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PERFECT SAMPLING USING BOUNDING CHAINS

BY MARK HUBER1

Duke University

Bounding chains are a technique that offers three benefits to Markov
chain practitioners: a theoreticalbound on the mixing time of the chain
under restricted conditions, experimental bounds on the mixing time of
the chain that are provably accurate and construction of perfect sampling
algorithms when used in conjunction with protocols such as coupling from
the past. Perfect sampling algorithms generate variates exactly from the target
distribution without the need to know the mixing time of a Markov chain
at all. We present here the basic theory and use of bounding chains for
several chains from the literature, analyzing the running time when possible.
We present bounding chainsfor the transposition chain on permutations, the
hard core gas model, proper colorings of a graph, the antiferromagnetic Potts
model and sink free orientations of a graph.

1. Introduction. The breadth of applications using Monte Carlo Markov
chain (MCMC) techniques today is astounding. From theoretical physics to
approximation of�P -complete problems to Bayesian inference, all of these
techniques rest on the ability to construct a Markov chain whose stationary
distribution matches a particular target distribution whose normalizing constant is
unknown. Many methods (such as Gibbs sampling and Metropolis–Hastings [15,
22]) exist for constructing such chains, but finding the mixing time of these chains
is, in general, extremely difficult. Although some theoretical progress on this
problem has been made [5], for most chains of practical interest, heuristics, such as
autocorrelation tests [11], are the only methods available. Such methods only give
negative results—they can indicate when a Markov chain has not mixed, but do not
guarantee that the random variates obtained come from the correct distribution or
anything remotely close to it. Estimates based upon such samples will necessarily
be suspect.

Bounding chains, when applicable, cut through this problem and give true
algorithms for obtaining random variates. They are useful for MCMC in three
ways. First, they are formed from a natural extension of couplings we shall refer
to as complete couplings. When it is possible to analyze the bounding chain
theoretically, this relationship to couplings allows derivation of a theoretical bound
on the mixing time of the Markov chain based on well-known results.
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Second, bounding chains are themselves Markov chains that can be simulated.
Again because of the relationship to couplings, simulations of the bounding chain
can give insight into the probability of coupling in the original chain and so
experimental evidence can be obtained about the mixing time of the original chain.
To be clear, this evidence is very different from that obtained from autocorrelation
tests. Autocorrelation tests can only give evidence that a chain has not mixed,
and the more complex the chain, the less value such tests have. Use of bounding
chains can give direct evidence that a chain is mixing rapidly and the quality of
this evidence can be analyzed precisely.

The third use is the most powerful: bounding chains allow a user to utilize
perfect sampling algorithms such as the coupling from the past (CFTP) method
of Propp and Wilson [23] or the method of Fill, Machida, Murdoch and
Rosenthal [10]. Perfect sampling techniques (also known as perfect simulation
methods) draw samples exactly from distributions where the normalizing constant
of the distribution is unknown. Although both CFTP and [10] utilize Markov
chains in their operation, they are true algorithms: there is no need to have an
understanding of the mixing time of the underlying Markov chain in order to
run these algorithms. At termination the variates generated come exactly from the
target distribution.

In this work we will present the basic framework for bounding chains,
along with the primary method for their construction. This will then be applied
to an introductory example, followed by more advanced applications drawn
from statistical mechanics, graph theory and the approximation of�P -complete
problems.

2. Bounding chains. Bounding chains were introduced independently by the
author [16] and Häggström and Nelander [14]. Here we present two basic ways of
looking at bounding chains that arise naturally from consideration of couplings.

Let M be a Markov chain with state space�, kernel K and stationary
distribution π . Our goal is to generate random variates fromπ . The classical
method of starting the Markov chain at a statex0 and running for a large
number of steps requires some means for measuring how close the distribution
is to stationarity, such as thetotal variation distance: ‖Kt (x0, ·) − π(·)‖TV =
supA |Kt (x0,A) − π(A)|.

Let M1 and M2 be two chains with kernelsK1 and K2 and state spaces
�1 and �2. A coupling betweenM1 and M2 is a bivariate process(Xt , Yt )

on �1 × �2, where the marginal distribution ofXt is Markov with kernelK1
andYt is also marginally Markov with kernelK2.

Suppose we couple a chain with a copy of itself to give the bivariate
process(Xt , Yt ). We shall refer to this particular coupling as a simple, or pairwise,
coupling. LetX0 = x0, Y0 ∼ π , and suppose thatXt = Yt ⇒ Xt ′ = Yt ′ for all t ′ ≥ t .
Under this (very strong) condition we may employ theCoupling lemma [1, 7] to
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state:

‖Kt (x0, ·) − π(·)‖TV ≤ P (Xt �= Yt).

Perfect sampling protocols such as coupling from the past require a more global
form of coupling. Suppose that we have a family of measurable functions from�

to � and a probability distribution on the family such that for a drawφ, P (φ(x) ∈
A) = K(x,A) for all x ∈ � and measurableA. If φ0, φ1, . . . are a sequence
of independent draws from this family of distributions, then for anyx0 ∈ �,
x0, φ0(x0), φ1(φ0(x0)), . . . will be a simulation of the Markov chain starting from
statex0. Of course, if we start fromx0 andy0 using the same drawsφ0, φ1, . . . ,
then we have a simple coupling satisfying the conditions of the Coupling lemma.
In this paper we shall refer to such a family of functions and its distribution as a
complete coupling. Let�0 be the identity function and�t = φt−1◦�t−1 for t ≥ 1.
Then if�t(�) = {c}, that is, if�t is a constant function, then every single state in
the state space has coupled. This immediately gives us:

‖Kt (x0, ·) − π(·)‖TV ≤ P (�t is not constant).

