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ACCELERATING DIFFUSIONS1

BY CHII -RUEY HWANG, SHU-YIN HWANG-MA AND SHUENN-JYI SHEU

Academia Sinica, Soochow University and Academia Sinica

Let U be a given function defined onRd andπ(x) be a density function
proportional to exp−U(x). The following diffusionX(t) is often used to
sample fromπ(x),

dX(t) = −∇U(X(t)) dt + √
2dW(t), X(0) = x0.

To accelerate the convergence, a family of diffusions withπ(x) as their
common equilibrium is considered,

dX(t) = (−∇U(X(t)) + C(X(t))
)
dt + √

2dW(t), X(0) = x0.

Let LC be the corresponding infinitesimal generator. The spectral gap
of LC in L2(π) (λ(C)), and the convergence exponent ofX(t) to π in
variational norm (ρ(C)), are used to describe the convergence rate, where

λ(C) = Sup{real part ofµ :µ is in the spectrum ofLC,µ is not zero},

ρ(C) = Inf
{
ρ :

∫
|p(t, x, y) − π(y)|dy ≤ g(x)eρt

}
.

Roughly speaking,LC is a perturbation of the self-adjointL0 by an
antisymmetric operatorC · ∇, whereC is weighted divergence free. We
prove thatλ(C) ≤ λ(0) and equality holds only in some rare situations.
Furthermore,ρ(C) ≤ λ(C) and equality holds forC = 0. In other words,
adding an extra drift,C(x), accelerates convergence. Related problems are
also discussed.

1. Introduction. In this paper we prove that by simply adding a weighted
divergence-free drift to a reversible diffusion, the convergence to equilibrium is
accelerated. In other words, from an algorithmic point of view, the nonreversible
algorithm performs better. The analysis is related to the study of antisymmetric
perturbations of self-adjoint infinitesimal generators.

Our investigation is motivated by the following consideration. High-
dimensional probability distributions appear frequently in applications. To sample
from these distributions directly is not feasible in practice, especially when the
corresponding densities are known up to normalizing constants only. One has
to resort to approximations. A Markov process with the underlying distribution
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as its equilibrium is often used to generate an approximation (“MCMC”). How
good the approximation is depends on the approximating Markov process and
on the specific criterion used for comparison. One may investigate the conver-
gence properties of some particular Monte Carlo Markov processes, or compare
the convergence rate within a family of Markov processes (with the same equilib-
rium) w.r.t. different criteria, or even try to find optimal solutions in that family.
Mathematical problems arising from this approach are challenging. Related works
may be found in Amit (1991), Amit and Grenander (1991), Frigessi, Hwang and
Younes (1992), Frigessi, Hwang, Sheu and di Stefano (1993), Hwang, Hwang-Ma
and Sheu (1993), Amit (1996), Athreya, Doss and Sethuraman (1996), Gilks and
Roberts (1996), Mengersen and Tweedie (1996), Stramer and Tweedie (1997),
Chang and Hwang (1998), Hwang and Sheu (1998, 2000) and Roberts and Rosen-
thal (2004).

Here we concentrate on the diffusion case. LetU be a given real-valued function
defined inR

d satisfying some smoothness conditions. The underlying distribution
π is assumed to have a density proportional to exp−U(x). The following diffusion
is commonly used for sampling from its equilibriumπ ,

dX(t) = −∇U(X(t)) dt + √
2dW(t), X(0) = x0,(1)

whereW(t) is the Brownian motion inRd . For convenience,π will be used to
denote the underlying probability measure, as well as its probability density. For
applications one may consult Grenander and Miller (1994), Miller, Srivastava and
Grenander (1995), Srivastava (1996) and references therein.

If a diffusion is regarded as a useful approach to sampling, then it is natural to
consider a family of diffusions withπ as their common equilibrium:

dX(t) = −∇U(X(t)) dt + C(X(t)) dt + √
2dW(t), X(0) = x0,(2)

under suitable conditions onC(x). Roughly speaking, the conditions are that
div(C(x)exp−U(x)) = 0 and there is no explosion in (2), that is,|X(t)| does
not tend to infinity in a finite time. A strict definition of explosion can be found
on page 172 of Ikeda and Watanabe (1989). Exact conditions will be spelled out
later. It is easy to pick such aC. For example,C(x) = S(∇U(x)), for any skew
symmetric matrixS. We are interested in howC(x) influences the convergence of
the diffusion (2) to equilibrium.

