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Mixtures of Gaussian (or normal) distributions arise in a variety of
application areas. Many heuristics have been proposed for the task of finding
the component Gaussians given samples from the mixture, such Edlthe
algorithm, a local-search heuristic from Dempster, Laird and RubBirRpy.
Satist. Soc. Ser. B 39 (1977) 1-38]. These do not provably run in polynomial
time.

We present the first algorithm that provably learns the component
Gaussians in time that is polynomial in the dimension. The Gaussians may
have arbitrary shape, but they must satisfy a “separation condition” which
places a lower bound on the distance between the centers of any two
component Gaussians. The mathematical results at the heart of our proof are
“distance concentration” results—proved using isoperimetric inequalities—
which establish bounds ondlprobability distributio of the distance between
a pair of points generated according to the mixture.

We also formalize the more general problem of max-likelihood fit of a
Gaussian mixture to unstructured data.

1. Introduction. Finite mixture models are ubiquitous in a host of areas
that use statistical techniques, including artificial intelligence (Al), computer
vision, medical imaging, psychology and geology (see [15, 23]). A mixture of
distributionsd1, Do, ... with mixing weightswi, w, ws, ... (Where)_; w; = 1)
is the distribution in which a sample is produced by first picking a component
distribution—theith one is picked with probabilityv;—and then producing a
sample from that distribution. In many applications the component distributions
are multivariate Gaussians.

Given samples from the mixture distribution, how can one learn (i.e., recon-
struct) the component distributions and their mixing weights? The most popular
method is probably the EM algorithm of Dempster, Laird and Rubin [7]. EM is a
local search heuristic that tries to converge toeimumt-likelihood description of
the data by trying to cluster sample points according to which Gaussian they came
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from. Though moderately successful in practice, it often fails to converge or gets
stuck in local optima. Much research has gone into fixing these problems, but has
not yet resulted in an algorithm that provably runs in polynomial time. A second
known technique is calleprojection pursuit in statistics [12]. In this, one projects

the samples into a random low-dimensional space and then, in the projected space,
tries to do the clustering (exhaustively) exploiting the low dimensionality.

We note that some combinatorial problems seemingly related to learning
Gaussian mixtures are NP-hard. For instance, Megiddo [18] shows that it is
NP-hard to decide, given a set of point9it, whether the points can be covered by
two unit spheres. This problem seems related to learning a mixture of two spherical
Gaussians.

Nevertheless, one may hope that when the data is generated from the mixture
of Gaussians (as opposed to being unstructured as in Megiddo’s result) then the
algorithm could use this structure in the data. Recently, Dasgupta [5] took an
important step in this direction by showing how a mixture aflentical Gaussians
could be learned in polynomial time provided the Gaussians are “spherelike”
(their probability mass is concentrated in a thin spherical shell) and their centers
are “well-separated.” (Such separation conditions correspond to a nondegeneracy
assumption: if the mixture contains two identical Gaussians whose centers are
arbitrarily close, then they cannot be distinguished even in principle.)

Though Dasgupta’s algorithm is a good first step, it leaves open the question
whether one can design algorithms that require weaker assumptions on the
Gaussians. This is the topic of the current paper: our algorithms make no
assumption about the shape of the Gaussians but they require the Gaussians
to be “well-separated.” Even for the special case of spherical Gaussians, our
result improves Dasgupta’s (and a result of Dasgupta and Schulman [6] that is
independent of our work). We describe our results in more detail in Section 2.3
and compare them to other work.

We also define a more general problem of Gaussian fitting, whereby we make
no assumptions about the data and have to fit the mixture G@aussians that
maximizes the log-likelihood it assigns to the dataset (see Section 2.1). We
use techniques developed in the context of approximation algorithms to design
algorithms for one of the problems (see Section 4). The exact problem is NP-hard.

2. Definitions and overview. The univariate distributionV(u,o) on R
has the density functiorf (x) = (v/2ro)™! exp(—("z_a—’é)z). It satisfiesE[(x —
w)?] = o2. The analogous distribution i" is the axis-aligned Gaussian
N(it,o), wherefi, 6 € R and the density function is the product distribution of
N(u1,01), N(u2,02), ..., N(in, o). A random sampléxy, xo, ..., x,,) satisfies
E[Y;(xi — i)=Y of. (Similarly, E[Y; (x; — pui)?/07]1 =n.)

A general Gaussian if" is obtained from an axis-aligned Gaussian by
applying an arbitrary rotation. Specifically, its probability density function has the
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form

1)  Fo,0)= exp(—(x — )T 07 x - p)/2),

1
(2)"/2[]; /2 ()
where Q is ann x n positive definite matrix with eigenvalues:(Q), ...,
A(Q) > 0, and p € R is the center. Since Q can be rewritten aR~! x
diag(A; (Q))R, whereR is a rotation, the quantitigs (Q) play the same role as the
variances:l.2 in the axis-aligned case. From our earlier discussiiiiy — p)7 x
(x—p)lisY; 2 (Q) andE[(x — p)T 0 x = p)l = [, Fo,(x)(x —p)T 07 (x -
p)=n.

For any finite sample of points " we can try to fit a Gaussian by computing
theirvariance—covariancematrix. Letxq, xo2, ..., xy be N points infi” in general
position (i.e., we assume that they do not all lie on a hyperplane)XLe¢ the
n x N matrix whose columns are the vectafs— g, x2 — ¢, ..., xy — g, where
qg= %(xl + x2 + --- + xn) is the sample mean. Then the variance—covariance
matrix A = %XXT; note that it is positive definite by definition.

This fit may, of course, be poor for an arbitrary point set. However, for every
e > 0, there is a constant, > 0 such that ifV > ¢,nlogrn and the N points
are independent, identically distributed samples from a Gauggjgn then with
probability at least 0.99F, , is a(1+ ¢)-fitto Fg , in every direction [3, 22] in
the sense thdy — p|? < ey i 2i(Q) and|Gv|(1—¢) < |Av] < (1 + ¢)|G] for
every unit length vector. (The proof of this is highly nontrivial; but a weaker
statement, when the hypothesis is strengthened toc.n?, is easier to prove.)

