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Let U be a given function defined dr“ andr (x) be a density function
proportional to exp-U (x). The following diffusion X (¢) is often used to
sample fromr (x),

dX(t) = =VUX @) dt +~2dW (1), X (0) = xo.

To accelerate the convergence, a family of diffusions wiitx) as their
common equilibrium is considered,

dX (1) = (=VUX (@) + C(X(1)dt +V2dW (1),  X(0)=xo.

Let Lo be the corresponding infinitesimal generator. The spectral gap
of L¢ in Lz(n) (A(C)), and the convergence exponent Xft) to = in
variational norm 6 (C)), are used to describe the convergence rate, where

A(C) = Supreal part ofu : i is in the spectrum of.,  is not zerg,

p(C) = Inf{p:/m(r,x,y) —x()ldy <ge” |,

Roughly speaking,L¢ is a perturbation of the self-adjoinkg by an
antisymmetric operato€ - V, where C is weighted divergence free. We
prove thatA(C) < A(0) and equality holds only in some rare situations.
Furthermore,o(C) < A(C) and equality holds folC = 0. In other words,
adding an extra driftC(x), accelerates convergence. Related problems are
also discussed.

1. Introduction. In this paper we prove that by simply adding a weighted
divergence-free drift to a reversible diffusion, the convergence to equilibrium is
accelerated. In other words, from an algorithmic point of view, the nonreversible
algorithm performs better. The analysis is related to the study of antisymmetric
perturbations of self-adjoint infinitesimal generators.

Our investigation is motivated by the following consideration. High-
dimensional probability distributions appear frequently in applications. To sample
from these distributions directly is not feasible in practice, especially when the
corresponding densities are known up to normalizing constants only. One has
to resort to approximations. A Markov process with the underlying distribution
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as its equilibrium is often used to generate an approximation (“MCMC"). How
good the approximation is depends on the approximating Markov process and
on the specific criterion used for comparison. One may investigate the conver-
gence properties of some particular Monte Carlo Markov processes, or compare
the convergence rate within a family of Markov processes (with the same equilib-
rium) w.r.t. different criteria, or even try to find optimal solutions in that family.
Mathematical problems arising from this approach are challenging. Related works
may be found in Amit (1991), Amit and Grenander (1991), Frigessi, Hwang and
Younes (1992), Frigessi, Hwang, Sheu and di Stefano (1993), Hwang, Hwang-Ma
and Sheu (1993), Amit (1996), Athreya, Doss and Sethuraman (1996), Gilks and
Roberts (1996), Mengersen and Tweedie (1996), Stramer and Tweedie (1997),
Chang and Hwang (1998), Hwang and Sheu (1998, 2000) and Roberts and Rosen-
thal (2004).

Here we concentrate on the diffusion case.lldde a given real-valued function
defined inR¢ satisfying some smoothness conditions. The underlying distribution
7 is assumed to have a density proportional to-ekf(x). The following diffusion
is commonly used for sampling from its equilibrium

(2) dX (1) =—VUX 1) dt +v2dW (1), X (0) = xo,

where W (¢) is the Brownian motion ifR?. For conveniencer will be used to
denote the underlying probability measure, as well as its probability density. For
applications one may consult Grenander and Miller (1994), Miller, Srivastava and
Grenander (1995), Srivastava (1996) and references therein.

If a diffusion is regarded as a useful approach to sampling, then it is natural to
consider a family of diffusions witlr as their common equilibrium:

(2) dX(t)=—-VUX@))dt+CX@t)dt +~2dW(t),  X(0)=xo,

under suitable conditions o6'(x). Roughly speaking, the conditions are that
div(C(x)exp—U(x)) = 0 and there is no explosion in (2), that |X (¢)| does
not tend to infinity in a finite time. A strict definition of explosion can be found
on page 172 of Ikeda and Watanabe (1989). Exact conditions will be spelled out
later. It is easy to pick such @. For exampleC(x) = S(VU (x)), for any skew
symmetric matrixS. We are interested in ho@(x) influences the convergence of
the diffusion (2) to equilibrium.