Hwang, Hwang-Ma and Sheu (1993) focused on a special case, the study of a
family of Gaussian diffusions where 2U(x) = (−Dx) ·x,−∇U(x) = Dx,C(x) =
SDx, and whereD is a strictly negative-definite real matrix andS is any skew
symmetric real matrix. In this case,π(x) is Gaussian with mean 0 and covariance
matrix −D−1 andX(t) is an Ornstein–Uhlenbeck process with drift(D + SD)x.
Using the rate of convergence of the covariance ofX(t) [or together withEX(t)]
as the criterion, the reversible diffusion with driftDx (i.e., C = 0) is the worst
choice and the optimal solution is obtained in this setup.
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If C(x) is not zero, then the corresponding diffusion, regarded as a Markov
process, is nonreversible. In general, it is difficult to analyze nonreversible
processes. We just cite some related works in different settings. In Geman and
Geman (1984), Amit and Grenander (1991) and Hwang and Sheu (1998) the
convergence properties of some nonreversible Gibb samplers are studied. The
ergodicity of systematic sweep in stochastic relaxation, again nonreversible, is
investigated in Hwang and Sheu (1992).

Two comparison criteria are considered here. Basic questions such as the
acceleration of convergence and the consistency of the comparison w.r.t. these two
criteria are answered. Related problems will be discussed in the last section.

Let ‖ · ‖p and ‖ · ‖p→q denote the norm inLp(π) and the operator norm
from Lp(π) to Lq(π), respectively, 1≤ p,q ≤ ∞. For p = q = 2, both norms
are simply denoted by‖ · ‖. Let LC denote the infinitesimal generator of the
diffusion X(t) from (2) and, forC = 0, let L = L0. Let T (t) = etLC denote the
corresponding semigroup,

T (t)f (x) = Exf (X(t)) =
∫

p(t, x, y)f (y) dy,

wherep(t, x, y) is the transition density if it exists. Note that the indexC is
suppressed fromT (t) andp(t, x, y) for the sake of brevity.

We define now the spectral gap ofLC in L2(π) as the first comparison criterion.
SinceExf (X(t)) → π(f ) for any starting pointx, one may consider the average
case formulation by averaging the difference(Exf (X(t)) − π(f ))2 over the
starting point w.r.t.π :∫ (

Exf (X(t)) − π(f )
)2

π(x)dx = ‖T (t)f − π(f )‖2

≤ constant‖f − π(f )‖2e2λt ,

(3)

for someλ less than or equal to 0, whereπ(f ) means integration off w.r.t. π .
Now consider the worst-case analysis overf , then‖T (t)−π‖ ≤ constanteλt . The
infimum over suchλ’s indicates the convergence rate. This shows that the spectral
radius ofT (1) in the space{f ∈ L2(π),π(f ) = 0} is a measure of convergence
rate of diffusions to equilibrium. Furthermore, the weak spectral mapping theorem
holds betweenLC andetLC [Nagel (1986), page 91]. Hence, the spectral gap ofLC

in L2(π) defined by

λ(C) = Sup{real part ofµ :µ in the spectrum ofLC,µ �= 0}(4)

is a good candidate to serve as a criterion for the comparison of convergence rates.
The constant in (3) may depend onC. If instead we reformulate the inequality

in (3) without the constant term,

‖T (t)f − π(f )‖ ≤ ‖f − π(f )‖eλt ,
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for someλ, then the inequality depends only on the behavior of the process around
time 0 and the rate will be the same regardless of perturbations [Chen (1992),
page 312]. Our interest here is instead in the large-time behavior.

We will always assume that there is no explosion for the diffusions under
consideration. Sufficient conditions for nonexplosion may be found, for example,
in Proposition 1.10 of Stannat (1999). Since the existence of the transition density
is needed in Section 2, for simplicity, we assume that the following assumption
holds throughout this paper,

C and∇U are inL1(π) ∩ Ll
loc(π) for somel > d;

for f ∈ C∞
0

∫
(C · ∇f )π = 0.