Spherical and spherelike Gaussians. In an axis-aligned Gaussian with center
2

at the origin and with variances?, ..., 072, the quantity}; x?/o? is the sum

of n independent identical random variables fravi0, 1) so this sum is tightly
concentrated about its meanIn a spherical Gaussian, alb;’s are the same, so
even) ; xl.2 is tightly concentrated. (These observations go back to Borel.) More
generally, E[Y; x?] = Y, o2. If the o;'s are not “too different,” then distance-
concentration results (similar to Lemma 5 below) show that that almost all of
the probability mass is concentrated in a thin spherical shell of radius about
(X; 02)/?; such Gaussians may be thought ofplserelike. Roughly speaking, if
radiugomax = 2(logn), then the Gaussian is spherelike. Known algorithms (such
as [5]) work only for such spherelike Gaussians. By contrast, here, we wish to

allow Gaussians of all shapes.

2.1. Max-likelihood learning. Now we formalize the learning problems.
Consider a mixture of Gaussiang, F1, wa, Fo, ..., wy,, Fy) in K", where the
w;’s are the mixing weights. With any pointe )", one can associate numbers
(Fi(x))i=1....m corresponding to the probabilities assigned to it by the various
Gaussians according to (1). For any santpfe )" this imposes a natural partition
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into m blocks: each point € S is labeled with an integef(x) € {1, ..., m}
indicating the distribution that assigns the highest probability. ({d@ies are broken
arbitrarily.) Thelikelihood of the sample is

H Fix)(x).
xeS
It is customary to work with the logarithm of this likelihood, called thog-
likelihood.
Thus one may mean several things when talking about “learning mixtures of
Gaussians” [21]. The following is the most general notion.

DEFINITION 1 (Max-likelihood fit). In themax-likelihood fit problem, we are
given an arbitrary sampl& C %" and a numbek; we desire the Gaussian mixture
with & components that maximizes the likelihood$®f

2.2. Classification problem. Now we define the subcase of the learning
problem when the data is assumed to arise from an unknown mixtude of
Gaussians, whereis known.

DEeFINITION 2 (Classification problem). In thelassification problem, we
are given an integek, a real numbes > 0 and a sample generated from an
unknown mixtureF, Fo, ..., F; of k Gaussians ith”, where the mixing weights
w1, wo, ..., wg are also unknown. The goal is to find the “correct” labeling for
each point inS (up to permutation), namely to partitighinto & subsets such that
with probability at least + §, the partition ofS is exactly into the subsets of
samples drawn according to eakh

Viewing the unknown mixture as a “source” we may view this as the “source
learning” problem. Note that once we know the partition, we can immediately
obtain estimates of the unknown Gaussians and their mixing weights.

So, the classification problem has a stronger hypothesis than the maximum-
likelihood problem in that it assumes that the data came from a mixture. It also
then requires the result to satisfy the stronger requirement that it is exactly the
partition into the actuaby, So, ..., S, whereS; was generated according to the
Gaussiar¥;. (We abuse notation here slightly; we can only know the Seaip to
a permutation of their indices. However, to avoid extra notation, we will say the
partition has to besq, So, ..., Sk.)

2.3. Our results.  Our main result concerns the classification problem. Clearly,
the problem has no unique solution if the Gaussians in the mixture are allowed to
be arbitrarily close to each other. We will assume a certain separation between the
centers of the Gaussians. The required separation is an important consideration and
will be motivated in detail in Section 3.2. Here we will just state it and mention
two important features of it.
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NOTATION. First, we introduce some notation which we will use throughout.
We let p1, p2, ..., px denote the (unknown) centers, respectively, of the
Gaussiangi, Fo, ..., F;, comprising the mixture; the maximum variance gf
in any direction will be denoted; max. We denote byRr; the “median radius” of
F;; R; has the property that th&;-measure of a ball of radiuR; aroundp; is
exactly /2. Henceforth, we will reserve the word “radius” of a Gaussian to mean
its median-radius.

Here is our formal definition of separation.

DEFINITION 3. For anyr > 0, we say that the mixture isseparated if

. |pi — pjl? = —|R? — R2| + 500 (R; + R;)(01,max+ 0, max)
+ 10020 max+ 0P mad Vi

We point out here quickly two features of this definition. First, if two Gaussians
F;, F; are both spherical of the same radtj = R;), then the required separation
is O*(R;/nY#). Second, ifF;, F; are still spherical, but ifR; > R;, the term
—|Ri2 — R/2.| is negative and makes the separation required less. Inded=H

(1+ @*(1/4/n))R;, then the two Gaussiarg, F; are allowed be to concentric!
The superscript on O, 2 indicates that we have omitted factors logarithmiain

THEOREM 1. There is a polynomial-time algorithm for the classification

problem. The algorithm needs to know a lower bound win 0N the mixing weights,

and the number s of sample points required is O (n2k?log(kn?)/(8?w8, ). The

Gaussians may have arbitrary shape but have to be ¢-separated, where r =
logs

0.

We also present an approximation algorithm for a special case of the max-
likelihood fit problem.

THEOREM 2. There is a polynomial-time approximation algorithm for the
max-likelihood fit problemin %" when the Gaussians to be fitted to the data have
to be spherical of equal radii (the radiusand the centersof the k£ Gaussians haveto
be determined by the algorithm). Thereis a fixed constant ¢ such that the algorithm
produces a solution whose log-likelihood is at |east the best possible minus c.

The algorithm of Theorem 2 is combinatorial and appears in Section 4. We note
even this subcase of the maximum-likelihood fit problem is at least as hard as the
clustering problent-median (sum-of-squares version with Steiner nodes), which
is NP-hard [8]. Indeed, our algorithm is obtained by reducing toitmeedian
algorithm of [4] (recent more efficietmedian algorithms would also work). We
feel that this way of viewing the learning problem as an approximation problem
may be fruitful in other contexts.
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2.4. Comparisonwith other results. The algorithm in [5] makes the following
assumptions: (i) all the Gaussians have the same variance—covariance @atrix
(i) the maximum and minimum eigenvalue;%ax and ar%m, respectively, ofz

satisfy‘;%nX € O(+/n/logk); (iii) the centers of any two of thé Gaussians are at

distance (at leastp (\/nomax) apart.

