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LIMITATIONS OF MARKOV CHAIN MONTE CARLO
ALGORITHMS FOR BAYESIAN INFERENCE OF PHYLOGENY

BY ELCHANAN MOSSEL1 AND ERIC VIGODA2

University of California at Berkeley and Georgia Institute of Technology

Markov chain Monte Carlo algorithms play a key role in the Bayesian
approach to phylogenetic inference. In this paper, we present the first theoret-
ical work analyzing the rate of convergence of several Markov chains widely
used in phylogenetic inference. We analyze simple, realistic examples where
these Markov chains fail to converge quickly. In particular, the data stud-
ied are generated from a pair of trees, under a standard evolutionary model.
We prove that many of the popular Markov chains take exponentially long to
reach their stationary distribution. Our construction is pertinent since it is well
known that phylogenetic trees for genes may differ within a single organism.
Our results shed a cautionary light on phylogenetic analysis using Bayesian
inference and highlight future directions for potential theoretical work.

1. Introduction. Bayesian inference of phylogeny has had a significant im-
pact on evolutionary biology [14]. There is now a large collection of popular
algorithms for Bayesian inference, including programs such as MrBayes [13],
BAMBE [22] and PAML [21, 25]. All of these algorithms rely on Markov chain
Monte Carlo methods to sample from the posterior probability of a tree given the
data. In particular, they design a Markov chain whose stationary distribution is the
desired posterior distribution, computed using the likelihood and the priors. Hence,
the running time of the algorithm depends on the convergence rate of the Markov
chain to its stationary distribution.

Therefore, reliable phylogenetic estimates depend on the Markov chains reach-
ing their stationary distribution before the phylogeny is inferred. A variety of
schemes (such as multiple starting points [12]) and increasingly sophisticated algo-
rithms (such as Metropolis-coupled Markov chain Monte Carlo in MrBayes [13])
are heuristically used to ensure that the chains converge quickly to their stationary
distribution. However, there is no theoretical understanding of the circumstances
which the Markov chains will converge quickly or slowly. Thus, there is a criti-
cal need for theoretical work to guide the multitude of phylogenetic studies using
Bayesian inference.
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We consider a setting where the data are generated at random, under a standard
evolutionary model, from the mixture of two tree topologies. Such a setting is ex-
tremely relevant to real-life data sets. A simple example is molecular data consist-
ing of DNA sequences for more than one gene. It is well known that phylogenetic
trees can vary between genes (see [11] for an introduction).

We prove that in the above setting, many of the popular Markov chains take
extremely long to reach their stationary distribution. In particular, the convergence
time is exponentially long in the number of characters of the data set (a character is
a sample from the distribution on the pair of trees). This paper appears to be the first
theoretical work analyzing the convergence rates of Markov chains for Bayesian
inference. Previously, Diaconis and Holmes [6] analyzed a Markov chain whose
stationary distribution is uniformly distributed over all trees, which corresponds to
the case with no data.

Our work provides a cautionary tale for Bayesian inference of phylogenies and
suggests that if the data contains more than one phylogeny, then great caution
should be used before reporting the results from Bayesian inference of the phy-
logeny. Our results clearly identify further theoretical work that would be of great
interest. We discuss possible directions in Section 3.

The complicated geometry of “tree space” poses highly nontrivial difficulties in
analyzing maximum likelihood methods on phylogenetic trees, even for constant
tree sizes.

Initial attempts at studying tree space include work by Chor et al. [3] which con-
structs several examples where multiple local maxima for likelihood occur. Their
examples use nonrandom data sets (i.e., not generated from any model) on a four
species taxa and the multiple optima occur on a specific tree topology, differing
only in the branch lengths.

A different line of work beginning with Yang [24] analytically determines the
maximum likelihood over rooted trees on three species and binary characters.
Since then, some sophisticated tools from algebraic geometry have been used to
study the likelihood function and other polynomials on tree space (see, e.g., [7,
23]). It appears that the main result on tree spaces needed in this paper does not
follow directly from the algebraic geometry methodology.

NOTE 1. The results proved here were presented to a wide scientific audience
in a short report published in [20].

1.1. Formal statement of results for binary model. We present the formal def-
initions of the various notions and then precisely state our results.

Let � denote the set of all phylogenetic trees for n species. Combinatorially,
� is the set of (unrooted) trees T = (V ,E) with internal degree 3 and n leaves.

The likelihood of a data set for a tree is defined as the probability that the
tree generates the data set, under a given evolutionary model. For simplicity, we
first discuss our results for one of the simplest evolutionary models, known as the
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Cavender–Farris–Neyman (CFN) model [2, 8, 19], which uses a binary alphabet.
Our results extend to the Jukes–Cantor model with a four-state alphabet and to
many other mutation models, as discussed later.

