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LARGE DEVIATIONS PROBLEMS FOR STAR NETWORKS:
THE MIN POLICY1

BY FRANCK DELCOIGNE AND ARNAUD DE LA FORTELLE2

EDF R&D and INRIA

We are interested in analyzing the effect of bandwidth sharing for
telecommunication networks. More precisely, we want to calculate which
routes are bottlenecks by means of large deviations techniques. The method
is illustrated in this paper on a star network, where the bandwidth is shared
between customers according to the so-called min policy. We prove a sample
path large deviation principle for a rescaled processn−1Qnt , where Qt

represents the joint number of connections at timet . The main result is
to compute the rate functionexplicitly. The major step consists in deriving
large deviation bounds for anempirical generator constructed from the join
number of customers and arrivals on each route. The rest of the analysis
relies on a suitable change of measure together with a localization procedure.
An example shows how this can be used practically.

1. Introduction.

The model. Consider a star shaped network (see Figure 1) consisting ofN

links connected to the otherN − 1 through a central hub: there areN(N − 1)/2
routes of length two. In the sequel the set of links (or channels) is denoted
by S = {1, . . . ,N}, whereas the set of routes is simply the set of unordered

FIG. 1. The (asymmetric) star network.
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two-uplesij , i, j ∈ S: for the sake of simplicity, we do not distinguish between
ij andji (i.e., we consider nonoriented routes), but there is no additional difficulty
to handle oriented routes. Denote byqij (t) [resp.qi(t)] the number of calls (or
connections) on routeij (resp. the number of calls involving channeli) at timet .
Each link has a capacity (or bandwidth) equal toCi (expressed, e.g., in bits per
second in the context of communication networks). Note thatqi(t) = ∑

j qij (t).
ThenQ(t, x) = (qij (t), i, j ∈ S) represents the state of the network at timet when
it starts initially from statex. For the sake of simplicity, we shall sometimes omit
x or t when they do not play a role.

Documents to be transferred arrive on routeij according to a Poisson process
of rateλij . We shall denote byR the set of active routes, that is, withλij > 0. The
size of a document (expressed in bits) on routeij is supposed to be exponentially
distributed with parameterµij . Each document on routeij is allocated a portion
νij (x)/xij of the bandwidth when the state of the network isx. Hence, a document
on routeij is transferred at rateµij νij (x). There are several possibilities in order
to allocate a fair proportion of the bandwidth to customers. A classical one is to
choose the coefficientsνij (x) according to the max–min fairness allocation.

The star network is proposed as a model for a router where the bandwidth is
shared fairly between the different connections. However, the max–min fairness
allocation is not explicit and hard to analyze at first. In order to get a more tractable
model, we focus on the min policy,

νij (x) =
xij

Ci

xi

∧ Cj

xj

, if xij > 0,

0, otherwise.

It has been shown in Fayolle, de La Fortelle, Lasgouttes, Massoulie and Roberts
(2001) that the system under the max–min fairness allocation is stochastically
smaller than the one with the min policy and that the network is ergodic if, and
only if, ∑

j

λij

µij

< Ci ∀ i ∈ S.(1.1)

However, it appears very difficult to compute quantities of interest like the mean
transfer time of a document, so we turn to asymptotic analysis, especially large
deviations.

Previous work. Lots of work has been devoted to the analysis of telecommu-
nication networks. The model (star network and min policy) is described within
telecommunication context in Fayolle, de La Fortelle, Lasgouttes, Massoulie and
Roberts (2001). In the present paper we aim at deriving a sample path LDP for the
rescaled process

Qn
x

def=
{

1

n
Q(nt, [nx]), t ≥ 0

}
.
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Our main concern is to identify explicitely the rate function. This is a preliminary
step in order to obtain large deviation bounds in stationary regime. This issue is
discussed in Section 2.

The major difficulty comes from the fact that the coefficients of the generator
are not spatially continuous [the service rateµij (x)]. It seems that one of
the first papers dealing with large deviations for processes with discontinuous
statistics is Dupuis, Ishii and Soner (1990), where the case of Jackson networks
was investigated using partial differential equations techniques. In Dupuis and
Ellis (1995) a sample path LDP is proved for a wide class of jump Markov
processes with discontinuous statistics. However, the methodology of proof uses
subadditivity arguments and the rate function is not identified; moreover, there is
a uniform reachability condition that our model does not fit. The identification
of the rate function in this general framework is still an open problem when the
dimension of the network is arbitrary. General results were obtained in Dupuis
and Ellis (1992) and Ignatyuk, Malyshevand Shcherbakov (1994), where the
LDP has been established. Nevertheless, in such examples, there are at most two
boundaries with codimension one or two where discontinuity arises. Using special
features of the models and the fact that fluid limits could be completely identified,
this program was carried out, for example, in Atar and Dupuis (1999), Ignatiouk-
Robert (2000) and in Delcoigne and de La Fortelle (2002).

Structure of the paper. An example (Section 2) shows how the rate function
expression can be used to compute decay rate for tails of stationary distribution.
In Section 3 we introduce the central notion oflocalized model and ofempirical
generator; the rate functions (local and global) are studied. In Section 4 the local
LDP is proved by mean of a change of measure and the identification of the local
rate function is worked out for ergodic networks. In Section 5 the sample path LDP
is stated. In Section 6 we get rid of the ergodicity assumption: in our opinion this
is the main contribution of the present paper since the methodology used allows
a treatment of more complex and realistic protocols like max–min-fair. This issue
will be investigated in a forthcoming paper.

Notation. In our settings,{Q(t, x0), t ≥ 0} is a Markov process with
generatorR such that, for all bounded real functionf onZ

R+ ,

Rf (x) = ∑
y∈Z

R+

q(x, y)
(
f (y) − f (x)

) ∀x ∈ Z
R+ ,

where

q(x, y)
def=


λij , if y − x = eij ,

µij (x)
def= µijxij

Ci

xi

∧ Cj

xj

, if y − x = −eij ,

0, otherwise,

using the convention that 0/0= 0 (i.e., whenxij = 0).
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FIG. 2. Representation of a star-shaped network: lines symbolize routes using two channels
(circles at the ends of the lines). The routes are partitioned into saturated routes (�), jammed
routes (�1)—the service rate being null on these routes since all channels belonging to � are
saturated—and ergodic routes (�2).