Dasgupta and Schulman [6] showed that the EM algorithm learns (and indeed
does so in just two rounds) a mixturegpherical Gaussiang, Fo, ..., F, where
F; has radiusrk; (the R; may be different). They require now only a separation
between centers of;, F; of Q((R; + R;)/n**%. (This amount of separation
ensures among other things that the densities are “nonoverlapping”; i.e., there are
k disjoint balls, each containing the samples picked according taFphe

As mentioned, our result is stronger in two ways. First, we allow Gaussians
of arbitrary (and different) variance—covariance matrices and, second, we allow
densities to overlap, or even be concentric. More specifically, theieeﬁ'ﬁ — R]2.|
(which is nonpositive) can make the minimum required separation negative (and
SO a vacuous requirement) in some cases; it allows the centers to be close (or
even coincide) if the radii are very different. This allows a “large feature” to
have an identifiable smaller “feature” buried inside. For the case dealt with by
[6], their requirement is the same as ours (since in this &ase \/no; max) but
for this term and logarithmic factors and thus their result essentially follows as
a special case of ours. For the case dealt with by [5], our requirement is again
weaker than that paper’s but for logarithmic factors [siRé@o; max € O(R;)].
After the first appearance of our paper [2], Vempala and Wong [25] improved
the separation requirement to essentially the optimal one for the special case of
spherical Gaussiangp; — pj| = Q((R; + R;j)/+/n). Their spectral technique is
entirely different from ours.

3. Algorithm for classification problem. First we fix notation for the rest of
the section. We are given a s&tof samples, picked according to an unknown
mixture wi1F1 + waFr + --- + wi F, of Gaussiansfy, Fo, ..., F,. The known
gquantities arek and a numbermi, that is a lower bound on the;'s. We have
to decomposes asS = S1 U So U --- U S;, whereS; are the samples that were
generated using;.

Section 3.1 describes the algorithm at an intuitive level. This description
highlights the need for a “well-separated” condition on the Gaussians, which we
explain in Section 3.2. The description also highlights the need for “distance
concentration” results for Gaussians, which are then proved in Section 3.3. In
Section 3.5 we formally describe the algorithm and prove its correctness.

3.1. Algorithmoverview. The algorithm uses distance-based clustering, mean-
ing that we repeatedly identify some sample pairgnd some distance and all
sample points inB(x, r) all put into the same cluster. Such distance-based clus-
tering is not new and it appears in many heuristics, including [5, 6]. The choice
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of x,r is of course the crucial new element we provide. Since distance-based
methods seem restrictive at first glance, the surprising part here is that we get
provable results which subsume previously known provable results for any algo-
rithm. This power arises from a “bootstrapping” idea, whereby we learn a little
about the Gaussians from a coarse examination of the data and then bootstrap
from that information to find a better clustering.

In general, distance-based clustering is most difficult when the Gaussians have
different shapes and sizes, and overlap with each other (all of which we allow).
It is easy to see why: a sample point from Gausdiamight be closer to some
sample points of another Gaussiain than to all the sample points @f;. One
crucial insight in our algorithm is that this is unlikely to happen if we look at the
Gaussian with the smallest radius in the mixture; hence we should use clustering
to first identify this Gaussian, and then iterate to find the remaining Gaussians.

Now we give an overview of the algorithm. L&} be the Gaussian of smallest
radius. Using our distance-concentration results, we can argue that ferasy,
there is anr such that (i)B(x,r) N S = Sy, (ii) there is a “sizable” gap after,
namely, the annuluB(x, r") \ B(x, r) for somer’ noticeably larger than contains
no samples from any; for j > 1; (iii) there is no spurious large gaps befare
which would confuse the algorithm.

Even after proving the above statements, the design of the algorithm is still
unclear. The problem is to figure out the size of the gap between wherads
andS \ S1 begins, so we know when to stop. (Note: there will be gaps before
the point s that they will be smaller than the one aft¢iOur separation condition
ensures that the gap betwegnand the otherS; is Q(o1max); SO We need an
estimate ob1 max. We get such an estimate by bootstrapping. We show that if we
have any fractiorf of the samples ir§1, then we may estimate; max to a factor
of 0(1/£?) with high probability. We us this to get a rough estimageof o1 max.

Using 8, we increment the radius in steps which are guaranteed to be less than
o1,max (Which ensures that we do not step over the “gap” into andfheuntil we
observe a gap; by then, we have provably pickedrogt of S1. Now we use this

to better estimate max and then incrementing the radius by anotf¥b1 max),

we capture all ofS;. (The guaranteed gap ensures that we do not get any points
from any other Gaussian while we increment the radius.)

To make all the above ideas rigorous, we need appropriate distance-
concentration results which assert that the distance between certain pairs of
sample points considered as a random variable is concentrated around a certain
value. Some distance-concentration results—at least for spherical or spherelike
Gaussians—were known prior to our work, showing a sharp concentration around
the mean or median. However, for the current algorithm we also need concentration
around values that are quite far from the mean or median. For example, to show the
nonexistence of “spurious gaps,” we have to show that if a ball of radiestered
at a sample point € S; hasF;-measure, say, exactly4, then, for a smal§ > 0,
the ball of radiug +§ with x as center hag;-measure at least®6. If such a result
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failed to hold, then we might see a “gap” (an annulus with no sample points) and
falsely conclude that we have seen all$f Such concentration results (around
values other than the median or mean) are not in general provable by the tradi-
tional moment-generating function approach. We introduce a new approach in this
context: isoperimetric inequalities (see Theorem 3). Our method does not always
prove the tightest possible concentration results, but is more general. For example,
one may derive weaker concentration results for general log-concave densities via
this method (see [17]).

3.2. Separation condition and itsmotivation. Now we motivate our separation
condition, which is motivated by the exigencies of distance-based clustering.
Consider the very special case of spherical Gaussi@ansg; with R; = R;.
Supposerx, x’, y are independent samples,x’ picked according toF; and y
according toF;. Lemma 5 will argue, that with high probability [we will use
here to mean that the two sides differ by at msﬁf/ﬁ)],

2 o p2
lx — pil*~ R;

and similar concentration results for' — p;|, |y — p;|. It is an intuitive fact that

x — pi,x' — pi, pi — pj,y — p; Will all be pairwise nearly orthogonal (a sample
from a spherical Gaussian is almost orthogonal to any fixed direction with high
probability). So, one can show that

@) I —x'P~x - pil®+Ipi —x'1?~2R7,

@) k= yPxlx—pil+Ipi = pjlP +1y — pjI*~ 2R} + |pi — p;jI*.