Hwang, Hwang-Ma and Sheu (1993) focused on a special case, the study of a
family of Gaussian diffusions wherd/dx) = (—Dx)-x, —VU (x) = Dx,C(x) =
SDx, and whereD is a strictly negative-definite real matrix argdis any skew
symmetric real matrix. In this case(x) is Gaussian with mean 0 and covariance
matrix —D~! and X (r) is an Ornstein—Uhlenbeck process with d(ift + SD)x.
Using the rate of convergence of the covarianc &) [or together withE X ()]
as the criterion, the reversible diffusion with driftx (i.e., C = 0) is the worst
choice and the optimal solution is obtained in this setup.
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If C(x) is not zero, then the corresponding diffusion, regarded as a Markov
process, is nonreversible. In general, it is difficult to analyze nonreversible
processes. We just cite some related works in different settings. In Geman and
Geman (1984), Amit and Grenander (1991) and Hwang and Sheu (1998) the
convergence properties of some nonreversible Gibb samplers are studied. The
ergodicity of systematic sweep in stochastic relaxation, again nonreversible, is
investigated in Hwang and Sheu (1992).

Two comparison criteria are considered here. Basic questions such as the
acceleration of convergence and the consistency of the comparison w.r.t. these two
criteria are answered. Related problems will be discussed in the last section.

Let ||-]l, and || - ||, denote the norm in.”(x) and the operator norm
from L?(x) to L9(w), respectively, < p,g < o0. For p = g = 2, both norms
are simply denoted by - ||. Let L¢ denote the infinitesimal generator of the
diffusion X (¢) from (2) and, forC =0, let L = Lo. Let T(t) = ¢'t¢ denote the
corresponding semigroup,

T f () = Ex f(X (1)) = f p(t.x.y) f() dy,

where p(t, x, y) is the transition density if it exists. Note that the ind€xis
suppressed frorfi (¢) and p(z, x, y) for the sake of brevity.

We define now the spectral gapb§ in L2(rr) as the first comparison criterion.
SinceE, f (X (1)) — n(f) for any starting poink, one may consider the average
case formulation by averaging the differencg, f(X(¢)) — 7 (f))? over the
starting point w.r.tz:

[(Eer @) =m ()P de = 1T f = ()P

< constant| f — 7 (/)

(3)

zeZM,

for somea less than or equal to O, wherg f) means integration of w.r.t. .

Now consider the worst-case analysis oyethen| T (t) — x| < constant*’. The
infimum over such.’s indicates the convergence rate. This shows that the spectral
radius of T'(1) in the spacd f € L(x), n(f) = 0} is a measure of convergence
rate of diffusions to equilibrium. Furthermore, the weak spectral mapping theorem
holds betweeld ¢ ande’ ¢ [Nagel (1986), page 91]. Hence, the spectral gapof

in L2() defined by

4) A(C) = Supreal part ofw : i in the spectrum oL ¢, u # 0}

is a good candidate to serve as a criterion for the comparison of convergence rates.
The constant in (3) may depend 6n If instead we reformulate the inequality
in (3) without the constant term,

IT@) f = (OI<If =7l
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for some, then the inequality depends only on the behavior of the process around
time 0 and the rate will be the same regardless of perturbations [Chen (1992),
page 312]. Our interest here is instead in the large-time behavior.

We will always assume that there is no explosion for the diffusions under
consideration. Sufficient conditions for nonexplosion may be found, for example,
in Proposition 1.10 of Stannat (1999). Since the existence of the transition density
is needed in Section 2, for simplicity, we assume that the following assumption
holds throughout this paper,

C andvU areinLY(m) N Ll .(r)  for somel > d;

for f e C3° /(C-Vf)n:O.

Under (A1) there is no explosion in the diffusion (2) and the transition density
exists withsr as its equilibrium distribution [Stannat (1999) and Bogachev, Krylov
and Rockner (2001)]. Foy € Cg°, [(C - V f)r = 0 means thaC is weakly
weighted divergence free. This is essential;faio be an invariant measure.

Intuitively L is a perturbation of a self-adjoint operatoby an antisymmetric
operatorC - V in L?(r). We are interested in how the spectrum changes. Note
that, in general, this perturbation is neither small nor relatively compact. For
general references, refer to Kato (1995) and Yosida (198@)s not self-adjoint
for nonzeroC. The spaces considered are real vector spaces of real functions.
However, for spectral analysis, one has to consider complex vector spaces. We
will make the distinction when it is necessary. L@t denoteL¢s — L andC_
denoteL _ — L.

We assume that the reversible diffusion (1) w.mt. has an exponential
convergence rate. Equivalently,has a spectral gap ib?(), that is,

(A2) A(0) <O.

The existence of a spectral gap for self-adjdirthas been studied extensively,
for example, see Wang (1999).

Under the above two assumptions we prove #@t) < A(0). Furthermore, if
A(0) is in the discrete spectrum df, then the equality holds only in some rare
situation which is characterized completely. These results are in Theorem 1.