• For any setA, Ac will denote its complementary and1{A} its indicator function;
• D([0, T ],R

R+ ) is the space of right continuous functionsf : [0, T ] → R
R+ with

left limits, endowed with the Skorokhod metric denoted bydd ;
• C([0, T ],R

R+ ) is the space of continuous functions equipped with the metric of
the uniform convergence denoted bydc.

DEFINITION 1.1 (Face). Forx ∈ R
R+ , the face�(x) is defined by

�(x)
def= {ij ∈ R :xij > 0}.

By an abuse of notation, we will also call face�{
y ∈ R

R+ :yij > 0, ∀ ij ∈ �, andyij = 0, ∀ ij ∈ �c
}
.(1.2)

A partition of the routes (see Figure 2) is defined by� and

�1
def= {ij ∈ �c :∃k ∈ S, ik ∈ � or jk ∈ �},

�2
def= {ij ∈ �c :∀ k ∈ S, ik /∈ � andjk /∈ �}.

The vector space relative to� is defined by

R
� def= {y ∈ R

R :yij = 0, ∀ ij ∈ �c}.

Results. For ergodic networks, our main result is the local linear large
deviation bounds of Theorem 1.2. The notation is explained by Figure 3.

THEOREM 1.2. Assume that Q is ergodic and let x ∈ R
R+ and D ∈ R

�(x).
Then, writing limτ,δ,ε→0 for limτ→0 limδ→0 limε→0,

lim
τ,δ,ε→0

inf|y−nx|<εn
lim inf
n→∞

1

nτ
logP

[
sup

t∈[0,nτ ]
|Q(t, y) − nx − Dt| < δn

]
(1.3)

= lim
τ,δ,ε→0

sup
|y−nx|<εn

lim sup
n→∞

1

nτ
logP

[
sup

t∈[0,nτ ]
|Q(t, y) − nx − Dt| < δn

]
.
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FIG. 3. Structure of the local linear bounds of Theorem 1.2.L(x,D) is the cost per unit time for
the path Q(t, y) (starting near nx) to stay in the neighborhood of nx + Dt over the time t ∈ [0, nτ ].

Moreover, if � and the drift D ∈ R
� are fixed, the preceding limit in τ is uniform

w.r.t. to x in compact sets of � (see Definition 1.1). The common value of these
limits is denoted by −L(x,D) and

L(x,D) = ∑
ij∈�(x)∪�1(x)

l
(
Dij‖λij ,µij (x)

)
,(1.4)

where

l(D‖λ,µ)
def= D log

(
D +

√
D2 + 4λµ

2λ

)
+ λ + µ −

√
D2 + 4λµ ≥ 0(1.5)

stands for the cost that a suitably normalized M/M/1 queue with parameters
λ and µ, starting far from the origin, follows the drift D [see, e.g., Shwartz and
Weiss (1995)].

Let us explain briefly the meaning of the different terms appearing inL(x,D)

[see (1.4)]. Owing to the fact that the service rateµij (x) tends to 0 whenxij

becomes null, whilexi ∨ xj remains strictly positive, the arrivals must be cut on
the routesij ∈ �1(x) in order to keep these routes in a neighborhood of 0. The
cost to do this is

∑
ij∈�1(x) λij ; indeed,l(0‖λij ,0) = λij . Since the arrivals are cut

on the routesij ∈ �1(x), the routesij ∈ �2(x) are isolated from the rest of the
network (see Figure 2) and so by (1.1) this set of routes behaves as an ergodic star
network [withR = �2(x)] sinceQ is ergodic by assumption. Hence, the cost for
the componentsij ∈ �2(x) to stay in a neighborhood of 0 is null. Now locally,
the routesij ∈ �(x) behave as a set of independentM/M/1 queues with arrival
and service ratesλij andµij (x). The corresponding terms inL(x,D) represent
the cost that this set of queues follows the prescribed driftD.

The proof is done introducing a functional so called empirical generator
consisting ofQt and of the join number of arrivals on routes belonging to
�(x) ∪ �1(x). In Section 4 large deviation bounds are obtained for the localized
empirical generator from which Theorem 1.2 is derived using an adaptation of the
contraction principle.
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Theorem 1.2 has been stated for ergodic networks. However, large deviations
bounds can be obtained for transient networks, at the cost of some more detailed
analysis. This is an important feature since it is linked with the study of networks
under max–min-fair allocation (or similar ones). The reason is that, for anergodic
network under max–min-fair allocation, when some routesij ∈ � are made
saturated (i.e., for localized models), the rest of the routes (in our notation�c)
can behave as atransient network, still under max–min-fair allocation: the local
rate function must include the cost for this transient network to stay near 0. This is
to the opposite of our framework, where only ergodic networks are considered, for
which the cost to stay around 0 is null. However, our methodology allows one to
compute cost for a transient network under the min policy to stay around 0 and as
a corollary the rate function without ergodicity assumptions [see (6.6)]. The result
is stated and discussed in Section 6.

Moreover, the topology of the network can be extended, as well as the length
of the routes, (but not arbitrarily) to include more realistic networks. However,
the notation becomes very heavy and our aim is to present tools [extending those
developed for polling networks in Delcoigne and de La Fortelle (2002)] in a fairly
simple way for achieving the above program.

Now, the rate functionIT (·) for the sample path LDP is expressed as

IT (ϕ)
def=


∫ T

0
L
(
ϕ(t), ϕ̇(t)

)
dt, if ϕ is absolutely continuous,

+∞, otherwise.
(1.6)

REMARK. IT (·) is defined by all the valuesL(x,D) with x ∈ R
R+ andD ∈

R
�(x) (i.e., the values treated by Theorem 1.2). Indeed, assume that for somet ,

ϕij (t) = 0 andϕ̇ij (t) exists. Sinceϕij (t) ≤ ϕij (s) for all s, this impliesϕ̇ij (t) ≤ 0.
Then, necessarily,̇ϕij (t) = 0. Moreover,ϕ being absolutely continuous,̇ϕij (t)

exists for almost allt .

Define the level set

�x(K)
def= {

ϕ ∈ D([0, T ],R
R+ ) : IT (ϕ) ≤ K, ϕ(0) = x

}
.(1.7)

The final result is the following theorem.