(The first assertion is proved rigorously in greater generality in Lemma 7 and
the second one in Lemma 8.) Thus, it is clear thatpf — pj|2 is at least
Q(Rf/ﬁ), then with high probabilityx — x’| and|x — y| will lie in different
ranges. (Aside: One can also show a sort of converse with different constants,
since the concentration results we get are qualitatively tight. However, we will not
establish this, since it is not needed.) This intercenter separation then is

O(R;/n*'™.

Our separation condition for this case is indeed this quantity, up to a facter log

A weaker separation condition would be to require a separatid(&f; //n );

at this separation, one can still show theth high probability the hyperplane
orthogonal to the line joining the centers at its midpoint has all the samples of one
Gaussian on one side and the samples of the other Gaussian on the other side. An
algorithm to learn under this condition would be a stronger result than our distance-
based algorithm in this case. Since the conference version of our paper appeared,
Vempala and Wang [25] have indeed developed a learning algorithm under this
weaker separation for the case of spherical Gaussians using spectral techniques.
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3.3. Concentration results using isoperimetric inequalities. Suppose we have
some probability density in %" and a pointx in space. For proving distance
concentration results, we would like to measure the rate of growth or decline of
F(B(x,r)) as afunction of. This will be provided by the isoperimetric inequality
(see Corollary 4).

THEOREM 3 [14]. Let F(x) = e—xTA_lxg(x) be a function defined on R",
where A is a positive definite matrix whose largest eigenvalue is o,%ax and g(x) is
any positive real-valued |og-concave function. Suppose v is a positive real and we
have a partition of %" into three sets K1, K», K3 so that, for all x € K1, y € K>,
we have |x — y| > v. Then

v’ 1
F(x)dx > mln( F(x)dx,/ F(x) dx).
K3 ﬁ Omax K1 K>

The phrase “isoperimetric inequality” has come to mean a lower bound on the
surface area of a set in terms of its volumeKif is fixed and we defin&s to
be the set of points not iK1 which are at distance at mostfrom some point
in K1 and defineK, = %" \ (K1 U K3), then asy goes to zeroK3 tends to the
boundary surface ok; and the above theorem can be shown to yield a lower
bound on the surface integral Bfover this surface. We will make this connection
rigorous below for the context we need. Such isoperimetric inequalities for general
log-concave measures over multidimensional sets were first proved for use in
establishing rapid convergence to the steady state of certain Markov chains for
approximating volumes of convex sets and for sampling according to log-concave
measures [1, 9, 16]. The proof of Theorem 3 uses a specialization of the above
technigues to the case of Gaussians, where we get better results.

COROLLARY 4. We borrow notation from Theorem 3 and also assume that
F(R") =1:
(i) Ifaball B(x,r) has F(B(x,r)) <1/2,then
d(In(F(B(x,r)))) - 2
dr - ﬁamax'
(i) Ifaball B(x,r) has F(B(x,r)) > 1/2,then
d(In(1— F(B(x,r)))) - -2
dr = /T omax
REMARK. The corollary says that (#(B(x,r))) grows at a rate of
Q(1/omax) until F(B(x,r)) is 1/2, and then Il — F(B(x, r))) declines at a rate

of Q(1/omay . Intuitively, it is easy to see that this would lead to distance concen-
tration results since once we increase (decreass) O (omax) from its median
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value, the mass outside(x, r) [inside B(x, r)] is small. The first lemma below
(Lemma 5) is derived exactly on these lines; the subsequent three Lemmas 6-8
discuss the distances between different samples from the same and from different
Gaussians.

PROOF OFCOROLLARY 4. Letv be an infinitesimal. Then

d(In(F(B(x,r)))) 1 d(F(B(x,r)))
dr ~ F(B(x,r)) dr
= lim é[F(B(x, r+v))— F(B(x,r))].

v—>0VF(B(x,r))

Now we letK1 = B(x,r) andKo = %"\ B(x, r +v) and apply the theorem above
to get the first assertion of the corollary. The second assertion follows similarly.
O

LEMMA 5. Suppose F is a general Gaussian in " with maximum variance
inany direction o, radius R and center p. Then, for any ¢ > 0, we have

F(x:R—to<|x—p|<R+to})=>1—¢".
PrROOF Foranyy >0, letF(B(p,y)) =g(y). Then, fory < R, we have by
Corollary 4 that
dIn(g(y)) - }
dy T o
Integrating fromy to R, we get that
F(B(p,y)) <z R/,
Fory > R, isoperimetry implies that
dind—g())) _ -1
dy o
Again integrating fromr to y, we get 1— g(y) < (1/2)e~ =R/ Combining
the two, the lemma follows. [

LEMMA 6. Let F, p, R,o beasin Lemma 5 and suppose z is any point in
space. Let r > 1. If x is picked according to F, we have that, with probability at
least 1 — 2¢7,

(R+10)%+|z = pl° +2v/2i|z = plo
(5) > [x —z|?
> (R —10)")? + 12— p2 — 2V2V/lz - plo,

where (R —to) 1 is R — to if this quantity is positive and O otherwise.
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PrROOEF We have
x —zP=(x=p)+(p—2) - ((x = p)+(p—2)
=lx—plP+lp—zP+20x—p)-(p—2).

Now 2(x — p) - (p — z) is a normal random variable with mean 0 and variance
at most 4p — z|%02, so the probability thaf2(x — p) - (p — z)| is greater than
2v/2\/t|z — plo is at moste~'. From Lemma 5, we have th&— to < |x — p| <

R + to with probability at least - ¢~. Combining these two facts, the current
lemma follows. O

(6)

LEMMA 7. Suppose F, p, R, o asin Lemma5. Suppose x, y areindependent
samples each picked accordingto F. Then for any ¢ > 1, with probability at least
1— 3¢, we have

2R?> —8toR < |x — y|2 <2(R+ 21‘0)2.

PROOF We may assume that is picked first and thery (independently).
Then from Lemma 5, with probability2e~', we haveR —to < |x — p| < R+to.
From Lemma 6 (once is already picked), with probability at least12¢~", we
have (R + 10)% + |x — pl4v/to + |x — p|? > |x — y|> > R2 — 2Rto — 4|x —
pl/To +|x — p|2. Both conclusions hold with probability at least Be—*, whence
we get

lx — y[2 < (R+10)? + 416 (R +10) + (R +16)? < 2(R + 210)?.