CFTP and related methods generate variates drawn exactly from the target
distributionπ . Three elements are required: a Markov chain withπ as its stationary
distribution, a complete coupling for the chain and a means of determining
when �t is constant. CFTP computes�t for a fixed value oft . If �t is a
constant statex after theset steps, thenx is output as the random variate.
If �t is not constant, CFTP is called recursively to generate a random variatey.
Thenx = �t(y) is output as the random variate. As long as there is a reasonably
large probability�t is a constant, the number of recursive calls within CFTP will
be small. The output of this algorithm is distributed exactly according toπ , the
stationary distribution of the chain [23].

One effective means for determining complete coupling in order to use CFTP
is to take advantage of a monotonic structure in the chain. We will not go into the
details here, other than to note that this idea was later extended to a wider variety of
chains by introducing antimonotonicity [13]. Still, there remain chains of interest
that are neither monotone nor antimonotone.

Bounding chains are a method for determining when�t is constant for a wide
variety of state spaces. The two forms of bounding chains we present are identical
when dealing with discrete state spaces, but act differently when extended to
continuous state spaces.

Suppose that the chainM with state space� ⊆ CV for some set of
dimensionsV and some set of possible valuesC (we shall refer toC as the set
of colors). Usually|�| is growing exponentially with|V |, which is why MCMC
methods are commonly used in this situation. Consider a new Markov chainM′
with state space(2C)V , where 2C is the set of subsets ofC. Let Xt be a stochastic
process evolving according toM andYt be a stochastic process evolving according
to M′.



BOUNDING CHAINS 737

DEFINITION 1 (Form 1). We will say thatM′ is a bounding chain for M if
there exists a coupling betweenM′ andM such that

Xt(v) ∈ Yt (v) ∀v �⇒ Xt+1(v) ∈ Yt+1(v) ∀v.

Each dimensionv ∈ V is given a single color fromC in Xt and a subset of
colors fromC in Yt . If we haveM′ boundingM, we have a coupling for(Xt , Yt )

so that by starting withX0(v) ∈ Y0(v) for all v, we guarantee thatXt(v) ∈ Yt (v)

for all v ∈ V and all timest ≥ 0. If Xt is evolving usingφ0, φ1, . . . , andY0 bounds
every state in�, then whenYt bounds just one statex, that means that�t is a
constant function. The number of states bounded byYt is at most

∏
v |Yt(v)|, so to

check that�t is constant, it suffices that|Yt (v)| = 1 for all v.
Given a complete coupling forM, generated byφ0, φ1, . . . , we can construct

a bounding chain as follows. Say thatx ∈ CV is bounded byy ∈ (2C)V

(denotex ∈V y) if x(v) ∈ y(v) for all v. Then given state(Xt , Yt ), let Xt+1 =
φt(Xt ) and let

Yt+1(v) = ⋃
x∈V Yt

(φt (x))(v).

That is, consider each and every possible statex that is bounded byYt . Take the
next step from each of these statesx and examine the set of colors forv that results.
By taking Yt+1(v) to be this set of colors and doing this for every nodev ∈ V ,
we guarantee thatYt+1 bounds the stateXt+1. Starting the bounding chain in a
stateY0 that boundsX0 is easy whenV andC are discrete: just makeY0(v) = C

for all v ∈ V . Examples of problems where Form 1 is the most useful formulation
include proper colorings of a graph and the Potts model.

Sometimes it is more convenient to write the state space as� = C(2V ), so if we
think of a configuration as a function mappingV to C, instead keep track of the
inverse of the function for eachc ∈ C. That is, for each color, we record the subset
of dimensions that have that color. In this case, the bounding chainM′′ will have
state space{(b, d) : b, d ∈ �,b(c) ∩ d(c) = ∅ ∀ c}, that is, ordered pairs of states
from � that do not intersect. LetAt be a stochastic process evolving according
to M and(Bt ,Dt ) a stochastic process evolving according toM′′.

DEFINITION 2 (Form 2). We will say thatM′′ is a bounding chain for M if
there exists a coupling betweenM′′ andM such that

Bt(c) ⊆ At(c) ⊆ Bt(c) ∪ Dt(c) ∀ c

�⇒ Bt+1(c) ⊆ At+1(c) ⊆ Bt+1(c) ∪ Dt+1(c) ∀ c.

Intuitively, for At bounded by(Bt ,Dt), Bt(c) is the set of dimensions that are
“known” to have colorc in At , while Dt are those dimensions that “might” have
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color c in At . As with the other form, complete coupling has occurred whenDt is
empty, which is very easy to check.

We can construct a bounding chain in Form 2 using a similar method to the
first form. Say thata is bounded by(Bt ,Ct) if for every c ∈ C we haveBt(c) ⊆
a ⊆ Bt(c) ∪ Dt(c) and we writea ∈C (Bt ,Dt ). Givenφ0, φ1, . . . for a complete
coupling, letAt+1 = φt(At ), and for eachc ∈ C, set

Bt+1(c) = ⋂
a∈C(Bt ,Dt)

(φt (a))(c),

Dt+1(c) =
( ⋃

a∈C(Bt ,Dt )

(φt (a))(c)

)∖
Bt+1.

Start the bounding chain in state(B0,D0), whereB0(c) = ∅ andD0(c) = V for
all c ∈ C. This will trivially boundA0.

Examples of problems where Form 2 is more useful include such chains as
Swendsen-Wang [17] and independent sets of a graph [19].

3. Transposition chain for permutations. Our first application of the bound-
ing chain technique is a toy example intended to illustrate several aspects of the
method. While no practitioner would usethis chain for generation of random
permutations, the techniques we use here will be applicable to more sophisti-
cated examples later. Consider the problem of generating random permutations
of n objects uniformly at random. Using our coloring scheme,� is the subset
of {1, . . . , n}{1,...,n} such thatx(v) �= x(w) ∀v,w. If x(i) = j , we will say that
item j is in position i. The Markov chain takes steps by randomly moving be-
tween states that differ by a single transposition. Specifically we set

K(x, y) =



2/n2, x, y differ in two positions,

1/n, x = y,

0, otherwise.