THEOREM 1.3 (Sample path LDP). Assume Q is ergodic. The sequence
{Qn

x, n ≥ 1} satisfies an LDP in D([0, T ],R
R+ ) with good rate function IT (·):

for every T > 0, x ∈ R
R+ ,

(i) for C ⊂ R
R+ compact,

⋃
x∈C �x(K) is compact in C([0, T ],R

R+ );
(ii) for each closed set F of D([0, T ],R

R+ ),

lim sup
n→∞

1

n
logP[Qn

x ∈ F ] ≤ − inf{IT (φ), φ ∈ F,φ(0) = x};
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(iii) for each open set O of D([0, T ],R
R+ ),

lim inf
n→∞

1

n
logP[Qn

x,s ∈ O] ≥ − inf{IT (φ), φ ∈ O,φ(0) = x}.

Its proof is discussed in Section 5.

2. Example. We would like to emphasize what kind of further results we aim
at deducing from the sample path large deviation principle. First, it seems that
the optimal paths of large deviationcannot, in general, be calculated, but some
special solutions may be, leading to explicit expressions for the asymptotics of
stationary distribution (which is not known). This is a performance criteria of
practical value: bounds for buffer size could be optimized, or simulation accuracy
(through importance sampling using the change of measures associated to optimal
paths) could be improved.

Freidlin and Wentzell’s works exposed in Freidlin and Wentzell (1984) suggest
that the tail of the stationary distribution of the linki is related toIT (·) by the
following formula:

lim
n→∞

1

n
logP[qi > n] = − inf

T ≥0
inf
ϕ

{IT (ϕ) :ϕ(0) = 0, ϕi(T ) = 1}.(2.1)

Although technical, it is reasonable to argue that the preceding equality can be
checked in our case. However, this leads to an infinite-dimensional optimization
problem. Nonetheless, by comparison with a processor sharing model, it seems
that we can have partial information. Indeed, if the optimal path leading to
the saturation of a channeli is such that this channel is always the bottleneck
(i.e.,Ci/xi is minimal) then the service rate can be written, for each connection

µij (x) = µijCi

xij

xi

.

This is exactly the service rate for a processor sharing model which is a well-known
model [e.g., the stationary distribution is explicit; see Baskett, Chandy, Muntz and
Palacios (1975)]. With some calculations we can find anecessary condition for
a channeli to behave like a processor sharing (having thus the same stationary
distribution decay rate). Otherwise there are more complex interactions between
channels.

To illustrate the changes in the channels behavior with the load, we estimated
the queues decay rates for different arrivals ratesλ13

def= x. We simulated the
network described in Figure 4 and obtained statistics for the stationary queue
lengthP[Qi = n] decay rate. These results are compared with the decay rates of
processor sharing models with the same parameters as the channel in Figure 5.

The necessary condition we told about states that queue 1 can never behave like
a processor sharing model, queue 2 can only ifx < 0.292893, and queue 3 always
can. This is, indeed, what we see on Figure 5. All plain lines are lower bounds and
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FIG. 4. The network studied as example. The capacities of the respective channel are C1 = 3,
C2 = 2 and C3 = 1. The arrivals and document size are λ12 = µ12 = 1, λ23 = 1, µ23 = 2 and
λ13 = x, µ13 = 1.

sometimes fit well simulation results. Queue 1 is “pushed” by 2 and then by 3;
queue 2 is on its own (i.e., behaves like a processor sharing) until approximately
x = 0.2, then is pushed by 3; queue 3 is always on its own. We see the necessary
conditionx < 0.292893 holds, but is not very tight. We hope this kind of study can
furnish more detailed results and holds for other policies.

FIG. 5. Comparison between decay rates obtained by simulation to processor sharing models with
the equivalent parameters. Simulations were stopped at time T = 108.
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3. Localized empirical generator, entropy and the rate function.

3.1. Localized empirical generator. Take x ∈ R
R+ and D ∈ R

�(x). We are
interested in computing large deviations bounds of the form (1.3) (i.e., linear
bounds as presented in Figure 3). In order to prove Theorem 1.2 we introduce
a functional which allows one to measure how the different arrival rates should
be modified in order that the rescaled processQn

x follows a prescribed driftD.
Moreover, the explanation exposed just after the statement of Theorem 1.2
suggests that the transition rates of routes indexed by�2(x) should not be modified
and so it is useless to measure the arrivals on routes belonging to�2(x). Let us
introduce the localized empirical generator at pointx, as well as suitable state
spaces associated to this process:

DEFINITION 3.1 (Localized empirical generators). Let� be a face and
denote:

• Aij (t), the number of arrivals on routeij till t ;

• the restrictionA�(t)
def= (Aij (t), ij ∈ � ∪ �1);

• G�
t = (1

t
A�(t), Qt−Q0

t
), the localized empirical generator on the face�.

The set
� of localized empirical generators is the set of elements(A�,D) with
D ∈ R

R satisfying:

(i) aij ≥ 0 ∀ ij ∈ � ∪ �1,

(ii) aij − Dij ≥ 0 ∀ ij ∈ � ∪ �1.
(3.1)

The space
� is equipped with the distanced defined by

d(G,G′) def= ∑
ij∈�∪�1

|aij − a′
ij | +

∑
ij∈R

|Dij − D′
ij | ∀G,G′ ∈ 
�.

The inequalities (i) and (ii) in (3.1) refer, respectively, to the mean number of
arrivalsaij and to the mean number of deconnections per unit time,aij −Dij being
positive.

Since it is difficult to analyze at first the behavior ofQ(t) as in (1.3), we shall
first establish large deviation bounds for the event

E
(n)
τ,δ,y(x,G)

def=
{
G�(x)

nτ ∈ B(G, δ), sup
t∈[0,nτ ]

|Q(t, y) − nx − Dt| < δn

}
,(3.2)

where B(G, δ) is the ball of centerG and radiusδ [within the metric space
(
�(x), d)]. As it will emerge, strong constraints must be imposed onG in order
that the eventE(n)

τ,δ,y(x,G) occurs at a large deviation scale. More precisely, the
arrivals must be cut on routes belonging to�1(x).
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LEMMA 3.2. Take x ∈ R
R+ and G = (A,D) ∈ 
�(x), such that D ∈ R

�(x). If
there exist m and p such that

xm = 0 and xp > 0, and apm > 0,

then E
(n)
τ,δ,y(x,G) almost never occurs at a large deviation scale, that is,

lim
τ,δ,ε→0

lim sup
n→∞

1

nτ
sup

|y−nx|<εn

logP
[
E

(n)
τ,δ,y(x,G)

]= −∞.(3.3)

PROOF. The proof relies on a change of measure, as in Section 4.1. In fact, on
E

(n)
τ,δ,y(x,G) the service rate on routepm tends to 0 when the different limits are

taken. Since onE(n)
τ,δ,y(x,G), the arrival process is not cut on routepm, the cost

to keep the componentpm of the rescaled process near 0 is infinite. Details are
similar to the proof of the upper bound (see Section 4.2) and are omitted.�

Lemma 3.2 states that in order to prove large deviation bounds for the localized
empirical generator, it will be sufficient to deal with the following subspace
of 
�(x).