For a tree T ∈ �, let Vext denote the leaves, Vint denote the internal vertices,
E denote the edge set and p :E → [0,1/2] denote the edge mutation probabili-
ties. The data are a collection of binary assignments to the leaves. Under the CFN
model, the probability of an assignment D :Vext → {0,1} is

Pr(D|T ,p) = 1
2

∑
D′∈{0,1}V :

D′(Vext)=D(Vext)

∏
e=(u,v)∈E(T ):
D′(u)=D′(v)

(
1 − p(e)

) ∏
e=(u,v)∈E(T ):
D′(u) �=D′(v)

p(e).

Below, we will further assume that the marginal distribution at any node of the tree
is given by the uniform distribution on {0,1}.

Note that when p(e) is close to zero, the endpoints are likely to receive the
same assignment, whereas when p(e) is close to 1/2, the endpoints are likely to
receive independently random assignments. Under the “molecular clock” assump-
tion, edge e has length proportional to − log2(1 − 2p(e)).

An algorithmic method for generating a character D for a tree T with weights p
is first to generate a uniformly random assignment for an arbitrary vertex v. Then
beginning at v, for each edge e = (v,w), given the assignment to one of the end-
points, the other endpoint receives the same assignment with probability 1 − p(e)

and a different assignment with probability p(e).
Finally, for a collection of data D = (D1, . . . ,DN),

Pr(D|T ,p) = ∏
D∈D

Pr(D|T ,p)

= exp

( ∑
D∈D

log
(
Pr(D|T ,p)

))
.

Now, applying Bayes rule, we can write the posterior probability of a tree given
the data,

Pr(T |D) =
∫

p Pr(D|T ,p)�(T ,p) dp

Pr(D)

=
∫

p Pr(D|T ,p)�(T ,p) dp∑
T ′

∫
p Pr(D|T ′,p)�(T ′,p) dp

,

where �(T ,p) is the prior density on the space of trees, so that∑
T

∫
p
�(T ,p) dp = 1.

Since the denominator is difficult to compute, Markov chain Monte Carlo is used
to sample from the above distribution. For an introduction to Markov chains in
phylogeny, see [9].
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The algorithms for Bayesian inference differ in their choice of Markov chain to
sample from the distribution and in their choice of prior. In practice, the choice of
an appropriate prior is an important concern. Felsenstein [9] gives an introduction
to many of the possible priors. Rannala and Yang [21] introduce a prior based on a
birth–death process, whereas Huelsenbeck and Ronquist’s program MrBayes [13]
allows the user to input a prior (using either uniform or exponential distributions).
Our results hold for all these popular priors and only require that the priors are
so-called ε-regular for some ε > 0, in the sense that

for all T and p �(T ,p) ≥ ε.

Each tree T ∈ � is given a weight,

w(T ) =
∫

p
Pr(D|T ,p)�(T ,p) dp.

Computing the weight of a tree can be done efficiently via dynamic program-
ming in cases where � admits a simple formula. In other cases, numerical integra-
tion is needed. See [9] for background.

The transitions of the Markov chain (Tt ) are defined as follows. From a tree
Tt ∈ � at time t :

1. Choose a neighboring tree T ′. See below for design choices for this step.
2. Set Tt+1 = Tt with probability min{1,w(T ′)/w(T )}, otherwise set Tt+1 = Tt .

This is an example of the standard Metropolis algorithm. The acceptance proba-
bility of min{1,w(T ′)/w(T )} implies that the stationary distribution π is propor-
tional to the weights w, that is, for T ∈ �,

π(T ) = w(T )∑
T ′∈� w(T ′)

.

Three natural approaches for connecting the tree space � are nearest-neighbor
interchanges (NNI), subtree pruning and regrafting (SPR) and Tree-Bisection-
Reconnection (TBR). In NNI, one of the n − 3 internal edges is chosen at random
and the four subtrees are reconnected randomly in one of the three ways; see Fig-
ure 1 for an illustration. In SPR, a random edge is chosen, one of the two subtrees
attached to it is removed at random and reinserted along a random edge in the re-
maining subtree; see Figure 2. In TBR, one of the edges of the tree is removed to
obtain two trees. Then the two trees are joined by an edge connecting two mid-
points of edges of the two trees. The SPR moves are a subset of the TBR moves,
but the two move sets are identical when the tree has fewer than six leaves. We re-
fer to the above chains as Markov chains with discrete state space and NNI, SPR,
TBR transitions, respectively.

Some Markov chains instead walk on the continuous state space where a state
consists of a tree with an assignment of edge probabilities. Our results extend to
chains with continuous state space where transitions only modify the tree topology
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FIG. 1. Illustration of NNI transition. An internal edge has four subtrees attached. The transition
reattaches the subtrees randomly. Since the trees are unrooted, there are three ways of attaching the
subtrees, one of which is the same as the original tree.

by an NNI, SPR or TBR transition and edge probabilities are always in (0,1/2).
Some examples of continuous state space chains are [17] and [16, 4].