Note that the exponential convergence rate assumption is imposed only on the
reversible diffusion. As a consequence of Theorem 1, the perturbed diffusion (2)
has a better exponential convergence rate. In other words, adding an extra drift
accelerates convergence.

For the nonexplosion of (1), (A2) arnd0) in the discrete spectrum df to all
hold, the following is a sufficient condition [Reed and Simon (1978)]:

(5) 1/2IVU(x)|? = AU(x) > 0o as|x| — oc.

(A1)

From a probabilistic point of view, one may consider the rate of convergence of
p(t, x, y) tom in variational norm as a comparison criterion. The variational norm
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of two probability measures is defined as the supremum of the difference between
the two probabilities over all events. This may be regarded as some kind of worst
case analysis. Note that the variational norm equals one half éf'ttay) distance
between the two corresponding densities. Hepc€,) defined below is used as a
comparison criterion,

®) p<C>=|nf{p:/|p<r,x,y) —x()ldy 5g<x>em}.

g(x) may depend or€. Usually g is assumed to be essentially locally bounded
or locally integrable w.r.tz. It needs further study for unrestrictgd We prove
in Theorems 4 and 5 that(C) < A(C) and equality holds for the reversible
case. Again, using (C) as the comparison criterion, adding an antisymmetric
perturbation does help. This result is consistent with the previous one.

It is not clear how the perturbations affegi(C) directly. We compare
0(C) andp(0) via A(C) andA(0).

We study the above two criteria only. However, we make the following remarks
without giving proofs. Sincd (¢) is a contractive semigroup ih” (i), for 1 <
p < 0o, one may consider (3) in terms of tHeg” norm. For a fixedC, consider
the dependence of the convergence ratg oNote that when (1) is an Ornstein—
Uhlenbeck process|T (r) — |11 does not have exponential convergence rate
despite the fact that the correspondihghas a spectral gap ih?(r). For the
reversible case, thél(x) to L1() exponential convergence rate is equivalent
to the essentially uniform boundednessgof) in (6) [Chen (2002)]. If|| T (¢) —
7|, has exponential convergence rate for sgoe 1 and||7 (1), (p+1) IS
bounded, thel T (t) — ||, has the same exponential convergence rate for all
qzp.

The use ofA(C) as the comparison criterion is studied in Section 2. In
Section 3o (C) is the criterion. The relationship betweefC) andp (C) is studied.
Discussion and related problems are presented in Section 4.

2. Spectral gap as comparison criterion. If A(0) is in the discrete spectrum
of L in L2(r), then by definition its corresponding eigenspace, denoted big
finite dimensional. LeD(-) denote “the domain of.” Define

e(f.g) = / (Vf-Vor.  f.geCP.

Then ¢ is closable inL2(x). In this section our analysis assumesf) = 0,
f e L%(n).

THEOREM 1. If (Al) and (A2) hold, then A(C) < A(0). Furthermore, if A(0)
isin the discrete spectrum of L, then equality holdsif and only if C or C_ leaves
a nonzero subspace of M invariant.
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The following inequality from Stannat [(1999), page 124] will be used
repeatedly in the proof.

(7) If feD(L¢) then feD(e) and e(f, f)f—/(ch)fn.

We prove first thath(C) < A(0). For f with ||f|| =1 andn(f) =0, let
g) =T @) f|* ¢(0) =1and by (7),

gt = 2/(LCT(t)f)(T(t)f) m<=2(TWf T f) <2008 ).

The above differential inequality implies that the operator ndffyr)| in
the space{f:f € L%(w),n(f) = 0} is less than or equal te*©?. Hence,
A(C) < 1(0).

For a complex valued functiorf, let f~ and £’ denote the real and purely
imaginary parts off , respectively.

LEMMA 2. If A(0) isin the discrete spectrum of L, then there existsa § > 0
such that for any a with A(0) — § <a < A(0) and any b, a + ib is not in the
continuous spectrum of L¢.

ProoOF SinceA(0) is in the discrete spectrum d@f, there exist$ > 0 such
that the spectrum af restricted to the orthogonal complement\fis contained
in (—oo, A(0) — 25).

We prove by contradiction. Assume that thereare with A(0) —§ < a < A(0)
such that(a + ib) is in the continuous spectrum dfc. Let L — (a + ib) be
denoted byA. Then A is one-to-one, the range of is dense, andi~1 is not
continuous. To arrive at a contradiction, it suffices to show that for boufifgd
Af, — 0implies f,, — O.