For the lower bound oifx — y|?, first note that ifR < 4ro, then R2 — 8t0 <0,
so the lower bound is obviously valid. So we may assume khat4so. Thus,
|x — p| > 3to and under this constrainty — p|?> — 4/70 |x — p| is an increasing
function of |x — p|. So, we get

|x — y|2 > R2 — 2Rto — 4toc(R—to) + (R — to)z,
which yields the lower bound claimed]
LEMMA 8. Letr > 1.If x isarandom sample picked accordingto F; and y

is picked independently according to F;, with F;, F; satisfying the separation
condition (2), then, with probability at least 1 — 6¢~’, we have

lx — y[? = 2mMin(RZ, R%) + 60t (07 max+ 0j.ma) (Ri + R;)

(7)
+ 3012(Ui?max + sz, max)-

PROOF.  Assume without loss of generality th&t < R;. Applying Lemma 6,
we get that, with probability at least-12¢~7, we have

®) |y —pil>= R?—2t0jmaxR; + |pi — pj* — 2¥/2/t|p; — pjloj.max
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CLAIM 1.

9 ly—pi |2 = Ri2 + 154 (0i,max+ 0j,max) (Ri + R;) + 30t2(0i?max+ sz,max)'

PROOF Casel. R2 > R2 + 250 (R; + R)(0i max+ 0j.max) + 302 (0

1, max
/max) Note that |p, — pJ|2 — 4\/_aj,max|p, - pjl + 4t0‘/7max > 0. So,
|pi — p, — 410 maxlpi — pjl > —4taj2’max. Plugging this into (8), and using

the case assumption, we get

ly — Pi|2 > R,-Z + 250 (R; + R;)(0j, max+ 0i,max)
+ 3Otz(ajzmax+ Uizmax) — 210 maxR;j 4t0/ max:

It is easy to see thak; > (2/3)0; max—this is becauseRZ is clearly at least the

median value of(u - x)2 under F;, whereu is the dlrectlon achieving; max;
now it is easy see that, for the one-dimensional Gaussian the median value
of (u - x)? is at least 23 times the variance by direct calculation. Plugging

/Zmax < (3/2)R;0; maxinto the above inequality, we easily get the claim.

Case 2. R? < R? 4 250 (R; + R;) (01 max+ 0j.max) + 302 (0 ax + 07 max)-
Then by the separatlon condition, we have

pi — pjI? = 250 (R; + R;)(0i.max+ j.ma) + 702 (0 max+ 02 man)-

Now, since|p; — pj|2 — Zﬁﬁaj,maxm — pjl is an increasing function of
|pi — pjlfor |pi — pjl > 2¢/2/10j max, We have

pi — pjl? — 2v/2v/10} maxl pi — |
> 250 (R; + R;)(01,max+ 0j.max) + 702 (0 max + 07 mad)
— 2V2/10 max(16VIV/R; + Ri /o) max+ 0i.max+ 9 (0} max+ 0i.max))
> 156 (R; + R;)(01.max+ 0j.max) + 34%(0 max+ 02 mad-

using the inequality/a + b < \/a + vb,Ya,b>0and observing that; max <

(3/2)R; ando; max(0j,max + 0i,max) < \/E(Ufmax‘F sz,max)'
Putting this into (8), we get

Iy — pil?> > R? — 210 maxR; + 156 (R; + R;)(0i.max~+ 0j.max)
+ 34{2(0i?max+ U‘jz,max)’

which yields the claim in this case[]

Imagine nowy already having been picked andbeing picked independently
of y. Applying Lemma 6, we get that, with probability at least Re~?, we have



MIXTURES OF GAUSSIANS 81
(again using the inequality/a + b < /a + /b, Ya, b > 0)

x — yI> = R? — 2Rit0; max+ |y — pil® — 2V/2/16 maxly — pil
> R? — 2R;10;.max+ R? + 154 (0} max+ 0j.max) (R; + R})
+ 3Ot2(crfmax+ sz,max)
— 2v/2y/10; max(Ri + 13V1/0i max+ 0. maxV'Ri + R;
+ \/3_0t(0i,max+ Gj,max))

[because underomdition (9),|y — pi|?> — 2v/2/70i.maxly — pil is an increasing
function of |y — p;|]

lx — y[? > 2R? + (154— 2 — 2v/2(1 + 13/3/2 + 1.5V/30))
X 1(0jmax+ 0jmax) (R + Rj) + 30tz(0i?max+ sz,max)’

from which the lemma follows. [

3.4. Warmrup: case of spherical Gaussians. As a consequence of our concen-
tration results we first present our algorithm for the simple case when ahjthe
are spherical. In this case; max~ R;/+/n, where the error is small enough that
our calculations below are valid. Choosing 2 (log(|S|/8)) as before, it is easy
to see from the distance concentration results that, with high probability,

4 5t )
(10) |x_y|26|:2R12<1_ﬁ>’2R12<1+ ﬁ)] Vx,yES,',Vl,

and by appropriately choosing the constant in the definitionsagfparation we can
also ensure that with high probability there is a positive constaatl2 such that

't (R + Rj)?
Jn

For each pairr, y € S find |x — y| and supposeyo, yo is a pair (there may be
several) at the minimum distance. Then from (10) and (11) it follows thatdf S;
thenforallye S;, |x —y| < (1+ %)|xo — yo| and furthermore, for alt € S\ S;,
lx—z| = (1+ %)Ixo—yol- So, we may identifys; by SN B(xo, |xo— yol(1+ %))-
Having thus foundS;, we may peel it off fromS and repeat the argument. The
important thing here is that we can estimate the radius of the ball—namely,
|xo — yol(L+ %)—from observed quantities; this will not be so easily the case
for general Gaussians.

(11) |x — y[> = 2min(RZ, RS) + VxeS,VyeS;, Vi#j.
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3.5. Thegeneral case. Now we consider the case when the Gaussians may not
be spherical or even spherelike. ldet 0 be the probability of failure allowed. We
are given a set of samplésdrawn according to an unknown mixture of Gaussians
w1F1 4+ waFo + - - - 4+ wy Fy; but we are given @min > 0 with w; > wmin for all i.