The mixing time of the Markov chain Tmix is defined to be the number of transi-
tions until the chain (from the worst initial state) is within total variation distance
≤ 1/4 from the stationary distribution.

We consider data coming from a mixture of two trees, T1(a, a2) and T2(a, a2).
T1 is given by ((12),3), (45), while T2 is given by ((15),3), (24); see Figure 3.
On the trees T1(a, a2) and T2(a, a2), we have two edge probabilities, one for those
edges incident to the leaves and a different one for internal edges. We let the prob-
ability of edges going to the leaves be a2 and let the internal edges have probability
a, where a will be chosen to be a sufficiently small constant. The trees T1(a, a2)

and T2(a, a2) will have small edge probabilities, as commonly occurs in practice.
We let D1 be the distribution of the data according to T1(a, a2) and D2 the

distribution according to T2(a, a2). We let D = 0.5(D1 +D2) and consider a data
set consisting of N characters.

FIG. 2. Illustration of SPR transition. The randomly chosen edge is marked by an arrow. The
subtree containing B and C is removed and reattached at the random edge marked by a starred
arrow. The resulting tree is illustrated.
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FIG. 3. The trees T1 and T2.

We prove the following theorem:

THEOREM 1. For all sufficiently small a > 0, there exists a constant c > 0
such that for all ε > 0, the following holds. Consider a data set with N char-
acters, that is, D = (D1, . . . ,DN), chosen independently from the distribution
D . Consider the Markov chains on tree topologies defined by nearest-neighbor
interchanges or subtree pruning and regrafting. Then with probability at least
1 − exp(−cN) over the data generated, the mixing time of the Markov chains,
with priors which are ε-regular, satisfies

Tmix ≥ cε exp(cN).

Note that ε only has a small effect on this lower bound for the mixing time.

REMARK 2. Our results show that the mixing times of the Markov chains are
exponentially slow when the data are generated by a mixture of two trees and there
are n = 5 leaves. One would expect that the same phenomenon holds for a much
more general class of mixture distributions and for trees with larger numbers of
leaves, but except for some trivial extensions of our results, it is generally unknown
when this is the case. This suggests the following open problems:

• Our proof relies on proving that the likelihood function, under the mixture dis-
tribution D , obtains values on trees T1 and T2 that are larger than the maximal
value on any other tree. This raises the following question. For n = 5, for what
branch lengths (i.e., edge probabilities) in the generating trees T1 and T2, under
the resulting mixture distribution, is the likelihood at any tree whose topology
is different from that of T1 and T2 smaller than the maximal value obtained at
T1 and at T2? In such cases, the mixing time will be exponential in the number
of characters.

• More challenging is the case when there are significantly more than five leaves.
For example, we do not know the answer to the following problem. Suppose
that the data are generated from a mixture of trees T ′

1 and T ′
2 on n > 5 leaves

and that there exists a subset S of five leaves, where the induced subtree of T ′
1

on S is T1(a, a2) and the induced subtree of T ′
2 on S is T2(a, a2). Does this

imply that the mixing time is exponential in the sequence length (i.e., number
of characters)?
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1.2. General mutation models. As mentioned above, our theorem is valid for
many of the mutation models discussed in the literature. We now define these mod-
els and derive some elementary features of them that will be used below. In the
general case, it is easier to define the evolution model on rooted trees. However,
since we will only discuss reversible models, the trees may be rooted arbitrarily.
Moreover, for general models, we consider rooted trees with edge lengths, as op-
posed to unrooted trees with edge probabilities.

The mutation models are defined on a finite character set A of size q . We will
denote the letters of this alphabet by α,β , and so on. The mutation model is given
by a q × q mutation rate matrix Q that is common to all edges of the tree, along
with a vector (l(e))e∈E(T ) of edge lengths. The mutation along edge e is given by

exp(l(e)Q) = I + l(e)Q + l2(e)Q2

2! + l3(e)Q3

3! + · · · .
Thus, the probability of an assignment D :Vext → A is

Pr(D|T , l) = ∑
D′∈AV :

D′(Vext)=D(Vext)

πD′(r)
∏

e=(u,v)∈E(T )

[exp(l(e)Q)]D′(u),D′(v),

where all the edges (u, v) are assumed to be directed away from the root r and
where π denotes the initial distribution at the root.

It is well known that the CFN model is a special case of the model above where
Q = (−1 1

1 −1

)
and p(e) = (1 − exp(−l(e)))/2.