DEFINITION 3.3. G� denotes the set of localized empirical generators
(A�,D) such that:

(i) D ∈ R
�,

(ii) aij = 0 ∀ ij ∈ �1,

(iii) aij > 0 andaij − Dij > 0 ∀ ij ∈ �.

(3.4)

In this settingG
�

will represent the closure ofG�.

Owing to Lemma 3.2, it is sufficient to deal with empirical generators
satisfying (ii). In order to prove the large deviation local bounds, it will be sufficient
to deal with empirical generators such that arrival and service rates are not cut,
for ij ∈ �(x), hence, condition (iii). A simple continuity argument will allow to

extend the bounds obtained forG ∈ G�(x) to G ∈ G
�(x)

.

3.2. Correspondence between localized empirical generators and star net-

works. Let G = (A,D) ∈ G
�

be a localized empirical generator. It is associated
with a unique localized star network(λ̃ij , µ̃ij (y), y ∈ R

R+ ) by the following rela-
tions:

(i) λ̃ij = aij ∀ ij ∈ � ∪ �1,

(ii) λ̃ij = λij ∀ ij ∈ �2,

(iii) µ̃ij (y) = λ̃ij − Dij ∀ ij ∈ � ∪ �1, ∀y ∈ R
R+ ,

(iv) µ̃ij (y) = µij (y) ∀ ij ∈ �2, ∀y ∈ R
R+ .

(3.5)
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Let us describe the behavior of this network when it starts fromx [with
� = �(x)]. In this case the routes belonging to�2 behave as a star network of
the type presently studied and the parameters of the routes belonging to this set
are left unchanged. Moreover, they are independent from the rest of the network.
Indeed, ifij ∈ �2, thenxik = 0 for all k such thatik /∈ �2 (actuallyik ∈ �1; see
Figure 2), hence, the constraints imposed onG insures that̃λik = 0. Hence,

µij (Q(s)) = Qij (s)
µi∑

ik∈�c
2
Qik(s)

∧ µj∑
jk∈�c

2
Qjk(s)

∀ ij ∈ �c
2(x),

proving the asserted independence. Moreover, the network consisting of the routes
belonging to�2 is ergodic when the initial network is. Indeed, for all ergodic
channeli (see Figure 2),

∑
j : ij∈�2

λ̃ij

µ̃ij

= ∑
j : ij∈�2

λij

µij

≤ ∑
j∈S

λij

µi

< Ci.

Besides, routes belonging to� behave like independentM/M/1 queues up to
the initial conditions, whereas the routes indexed by�1 remain null. Now, the
parameters have been chosen so that:

LEMMA 3.4. Assume that Q is ergodic. Let x ∈ R
R+ , G = (A,D) ∈ G�(x),

a localized empirical generator, and denote P̃ the law of its associated star
network. Then, for all τ ,

lim
δ,ε→0

inf|y−nx|<εn
lim inf
n→∞ P̃

[
E(n)

τ,y(x,G) ∩ {Aij (nτ ) = 0 ∀ ij ∈ �1(x)}]= 1.

PROOF. The proof is omitted: it is a classical fluid limit.�

3.3. Entropy.

DEFINITION 3.5. Let x ∈ R
R+ , R(x) = (λij ,µij (x)) denotes the generator

of the star network atx, G = (A,D) ∈ G�(x) be a localized generator and
(λ̃ij , µ̃ij (y), y ∈ R

R+ ) its representation as a star network. The relative entropy
of G with respect toR(x) is

H
(
G‖R(x)

)= ∑
ij∈�(x)∪�1(x)

Ip(λ̃ij‖λij ) + Ip

(
µ̃ij‖µij (x)

)
,

whereIp(ν‖λ) is the relative entropy of Poisson processes of intensitiesν andλ

defined by

Ip(ν‖λ)
def= ν log

ν

λ
− ν + λ,(3.6)

with the convention0
0 = 0 and 0 log0= 0.
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The entropy has an easy interpretation in terms of information theory: it can be
defined as themean information gain. H(·‖R) is decomposed as the sum of the
information gain for the arrivalsIp(λ̃ij‖λij ), the information gain for the service
time Ip(µ̃ij‖µij (x)).

LEMMA 3.6. For fixed x, H(·‖R(x)) is continuous on G
�(x)

.

PROOF. It is an easy consequence of the expression (3.6).�

3.4. The local rate function L(x,D).

DEFINITION 3.7. The local rate functionL(x,D) is defined by

L(x,D)
def= inf

G∈f −1
�(x)(D)

H
(
G‖R(x)

) ∀D ∈ R
�(x),(3.7)

wheref�(x) :G�(x) �→ R
�(x) is the projectionf�(x)(G) = D.

It appears thatL(x,D) is the cost for a set ofM/M/1 independent queues
indexed by�(x) ∪ �1(x) to follow the prescribed driftD when the queues are far
from all boundaries. A simple computation yields

l(D‖λ,µ)
def= D log

(
D +

√
D2 + 4λµ

2λ

)
+ λ + µ −

√
D2 + 4λµ ≥ 0

for the cost that aM/M/1 queue with parametersλ andµ follows the driftD [see,
e.g., Shwartz and Weiss (1995)]. Using this remark and the identityl(0‖λ,0) = λ,
one can deduce the explicit representation (1.4) forL(x,D) [which is equal to
(3.8) under the constraintDij = µij (x) = 0 for ij ∈ �1(x)].

In equations (1.4) and (3.7),L(x,D) is only defined forD ∈ R
�(x). In order

to study the properties of the rate functionIT (·), it is convenient to extend the
definition ofL(x,D) for all D, such thatDij ≥ 0 for all ij ∈ �c(x) by

L(x,D)
def= ∑

ij∈�(x)∪�1(x)

l
(
Dij‖λij ,µij (x)

)
.(3.8)

PROPOSITION 3.8. The local rate function L(x,D) possesses the following
properties.