We assume thas| > 10'n%k?log(kn?)/(8?we.). In what follows, we choose
. 100log|S]
5

THE ALGORITHM. Initialization:7 < S.

1. Leta > 0 be the smallest value such that a ik, «) of radiusa centered at
some pointinx € T has at least@min|S|/4 points fromT. (This will identify
a GaussiarF; with approximately the least radius.)

2. Find the maximum variance of the g@t= B(x, «) N T in any direction. That
is, find

2
1 1
=S (G 5)

(This B is our first estimate ofmax. Note that computingd is an eigenvalue
computation, and an approximate eigenvalue suffices.)

3. Letv = ,/w”"—8‘"’3. (We will later show that < omay; SO increasing the radius in
steps ofv ensures that we do not miss the “gap” betweenSthinatx belongs
to and the others.) Find the least positive integsuch that (we will later prove
that such a exists)

B(x,a+sv)NT =B(x,a+ (s —v)NT.

4. Let ' = B(x,a +sv) N T. As in step 3, find the maximum variangé of
the setQ’ in any direction. (We will prove that thig’ gives a better estimate
of omax.)

5. RemoveB(x, a + sv + 3./B’(log|S| — logs + 1)) N T from T. (We will show
that the set so removed is precisely one of$h¢

6. Repeat untill is empty.

REMARK 1. Ball B(x, o + sv) will be shown to contain all buimin/(10w;)
of the mass of the Gaussidh we are dealing with; the bigger radius Bfx, o +
sv + 3/B’(log|S| — logs + 1)) will be shown to include all bus/(10|S|?) of the
mass ofF;. This will follow using isoperimetry. Then we may argue that with high
probability all of S; is now inside this ball. An easier argument shows that none of
the othersS; intersect this ball.
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Now we prove why this works as claimed. Liet- 0 be the probability of failure
allowed. Recall that

e 100log| S|
_T.

We will now show using the distance-concentration results that several desirable
events [described below in (12)—(18)] happen, each with probability at Iea%l
We will assume from now on that conditions (12)18) hold after allowing for
the failure probability of at most 7§/10. The bottom line is that the sample is
very likely to represent the mixture accurately: the component Gaussians are
represented essentially in proportion to their mixing weights; the number of
samples in every sphere and half-space is about right and so forth.

First, since|S;| can be viewed as the sum f| Bernoulli independent 0-1
random variables, where each is 1 with probability we have [using standard
results, e.g., Hoeffding’s inequality, which asserts thas fiard. Bernoulli random
variablesX1, Xo, ..., X, with Prob(X; = 1) = ¢, for all real numbersx > 0,

Prol(| > /1 Xi —sql > ) < 2e—“2‘1/4s] that, with probability at least + §/10,

(12) 1.1w;|S| > |S:| > 0.9w;|S| Vi

For eachi,1<i <k, and eachx € §;, let n(x) be the least positive real number
such that
1)
F; (B >1———-.
i(B(x,n(x))) = 1052
Now, we assert that, with probability at Ieas%llio,
(13) Vi,l<i<k,Vxes; Si € B(x, n(x)).

To see this, focus attention first on one particutae S, sayx € S;. We may
imagine pickingx as the first sample i and then independently picking the
others. Then since is fixed, n(x) and B(x, n(x)) are fixed; so from the lower
bound onF;(B(x, n(x)), it follows that Prol§S; € B(x, n(x))) > 1 —§/(10|S)).
From this we get (13).

We have from Lemma 7 that, with probability at least /10, the following
is true foreachi, 1 <i <k, Vx,yeS;:

(14) 2R? — 810, maxRi < |x — y|* < 2(R; + 210 max)?.

Further, from Lemma 8, we have that, with probability at Ieasti‘%,
Vi,j<k,i#jVxeSi,Vyes;

(15) lx — yI2 = 2min(RZ, R?) + 601 (R; + R;})(07max+ 0, max)

+ 30t2(0i?max + sz, max)-
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Next, we wish to assert that certain spherical annuli centered at sample points
have roughly the right number of points. Namely,

Vi,Vx,y,ze€S; lettingA = B(x, |[x — y|) \ B(x, |[x —z])

(16) 1S; N Al w2
we have| — — Fi(A)| < =in,
1S:| i(A)] = 160

We will only sketch the routine argument for this. First, for a particular triple, z

in somes;, we may assume that these points, z were picked first and the other
points of the sample are then being picked independently. So for the other points,
the annulus is a fixed region in space. Then we may view the rest as Bernoulli
trials and apply Hoeffding’s inequality. The above follows from the fact that the
Hoeffding upper bound multiplied bys|2 (the number of triples) is at most10.

Next, we wish to assert that every half-space in space contains about the correct
number of sample points. For this, we use a standard Vapnik—Chervonenkis (VC)
dimension argument [24]. They define a fundamental notion called VC dimension
(which we do not define here). If a (possibly infinite) collect®mf subsets ofit”
has VC dimensiod andD is an arbitrary probability distribution ai”, then for
anyp, ¢ > 0 and for a set of

4 2 8, 8
—log— + —log—
€ 0 £ €

independent identically distributed samples drawn according teve have that
with probability at least +- p, for every H € €, the fraction of samples that lie in
H is betweenD(H) — ¢ andD(H) + «.

In our case consists of half-spaces; it is well known that the VC dimension
of half-spaces im" is n. We consider each componefit of our mixture in turn
asP. We have drawn a sample of sigg| from F;. Applying the VC dimension
argument for each, with p = §/10k ande = wmin/100, and then using the union
bound, we conclude that, with probability at least /10, the sample satisfies

Vi, V half-spacesd
1Si N H| — |Si|F;(H)| < wmin|S;|/100,

From Lemma 12 (to come), it follows that, with probability at least /10,
we have

17)

1
(18) Vunitlengthvectorsy, Vi — 3 (w- (x — pi))? < 203

,max
Sl | xeS;

LEMMA 9. Each execution of steps 1-5 removes precisely one of the S;.

PrROOF The lemma will be proved by induction on the number of executions
of the loop. Suppose we have finishied 1 executions and are starting on fthie
execution.
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Let P be the set ofi such thatS; has not yet been removed. (By the inductive
assumption at the start of the lodp s the union ofS;, j € P.)