We will further make the following assumptions:

ASSUMPTION 1. 1. The Markov semigroup (exp(tQ))t≥0 has a unique sta-
tionary distribution given by π such that πα > 0 for all α. Moreover, the semigroup
is reversible with respect to π , that is, παQα,β = πβQβ,α for all α and β .

2. The character at the root has marginal distribution π . By the reversibility of
the semigroup, it then follows that the marginal distribution at every node is π .

3. The rate of transitions from a state is the same for all states. More formally,
there exists a number q such that for all α,∑

β �=α

Qα,β = −Qα,α.(1)

In fact, by rescaling the edge length of all edges, we may assume without loss of
generality that Qα,α = 1 for all α.

REMARK 3. Parts 1 and 2 of the assumption together imply that we obtain the
same model for all possible rootings of any specific tree. Thus, the model is, in
fact, defined on unrooted trees.
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REMARK 4. It is straightforward to check that our assumptions include as
special cases the CFN model, the Jukes–Cantor model, Kimura’s two-parameter
model and many other models. See [18] for an introduction to the various evolu-
tionary models.

1.3. Statement of the general theorem.

DEFINITION 5. Let T be the space of all trees and edge lengths on five leaves.
We say that a prior density � on T is (ε, a)-regular if for every T and l where
l(e) ≤ 2a for all e, it holds that �(T , l) ≥ ε.

REMARK 6. For all a > 0, all of the priors used in the literature are
(a, ε)-regular for an appropriate value of ε = ε(a).

THEOREM 7. Let Q be a mutation rate matrix that satisfies Assumption 1.
Then there exists an a > 0, constants c > 0, η > 0, two trees T1, T2 and open sets
S1 ⊂ (0,∞)E(T1), S2 ⊂ (0,∞)E(T2) such that if l1 ∈ S1, l2 ∈ S2, then for the distri-
bution D1 generated at the leaves of (T1, l1) and the distribution D2 generated at
the leaves of (T2, l2), the following holds for D = (0.5 − ρ)D1 + (0.5 + ρ)D2 for
|ρ| < η and all ε > 0:

Let D = (D1, . . . ,DN), chosen independently from the distribution D . Con-
sider a Markov chain on discrete or continuous tree space with only NNI, SPR or
TBR transitions. Then with probability 1 − exp(−cN) over the data generated, the
mixing time of the Markov chain, for priors which are (a, ε)-regular, satisfies

Tmix ≥ cε exp(cN).

REMARK 8. It is straightforward to check that Theorem 1 is a special case
of Theorem 7. This follows by the standard translation between edge lengths and
edge probabilities. As mentioned above, the CFN model (as well as Jukes–Cantor
and many other models) satisfies Assumption 1.

2. Proof of the general theorem. We begin with the definition of the mixture
distribution D for general models. Let D1 be the distribution at the leaves of the
evolutionary model defined on the tree T1(a, a2) and D2 be the distribution at
the leaves of the evolutionary model defined on the tree T2(a, a2). We let D =
(0.5 − ρ)D1 + (0.5 + ρ)D2.

We first expand the distribution D . This is easily done in terms of C∗, where C∗
is the set of cherries in T1 ∪ T2. We will use the following definition of a cherry:

DEFINITION 9. Let T be a tree. We say that that a pair of leaves i, j is a cherry
of T if there exists a single edge e of T such that removing e disconnects i and
j from the other leaves of T . For a tree T , we let C(T ) denote the set of cherries
of T .
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Note that according to this definition, the “star” tree has no cherries. We clearly
have C∗ = C(T1) ∪ C(T2) = {(12), (15), (45), (24)}.

Our theorem holds for a sufficiently small. Hence, the asymptotic notation in
our proofs is in terms of 1/a → ∞. Thus, a = o(−a loga) and a2 = o(−a loga),
since − loga → ∞ as a → 0.

It is easy to estimate D for small a. This follows from the following lemma:

LEMMA 10. For an edge e of length b, conditioned on the character at the
endpoint of the edge, the probability that the other endpoint obtains the same label
is 1 − b + O(b2). The probability that it obtains a different label is b + O(b2).

PROOF. Part 3 of Assumption 1, along with the expansion of exp(bQ), implies
that

exp(bQ) = I + bQ + O(b2).

The lemma now follows from the fact that
∑

β �=α Qα,β = 1, which was stated as
part 3 of Assumption 1. �

We begin by compiling some simple facts concerning the mixture distribu-
tion D . We will use the following notation for characters. By α, we denote the
character that is constant α. We let F∅ denote the set of all constant characters. By
(α, i, β), we denote the character that is α on all leaves except i, where it is β . The
set of all such characters is denoted by Fi . By (α, i, j, β), we denote the character
that is β on i, j and α on all other leaves. The set of all such characters is denoted
by Fi,j . We denote by G the set of all other characters.

