0)) is defined (at least) on(0, t0]
and is positive. Since different orbits cannot intersect, for anyT ∈ (0,∞), κT is
belowh0 on (0, t0]. Conclude by noticing that on[t0,∞), κT <

√
qr (otherwise

κT would increase on[t0,∞), which contradicts Lemma 4.2(i)).
(ii) d ∈ [c/2, c). Recall Lemma 4.1 to see thatr can be extended continuously

to (0, ξ ]. In the same vein as in Lemma 4.2(i), the maximal solutionκξ of (ε′
q )

vanishing atξ is defined on(0, ξ ]. It is then obvious thatκT is belowκξ for any
T < ξ .

(iii) d < c/2. Thanks to Lemma 4.2(ii), there is at0 close enough fromξ such
that h0

.= f(t0,
√

qr(t0)) has a positive limit atξ−. This functionh0 is defined on
(0, ξ) and since it never vanishes, it never intersects anyκT . As a consequence, the
family (κT )T is bounded from above byh0.

Now for anyt ∈ (0, ξ) andT > t , κT (t) > 0 [Lemma 4.2(i)]. Sincewq(t) is the
increasing limit ofκT (t) asT increases,wq(t) > 0. The functionwq vanishes at
ξ− by continuity of the flow. �

We hereafter conclude the proof of Lemma 2.1. We first prove that for any
positive q, wq is the unique nonnegative solution of (ε′

q ) defined on(0, ξ) and
vanishing atξ−.
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Let us show the uniqueness of such a solution. Assumeh and k are two
nonnegative solutions of (ε′

q ) on a neighborhood ofξ , who both vanish atξ−.
If there is somet0 such thath(t0) �= k(t0), sayh(t0) > k(t0), thenu

.= h − k is
positive on(t0, ξ) and so isv .= h + k. Sinceh andk are both solutions of (ε′

q ),
u andv are such thatu′ = uv, so thatu is positive and increasing on(t0, ξ). This
contradicts the fact that limt→ξ− u(t) = 0.

To show thatwq is the solution of (ε′
q ), fix ε in (0, ξ), and setη .= wq(ε)

and hε
.= f(ε,η). Next suppose that for somet0 ∈ I(ε,η), t0 > ε and hε(t0) �=

wq(t0). Sincewq is by construction the supremum of a family of orbits indexed
by a continuous set, it is necessary thathε(t0) > wq(t0). Pick then some
a ∈ (wq(t0), hε(t0)). We know from Lemma 4.2(i) thatf .= f(t0,a) is defined
at least on(0, t0]. Since f (t0) > wq(t0), f (t0) > κT (t0) for all T ∈ (0, ξ).
This last inequality certainly holds for allt ∈ (0, t0], and thus, in particular,
f (ε) ≥ wq(ε) = η. Reasoning in the same fashion withhε, we see thatf (ε) <

hε(ε). But hε(ε) = η, which brings the contradiction (η ≤ f (ε) < η), and proves
that wq(t) = hε(t) for all t ∈ I(ε,η), t ≥ ε. Now by the same reasoning as in the
proof of Lemma 4.2,hε is defined (at least) on[ε, ξ), since otherwise it would go
to+∞ in finite time and there would, indeed, be somet0 such thathε(t0) > wq(t0).
As a consequence,wq = hε on [ε, ξ). This ends the proof, sinceε is arbitrarily
small.

We complete the proof of Lemma 2.1 by studying the behavior ofwq at
0+ andξ−.

First note that becausew′
q = w2

q − qr2, wq increases when it is above
√

qr , and
thatw′

q vanishes when both graphs intersect. Recallr is positive and monotone on
neighborhoods of 0 andξ . As a consequence, the graph ofwq may intersect that
of

√
qr at most once on each of these two neighborhoods. On the other hand, it

cannot remain above
√

qr on a whole neighborhood:

(i) of 0+, because it would be increasing but tend to∞ ast ↘ 0+;
(ii) of ξ−, because it would be increasing and tend to 0 ast ↗ ξ−.

Now sincewq <
√

qr on neighborhoods of 0+ and ξ−, it decreases on these

neighborhoods, and
∫ ξ
0 wq converges because

∫ ξ
0 r does so. Indeed,

r(s) ∼ −ϕ′(s)√
c(1− ϕ(s))

ass → 0+ and r(s) ∼ −ϕ′(s)√
cϕ(s)

ass → ξ−,

which are both integrable on their respective neighborhoods, sinceϕ has finite
limits at 0+ andξ−. �
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