(i) It is positive, finite, strictly convex and continuous with respect to D, such
that Dij ≥ 0 for all ij ∈ �(x). It has compact level sets;

(ii) there exists M ∈ R such that

L(x,D) ≥ 1
2‖D‖ log‖D‖ ∀x ∈ R

R+ , ∀‖D‖ ≥ M;
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(iii) for a fixed D and a prescribed face �, L(x,D) is continuous for x ∈ �

[see (1.2)];
(iv) L(x,D) is jointly lower semicontinuous w.r.t. x and D.

PROOF. Properties (i) and (ii) are obvious from (3.8).
(iii) is clear from (3.8), noting that the functionsµij (x), ij ∈ �, are continuous

for x belonging to the face�. Moreover,�1(x) = �1 is constant forx ∈ �.
Let (x(n),D(n)) tends to(x,D). First, it is clear that forn large enough,

�(x) ⊂ �(x(n)) and also�(x) ∪ �1(x) ⊂ �(x(n)) ∪ �1(x
(n)). Hence, sincel is

positive, for sufficiently largen,

L
(
x(n),D(n)

)≥ ∑
ij∈�(x)∪�1(x)

l
(
D

(n)
ij ‖λij ,µij

(
x(n)

))
.(3.9)

Now,λij > 0 (sinceij ∈ R) so thatl(·‖λij , ·) is continuous. Moreover,µij (x
(n)) →

µij (x) ∀ ij ∈ �(x) ∪ �1(x). Therefore the right-hand side of (3.9) converges to
L(x,D) and the lower semicontinuity (iv) is proved.�

3.5. The sample path rate function IT (·).

PROPOSITION 3.9. The rate function IT (·) defined in (1.6) possesses the
following properties:

(i) Assume IT (ϕ) ≤ K for some K . Then, for all ε > 0, there exists δ > 0
independent of ϕ, such that for any collection of nonoverlapping intervals [tj , tj+1]
in [0, T ] with

∑
j tj+1 − tj = δ,∑

j

|ϕ(tj+1) − ϕ(tj )| ≤ ε;

(ii) IT (·) is lower semicontinuous in (D([0, T ],R
R+ ), dd);

(iii) for C ⊂ R
R+ compact,

⋃
x∈C �x(K) is compact in C([0, T ],R

R+ ) [see (1.7)
for the definition of the level set �x(K)];

(iv) consider an absolutely continuous function ϕ with IT (ϕ) < ∞. Then, for
all ε > 0, there exists a piecewise linear function ϕε such that:

(a) dc(ϕε, ϕ) ≤ ε,
(b) IT (ϕε) ≤ IT (ϕ) + ε.

PROOF. One proves (i) using Proposition 3.8(ii) in a way similar to Lemma 5.18
of Shwartz and Weiss (1995).

In order to prove the lower semicontinuity ofIT (·), (i) shows it is sufficient to
consider sequences of absolutely continuous functions. Since onC([0, T ],R

R+ ),
the metricsdc anddd are equivalent, one can usedc. Now, using Proposition 3.8(ii),
the fact thatL(x,D) is lower semicontinuous in(x,D) and convex with respect
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to D by Proposition 3.8, (ii) is proved by means of Theorem 3 of Section 9.1.4 in
Ioffe and Tihomirov (1979).

(iii) is a consequence of (i) and (ii) [see Proposition 5.46 of Shwartz and Weiss
(1995)].

The proof of (iv) is a simple adaptation of Proposition 6.3(4) of Delcoigne and
de La Fortelle (2002). �

4. Large deviations bounds for the localized empirical generator. In this
section, we aim at proving the following theorem:

THEOREM 4.1. Let x ∈ R
R+ and G = (A,D) ∈ G

�(x)
be a localized

generator. Then

−H
(
G‖R(x)

)= lim
τ,δ,ε→0

inf|y−nx|<εn
lim inf
n→∞

1

nτ
logP

[
E

(n)
τ,δ,y(x,G)

]
= lim

τ,δ,ε→0
sup

|y−nx|<εn

lim sup
n→∞

1

nτ
logP

[
E

(n)
τ,δ,y(x,G)

]
,

where E
(n)
τ,δ,y(x,G) is the event defined in (3.2).Moreover, if a face � and a drift

D ∈ R
� are fixed, then the preceding limit in τ is uniform with respect to x in

compact sets of � (see Definition 1.1).

4.1. An exponential change of measure. Fix an empirical generatorG =
(A,D) ≡ (λ̃ij , µ̃ij (y), y ∈ R

R+ ) ∈ G
�(x)

and denote by the following:

• Nt , the number of jumps of the process tillt .
• Q(k) = {Qij (k), i, j ∈ S}, the embedded Markov chain at timek ∈ N. We shall

distinguish between discrete and continuous time by usingk for discrete ands
or t for continuous time.

Define the following:

• The mappingh :ZR+ × Z
R+ �→ R by

h(x, y)
def=


log

λ̃ij

λij

, if y − x = eij andλ̃ij > 0,

log
µ̃ij (x)

µij (x)
, if y − x = −eij andµ̃ij (x) > 0,

0, otherwise.

• The compensatorK :ZR+ �→ R by

K(x)
def= ∑

y∈Z
R+

q(x, y)
(
eh(x,y) − 1

)
(4.1)

= ∑
ij∈R

(λ̃ij − λij ) + ∑
ij∈R

(
µ̃ij (x) − µij (x)

)
.
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• The process

Mt
def= exp

{
Nt−1∑
k=0

h
(
Q(k),Q(k + 1)

)− ∫ t

0
K(Q(s)) dv

}
.

Note that the compensator is always bounded, so thatMt takes only finite values.
SinceK has been exactly defined so that

K(x) = d

dt
E

[
exp

{
Nt−1∑
k=0

h
(
Q(k,x),Q(k + 1, x)

)}]
t=0

,

it is easily checked that the derivative ofE[Mt ] at t = 0 is null (note that the
derivative is independent of�, so that it is dropped). Then using the Markov
property, one can get that the derivative is null for allt ≥ 0, so that

E[Mt ] = 1.

Using again the Markov property, this proves that

E[Mt |Fs] = Ms for all t ≥ s ≥ 0,

hence,{Mt , t ≥ 0} is a martingale w.r.t. the natural filtrationFt .
Then define a new probability measure by

P̃[B] def= E
[
1{B}Mt

] ∀B ∈ Ft .