LEMMA 11. The mixture distribution D satisfies the following conditions:

• for all α ∈ F∅,

D[α] = πα

(
1 − 2a + O(a2)

);(2)

• for all i,

D[Fi] = O(a2);(3)

• for all (i, j) ∈ C∗,

D[Fi,j ] = a/2 + O(a2);(4)

• for (i, j) /∈ C∗,

D[Fi,j ] = O(a2);(5)

•
D[G] = O(a2).(6)
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PROOF. We first claim that it suffices to assume that the mixture is generated
from T1(a, a2) and T2(a, a2) with equal weights (ρ = 0). Since D[σ ] is continu-
ous in the edge lengths and the mixture probabilities, proving the bounds (2)–(6)
for this mixture implies the same bounds for (T1, l1) and (T2, l2), as long as li (e)
is close to a for internal edges and close to a2 for terminal edges. Similarly, the
same bounds will hold for mixture probabilities 0.5 − ρ and 0.5 + ρ, as long as ρ

is sufficiently small.
Hereafter, a terminal edge refers to an edge connected to a leaf. Consider first

the probability D /∈ F∅. There are two ways in which this can occur: either there
is a mutation on exactly one of the internal edges and no mutations on the terminal
edges, which occurs with probability 2a(1 − a) + O(a2) = 2a + O(a2), or there
is a mutation on a terminal edge and/or both internal edges, these occurring with
probability O(a2) by our choice of edge lengths on T1 and T2. This implies (2).

For D ∈ Fi , there needs to be a mutation on at least one terminal edge, which
implies (3). Next, consider a cherry (i, j) ∈ C∗, say (i, j) = (1,2) ∈ C(T1). To
generate D ∈ Fi,j , the dominant term is if we are generating from T1 and have
a mutation on the internal edge to the parent of leaves 1 and 2 or a mutation on
more than one terminal branch. Alternatively, if we generate from T2, we need a
mutation on more than one terminal branch. We thus obtain (4). It is easy to see
that in order to generate D ∈ Fi,j where (i, j) /∈ C∗ or D ∈ G, two mutations are
needed. This implies (5) and (6). �

REMARK 12. Note that the argument above for α ∈ F∅ can be extended to
show the following. Let T be any tree and l be a vector of edge lengths. Then

D[α] = πα

(
1 − ∑

e

l(e)

)
+ O

(
max

e
l(e)2

)
.

In particular, if a is sufficiently small and l(e) ≤ 4a log(1/a) for all e, then

D[α] ≤ πα

for all α.

DEFINITION 13. The expected log-likelihood of a tree T with edge lengths l
is defined to be

LD(T , l) = Ex∈D log Pr(x|T , l).

Let LD(T , 
) denote the expected log-likelihood of the tree T with all edge
lengths 
. We will show that tree T1 with all edge lengths a (including terminal
edges) has large likelihood. We denote by (T1, a) the tree T1 where all edge lengths
are exactly a.



LIMITATIONS OF PHYLOGENETIC MCMC 2225

LEMMA 14. The tree T1 satisfies

LD(T1, a) ≥ H(π) + (
1 + o(1)

)
3a loga

and a similar inequality is satisfied by T2, where

H(π) = ∑
α

πα logπα.

PROOF. We prove the result for T1; the proof for T2 is identical. We first con-
sider the sequences in F∅. By (2), the D-probability of the sequence α is

D[α] = πα

(
1 − 2a + O(a2)

) = πα + o(a loga),(7)

while the log-likelihood of α according to (T1, a) is given by

log Pr(α|T1, a) = log
(
πα

(
1 − 2a + O(a2)

))
= log(πα) − 2a + O(a2)

= log(πα) + o(a loga).

Thus, the total contribution to LD(T1, a) coming from F∅ is∑
σ∈F∅

D[σ ] log
(
Pr(σ |T1, a)

) = ∑
α

D[α] log
(
Pr(α|T1, a)

)
(8)

= H(π) + o(a loga).

All sequences in Fi provide a contribution of O(a2) up to log corrections, which is
also o(a loga). Similar situations obtain for sequences in Fi,j such that (i, j) /∈ C∗
and for sequences in G. Let

F∗ = ⋃
(i,j)∈C∗

Fi,j .

Then we have ∑
σ∈A5\(F∅∪F∗)

D[σ ] log Pr(σ |T1, a) = o(a loga).(9)

If (i, j) belongs to C∗, there are two possibilities: either (i, j) is a cherry of T1
or it is a cherry of T2. First, if (i, j) is a cherry of T1 and (α, i, j, β) ∈ Fi,j , then

log
(
Pr

(
(α, i, j, β)|T1, a

)) = (
1 + o(1)

)
loga.