There are of course several ways to create complete couplings for this kernel.
For instance,i and j could be chosen independently and uniformly at random
from {1, . . . , n}, and then setxt+1(i) = xt(j) and xt+1(j) = xt(i). This is
equivalent to switching the items at positioni andj .

Alternately, items i and j could be swapped, soxt+1(x
−1
t (i)) = j and

xt+1(x
−1
t (j)) = i. Although these satisfy the definition of complete couplings,

�t will never become constant for either of these approaches and the bounding
chain derived from them will never detect complete coupling.

A more useful complete coupling swaps itemi with position j . To turn this
complete coupling into a bounding chain,we just follow the procedure outlined
in the previous section. We will utilize Form 1 (1) in this example. We begin with
all the positions assigned state{1, . . . , n} in the bounding chain. As we run the
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bounding chain, some positions will move to singleton sets of colors, but some will
have more than one color. Call a positionknown if it is assigned a set of size 1 in the
bounding chain state and call itunknown otherwise. Similarly, call an item known
if some position is known and assigned that item, and call it unknown otherwise.
To minimize the needed updating, each unknown position in the bounding chain
will always be assigned{1, . . . , n} even though we could shrink the size of this set
somewhat by considering the values of the known positions.

Suppose our bounding chain is in stateYt and we choose to swap itemi with
position j . Then for anyx bounded byYt , φt(x)(j) = i because we move
item i to position j . Taking the union of{i} over all x bounded byYt just
givesYt+1(j) = {i}.

To findYt+1(i), we must consider two cases. In the first case,i is known to have
position ipos in Yt [so Yt(ipos) = {i}]. In this case,φt(x)(ipos) = x(j). Now the
union over allx bounded byYt of x(j) is a subset ofYt(j), so settingYt+1(ipos) =
Yt (j) insures thatYt+1 boundsφt (x).

In the second case,i has unknown position inYt , so that the location ofi in
anx bounded byYt is somewhere in the unknown positions inYt . Hence the item
at positionj moves to one of these unknown positions at the next time step. But
any unknownpositionk hasYt (k) = {1, . . . , n} and so settingYt+1(k) = Yt+1(k)

for all k �= j makes sure that forx bounded byYt , φt(x) is bounded byYt+1.
Now we analyze the expected time needed for this bounding chain to detect

complete coupling, that is, for all of the positions to become known.

LEMMA 1. Let τ be the first time the bounding chain detects complete
coupling. Then

E[τ ] ≤ π2

6
n2 and P (τ > CE[τ ]) ≤ e−0.18C(1)

for all C ≥ 2.

PROOF. Let Wt denote the number of unknown positions in the bounding
chain at timet . We are interested in computing the expected time forWt to
hit 0. Suppose that itemi and positionj are selected for the switch. Itemi and
position j can each be either known or unknown. If at least one ofi or j is
unknown, thenWt is unchanged. If however, bothi andj are unknown, then after
one step itemi (or equivalently positionj ) becomes known,Wt decreases byi.
Sincei andj were chosen uniformly and independently, the probability that both
are unknown is just(Wt/n)2. Hence the expected time untilWt decreases by 1 is
just (n/Wt)

2 and the expected time untilWt = 0 is

n∑
i=0

(
n

Wt

)2

≤ n2
n∑

i=0

1

W2
t

≤ n2π2

6
.(2)
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For the tail bound, note that the probability thatT ≥ 2E[τ ] is at most 1/2 by
Markov’s inequality. So for each 2E[τ ] time steps we have at least a 1/2 chance
of detecting complete coupling, so afterCE[τ ] steps, the probability that we have
failed is at most(1/2)(C/2) for integerC. Accounting for the fact thatC might be
real and not an integer reduces our bound to(1/2)(C/4) ≤ exp(−0.18C). �

In this case, the expected time for the bounding chain to detect complete
coupling comes within a constant factor of the expected time needed for any
complete coupling from the class we are considering to couple even two processes.
Suppose that{Xt } and{Yt} are both evolving according toφ0, φ1, . . . and letτ be
the amount of time needed for coupling to occur. Note thatXt andYt cannot differ
in exactly one position and each step changes at most 4 positions. At some point
before coupling occurs they differ in 2, 3 or 4 positions. To finish the coupling,
eitherXt or Yt must change states and one ofXt andYt must choose two positions
where they differ. This occurs with probability at most 24/n2 and so the expected
time to couple will be at leastn2/24, differing from the bounding chain upper
bound by a constant factor.

While �(n2) time is needed for this type of coupling, the chain itself is known
to mix in �(n lnn) time [6]. These special couplings do not always tightly bound
the mixing time of a Markov chain, a weakness inherited by bounding chains.

4. The hard core gas model. An independent set of a graph is a subset of
nodes such that no two nodes in the subset are connected by an edge of the graph.
In this section we wish to generate random variates from the distribution

π(A) = λ|A|

Zλ

,(3)

whereA is any independent set of the graph,λ is a parameter of the model known
as thefugacity and Zλ is the (unknown) normalizing constant often called the
partition function of the model.

In statistical physics, this distribution is known as the hard core gas model [25]
and is a simple model of gases where each node of the graph might or might not be
occupied by a gas molecule of nonnegligible size so that any two nodes connected
by an edge cannot both be occupied simultaneously. The fugacity controls the
density of the gas. Despite its simplicity, the model exhibits a phase transition
when the graph satisfies symmetry properties. For instance, the latticeZd satisfies
these properties. The same distribution also arises from certain stochastic models
of communication networks [21].

Computation of the partition function for general graphs is a�P -complete
problem [8]. Because this is an example of a self-reducible problem, the ability
to efficiently generate variates from this distribution immediately leads to a
polynomial time approximation algorithm for findingZλ [20, 24].