It is a matter of routine to show that underP̃, X is again a Markov process. In fact,
underP̃, the system behaves like a star network, where the arrival and the service
rates at nodeij are respectively given bỹλij andµ̃ij (y) (whence the notation).

REMARK. The probability measureP is not necessarily absolutely continuous
with respect tõP. This is the case, for instance, if for someij ∈ R, λ̃ij = 0
(whereasλij > 0).

4.2. Proof of the upper bound of Theorem 4.1. SinceP is not necessarily
absolutely continuous with respect tõP, in order to prove the upper bound, we
introduce a sequence of change of measure{P̃(η), η > 0} such that

λ̃
(η)
ij > 0 and lim

η→0
λ̃

(η)
ij = λ̃ij ∀ ij ∈ �(x) ∪ �1(x),

µ̃
(η)
ij > 0 and lim

η→0
µ̃

(η)
ij = µ̃ij (x) ∀ ij ∈ �(x).

In this setting,{M(η)
t , t ≥ 0} is the martingale defining̃P(η) with respect toP,

andh(η)(x, y) andK(η)(x) are the functions used to definedM
(η)
t according to

Section 4.1. Now,̃P(η) andP are mutually absolutely continuous and

P
[
E

(n)
τ,δ,y(x,G)

]= Ẽ
(η)
[
1{E(n)

τ,δ,y(x,G)}
(
M(η)

nτ

)−1
]
.(4.2)
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Let us majorize(M(η)
nτ )−1 onE

(n)
τ,δ,y(x,G) when|y − nx| < εn. First, recalling

λ̃ij = λij for ij ∈ �2

and

µ̃ij (y) = µij (y) for ij ∈ �1 ∪ �2 andy ∈ R
R+

one has the following bounds:

−
Nnτ−1∑
k=0

h(η)(Q(k),Q(k + 1)
)

≤ −nτ

( ∑
ij∈�(x)

µ̃ij log
µ̃

(η)
ij

sups∈[0,nτ ] µij (Q(s))

+ ∑
ij∈�(x)∪�1(x)

λ̃ij log
λ̃

(η)
ij

λij

)

+ nτδ

( ∑
ij∈�(x)

∣∣∣∣log
µ̃

(η)
ij

infs∈[0,nτ ] µij (Q(s))

∣∣∣∣+ ∑
ij∈�(x)∪�1(x)

∣∣∣∣log
λ̃

(η)
ij

λij

∣∣∣∣
)
.

(4.3)

Moreover, the compensatorK is bounded in (4.1) by∫ nτ

0
K(η)(Q(s)) ds

(4.4)

≤ nτ
∑

ij∈�(x)∪�1(x)

(
λ̃

(η)
ij − λij

)+ nτ
∑

ij∈�(x)

(
µ̃

(η)
ij − inf

s∈[0,nτ ]µij (Q(s))

)
.

Besides, onE(n)
τ,δ,y(x,G), we have forij ∈ �(x)

0 < µij (x) = lim
τ,δ,ε→0

inf|y−nx|<εn
lim inf
n→∞ inf

s∈[0,nτ ]µij (Q(s, y))

= lim
τ,δ,ε→0

sup
|y−nx|<εn

lim sup
n→∞

sup
s∈[0,nτ ]

µij (Q(s, y)).

Finally, majorizing1{E(n)
τ,δ,y(x,G)} by 1, boundingM(η)

nτ using (4.3), (4.4) and (4.5)

and taking into account the order in which the different limits are taken, the
representation formula (4.2) yields

lim
τ,δ,ε→0

lim sup
n→∞

1

nτ
sup

|y−nx|<εn

logP
[
E

(n)
τ,δ,y(x,G)

]

≤ − ∑
ij∈�(x)∪�1(x)

λ̃ij log
λ̃

(η)
ij

λij

− λ̃
(η)
ij + λij

− ∑
ij∈�(x)

µ̃
(η)
ij log

µ̃
(η)
ij

µij (x)
− µ̃

(η)
ij + µij (x).
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The proof of the upper bound is concluded lettingη tend to 0.

4.3. Proof of the lower bound of Theorem 4.1. TakeG ∈ G�(x) and denote the
event (appearing in Lemma 3.4)

F
(n)
τ,δ,y(x,G)

def= E(n)
τ,y(x,G) ∩ {Aij (nτ ) = 0 ∀ ij ∈ �1(x)}.

Although P is not absolutely continuous w.r.t.̃P, by definition ofG�(x), λ̃ij > 0

andµ̃ij > 0 ∀ ij ∈ �(x) so thatP is absolutely continuous w.r.t.̃P onF
(n)
τ,δ,y(x,D)

and

P
[
E

(n)
τ,δ,y(x,G)

]≥ P
[
F

(n)
τ,δ,y(x,G)

]
≥ inf

ω∈F
(n)
τ,δ,y(x,D)

M−1
nτ (ω)P̃

[
F

(n)
τ,δ,y(x,G)

]
.

By Lemma 3.4,̃P[F (n)
τ,δ,y(x,G)] tends to 1. Therefore, reversing the inequalities

obtained for the upper bound yields

lim
τ,δ,ε→0

lim inf
n→∞

1

nτ
inf|y−nx|<εn

logP
[
E

(n)
τ,δ,y(x,G)

]
≥ − ∑

ij∈�(x)∪�1(x)

λ̃ij log
λ̃ij

λij

− λ̃ij + λij

− ∑
ij∈�(x)

µ̃ij log
µ̃ij

µij (x)
− µ̃ij + µij (x).

This concludes the proof of the lower bound whenG ∈ G�(x).

ConsiderG ∈ G
�(x)

and defineG(ε) by λ̃
(ε)
ij

def= λ̃ij + ε andµ̃
(ε)
ij

def= µ̃ij + ε, for

ij ∈ �(x); otherwise, the coefficients are the same. ThenG(ε) belongs toG�(x) for
ε > 0, it converges toG and its entropy converges toH(G‖R(x)) by Lemma 3.6.
Moreover, the driftsD = (λ̃ij − µ̃ij ) andD(ε) = (λ̃

(ε)
ij − µ̃

(ε)
ij ) are equal.