[This follows by considering a single mutation along the internal edge that sepa-
rates the cherry (i, j) from the rest of the tree.] For (i, j) ∈ C∗ \C(T1) [i.e., (i, j) ∈
C(T2)], we have, for all (α, i, j, β) ∈ Fi,j that this character occurs if the only mu-
tations are on the pair of terminal edges connected to i and j or, otherwise, if at
least three mutations occurred. Hence,

log
(
Pr

(
(α, i, j, β)|T1, a

)) = (
2 + o(1)

)
loga.
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Since C∗ contains two cherries from T1 and two from T2, we obtain∑
σ∈F∗

D[σ ] log Pr(σ |T1, a)

= ∑
(α,i,j,β):

(i,j)∈C(T1)

D[(α, i, j, β)] log
(
Pr

(
(α, i, j, β)|T1, a

))

+ ∑
(α,i,j,β)

(i,j)∈C(T2)

D[(α, i, j, β)] log
(
Pr

(
(α, i, j, β)|T1, a

))

= (
1 + o(1)

)
loga

∑
(α,i,j,β):

(i,j)∈C(T1)

D[(α, i, j, β)](10)

+ (
2 + o(1)

)
loga

∑
(α,i,j,β)

(i,j)∈C(T2)

D[(α, i, j, β)]

=
(

a

2
+ O(a2)

)(
1 + o(1)

)
2(2 loga + loga)

= (
1 + o(1)

)
3a loga,

where the first inequality in (10) follows from (4). Combining (8), (9) and (10)
completes the proof of the lemma. �

REMARK 15. Repeating the proof above shows that

LD(T1, l) ≥ H(π) + (
1 + o(1)

)
3a loga

if all the edge lengths l are in [a/2,2a]. Note that since loga is negative,

3.1a loga < 3a loga.

Hence, for T = T1 or T = T2, if all the edge lengths l are in [a/2,2a], for a

sufficiently small, we have

LD(T , l) ≥ H(π) + 3.1a loga.(11)

For tree topologies different from those of T1 and T2, we will bound the maxi-
mum of their expected log-likelihood. The analysis considers two cases: either all
of the edge lengths are smaller than O(a log(1/a)) or there is at least one long
edge. When there is one long edge, we only to consider the contribution from
constant characters.
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LEMMA 16. Let (T , l) be a tree such that at least one of the edge lengths is
greater than 4a log(1/a). If a is sufficiently small, then the following holds. For all
constant characters α,

log
(
Pr(α|T , l)

) ≤ log
(
πα(1 + 3.9a loga)

)
(12)

and the total contribution from all constant characters is∑
α

D(α) log
(
Pr(α|T , l)

) ≤ ∑
α

D(α) log
(
πα(1 + 3.9a loga)

)
(13)

≤ H(π) + 3.8a loga.

PROOF. Let T be any tree for which the sum of the edge lengths is more than
4a log(1/a). To generate the constant character α, either the root chooses α and
there are no mutations, or there are at least two mutations. Hence,

Pr(α|T , l) ≤ πα

(
1 − 4a log(1/a)

) + o
(
a log(1/a)

)
= πα(1 + 4a loga) + o(a loga).

Hence, for a sufficiently small, (12) holds.
Recall from (7) that D[α] = πα + o(a loga). Now, we have∑

α

D(α) log
(
Pr(α|T , l)

) ≤ ∑
α

D(α) log
(
πα(1 + 3.9a loga)

)

≤ ∑
α

(
πα + o(a loga)

)
(logπα + 3.9a loga)

= ∑
α

πα log(πα) + 3.9a loga
∑
α

πα + o(a loga)

= H(π) + 3.9a loga + o(a loga).

For a sufficiently small, (13) follows. �

When we restrict our attention to trees all of whose edge lengths are at most
4a log(1/a), we need to consider the contribution from constant characters and
characters where one cherry differs from the rest of the tree.

LEMMA 17. Let (T , l) be a tree all of whose edge lengths are at most
4a log(1/a) and suppose further that T has a topology different from those of
T1 and T2. Then the following hold for sufficiently small a:

• for all constant characters α,

log
(
Pr(α|T , l)

) ≤ log(πα);(14)

• for all cherries (i, j) ∈ C∗ \ C(T ) and all α �= β ,

log
(
Pr

(
(α, i, j, β)|T , l

)) ≤ 1.99a loga;(15)
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• for all cherries (i, j) ∈ C∗ ∩ C(T ) and all α �= β ,

log
(
Pr

(
(α, i, j, β)|T , l

)) ≤ 0.99a loga;(16)

• finally, the total contribution from all constant characters and characters with
one cherry different from the rest (i.e., F∅ ∪ F∗) is∑

σ∈F∅∪F∗
D(σ ) log

(
Pr(σ |T , l)

)

≤ ∑
α

D(α) logπα + 1.99a loga
∑

(α,i,j,β):
(i,j)∈C∗\C(T )

D[(α, i, j, β)]

(17)
+ 0.99a loga

∑
(α,i,j,β):

(i,j)∈C∗∩C(T )

D[(α, i, j, β)]

≤ H(π) + 3.45a loga.