In [9], Dyer and Greenhill proposed a Markov chain for this distribution that was
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neither the straightforward Gibbs sampler nor a Metropolis–Hastings algorithm,
but instead a combination of the two that we shall refer to as the Dyer–Greenhill
chain. They used path coupling to show that whenλ < 2/(	 − 2), where	 is
the maximum degree of the graph, the chain mixes in�(n lnn) time. Their chain
is neither monotonic nor antimonotonic. We present a complete coupling of their
chain, develop the corresponding bounding chain and show the following:

THEOREM 1. When λ < 2/(	 − 2), the bounding chain for the Dyer–
Greenhill chain detects complete coupling after [logβ n]+ θ steps with probability
at least 1− βθ , where

β = 	λ

2(λ + 1)
.(4)

The state of the chain at timet can be described by a single subset of nodesAt

that is the independent set. Using Form 2 gives us a bounding chain whose state is
a single ordered pair(Bt ,Dt). A regular Gibbs sampler chooses a node at random,
and then adds or deletes that node with probabilities that depend onλ and whether
neighbors of the node are inAt . The Dyer–Greenhill chain adds a new wrinkle:
if exactly one neighbor of the chosen vertex is in the independent set, the new
node can “swap,” where it is added to the independent set and the neighbor is
deleted. This swap move occurs with probabilitypswap, a new parameter of the
chain. Lets ∈U S mean that we choose an elements uniformly at random from
the setS. Given a graph with node set{1, . . . , n}, the following is a complete
coupling for their chain that takes a single step from stateA:

The Dyer–Greenhill chain for the hard core gas model
1. Choose v ∈U {1, . . . , n}
2. Choose U ∈U [0,1]
3. Case I: U > λ/(λ + 1)

4. Let A ← A \ {v}
5. Case II: U < λ/(λ + 1), and no neighbors ofv are inA

6. Let A ← A ∪ {v}
7. Case III: U < pswapλ/(λ + 1), exactly one neighbor ofv (call it w) is in A

8. Let A ← A \ {w} ∪ {v}

Lines 1 and 2 are the random choice ofφ for this time step and the remaining
lines merely computeφ(A). For the bounding chain we choosev andU in the
same way and then see how(B,D) changes based on those decisions. Using
Form 2 (2), we wish to insure thatB ⊆ A ⊆ B ∪ D.

The bounding chain considers six cases. Case I of the original chain corresponds
to Case I below, where the state of the neighbors ofv do not matter at all because
we have rolled to removev from the independent set. Case II corresponds to cases
in the chain where no neighbors ofv are inB and in Case III exactly one neighbor
of v will be in B.
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Bounding chain for the Dyer–Greenhill chain
1. Choose vertexv ∈U {1, . . . , n}, let Nv be the neighbors ofv
2. Choose U ∈U [0,1]
3. Case I: U > λ/(λ + 1)

4. Let B ← B \ {v}, D ← D \ {v},
5. Case IIa: U < λ/(λ + 1), |Nv ∩ B| = |Nv ∩ D| = 0
6. Let B ← B ∪ {v}, D ← D \ {v}
7. Case IIb: pswapλ/(λ + 1) ≤ U < λ/(λ + 1), |Nv ∩ B| = 0, |Nv ∩ D| = 1
8. Let B ← B \ {v}, D ← D ∪ {v}
9. Case IIc: U < pswapλ/(λ + 1), |Nv ∩ B| = 0, |Nv ∩ D| = 1

10. Let B ← B ∪ {v}, D ← D \ {v} \ (Nv ∩ D)

11. Case IId: U < λ/(λ + 1), |Nv ∩ B| = 0, |Nv ∩ D| ≥ 2
12. Let B ← B \ {v}, D ← D ∪ {v}
13. Case IIIa: U < pswapλ/(λ + 1), |Nv ∩ B| = 1, |Nv ∩ D| = 0
14. Let B ← B ∪ {v} \ (Nv ∩ B), D ← D \ {v}
15. Case IIIb: U < pswapλ/(λ + 1), |Nv ∩ B| = 1, |Nv ∩ D| ≥ 1
16. Let B ← B \ {v} \ (Nv ∩ B), D ← D ∪ {v} ∪ (Nv ∩ B)

Note that Case II has four subcases. If no neighbors ofv are inD as well, then
the node is always added for anyA bounded by(B,D). If two or more neighbors
of v are inD, thenv might be added or it might not, so we must add it toD.

If exactly one neighbor ofv is in D, then if we do not swap based onU , we
could end up withv in the independent set or not for a state bounded by(B,D).
If we roll to switch, however, it does not matter whether that neighbor is in or out
of the independent set: either way it is out at the end of the step andv will be in
the independent set. In terms of the bounding state, this allows us to remove the
neighbor fromD and addv to B.

Finally, if there is more than one neighbor ofv in D, there are cases where we
add or do not add regardless of the value ofpswap, and sov must be added toD at
the next step.

Case III will deal with the subcases where exactly one neighbor ofv is in B and
we roll to swap. Note that if two or more neighbors ofv are inB or if one neighbor
of v is in B and we do not roll to swap, the state always remains unchanged and
so we leave the bounding state unchanged as well.

If no neighbors ofv are inD, then the new state ofv is completely determined
by the neighbors ofv that are all known. If at least one neighbor ofv is in D, then
if we do not swapv is always out, but if we do swap thenv could be either in or out
of the final state, and the neighbor ofv could be in or out of the new independent
set as well. This means that both must joinD.

PROOF OF THEOREM 1. The bounding chain detects complete coupling
when |Dt | = 0 and so we are interested in the behavior of|Dt |. In fact, we will
upper boundE[|Dt+1||Bt ,Dt ]. To make the analysis easier, suppose that we have
a line between lines 1 and 2 where we remove nodev from Dt . We did not do this
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in our description of the bounding chain simply because it is redundant ifv is not
in Dt and unnecessary if we end up addingv back toDt . However, we can insert
this line without changing the evolution of the bounding chain at all (which case
we are in depends only on the neighbors ofv—not v itself).

This move decreases|Dt | by 1 for all v ∈ Dt , which happens with probabil-
ity |Dt |/n. The remaining lines have a chance of adding one or more nodes back
to Dt .