For anyε0 > 0 there existsε1 > 0 andδ1 > 0 such that, for all 0< ε′ < ε1 and
0 < δ′ < δ1, B(G(ε), δ′) ⊂ B(G, δ) andH(G(ε)‖R(x)) ≤ H(G‖R(x)) + ε0. For
the sake of simplicity, we shall denoteG(ε) by G′. SinceD′ = D, we get thetime
uniform inclusion

E
(n)
τ,δ′,y(x,G′) ⊂ E

(n)
τ,δ,y(x,G) ∀ τ ≥ 0.

It yields, using the decrease ofE
(n)
τ,δ′,y(x,G′) with δ′,

lim
ε→0

lim inf
n→∞

1

nτ
inf|y−nx|<εn

logP
[
E

(n)
τ,δ,y(x,G)

]
≥ lim

δ′,ε→0
lim inf
n→∞

1

nτ
inf|y−nx|<εn

logP
[
E

(n)
τ,δ′,y(x,G′)

] ∀ τ > 0.
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Using the lower bound forG′ ∈ G�(x) and the uniformity over time of the previous
bound, by letting τ tend to 0 we deduce that (depending onε0) there existsτ0 such
that, for all 0< τ < τ0,

lim
ε→0

lim inf
n→∞

1

nτ
inf|y−nx|<εn

logP
[
E

(n)
τ,δ,y(x,G)

]≥ −H
(
G′‖R(x)

)− ε0.

Now recall that the entropy is bounded (by continuity) whenG′ → G so that there
is no problem whenδ decreases, for all 0< τ < τ0,

lim
δ,ε→0

lim inf
n→∞

1

nτ
inf|y−nx|<εn

logP
[
E

(n)
τ,δ,y(x,G)

]≥ −H
(
G‖R(x)

)− 2ε0.

Since this is true for anyε0, we get the lower bound forG,

lim
τ,δ,ε→0

lim inf
n→∞

1

nτ
inf|y−nx|<εn

logP
[
E

(n)
τ,δ,y(x,G)

]≥ −H
(
G′‖R(x)

)
.

Theorem 4.1 is proved for anyG ∈ G
�(x)

.
The uniformity of the limit stated in Theorem 4.1 is easily checked. Nonethe-

less, this uniformity is clear as far asx evolves on compact sets of some face�.
Indeed, ifxij goes to 0 for someij ∈ �, thenµij (x) possibly vanishes and diffi-
culties can appear.

PROOF OF THEOREM 1.2. Now Theorem 4.1 implies the large deviations
local bounds of Theorem 1.2. Moreover, if a face� and a driftD ∈ R

� are fixed,
then the limits in (1.3) inτ are uniform w.r.t.x in compact sets of�. The proof
relies on a simple adaptation of the contraction principle, similarly to the proof of
Theorem 7.2 of Delcoigne and de La Fortelle (2002). Details are omitted.�

5. Sample path LDP. The proof of the sample path LDP is done in two steps
which are briefly recalled. Using Markov property, Theorem 1.2 and the continuity
of L(x,D) with respect tox ∈ �(D) for fixed D, large deviations bounds are
established for the probability that the process stays near some linear path.

PROPOSITION 5.1 (Linear bounds). Let x ∈ R
R+ and D ∈ R

R, satisfying
x + DT ∈ R

R+ . Denote ϕ the function such that ϕ(t) = x + Dt for all t ∈ [0, T ].
Then

−IT (ϕ) = lim
δ,ε→0

lim inf
n→∞

1

n
inf|y−nx|<εn

logP

[
sup

t∈[0,T ]
|Q(t, y) − nϕ(t)| < δn

]

= lim
δ,ε→0

lim sup
n→∞

1

n
sup

|y−nx|<εn

logP

[
sup

t∈[0,T ]
|Q(t, y) − nϕ(t)| < δn

]
.
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PROOF. Due to the fact that the intensityµij (x) is not bounded away from 0,
this proof is quite involved. This is where the technical uniform reachability
condition of Dupuis and Ellis (1995) is used; but it does not hold in the present
model, even if the final result is the same. It is discussed in some detail in Section 4
and Appendix B of Delcoigne and de La Fortelle (2001).�

From linear paths to LDP. The sample path local bounds of Theorem 1.3 are
now proved for linear paths (Proposition 5.1). There are some steps to reach the
LDP, which we outline here.

First, the local bounds are extended to piecewise linear paths. Using the Markov
property, the proof looks very much like that of Proposition 5.1.

Second, the local bounds are extended to absolutely continuous paths with finite
entropy, using the properties ofIT (·). Notably points (ii) and (iv) of Proposition 3.9
imply that for an absolutely continuousϕ with IT (ϕ) < ∞, there exists a sequence
{ϕn, n ≥ 1} of piecewise linear paths satisfying

lim
n→∞dc(ϕn,ϕ) = 0 and lim

n→∞ IT (ϕn) = IT (ϕ).

The next step is to prove the exponential tightness of the sequence{n−1Q(nt,

[nx]), n ≥ 1} over finite interval of time (uniformly forx belonging to a compact
set). This is done, for instance, in Dupuis, Ellis and Weiss (1991). Finally,
Theorem 1.3 is proved. These last two steps use various properties of the rate
function IT (·) and Proposition 3.9. The reader is referred to Section 5 of Dupuis
and Ellis (1995) for details.

6. LDP without ergodicity assumption. Theorem 1.2 states large deviation
bounds for ergodic networks. However, at the expense of cumbersome notation,
it is possible to compute these bounds directly without ergodicity assumption
introducing a more detailed empirical generator. For the ease of the exposition,
the study was first performed for ergodic systems. We show now how one can
compute, in general,L(x,D). The discussion after Theorem 1.2 explains why the
main difficulty to overcome is to compute the cost for an arbitrary star network
under the min policy to stay in a neighborhood of 0.

PROPOSITION6.1. Let Q be not necessarily ergodic. For all τ ≥ 0,

lim
δ,ε→0

inf|y|<εn
lim inf
n→∞

1

nτ
logP

[
sup

t∈[0,nτ ]
|Q(t, y)| < δn

]

= lim
δ,ε→0

sup
|y|<εn

lim sup
n→∞

1

nτ
logP

[
sup

t∈[0,nτ ]
|Q(t, y)| < δn

]
.