Before proving the above lemma, we make the following combinatorial obser-
vation:

OBSERVATION 18. Let T �= T1, T2. Then

|C(T ) ∩ C∗| ≤ 1.

The observation follows by considering a tree T that contains at least one of the
cherries of C∗, say (1,2). Clearly, T can not also contain the cherry (1,5) or the
cherry (2,4). And if it contains the cherry (4,5), then T = T1.

PROOF OF LEMMA 17. The bound (14) follows from Remark 12.
We will now bound the contribution to LD(T , l) provided by the cherries in C∗.

Note that if (i, j) ∈ C∗ and (i, j) /∈ C(T ), then for all α and β , to generate
(α, i, j, β), we need at least two mutations. Hence,

log
(
Pr

(
(α, i, j, β)|T , l

)) ≤ log
(
O

(
a2 log2(1/a)

))
= 2

(
1 + o(1)

)
loga

≤ 1.99a loga,

for sufficiently small a. If (i, j) ∈ C(T ) ∩ C∗, then we need a mutation on the
internal edge to the cherry (i, j) (or we need at least two mutations). Hence,

log
(
Pr

(
(α, i, j, β)|T , l

)) ≤ log
(
4a log(1/a)

) + o
(
a log(1/a)

)
= (

1 + o(1)
)

loga

≤ 0.99a loga,
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for sufficiently small a. Combining these inequalities with (4) and Observation 18,
which says that there are at least three cherries in C∗ \ C(T ), we have∑

σ∈F∅∪F∗
D(σ ) log

(
Pr(σ |T , l)

)

≤ ∑
α

D(α) log
(
Pr(α|T , l)

)

+ ∑
(α,i,j,β):
(i,j)∈C∗

D
(
(α, i, j, β)

)
log

(
Pr

(
(α, i, j, β)|T , l

))

≤ ∑
α

D(α) logπα + 1.99a loga
∑

(α,i,j,β)

(i,j)∈C∗\C(T )

D[(α, i, j, β)]

+ 0.99a loga
∑

(α,i,j,β):
(i,j)∈C∗∩C(T )

D[(α, i, j, β)]

≤ H(π) + o(a loga) + (
1 + o(1)

)a
2
(3 × 1.99 loga + 0.99 loga)

≤ H(π) + 3.45a loga,

for sufficiently small a. �

DEFINITION 19. Let D = (D1, . . . ,DN) consist of N characters. We let

LD(T , l) = ∑
D∈D

log
(
Pr(D|T , l)

)
.

Using the Chernoff bound, together with the previous lemmas, we get the fol-
lowing lemma:

LEMMA 20. Suppose that D is drawn according to N independent samples
from the distribution D . Then, with probability 1 − e−�(N), for all trees (T , l)
with the topology of T1 or T2 and edge lengths l(e) in [a/2,2a] for all e, we have

LD(T , l) ≥ (
H(π) + 3.2a loga

)
N.(18)

Furthermore, for all trees (T , l) with topologies different from those of T1 and T2,
we have

LD(T , l) ≤ (
H(π) + 3.3a loga

)
N.(19)

PROOF. Note that there is a positive number Dmin such that if all edge lengths
of the tree are in [a/2,4a log(1/a)] for all e, then for each σ ∈ A5, the probability
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that σ is generated according to T is at least Dmin. Moreover, Dmin depends only
on a and the matrix Q.

Let

X(σ) = |{i :Di = σ }|
denote the number of characters generated under the mixture distribution D whose
assignment is σ . By the Chernoff bound (e.g., [15], Corollary 2.3),

Pr
(|X(σ) − D(σ )N | ≥ εD(σ )N

) ≤ 2 exp
(−ε2D(σ )N/3

)
.

Let

δ < δ1 := 0.1a log(1/a)

|A|5 log(1/Dmin)
.(20)

Taking a union bound over the |A|5 assignments, we have

Pr
(
for all σ ∈ A5, |X(σ) − D(σ )N | ≤ Nδ

) ≥ 1 − exp(−�(N)).