If we are in Cases I, IIa or IIIa, we see that nodes are never added toDt .
Case IIb is a bad case;v is added back toDt with probability(1− pswap)λ/(λ + 1).
Case IIc is a good case; a node other thanv is removed fromDt with
probability pswapλ/(λ + 1). Case IId is another bad case;v is added toDt with
probabilityλ/(λ + 1). Case IIIb is the worst case:|Dt | grows by 2 with probabil-
ity pswapλ/(λ + 1). Lettingα = λ/(λ + 1), we have

E[|Dt+1||Bt ,Dt ] = |Dt | − |Dt |
n

+ N01

n
(1− pswap)α − N01

n
pswapα

+ N02+
n

α + 2
N11+

n
pswapα,

whereN01 is the number of nodes with|Nv ∩ B| = 0 and|Nv ∩ D| = 1, N11+ is
the number of nodes with|Nv ∩B| = 1 and|Nv ∩D| ≥ 1, andN02+ is the number
of nodes with|Nv ∩ D| = 0 and|Nv ∩ B| ≥ 2.

At this point, we take advantage of our ability to choosepswap. Setting
pswap= 1/4 means that 1− 2pswapand 2pswapboth are 1/2. Hence

E[|Dt+1||Bt ,Dt ] = |Dt | + 1

n

[
−|Dt | + 1

2
N01α + 1

2
N11+α + N02+α

]
.(5)

For a node to count towardsN01 or N11+, it must be adjacent to a node inDt .
Similarly, nodes counting towardsN02+ must adjoin at least two nodes inDt .
Since	 is the maximum degree of the graph, the number of such nodes is at
most	|Dt |. Substituting

N01 + N11+ + 2N02+ ≤ 	|Dt |
into (5) yields

E[|Dt+1||Bt ,Dt ] ≤ |Dt |[1− (1− α	/2)]
and taking expectations of both sides gives

E[|Dt+1|] ≤ E[|Dt |][1− (1− α	/2)].
A simple induction using|D0| = n gives us

E[|Dt |] ≤ n[1− (1− α	/2)]t .



744 M. HUBER

As long as 1− α	/2 > 0 or, equivalently,λ ≤ 2/(	 − 2), this inequality will
be a shrinking upper bound onE[|Dt |]. Settingβ = [1 − (1 − α	/2)] gives
us that after[logβ n] + θ steps, we will haveE[|Dt |] ≤ βθ and by Markov’s
inequalityP (|Dt | ≥ 1) ≤ βθ . �

When β = 1, we could (using Martingale theory) show that the time until
complete coupling isO(n2). Because such an analysis is of limited utility we omit
it here.

In [9], Dyer and Greenhill showed that a simple pairwise coupling will couple
in O(n lnn) time whenpswap= 1/4 using the technique of path coupling. This
bounding chain not only provides a perfect sampling algorithm, it also serves as
an independent proof of their result.

5. Proper colorings of a graph. A proper coloring of a graph (V,E),
where|V | = n is an elementx of {1, . . . , k}N such that for all edges{v,w} ∈ E,
x(v) �= x(w).

Consider the Gibbs sampler chain for this problem. Given a proper coloringx,
letbx(v) denote the number of different colors not used by neighbors of the nodev.
Then for configurationsx andy that differ in color at exactly one node

K(x, y) =




1

nbx(v)
, x, y differ at nodev,

∑
v∈N

1

nbx(v)
, x = y,

0, otherwise.

A bounding chain for this Gibbs sampler was presented independently by
the author [16] and Häggström and Nelander [14]. The complete coupling that
produces this bounding chain is as follows (herex is the current configuration):

The Gibbs sampler for proper colorings
1. Choose v ∈U {1, . . . , n}, let Nv be the neighbors ofv
2. Repeat
3. Choose c ∈U {1, . . . , k}
4. Until c /∈ x(Nv)

5. Let x(v) ← c

In other words, keep choosing colors for the chosen node uniformly at random
from the set of colors until a color is found which does not match any of the
neighbors ofv. This will be the new color forv and is uniform over the set of
colors not used by neighbors ofv.

We use Definition 1for the bounding chain. Again we choose colors, but this
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time we might not know whether or not to reject the new color. If	 is the
maximum degree of the graph, then after choosing	 + 1 different colors we are
guaranteed to have picked one that must be accepted. This logic can be codified in
the following bounding chain. Lety be the current state.

Bounding chain for the Gibbs sampler for proper colorings
1. Choose v ∈U {1, . . . , n}, let Nv be the neighbors ofv, let y(v) ← ∅

2. Repeat
3. Choose c ∈U {1, . . . , k}
4. If no neighborw of v hasy(w) = {c}
5. Let y(v) ← y(v) ∪ {c}
6. Until c /∈ ⋃

w∈Nv
y(w) or |y(v)| > 	

7. Let x(v) ← c

THEOREM 2. When the number of colors k at least 	(	 + 2), let

β = 1− 1− (	 + 1)	/[k − 	 + 1]
n

.(6)

The probability that the bounding chain detects complete coupling in logβ n + θ

steps is at least 1− βθ .