The common value of these limits is denoted by −L(0,0) and

L(0,0) = inf
ν∈V

∑
ij∈R

(√
Pλij − √

µij νij

)2 = inf
ν∈V

∑
ij∈R

l(0‖λij ,µijνij ),(6.1)
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where l(·‖·, ·) is defined in (1.5)and the set V by

V
def=
{
ν ∈ R

R+ :
∑
j∈S

νij ≤ Ci ∀ i ∈ S

}
.(6.2)

Note that Proposition 6.1 is a bit stronger than equality (1.3) of Theorem 1.2
applied tox = D = 0, since the timeτ is not necessarily short. Besides, the rate
function L(0,0) is not explicit, but is an algorithmically fairly simple problem
since it is a convex program w.r.t.

√
νij .

6.1. Proof of Proposition 6.1. As in the ergodic case, the proof relies on
four steps: the introduction of a suitable empirical generator, the association of
a star network to each empirical generator, the proof of large deviation bounds for
empirical generator and finally, the proof of Proposition 6.1 using an adaptation of
the contraction principle.

6.1.1. Empirical generator. This process is a bit different than the one defined
in the ergodic case (see Definition 3.1). It takes into account the sole case
x = D = 0, but in the transient case.

DEFINITION 6.2. The empirical generatorGt is the functional defined by

Gt
def=
(

1

t
A(t),

1

t

∫ t

0
ν(Q(s)) ds

)
,

whereν(x)
def= (νij (x), i, j ∈ S). The set
 of empirical generators isRR+ × V ; its

elements will be denoted byG = (A, ν). It is equipped with the distanced defined
by

d(G,G′) def= ∑
ij∈R

|aij − a′
ij | +

∑
ij∈R

|νij − ν′
ij | ∀G,G′ ∈ 
.

Large deviation bounds are established for the event [similarly to (3.2)]

E
(n)
τ,δ,y(G)

def=
{
Gnτ ∈ B(G, δ), sup

t∈[0,nτ ]
|Q(t, y)| < δn

}
,(6.3)

whereB(G, δ) is the ball of centerG and radiusδ. Roughly speaking, when
νpm = 0 the service rate are cut on routepm and so some constraints must be
imposed onA. More precisely:

LEMMA 6.3. Take G = (A, ν) ∈ 
. If there exist m and p such that

νpm = 0 and apm > 0,
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then E
(n)
τ,δ,y(G) almost never occurs at a large deviation scale, that is,

lim
τ,δ,ε→0

lim sup
n→∞

1

nτ
sup

|y|<εn

logP
[
E

(n)
τ,δ,y(G)

]= −∞.

PROOF. The proof is similar to the proof of Lemma 3.2.�

By Lemma 6.3, it is enough to deal with the following subspace of
.

DEFINITION 6.4. G denotes the set of empirical generator(A, ν) such that:

(i) aij = 0, whenνij = 0,
(ii)

∑
j νij < Ci ∀ i.

G stands for the closure ofG.

6.1.2. Correspondance between empirical generators and star networks. Let
G = (A, ν) ∈ G. It is associated arrival and departure rates

λ̃ij
def= aij ∀ ij ∈ R,

µ̃ij (y)
def= µ̃ij yij

Ci

yi

∧ Cj

yj

1{yij>0} ∀ ij ∈ R, ∀y ∈ R
R+ ,

where

µ̃ij
def=


λ̃ij

νij

, ∀ ij such thatνij > 0,

0, otherwise.

Then(λ̃ij , µ̃ij (y), y ∈ R
R+ ) simply describes a star network under the min policy

where the arrivals intensity and the duration of calls on routeij are respectively
given byλ̃ij andµ̃ij .

Similarly to Lemma 3.4, we now prove the following lemma:

LEMMA 6.5. Let G = (A, ν) ∈ G and P̃ the law of its associated star network.
Then Q is ergodic under P̃. Besides, for all τ ,

lim
δ,ε→0

inf|y|<εn
lim inf
n→∞ P̃

[
E

(n)
τ,δ,y

]= 1.(6.4)

PROOF. Since G ∈ G, the ergodicity condition (1.1) are easily checked
for (λ̃ij , µ̃ij ), so thatQ is ergodic under̃P. Moreover, a straight application of
the ergodic theorem yields

lim
t→∞

1

t

∫ t

0
νij (Q(s)) ds = λ̃ij

µ̃ij

= νij ∀ ij.(6.5)

Equation (6.4) is, thus, just a statement about fluid limits.�
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6.1.3. Entropy and local bounds.

DEFINITION 6.6 (Entropy). LetG = (A,D) ∈ G be an empirical generator
and(λ̃ij , µ̃ij ) its representation as a star network. The relative entropy ofG with
respect toR, the generator of the initial star network is

H(G‖R) = ∑
ij∈R

(
Ip(λ̃ij‖λij ) + Ip(λ̃ij‖νijµij )

)
,

whereIp is the entropy of Poisson processes defined in (3.6).

PROPOSITION6.7. Let G = (A, ν) ∈ G be an empirical generator. Then

−H(G‖R) = lim
δ,ε→0

inf|y|<εn
lim inf
n→∞

1

nτ
logP

[
E

(n)
τ,δ,y(G)

]
= lim

δ,ε→0
sup

|y|<εn

lim sup
n→∞

1

nτ
logP

[
E

(n)
τ,δ,y(G)

]
,

where E
(n)
τ,δ,y(G) is the event defined in (6.3).

PROOF. The proof is similar to that of Theorem 4.1 and will not be repeated.
Note simply that the lower bound is first proved forG ∈ G using, in particular,
Lemma 6.5. It is then extended to allG ∈ G using the continuity of the entropyH .

�

PROOF OFPROPOSITION6.1. Details are similar to the proof of Theorem 1.2
and, thus, omitted. Note that

L(0,0) = inf
G∈G

H(G‖R).

TakingG = (A, ν) ∈ G and minimizing w.r.t.A yields (6.1). �

Taking into account Proposition 6.1, this leads to the following expression
for L(x,D) for a network without ergodicity condition and forD ∈ R

�(x):

L(x,D) = ∑
ij∈�(x)∪�1(x)

l
(
Dij‖λij ,µij (x)

)+ inf
ν∈V

∑
ij∈�2(x)

l(0‖λij ,µij νij ),(6.6)

whereV is defined in (6.2).

REMARK. At the expense of heavier notation, this theorem could have been
derived at once, as in Section 4 studying the following more detailed empirical
generator

Lt =
(

1

t
A(t),

1

t

∫ t

0
ν�2(x)(Q(s)) ds,

1

t
Qt

)
,

whereν�2(x) = (νij (y), ij ∈ �2(x), y ∈ R
R+ ).
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