(A1)

Under (A1) there is no explosion in the diffusion (2) and the transition density
exists withπ as its equilibrium distribution [Stannat (1999) and Bogachev, Krylov
and Röckner (2001)]. Forf ∈ C∞

0 ,
∫
(C · ∇f )π = 0 means thatC is weakly

weighted divergence free. This is essential forπ to be an invariant measure.
Intuitively LC is a perturbation of a self-adjoint operatorL by an antisymmetric

operatorC · ∇ in L2(π). We are interested in how the spectrum changes. Note
that, in general, this perturbation is neither small nor relatively compact. For
general references, refer to Kato (1995) and Yosida (1980).LC is not self-adjoint
for nonzeroC. The spaces considered are real vector spaces of real functions.
However, for spectral analysis, one has to consider complex vector spaces. We
will make the distinction when it is necessary. LetC+ denoteLC − L andC−
denoteL−C − L.

We assume that the reversible diffusion (1) w.r.t.π has an exponential
convergence rate. Equivalently,L has a spectral gap inL2(π), that is,

λ(0) < 0.(A2)

The existence of a spectral gap for self-adjointL has been studied extensively,
for example, see Wang (1999).

Under the above two assumptions we prove thatλ(C) ≤ λ(0). Furthermore, if
λ(0) is in the discrete spectrum ofL, then the equality holds only in some rare
situation which is characterized completely. These results are in Theorem 1.

Note that the exponential convergence rate assumption is imposed only on the
reversible diffusion. As a consequence of Theorem 1, the perturbed diffusion (2)
has a better exponential convergence rate. In other words, adding an extra drift
accelerates convergence.

For the nonexplosion of (1), (A2) andλ(0) in the discrete spectrum ofL to all
hold, the following is a sufficient condition [Reed and Simon (1978)]:

1/2|∇U(x)|2 − �U(x) → ∞ as|x| → ∞.(5)

From a probabilistic point of view, one may consider the rate of convergence of
p(t, x, y) to π in variational norm as a comparison criterion. The variational norm
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of two probability measures is defined as the supremum of the difference between
the two probabilities over all events. This may be regarded as some kind of worst
case analysis. Note that the variational norm equals one half of theL1(dy) distance
between the two corresponding densities. Hence,ρ(C) defined below is used as a
comparison criterion,

ρ(C) = Inf
{
ρ :

∫
|p(t, x, y) − π(y)|dy ≤ g(x)eρt

}
.(6)

g(x) may depend onC. Usuallyg is assumed to be essentially locally bounded
or locally integrable w.r.t.π . It needs further study for unrestrictedg. We prove
in Theorems 4 and 5 thatρ(C) ≤ λ(C) and equality holds for the reversible
case. Again, usingρ(C) as the comparison criterion, adding an antisymmetric
perturbation does help. This result is consistent with the previous one.

It is not clear how the perturbations affectρ(C) directly. We compare
ρ(C) andρ(0) via λ(C) andλ(0).

We study the above two criteria only. However, we make the following remarks
without giving proofs. SinceT (t) is a contractive semigroup inLp(π), for 1 ≤
p ≤ ∞, one may consider (3) in terms of theLp norm. For a fixedC, consider
the dependence of the convergence rate onp. Note that when (1) is an Ornstein–
Uhlenbeck process,‖T (t) − π‖1→1 does not have exponential convergence rate
despite the fact that the correspondingL has a spectral gap inL2(π). For the
reversible case, theL1(π) to L1(π) exponential convergence rate is equivalent
to the essentially uniform boundedness ofg(x) in (6) [Chen (2002)]. If‖T (t) −
π‖p→p has exponential convergence rate for somep ≥ 1 and‖T (1)‖p→(p+1) is
bounded, then‖T (t) − π‖q→q has the same exponential convergence rate for all
q ≥ p.

The use ofλ(C) as the comparison criterion is studied in Section 2. In
Section 3ρ(C) is the criterion. The relationship betweenλ(C) andρ(C) is studied.
Discussion and related problems are presented in Section 4.

2. Spectral gap as comparison criterion. If λ(0) is in the discrete spectrum
of L in L2(π), then by definition its corresponding eigenspace, denoted byM, is
finite dimensional. LetD(·) denote “the domain of.” Define

ε(f, g) =
∫

(∇f · ∇g)π, f, g ∈ C∞
0 .

Then ε is closable inL2(π). In this section our analysis assumesπ(f ) = 0,

f ∈ L2(π).