PROOF. Let Wt denote the number of nodesv with |Yt (v)| > 1. We begin
with W0 = n and wish to find the expected time untilWt = 0. GivenYt , we wish to
find the expected value ofWt+1. As in the previous section, if we select a nodev

with |Yt (v)| > 1, we reduceWt by 1 at that point.
Now, if we select a color forv that lies withinYt (w) for some neighborw of v

with |Yt(w)| > 1, that could increaseWt by 1. The probability of this happening
is at most[∑w∈Nv

|Yt (w)|1|Yt (v)|>1]/(k − (	 − 1)). (We subtract	 − 1 from k

in the denominator to account for neighbors with known colors that could be
preventing some colors from being chosen.) In our bounding chain we always
have |Yt (w)| ≤ 	 + 1. Also

∑
v

∑
w∈Nv

1|Yt (v)|>1 is just the number of nodes
adjacent to nodes with|Yt(v)| > 1 and so is bounded above by	Wt . Putting this
all together gives us

E[Wt+1|Yt ] ≤ Wt − Wt

n
+ ∑

v

1

n

∑
w∈Nv

|Yt (w)|1|Yt (w)|>1

k − 	 + 1

≤ Wt − Wt

n
+ (	 + 1)	

Wt

n

= Wt

[
1− 1− (	 + 1)	/[k − 	 + 1]

n

]
,

so

E[Wt+1] = βE[Wt ].(7)
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Using W0 = n, an induction gives usE[Wt ] = βtn. As in the previous section,
application of Markov’s inequality gives usP (Wt > 1) ≤ E[Wt ] ≤ βtn and the
result directly follows. �

The best results known for approximately uniform generation of proper
colorings is a Markov chain of Vigoda [26] that mixes in polynomial time
whenk > 11	/6. This requires far fewer colors in theory, but whenk lies outside
this bound the user is given no information. Even whenk < 	(	 + 2), a user can
still attempt to use the bounding chain approach to generate variates, as (unlike the
classical Markov chain method) it is a true algorithm. There is simply no a priori
guarantee that the algorithm will terminate in polynomial time.

6. The antiferromagnetic Potts model. The Potts model is an extension
of the Ising model from statistical physics. Each node of a graph is assigned
a color from {1, . . . , k} in a configuration. The energy of configurationx
is H(x) = −∑

v

∑
w∈Nv

1x(v)=x(w), whereNv is the set of nodes adjacent tov.
The probability of choosing a particular configuration is

π(x) = 1

ZT

exp
{−JH(x)

T

}
.(8)

HereT is a positive parameter of the chain known as the temperature,J is either 1
or −1, and ZT is (as with the hard core gas model) known as the partition
function. WhenJ = 1 more weight is given to configurations with endpoints of
edges colored the same way; this is known as the ferromagnetic Potts model.
WhenJ = −1, configurations where endpoints of edges receive different colors
are assigned higher weight: this is the antiferromagnetic Potts model.

In the ferromagnetic case, monotonic chains for alternate formulations of this
model exist [12, 23], but for the antiferromagnetic case no chain is known to be
monotonic unless the graph is bipartite andk = 2. We describe two bounding
chains for the antiferromagnetic Potts model based upon the Gibbs sampler. The
Gibbs sampler chain chooses a node uniformly at random and then chooses a new
color for the node according toπ conditioned on the value of the rest of the sample.

For the antiferromagnetic Potts model, as the temperature goes to 0 the
weight moves towards proper colorings of a graph. For this reason, the uniform
distribution over proper colorings of a graph is also known as the antiferromagnetic
Potts model at zero temperature.

A bounding chain for the Gibbs sampler can be constructed by noting that each
color has a minimum probability of being chosen, regardless of the values of the
rest of the sample. This allows the bounding chain to be moved to singleton sets
with positive probability. This was the approach used in [16].

Unfortunately, this method has several disadvantages. First, it is time consuming
to compute the minimum probabilities for each of the colors. Second, this approach
does not result in a provably polynomial time algorithm even whenk is large.
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Intuitively, positive temperature should make it easier to generate random variates,
and so we should always be able to generate samples in polynomial time whenk ≥
	(	 + 1) for any temperature and with fewer colors as the temperature rises.

We now present a complete coupling for the Gibbs sampler for the antiferro-
magnetic Potts model. For notational convenience, letγ = exp(2/T ).

The Gibbs sampler for antiferromagnetic Potts model
1. Choose v ∈U {1, . . . , n}, let Nv be the neighbors ofv
2. Repeat
3. Choose c ∈U {1, . . . , k}
4. Choose U ∈U [0,1]
5. Let ac be the number of neighbors ofv with colorc in x

6. Until U ≤ γ −ac

7. Let x(v) ← c

We extend this complete coupling to a bounding chain in the same way as the
proper colorings chain: boundac betweenbc anddc, which are the minimum and
maximum number of neighbors ofv with color c over the set ofx bounded byy.

Bounding chain for the Gibbs sampler for antiferromagnetic Potts model
1. Choose v ∈U {1, . . . , n}, let Nv be the neighbors ofv
2. Let y(v) ← ∅

3. Repeat
4. Choose c ∈U {1, . . . , k}
5. Choose U ∈U [0,1]
6. Let bc be the number ofw neighboringv with y(w) = {c}
7. Let dc be the number ofw neighboringv with c ∈ y(w)

8. If U ≤ γ −bc

9. Let y(v) ← y(v) ∪ {c}
10. Until U ≤ γ −dc or |y(v)| > 	

THEOREM 3. Let τ be the first time that the bounding chain detects complete
coupling. Then for k ≥ 	(	 + 2), and any temperature T , or for the case where
	 < k < 	(	 + 2) and T satisfies exp(2/T ) < 	2/[	2 + 2	 − 1], and finally
for the case where k ≤ 	 and T satisfies exp(2/T ) < 	k/[	k − 1], there exists
a constant β ∈ (0,1) such that

P
(
τ > (− lnβ)n lnn + θ

) ≤ βθ .(9)

PROOF. Whenk ≥ 	(	+2), the same argument used for the proper colorings
chain can easily be extended to arbitrary temperaturesT , whenever we accept
whenT = 0, we will accept whenT > 0.

Suppose that	 < k < 	(	 + 2). We assume the worst forY , namely,
that |Yt(v)| = 	 + 1 for any v with |Yt (v)| > 1. Let Wt denote the number
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of nodes with |Yt (v)| > 1. As in the previous section, we will proceed by
consideringE[Wt+1|Yt ]. If |Yt (w)| > 1 andv is chosen,Wt is reduced by 1 at
the beginning of the step. In the other direction, we will say that nodev causes
Wt to be increased by 1 if some neighborw of v is chosen, a colorc in Yt(v) is
chosen for that neighbor and we addc to Yt (w), but we do not exit the repeat loop.