First we show thatf,, — 0 weakly. Af,, — 0, the domain ofA* (the adjoint
of A) being dense, and the boundednesffpf imply the weak convergence ¢f,
to zero. We claim that & limsup(e(f,, /) + all full2). A(f) = (Lc — a)fr +
bfy+i((Lc —a) fi —bfl)). SinceA(f,) — 0 and{f,} is bounded, the real part
of the inner product ofA(f,) and f,, 7(f} (Lc) f1) + w(fi(Le) £1) — all full?,
goes to zero. By (7), the claim is proved.

Let f,.1 be the projection off, onto M, f, > the orthogonal complement.
fn converges weakly, and so df.1 and f, 2. SinceM is finite dimensional,
fna1—0,

0> limsuple(fu, fu) +all full?) = limsuple(fu.2, fu.2) +all fn2l1%)
> limsup(—4(0) + 28 + a) | f.211% = 8 limsup] f,. 212
Therefore,f, — 0. O
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LEMMA 3. If A(C) = A(0), then there exists b such that A(0) + ib isin the
spectrumof L¢.

PROOF Let {f,} be a sequence of normalized eigenfunctionslef with
corresponding eigenvalugs, + ib,} such thata, < A(0) anda, — A(0). Then
Lny{ :anfy{ - bnfyi’ Lnyi = anf,; + bnfnr and, by (7)’

—an =—n(fyLcfy) = w(fule fy) = e(fus fo)-
As in the last part of the proof of Lemma 2,

A0) — ay > e(fu, fu) +20) = (fn.2, fn.2) + 1O fu 2l > 81l £ 211,

where f, 2 and § are as in Lemma 2. Hencg,, » — 0. Since the projection
{fx.1} of { £} onto the finite-dimensiona¥ is bounded, there exists a convergent
subsequence dff,.1}. For convenience, the same indexvill be used. We have
f» converging to som¢g in M. Note that the spectral mapping theorem holds for
point spectrums. Hence,

N f =T fy > TS and & — e On (T ).

Therefore, there exists somesuch that(0) + ib ande* @+ are eigenvalues of
L¢ and T (1) with the same eigenfunctiogi. If A(0) is a limit point of the real
parts of the residual spectrum bf, then we can repeat the above proof for the
adjoint of L¢ which is L_¢. Hence, there exists somesuch that.(0) + ib is in

the point spectrum or the residual spectrumief. Since there is no continuous
spectrum in the neighborhood b§0), this completes the proof.[]

ProoF oFTHEOREM 1. If A(0) is the real part of an eigenvalue bt with
a normalized eigenfunctiofi + ig, then by (7) and the definition of the Dirichlet
forme,

—A0) >e(f, f)+e(g,g) = —A(0).

Then f andg are inM andC_ maps the subspace spannedfbgndg into itself.
If for someb, A(0) + ib is in the residual spectrum dfc, theni(0) — ib is an
eigenvalue of the adjoint operatar . Hence,C_ leaves a nonzero subspace of
M invariant.

The proof of the other direction is obvious[]

REMARK. It seems that a stronger result should holdi(€) = A(0), then
A(0) is the real part of an eigenvalue bt. If this is the case, Theorem 1 has a
stronger form: the equality holds iff ;. leaves a nonzero subspacewbfinvariant.

If (5) holds, then(L —a)~1 is compact fow in the resolvent of. [Reed and Simon
(1978)]. And the stronger statements hold.

REMARK. As mentioned in the Introduction, the existence of the transition
density is not needed here. A weaker assumption than (A1) suffices, for example,
C andVU are inLY(w) N L2 () [Stannat (1999)].

loc
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3. Convergence rate in variational norm as criterion. Under (Al) the
transition densityp(z, x, y) exists. Letp,(x, y) denotep(z, x, y) /7 (y); p:(x,y)
is locally Holder [Bogacheyv, Krylov and Réckner (2001)].

THEOREM4. Inadditionto (Al) and (A2),if VU and C arelocally bounded,
then there exists a locally bounded function g such that

/ pi(x.y) = Um(y)dy < g(x)e” "
Moreover, p(C) < A(C).