LEMMA 10. Supposex € S isthe center of the ball B(x, «) found in the I/th
execution of step 1 of the algorithm and suppose x belongsto S; (i unknown to
us). Then

(19) Bx,x) NS CS;,
Ix —y2> 2Rl-2 + 50 (07, max+ 0, max) (Ri + R;)

(20) 2 2 2 e
+20:°(0 max+ 0/ max) VyeS;,Vj#i,jeP.

PRoOOF Foranyj e P,and ally,z € S;, we have from (14) that — y|2 <

2(R; +2t0} max?. Thus, a ball of radius/2(R ; + 20; max) With y as center would
qualify in step 1 of the algorithm by (12). So, by definitionain that step, we
must have

(21) @ <V2R;+20;ma)  YjEP.

If now B(x, @) contains a point from somes;, j # i, by the inductive assumption
in Lemma 9, we must havge P. Then by (15) we have

a? = 2Min(R?, R%) + 60t (R; + R;)(01.max+ 0j.max) + 30%(0 max+ 0 ma)-

which contradicts (21) [noting that (21) must hold for batli]. This proves (19).
Now, from the lower bound of (14), it follows that

a? > 2R? — 8R;0i.maxt.-
So from (21) it follows that
2R > 2R? — 8t(R; + R;)(0; max+ 0jma) — 81°0 ey VJj€P.
Thus from (15), we getthat, fore S;, j #1,
2 |x — y[% > 2R? — 8t (R; + R;)(0i,max+ 0j.max) — 8°0 % rnax
+ 60 (R; + R;)(0; max+ 0. max) + 3020 2 max+ 02 mand
from which (20) follows. [

Now we can show that is a rough approximation t@; max.

CLAIM 2. The B, Q computed in step 2 of the algorithm satisfy

2ISi| 5 102 ,
ﬁgi,maxZ B= Wai,max
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PROOFE For any unit length vectap, we have, by (18),

2 2
Y x=p)) <> (we(x = p)” <2180 max
xeQ x€S;
Since this holds for every, and the second moment about the mean is less than
or equal to the second moment abputwe have thag < Z%crfmax. This proves
the upper bound oA.
Let u be the direction of the maximum variance Bf We wish to assert that
the variance ofD alongu is at least Q|o; max/|S;i|. To this end, first note that, for
any realsys, y2, with 1 > 0, we have

1 y2+v1 2,65 2
Probr,(y2—y1<x-u<y2+y1)= 7/ e~/ 2%imax g
2\/Eai,max Y2—Y1
.n
ﬁai,max

Lety, = I_é\ > xeo(u-x)andlety; = %o,-,max. Thenthe stripd = {x:y2—y1 <
u-x <ys+ y1} satisfiesF; (H) < y1/(y/moimax. S0, by (17),

WminlSi | < 3@

NH|<|S;|F;(H
Y | <I[Si|Fi(H) + 100 =52

using| Q| = 3 wminlS|.

So, we have that

1 2 1 |Q| |Q|2 2 1 2 |Q|2
JE— E . — > — O = —0: _
|Q| xEQ(u * 2) - |Q| 4 |Si|201’ ax 40’1’ aX|Si|2’

from which the lower bound ofi obviously follows. [

COROLLARY 11. The 8 computed in step 2 of the algorithm satisfies

4
2 2 2
— 0, max = B= éwminai,max
Wmin

PrROOF Since|Q| = 3wmin|S|/4, Claim 2 implies the corollary. O

From (14) we have

VyesS; Ix — y|? < 2R? + 41 R;0; max + 4t%0}

1,max

From (20) we have

vie |J S;  Ix —zl%x = 2R? + 50 (0jmax+ 0jmad (R + R))
JjeP\li)

+ 201‘2(‘73max + sz,max)-
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Thus, there exists an annulus of size (where the size of an annulus denotes the
difference in radii between the outer and inner badtshax aroundx with no
sample points in it. Since we are increasing the radius in stepswdiich is at
mosto; max (Corollary 11) there is some in step 3 of the algorithm. Also, we

have

Bx,a+sv)NS CS;.

The trouble of course is that such a gap may exist even irssjd® B (x, a +sv)
may not contain all of5;. To complete the induction we have to argue that steps
4 and 5 will succeed in identifyingvery point of S;. Fory > 0, let

g(y)=Fi(B(x,y)).

FromB(x,a+sv)NT = B(x,a + (s — L)v) N T (see step 3 of the algorithm),
we get using (16) that
w2
gla+sv)—gla+(s—1v) < 12'8
Sincev = ,/“’m—g‘ﬁ, we get using Corollary 11’s lower bound @grthat there exists
ay' e€l(s —Dv+a sv+a]with

5/2
(dg(y)) < wm/in < Wmin
d]/ y=y' —160v — Z%j’max'

(If not, integration would contradict the previous inequality.) Thus isoperimetry
(Corollary 4) implies that

Wmin

10
The latter is impossible since even theaadius ball contains at leastS3wmin/4
points. This implies thag(a + sv) > 0.9 and now again using (16), we see that
|Q’| > 0.8]S;| (note thatQ’ is found in step 4). Thus from Claim 2 (noting that the
proof of works for any subset df;), we get thats’ is a fairly good approximation
to 0i max-

(23) 2,502

1,max

gla+sv)>1— or g(a+(s—21v) <0.lwmin.

> B’ > 0.1602

1,max

From the definition of in step 3 of the algorithm, it follows that there is some
y € S; with |[x — y| > a + (s — 2)v. So, from (14), we haver + (s — 2)v <
V2(R; + 2t0; max). SO, we have

50+ 3¢ (105! +1) = VAR, +2101m0 + 201
(24)

+ o, max(log By 1)
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Thus from (20), no point ofS;, j € P \ {i}, is contained inB(x,« + sv +

3./B(log 'aﬂ +1)). So the set removed froffi in step 5 is a subset ¢f.
Finally, usingg(a + sv) > 9/10, and isoperimetry (Corollary 4), we see that

IS 5
log— +1 1-—-—
g(““””'ﬁ("g 5t ))Z 1052

which implies thaty(x) < « + sv + 3/F(log 3l + 1). Thus, by (13), all ofs;

is in B(x,a + sv + Sﬂ(log‘aﬂ + 1)). This completes the inductive proof of
correctness. [

Now we prove a lemma that was used above when we estimgaigd

LEMMA 12. Suppose F isa (general ) Gaussian in R”. If L is a set of inde-
pendent identically distributed samples, each distributed accordingto F, then with
probability at least 1 — %, we have [with ¢ = 20n(/logn + +/10g(1/8))//1L11,
every vector w satisfies

- Er(w- (x — Er(x))) (1 —¢) < Eg(w - (x — Er(x))?)
<Ep(w-(x — Er(x)?)1+e),

where Es denotesthe “ sample mean”; that is, it stands for % Y el

PrROOF We may translate by E ¢ (x) and without loss of generality assume
that Er(x) is the origin. Suppos&) is the square root of the inverse of the
variance—covariance matrix &f. We wish to prove, for all vectors,

Er(w-0)?)A—¢) < Es((w-x)?) < Ep((w-x)?)(1+e).