The expected value ofWt+1 givenYt will just be Wt plus upper bounds on the
expected increase toWt minus the expected decrease inWt . The expected decrease
is just−Wt/n. The expected increase caused by particular nodew with |Yt(w)| is
always bounded above by(	 + 1)	(1 − γ −1)/[n(k − 	 − 1)]. The factor of	
is the maximum number of neighbors forw, the	 + 1 factor the size of|Yt(w)|,
the 1− γ −1 term is the maximum probability that a particular color inYt (w) is the
culprit for causingv to have a large color set, 1/n is the probability of choosingv,
and 1/(k − 	 − 1) is an upper bound on the probability that the first color forv

that we do not reject based on the color of known neighbors is a particular colorc.
There areWt such nodesw with |Yt (w)| > 1, so

E[Wt+1|Yt ] ≤ Wt − Wt

n
+ Wt

[
(	 + 1)	(1− γ −1)

n(k − 	 − 1)

]
.(10)

Settingβ2 = 1−(1/n)[(	+1)	(1−γ −1)/(k−	−1)−1], an induction gives us
E[Wt ] ≤ βt

2n and Markov’s inequality, together with the fact thatWt is an integer,
allows us to upper bound the probability thatWt > 0.

In the final casek ≤ 	 and we can make|Yt (w)| = k. This changes the above
argument in two places. First, we replace the factor of	 + 1 by k. Second, we
upper bound the probability of choosing a color by 1 rather than 1/(k − 	 + 1).
Hence in this case,

E[Wt+1|Yt ] ≤ Wt − Wt

n
+ Wt

[
	k(1− γ −1)

n

]
.(11)

Settingβ3 = 1− (1/n)[	k(1−γ −1)] gives usE[Wt ] ≤ βt
3n and the result follows

in the same manner as above.�

7. Sink free orientations of a graph. Given an undirected graph with node
setN and edge setE, an orientation of the graph is an assignment of direction
to each of the individual nodes. A sink free orientation is an orientation such that
every node has at least one outgoing edge, and so for this problem� = {0,1}E,
where 0 and 1 represent each of the two possible directions for each edge. In
what follows we will assume without loss of generality the graph is connected,
since the number of sink free orientations on an unconnected graph is the product
of the number of sink free orientations on each component. Moreover, we will
assume that the degree of each node is at least two, since any leaf of the graph
fixes the orientation of its adjacent edge outward and can be removed. As with
the previous problems, counting the number of sink free orientations of a graph
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is �P -complete [2] and self-reducible so that sample generation leads to an
efficient approximation scheme.

The first algorithm for generating almost uniformly from the sink free
orientations of a graph (as long as the chain connects the state space) was the basic
Gibbs sampler. This was shown to mix inO([m3 + mn3] ln(1/ε)) time by Bubley
and Dyer [2] using a simple coupling. Hereε denotes distance of the variates from
uniform distribution in total variation distance.

The first perfect sampling algorithm [16] known for this problem was a
bounding chain approach. This method ran in polynomial time, although a
technical error in [16] makes the run time theorem proved there invalid. Here we
reanalyze that chain with some small improvements to show polynomial running
time. Because a new method for perfect sampling known as popping [4] will be
faster than any coupling approach of this type, we do not attempt a tight bound on
the running time, but rather concentrate on showing that it is polynomial.

The Gibbs sampler chooses a random edge, and then chooses an orientation for
the edge uniformly from the set of orientations that do not create a sink. In what
follows we will write the orientation of an edge{a, b} as (a, b) or (b, a) rather
than 0 or 1 to make clear the direction assigned.

Gibbs sampler for sink free orientations of a graph complete coupling
1. Choose {v,w} ∈U E

2. Choose U ∈U [0,1]
3. Case I: U < 1/2 and removing edge{w,v} does not makew a sink
4. Let x({v,w}) ← (v,w)

5. Case II: U > 1/2 and removing edge{w,v} does not makev a sink
6. Let x({v,w}) ← (w,v)

We will use Definition 1 for the bounding chain. As previously, we will call an
edge{v,w} known if |Y ({v,w})| = 1 andunknown otherwise. Say that edge(a, b)

leaves a, or its direction froma is outward, and itenters b or is directedinwards
towardsb. There are several cases to consider in deciding what to do with chosen
edge{v,w}. If there is a known edge leavingw and we choose(v,w), then the
edge is known to be oriented in that direction. Similarly, a known edge leavingv

allows us to orient the edge(w, v) with certainty.
On the other hand, if all edges adjacent tow are known to enterw, then the only

orientation possible for the edge is(w, v). Similarly, if all edges adjacent tov are
known to enterv, the only possible orientation is(v,w). These cases result in the
state of the chain (and therefore the bounding chain) remaining unchanged.

Now suppose none of the above cases hold and, in addition, an edge adjacent
to w is unknown. Then we do not know if the orientation(v,w) is valid or not:
it depends on the state of the unknown edges. Hence if we try to change the
orientation to(v,w), we must makeY ({v,w}) = {(v,w), (w,v)}. Similarly, when
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none of the above cases hold andv is adjacent to an unknown edge, attempted
moves to(w, v) result in{v,w} becoming unknown inY .

Bounding chain for Gibbs sampler for sink free orientations
1. Choose {v,w} ∈U E

2. Choose U ∈U [0,1]
3. Case I: U < 1/2 and a known edge is leavingw
4. Let y({v,w}) ← {(v,w)}
5. Case II: U > 1/2 and a known edge is leavingv
6. Let y({v,w}) ← {(w,v)}
7. Case III: U < 1/2, no known edges leavesw, an unknown edge adj. tow
8. Let y({v,w}) ← {(v,w), (w,v)}
9. Case IV: U > 1/2, no known edges leavesv, an unknown edge adj. tov

10. Let y({v,w}) ← {(v,w), (w,v)}

Unfortunately, the bounding chain built directly from the complete coupling is
worthless algorithmically. Suppose all of the edges in the state are unknown. No
matter how many steps are taken in the bounding chain, the state of all edges will
remain unknown. We need at least one known edge to start the bounding chain.