THEOREM 1. If (A1) and (A2) hold, then λ(C) ≤ λ(0). Furthermore, if λ(0)

is in the discrete spectrum of L, then equality holds if and only if C+ or C− leaves
a nonzero subspace of M invariant.
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The following inequality from Stannat [(1999), page 124] will be used
repeatedly in the proof.

If f ∈ D(LC) then f ∈ D(ε) and ε(f,f ) ≤ −
∫

(LCf )f π.(7)

We prove first thatλ(C) ≤ λ(0). For f with ‖f ‖ = 1 and π(f ) = 0, let
g(t) = ‖T (t)f ‖2. g(0) = 1 and by (7),

g′(t) = 2
∫ (

LCT (t)f
)
(T (t)f ) π ≤ −2ε

(
T (t)f, T (t)f

) ≤ 2λ(0)g(t).

The above differential inequality implies that the operator norm‖T (t)‖ in
the space{f :f ∈ L2(π),π(f ) = 0} is less than or equal toeλ(0)t . Hence,
λ(C) ≤ λ(0).

For a complex valued functionf , let f r and f i denote the real and purely
imaginary parts off , respectively.

LEMMA 2. If λ(0) is in the discrete spectrum of L, then there exists a δ > 0
such that for any a with λ(0) − δ ≤ a ≤ λ(0) and any b, a + ib is not in the
continuous spectrum of LC .

PROOF. Sinceλ(0) is in the discrete spectrum ofL, there existsδ > 0 such
that the spectrum ofL restricted to the orthogonal complement ofM is contained
in (−∞, λ(0) − 2δ).

We prove by contradiction. Assume that there area, b with λ(0)− δ ≤ a ≤ λ(0)

such that(a + ib) is in the continuous spectrum ofLC . Let LC − (a + ib) be
denoted byA. ThenA is one-to-one, the range ofA is dense, andA−1 is not
continuous. To arrive at a contradiction, it suffices to show that for bounded{fn},
Afn → 0 impliesfn → 0.

First we show thatfn → 0 weakly.Afn → 0, the domain ofA∗ (the adjoint
of A) being dense, and the boundedness of{fn} imply the weak convergence offn

to zero. We claim that 0≥ lim sup(ε(fn, fn) + a‖fn‖2). A(fn) = ((LC − a)f r
n +

bf i
n)+ i((LC − a)f i

n − bf r
n )). SinceA(fn) → 0 and{fn} is bounded, the real part

of the inner product ofA(fn) andfn, π(f r
n (LC)f r

n ) + π(f i
n(LC)f i

n) − a‖fn‖2,
goes to zero. By (7), the claim is proved.

Let fn,1 be the projection offn onto M, fn,2 the orthogonal complement.
fn converges weakly, and so dofn,1 and fn,2. SinceM is finite dimensional,
fn,1 → 0,

0 ≥ limsup
(
ε(fn, fn) + a‖fn‖2) = lim sup

(
ε(fn,2, fn,2) + a‖fn,2‖2)

≥ limsup
(−λ(0) + 2δ + a

)‖fn,2‖2 ≥ δ lim sup‖fn,2‖2.

Therefore,fn → 0. �
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LEMMA 3. If λ(C) = λ(0), then there exists b such that λ(0) + ib is in the
spectrum of LC .

PROOF. Let {fn} be a sequence of normalized eigenfunctions ofLC with
corresponding eigenvalues{an + ibn} such thatan < λ(0) andan → λ(0). Then
LCf r

n = anf
r
n − bnf

i
n,LCf i

n = anf
i
n + bnf

r
n and, by (7),

−an = −π(f r
n LCf r

n ) − π(f i
nLCf i

n) ≥ ε(fn, fn).

As in the last part of the proof of Lemma 2,

λ(0) − an ≥ ε(fn, fn) + λ(0) = ε(fn,2, fn,2) + λ(0)‖fn,2‖2 ≥ δ‖fn,2‖2,

where fn,2 and δ are as in Lemma 2. Hence,fn,2 → 0. Since the projection
{fn,1} of {fn} onto the finite-dimensionalM is bounded, there exists a convergent
subsequence of{fn,1}. For convenience, the same indexn will be used. We have
fn converging to somef in M. Note that the spectral mapping theorem holds for
point spectrums. Hence,

ean+ibnfn = T (1)fn → T (1)f and eibn → e−λ(0)π
(
f T (1)f

)
.