PrRoOFR

/Ipt(x,y) =1z (y)dy

— [ (P10, D) pr-1(z. y) — V() dz|m(y) dy

- f (p10x, D pF1 (v, 2) — V(@) dz|n(y) dy

(* denotes the adjoint process)

- f pE1(n D pile, (D) dz — f pa(x, )7 (2) dz

m(y)dy
= [17*¢ = D(p1x, D) = 2 (pacx, () dy

1/2
< ([177¢ = Dprx ) 0) = 7w (o) Py

< constantpi(x, -) — 1[}e*",

The last inequality holds ip1(x, -) is in L?(r).
We now claim thatf pf(x, 2)7(z) dz is locally bounded. Sinc®¥U andC are
locally bounded, by a local Harnack inequality [Theorem 1.1 in Trudinger (1968)],

VxinRY, VN >0,V f with 7 (f)=1andf >0,

(8) s . cov .
yeB(xlf]e/z) () f(y) =C( ’X)yeB(?,N/z) (25) £ (y),

where the constan@ (N, x) depends only oV andx, and B(x, N/2) denotes a
ball in R? with centerx and radiusV /2. Fory andz in B(x, N/2),

fB(x,N/z) T(s)f(@m(y)dy

n(B(x,N/2))
- C(N,X)IB(X,N/Z)T(zs)f(}’)ﬂ'(y)dy - C(N,x)
- 7(B(x, N/2)) ~ n(B(x,N/2)’

jm(z, W) f ) (u) du =T (s) £ (2) =
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for f satisfying (8), we have

C(N,x)
7(B(x,N/2))
Now letg(x) = Sup, ps(x, y), theng is locally bounded and

[ P mdy < g2,
This also establishes thatC) < A(C). O

Supps(z, y) <
y

REMARK. The local boundedness assumption in Theorem 4 is not needed for
the reversible case, singfepf(x, y)r(y)dy = pa2(x, x) is locally bounded.

The following theorem implies that for the reversible cas@) = A(0).

THEOREM 5. For the reversible case, if there exists some g in L,loc(zr) such
that

f pe(x.y) — Ur () dy <g(x)e”  then | T(1) — xl| < e

PROOF  For the reversible cas&,(r) is self-adjoint inL2(x),

1T fI7=m(fT@2)f).
For f with 7(f) =0, f € C*®, f = co outsideBy, whereBy denotes a ball ilR?
centered at 0 with radiu¥ andcg a constant,

IT O fIP=7(fT20)f) =7((f —co)T ) (f — co)) — c§
-/ (@ =a ( [ (pate ) = (70 - co)n(y)dy)noc)dx

suf—conio/B fB P2 (x, y) — A (y) dy m(x) dx

<If —col fB g()e' w(x)dx < C(N, [)e".

By Lemma 2.2 in Réckner and Wang (2001), fox r andr (%) =1,
1T 12 < (IT0f1)" < CN, £)7 e
The equalities hold at= 0. Now take a derivative w.r.t.and evaluate at 0. Then

—2:(f, f) =1/tlogC(N. ) +2p.

Lettingr — oo, we haves(f, f) > —p.
For anyh € Cg°,
h — 7 (h)

|etf=m thene(f, f) > —p,

andx (h?) < _—1ps(h, h) + 72(h). Hence, we have prover(0) < p. O
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4. Discussion and related problems. Our theorems give only general and
gualitative information. The proofs do not reveal how the rate of convergence
depends ol. Intuitively, multiplying C by a largek should speed up convergence.
However, examples in Hwang, Hwang-Ma and Sheu (1993) show the contrary. It
is not clear which part oC contributes to acceleration. Most of the questions
discussed below are basedXxt). Similar questions can be formulated fofC).

Now consider families of diffusions (algorithms) defined by (2) with ind&x
satisfying various conditions. What is the best algorithm within a certain family?
For example, leG denote the family of diffusions witlt" satisfying the general
conditions described in the previous sections 8rte family of diffusions with
C = S(VU) for any skew symmetric matriX, respectively. One may ask for the
optimal values and minimizers in the following two problems:

(A1) Infeeg A(C).
(42) InfeesA(C).

For (A1), even the simple question “Is kg A(C) = —oo?” remains unanswered.
For Gaussian diffusions, the optimal structure ) is known [Hwang, Hwang-
Ma and Sheu (1993)]. Note that for the Gaussian case, the perturldatio(m.2)
is linear. However, Hwang and Sheu (2000) showed that a quadraiis a better
rate. ProblemX2) remains open for the general case.

Basically, the problem is to find the best “spectral gap” in a family of elliptic
operators. Similar questions may be discussed on compact Riemannian manifolds.
We consider the following generic case on the two-dimensional torug:det
A + C - V with divergence free,

(A3) infc A (C).

Again, what is the best solution and is it finite?

Obviously, A(0) < 0 impliesA(C) < 0, but how about the other way around?
That is, if Lc has a spectral gap, dods? If the answer is negative, then
perturbations can drastically change fundamental convergence properties. We
proved thato(C) < A(C), but when does equality hold? If there is no spectral
gap forL, how does the antisymmetric perturbation accelerate convergence?
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