This is accomplished by using three phases. Phase I consists of a single step
in the Markov chain. Given that edge{v,w} was chosen andU < 1/2, one of
two outcomes are possible. Either the edge is oriented(v,w) or the edge is
oriented(w, v) and all the other edges adjacent tow are directed intow. These
are the starting statesY 1 andY 2 for two individual bounding chains.

In Phase II we run these bounding chains using independent draws for lines
1 and 2. That is, we make different choices for the edge chosen andU for the{Y 1

t }
process and the{Y 2

t } process. Hopefully we end with each of the two bounding
processes (independently) detecting complete coupling. Finally, in Phase III the
two states are run as a regular pairwise coupling just as Bubley and Dyer did in
their original paper [2]. If at the end of Phase III, the two states have coupled, then
we have achieved complete coupling.

Formally, we have created a complete coupling on the bounded chain with
a new state space that is the direct product of the Definition 1 state space
and {I, II, III} representing which phase we are in. We move from Phase I to
Phase II automatically. We have to move from Phase II back to Phase I if either of
our bounding process ever reaches the state where all edges are unknown. On the
other hand, if both bounding processes detect complete coupling, we get to move
on to Phase III.

Since Phase III is the coupling of Bubley and Dyer [3], we use their analysis to
conclude that the expected time needed to finish Phase III isO(m3+mn3). Phase I
always just takes a single step, and so we are left to analyze Phase II.

Let Wt be the number of unknown edges at timet and consider the expectation
of Wt+1 givenYt . The key thing to note is that an edge can that go from known
to unknown must be adjacent to at least 1 unknown edge. Say that edges{v,w}
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and{v, z} arechangeable if one of two conditions hold. In condition (I),{v,w} is
known to be(v,w) and edge{v, z} is unknown, and no other edges are known to
leavev. By picking {v,w} and attempting to direct it towardsv, we might make
this edge unknown and by picking edge{v,w} and directing it away from{v,w},
we might make it known. Hence the contribution to the expected change inWt

coming from this changeable pair is[1/(2|E|)](−1) + [1/(2|E|)](1) = 0.
In condition (II), more than one edge is known to be leavingv and an

edge{v,w} is unknown. If we pick this edge and choose the right direction,
this edge becomes known. HenceWt can only decrease from choosing this type
of edge. Since the only edges that changeWt can be partitioned into condition (I)
and (II) type edges, the expected value ofWt+1 givenYt is at mostWt . Thus the
stochastic processW0,W1, . . . is a supermartingale.

Suppose that there is a changeable pair. The probability thatWt changes at the
next step is at least 1/(2m). If no changeable pair exists, then we bide our time,
running the chain forward until a pair becomes changeable. Since there are both
known and unknown edges in Phase II, there exists a nodea adjacent to both
known and unknown edges. Let(b, a) be one of the known edges enteringa (if
any edge leavesa, we would have a changeable pair).

Call a nodefree if it is adjacent to at least two known outgoing edges. Note that
any edge adjacent to a free nodev can be oriented in any direction, moreover, if
an edge(v,w) is switched to(w, v), then nodew becomes free.

Thus the free nodes take a random walk around the graph. There must be a free
node connected toa by known edges. Starting ata, take a walk backwards along
edges that enter the node we are currently visiting. Either there is an incoming
edge to our current node, in which case keep walking, or there are two or more
outgoing edges, in which case we have found our free node. The number of nodes
in the graph is finite, so eventually we must hit the same node twice, giving us our
free node.

On average the free node takes a step at least once every 2m moves.
After O(m3) steps it will reach nodeb, at which point(b, a) has a chance of being
reoriented(a, b), making the unknown edge adjacent toa together with(b, a) a
changeable pair. The value ofWt then has a 1/(2m) chance of changing. Hence
the expected time between changes toWt is bounded above byO(m5).

Now, becauseWt is a supermartingale, it has a 1/m chance of reaching 0 before
it hits m, givenW0 ≤ m − 1. We are running the two processes independently and
so the probability thateach hits 0 before either hitsm is at least 1/m2. The expected
number of steps needed for such a random walk is at mostm2 and so altogether,
the expected number of steps taken in Phase II isO(m2 · m2 · m5) = O(m9).

THEOREM 4. The expected number of steps needed to detect complete
coupling for the sink free orientations bounding chain is O(m9).

8. Extensions and open problems. There are several ways to extend the
basic concept of bounding chains. For instance,V or C could be continuous
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rather than discrete. WhenV is continuous, the second form of bounding chains
is more useful in this regard, but forC continuous the first form is more easily
extended [18].

Another extension (both of bounding chains and methodologies such as CFTP)
is to deal with more general couplings. All of the complete couplings we discussed
in this work are memoryless, dealing with independent draws fromφ0, φ1, . . . .
As we saw in the case of the transposition chain, these types of couplings are
inherently limited and may not tightly bound the true running time of the chain.
To deal with distributions such as uniform over linear extensions of a poset, it is
necessary to use more general couplings.

Bounding chains are a straightforward way for determining when a particular
complete coupling has in fact completely coupled. Their simplicity is offset
somewhat by the fact that the complete coupling time obtained might not tightly
bound the mixing time of the chain. Furthermore, no guidance is given for
choosing a complete coupling that leads to a good bounding chain. Small changes
in a complete coupling can lead to large differences in the behavior of the bounding
chain.

However, it is often possible for chains of both theoretical and practical interest
to create a bounding chain that can be proven to detect coupling in polynomial time
under certain conditions, and which runs quickly under more general situations.
While the bounding chain idea is itself simple, it raises a host of interesting
theoretical and computational questions about how quickly it moves toward
detection of coupling, some of which we were able to answer here, but many of
which are still open.
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