Therefore, there exists someb such thatλ(0) + ib andeλ(0)+ib are eigenvalues of
LC andT (1) with the same eigenfunctionf . If λ(0) is a limit point of the real
parts of the residual spectrum ofLC , then we can repeat the above proof for the
adjoint ofLC which isL−C . Hence, there exists someb such thatλ(0) + ib is in
the point spectrum or the residual spectrum ofLC . Since there is no continuous
spectrum in the neighborhood ofλ(0), this completes the proof.�

PROOF OFTHEOREM 1. If λ(0) is the real part of an eigenvalue ofLC with
a normalized eigenfunctionf + ig, then by (7) and the definition of the Dirichlet
form ε,

−λ(0) ≥ ε(f,f ) + ε(g, g) ≥ −λ(0).

Thenf andg are inM andC+ maps the subspace spanned byf andg into itself.
If for someb, λ(0) + ib is in the residual spectrum ofLC , thenλ(0) − ib is an
eigenvalue of the adjoint operatorL−C . Hence,C− leaves a nonzero subspace of
M invariant.

The proof of the other direction is obvious.�

REMARK. It seems that a stronger result should hold: ifλ(C) = λ(0), then
λ(0) is the real part of an eigenvalue ofLC . If this is the case, Theorem 1 has a
stronger form: the equality holds iffC+ leaves a nonzero subspace ofM invariant.
If (5) holds, then(L−a)−1 is compact fora in the resolvent ofL [Reed and Simon
(1978)]. And the stronger statements hold.

REMARK. As mentioned in the Introduction, the existence of the transition
density is not needed here. A weaker assumption than (A1) suffices, for example,
C and∇U are inL1(π) ∩ L2

loc(π) [Stannat (1999)].
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3. Convergence rate in variational norm as criterion. Under (A1) the
transition densityp(t, x, y) exists. Letpt(x, y) denotep(t, x, y)/π(y); pt(x, y)

is locally Hölder [Bogachev, Krylov and Röckner (2001)].

THEOREM 4. In addition to (A1) and (A2), if ∇U and C are locally bounded,
then there exists a locally bounded function g such that∫

|pt(x, y) − 1|π(y)dy ≤ g(x)eρ(c)t .

Moreover, ρ(C) ≤ λ(C).

PROOF.∫
|pt(x, y) − 1|π(y)dy

=
∫ ∣∣∣∣

∫ (
p1(x, z)pt−1(z, y) − 1

)
π(z) dz

∣∣∣∣π(y)dy

=
∫ ∣∣∣∣

∫ (
p1(x, z)p∗

t−1(y, z) − 1
)
π(z) dz

∣∣∣∣π(y)dy

(* denotes the adjoint process)

=
∫ ∣∣∣∣

∫
p∗

t−1(y, z)p1(x, z)π(z) dz −
∫

p1(x, z)π(z) dz

∣∣∣∣π(y)dy

=
∫ ∣∣T ∗(t − 1)

(
p1(x, ·))(y) − π

(
p1(x, ·))∣∣π(y)dy

≤
(∫ ∣∣T ∗(t − 1)

(
p1(x, ·))(y) − π

(
p1(x, ·))∣∣2π(y)dy

)1/2

≤ constant‖p1(x, ·) − 1‖eλ(C)t .

The last inequality holds ifp1(x, ·) is in L2(π).
We now claim that

∫
p2

1(x, z)π(z) dz is locally bounded. Since∇U andC are
locally bounded, by a local Harnack inequality [Theorem 1.1 in Trudinger (1968)],

∀x in R
d,∀N > 0,∀f with π(f ) = 1 andf ≥ 0,

Sup
y∈B(x,N/2)

T (s)f (y) ≤ C(N,x) Inf
y∈B(x,N/2)

T (2s)f (y),
(8)

where the constantC(N,x) depends only onN andx, andB(x,N/2) denotes a
ball in R

d with centerx and radiusN/2. Fory andz in B(x,N/2),
∫
ps(z, u)f (u)π(u)du = T (s)f (z) =

∫
B(x,N/2) T (s)f (z)π(y) dy

π(B(x,N/2))

≤ C(N,x)
∫
B(x,N/2) T (2s)f (y)π(y) dy

π(B(x,N/2))
≤ C(N,x)

π(B(x,N/2))
;
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for f satisfying (8), we have

Sup
y

ps(z, y) ≤ C(N,x)

π(B(x,N/2))
.