Putting Q1w = u (noting that Q is nonsingular and symmetric), this is
equivalent to saying, for all vectors

Er((u-(0x))?)A—¢) < Es((u- (0x))%) < Ep((u- (Qx))) A +&).

But Ox is a random sample drawn according to the standard normal, so it suffices
to prove the statement for the standard normal. To prove it for the standard normal,
we proceed as follows. First, for each coordinateve have thatf »(|x;|%) = 1

and using properties of the standard one-dimensional normal density, for any
reals > 0,

Prol(|Es(|x;1?) — 1| <s) > 1— o ILIs?/4

Now consider a pair, j € {1,2,...,n}, wherei # j. The random variable;x;
has mean 0 and variance Ag(x;x ;) is the average oV i.i.d. samples (each not
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bounded, but we may use the properties of the normal density again) concentrated
about its mean:

Prob(Eg|x;jxj| <s)>1— ¢~ L15?/100

Puttings = 10—%1, we see that all thesé (n2) upper bounds hold simultane-
ously with probability at least  §/18.

Thus we have that the “moment” of inertia matiix of S whosei, j entry is
Es(x;x;) has entries between-1 %e and 1+ %e on its diagonal and the sum of
the absolute values of the entries in each row is at ragp8t Thus by standard
linear algebra (basically arguments based on the largest absolute value entry of
any eigenvector), we have that the eigenvalue® are between t ¢ and 1+ ¢,
proving what we want. [J

4. Max-likelihood estimation. Now we describe an algorithm for max-
likelihood fit of a mixture ofk spherical Gaussians of equal radius to (possibly)
unstructured data. First we derive a combinatorial characterization of the optimum
solution in terms of thé&-median (sum of squares, Steiner version) problem. In
this problem, we are giveM pointsxy, xo, ..., x) € R" in R"* and an integek.

The goal is to identifyk pointsp1, po, ..., prx that minimize the function

2

M
(26) > |x = pei)
i=1

where p.(;) is the point amongy, ..., px that is closest toj and| - | denotes
Euclidean distance.

THEOREM 13. The mixture of k spherical Gaussians that minimizes the log-
likelihood of the sampleis exactly the solution to the above version of k-median.

ProOOF Recall the density function of a spherical Gaussian of varian@ad

radiuso y/n) is
1 exp(_ Jx — p|2)
(2ro)n/2 202 )’

Let x1,x2,...,x) € N" be the points. Lep1, po, ..., pr denote the centers
of the Gaussians in the max-likelihood solution. For each data poitet p.(;)
denote the closest center. Then the mixing weights of the optimum mixture
w1, wo, ..., w; are determined by considering, for eaghhe fraction of points
whose closest center js.

The log-likelihood expression is obtained by adding terms for the individual
points to obtain

Mn ) — peiy|?
— |:C0nstant-|— 7 IOgO' + XJ: T .
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The optimum valué is obtained by differentiation,

. 2 2
(27) 6%= Yn D lxj = peci [
J

which simplifies the log-likelihood expression to

Mn . Mn
Constan — logé + —.
2 4
Thus the goal is to minimizé&, which from (27) involves minimizing the familiar

objective function from the sum-of-squares version ofittreedian problem. O

We indicate how to use known results aboutthmedian to provide a constant
additive factor approximation to the log-likelihood. Charikar, Guha, Tardos and
Shmoys [4] provide a® (1) approximation to thé-median problem with sum-of-
squares distance. They do notindicate if their algorithm works when the centers are
not one of the sample points. However, the triangle inequality implies that picking
the center to be one of the sample points changes the objective bifrteglian
problem by at most a factor 4. Hence we obtain a constant factor approximation
to 62, and hence an approximation to (g that is correct within am® (1) additive
factor. More efficient algorithms fot-median are now known, so there is some
hope that the observations of this section may lead to some practical learning
algorithms.

5. Conclusions. Several open problems remain. The first concerns solving
the classification problem for Gaussians with significant overlap. For example,
consider mixtures of spherical Gaussians with pairwise intercenter distance only
O(maxXo1, 02}). In this case, a constant fraction of their probability masses
overlap, and the solution to the classification problem is not unique. Our algorithm
does not work in this case, though a recent spectral technique of Vempala and
Wang [25] does apply. (However, it does not apply to nonspherical Gaussians.)

The second problem concerns general Gaussians whose probability masses
do not overlap much but which appear to coalesce under random projection.
For example, consider a pair of concentric Gaussians that have the same axis
orientation. (Of course, these axes are unknown and are not the same as the
coordinate axes.) Im — 2 axis directions their variance is2, and in the other
remaining two directions their variances argrlando, 1, respectively. lfo =
Q(logn), the difference in the last two coordinates is enough to differentiate
their samples with probability + 1/poly(n). But after projection to a® (logn)-
dimensional subspace, this difference disappears. Hence neither distance-based
clustering nor projection-based clustering seems able to distinguish their samples.

The third open problem concerns max-likelihood estimation, which seems to
involve combinatorial optimization with very bizarre objective criteria once we
allow nonspherical Gaussians.
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We suspect all the above open problems may prove difficult.

We note that Dasgupta (personal communication) has also suggested a variant
of the classification problem in which the sample comes from a “noisy” Gaussian.
Roughly speaking, the samples come from a mixture of sources, where each source
is within distances of a Gaussian. We can solve this problem in some cases for
small values ok, but that will be the subject of another paper. Broadly speaking,
the problem is still open.
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