Now letg(x) = Supy ps(x, y), theng is locally bounded and∫
p2

s (x, y)π(y) dy ≤ g2(x).

This also establishes thatρ(C) ≤ λ(C). �

REMARK. The local boundedness assumption in Theorem 4 is not needed for
the reversible case, since

∫
p2

1(x, y)π(y) dy = p2(x, x) is locally bounded.

The following theorem implies that for the reversible case,ρ(0) = λ(0).

THEOREM 5. For the reversible case, if there exists some g in L1
loc(π) such

that ∫
|pt(x, y) − 1|π(y)dy ≤ g(x)eρt then ‖T (t) − π‖ ≤ eρt .

PROOF. For the reversible case,T (t) is self-adjoint inL2(π),

‖T (t)f ‖2 = π
(
f T (2t)f

)
.

Forf with π(f ) = 0, f ∈ C∞, f = c0 outsideBN , whereBN denotes a ball inRd

centered at 0 with radiusN andc0 a constant,

‖T (t)f ‖2 = π
(
f T (2t)f

) = π
(
(f − c0)T (2t)(f − c0)

) − c2
0

=
∫
BN

(
f (x) − c0

)(∫
BN

(
p2t (x, y) − 1

)(
f (y) − c0

)
π(y)dy

)
π(x)dx

≤ ‖f − c0‖2∞
∫
BN

∫
BN

|p2t (x, y) − 1|π(y)dy π(x) dx

≤ ‖f − c0‖2∞
∫
BN

g(x)e2ρtπ(x) dx ≤ C(N,f )e2ρt .

By Lemma 2.2 in Röckner and Wang (2001), fors ≤ t andπ(f 2) = 1,

‖T (s)f ‖2 ≤ (‖T (t)f ‖2)s/t ≤ C(N,f )s/t e2ρs.

The equalities hold ats = 0. Now take a derivative w.r.t.s and evaluate at 0. Then

−2ε(f,f ) ≤ 1/t logC(N,f ) + 2ρ.

Letting t → ∞, we haveε(f,f ) ≥ −ρ.

For anyh ∈ C∞
0 ,

let f = h − π(h)

‖h − π(h)‖ thenε(f,f ) ≥ −ρ,

andπ(h2) ≤ 1
−ρ

ε(h,h) + π2(h). Hence, we have provenλ(0) ≤ ρ. �
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4. Discussion and related problems. Our theorems give only general and
qualitative information. The proofs do not reveal how the rate of convergence
depends onC. Intuitively, multiplyingC by a largek should speed up convergence.
However, examples in Hwang, Hwang-Ma and Sheu (1993) show the contrary. It
is not clear which part ofC contributes to acceleration. Most of the questions
discussed below are based onλ(C). Similar questions can be formulated forρ(C).

Now consider families of diffusions (algorithms) defined by (2) with indexC

satisfying various conditions. What is the best algorithm within a certain family?
For example, letG denote the family of diffusions withC satisfying the general
conditions described in the previous sections andS the family of diffusions with
C = S(∇U) for any skew symmetric matrixS, respectively. One may ask for the
optimal values and minimizers in the following two problems:

(λ1) InfC∈G λ(C).
(λ2) InfC∈S λ(C).

For (λ1), even the simple question “Is InfC∈G λ(C) = −∞?” remains unanswered.
For Gaussian diffusions, the optimal structure of (λ2) is known [Hwang, Hwang-
Ma and Sheu (1993)]. Note that for the Gaussian case, the perturbationC in (λ2)
is linear. However, Hwang and Sheu (2000) showed that a quadraticC has a better
rate. Problem (λ2) remains open for the general case.

Basically, the problem is to find the best “spectral gap” in a family of elliptic
operators. Similar questions may be discussed on compact Riemannian manifolds.
We consider the following generic case on the two-dimensional torus: letLC =
� + C · ∇ with divergence freeC,

(λ3) infC λ(C).

Again, what is the best solution and is it finite?
Obviously,λ(0) < 0 impliesλ(C) < 0, but how about the other way around?

That is, if LC has a spectral gap, doesL? If the answer is negative, then
perturbations can drastically change fundamental convergence properties. We
proved thatρ(C) ≤ λ(C), but when does equality hold? If there is no spectral
gap forL, how does the antisymmetric perturbation accelerate convergence?
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