Now, if T is T1 or T2 and l is such that l(e) is in [a/2,2a] for all e, then, with
probability 1 − exp(−�(n)), we have

LD(T , l) = ∑
σ∈A5

X(σ) log Pr(σ |T , l)

≥ ∑
σ∈A5

N
(
D(σ ) + δ

)
log Pr(σ |T , l)

= NLD(T , l) + δN
∑

σ∈A5

log Pr(σ |T , l)

≥ NLD(T , l) + δN |A|5 log(Dmin)

≥ (
H(π) + 3.1a loga + 0.1a loga

)
N

= (
H(π) + 3.2a loga

)
N,

the last inequality following from (11) and (20). This proves (18).
For the proof of (19), we have to consider two cases. The first case is where at

least one of the edges of T is of length > 4a log(1/a). In this case, except with
probability exp(−�(n)), we have

LD(T , l) = ∑
σ∈A5

X(σ) log Pr(σ |T , l)

≤ ∑
α

X(α) log
(
πα(1 + 3.9a loga)

)
by (12)

≤ ∑
α

N
(
D(α) − δ

)
log

(
πα(1 + 3.9a loga)

)

≤ N

(
H(π) + 3.8a loga − |A|δ

(
max

α
log

(
πα(1 + 3.9a loga)

)))
,
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the last inequality following from (13). Therefore, if we take

δ < δ2 := 0.1a log(1/a)

|A|maxα log(πα(1 + 3.9a loga))
,

then we obtain

LD(T , l) ≤ N
(
H(π) + 3.7a loga

)
,

with probability 1 − exp(−�(n)).
The second case is where all of the edge lengths are of length at most

4a log(1/a). We now have

LD(T , l) = ∑
σ∈A5

X(σ) log Pr(σ |T , l)

≤ ∑
α

X(α) log Pr(α|T , l) + ∑
α,β,i,j :

α �=β,i �=j

X(α, i, j, β) log Pr
(
(α, i, j, β)|T , l

)

≤ ∑
α

X(α) logπα + 1.99a loga
∑

(α,i,j,β):
(i,j)∈C∗\C(T )

X(α, i, j, β)

+ 0.99a loga
∑

(α,i,j,β):
(i,j)∈C∗∩C(T )

X(α, i, j, β)

≤ ∑
α

N
(
D(α) − δ

)
logπα

+ 1.99a loga
∑

(α,i,j,β):
(i,j)∈C∗\C(T )

N
(
D(α, i, j, β) − δ

)

+ 0.99a loga
∑

(α,i,j,β):
(i,j)∈C∗∩C(T )

N
(
D(α, i, j, β) − δ

)

≤ N

(
H(π) + 3.45a loga + 20δ|A|2a log(1/a) − δ|A|max

α
log(πα)

)
,

where the second inequality follows from (14), (15) and (16) and the last inequality
follows from (17). Therefore, choosing

δ < δ3 := min
(

0.05

20|A|2 ,
0.05a log(1/a)

maxα − log(πα)

)
,

we obtain that, except with probability exp(−�(n)), we have

LD(T , l) ≤ N
(
H(π) + 3.4a loga

)
,

as needed. Taking δ = min(δ1, δ2, δ3) concludes the proof of the lemma. �
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LEMMA 21. Let ε > 0 and let � be an (ε, a)-regular prior on T . Then, with
probability 1 − e−�(N), if T �= T1, T2,

w(T )

w(T1)
≤ a−7

ε
exp

(−0.1a log(1/a)N
)
.

PROOF. With probability 1 − e−�(N), we have that (18) and (19) hold.
Since � is (ε, a)-regular we see that

w(T1) =
∫

l
exp

(
LD(T1, l)

)
�(T1, l) dl

≥ εa7 exp(H(π)N) exp((3.2a loga)N).

On the other hand,

w(T ) =
∫

l
exp

(
LD(T , l)

)
�(T , l) dl

≤ exp(H(π)N) exp((3.3a loga)N).

The claim follows. �

To complete the proof of Theorem 1, we need the well know fact that small
conductance implies slow mixing. This is standard for discrete spaces; see, for
example, [5]. Since we consider also the continuous case, we prove the following
claim below.

LEMMA 22. Consider a discrete-time Markov chain P on a discrete or con-
tinuous state space with a unique stationary measure µ. Assume, furthermore, that
there exists a partition of the state space into three sets A1, A2 and B such that
the probability of a move from A2 to A1 is 0 [in the sense that

∫
dµ(x)1(x ∈ A2)∫

dP (x, y)1(y ∈ A1) = 0] and µ(A1) ≥ µ(A2), µ(B)/µ(Ai) ≤ ε for i = 1,2.
Let µt denote the distribution of the chain after t steps, where the initial dis-

tribution µ0 is given by µ, conditioned to A2. Then the total variation distance
between µ1/3ε and µ is at least 1/3.

PROOF. Let t = 1/3ε and consider sequences (x1, . . . , xt ) of trajectories of
the chain, where x1 is chosen according to the stationary distribution. Since each
xi is distributed according to the stationary distribution, the fraction of sequences
that contain an element of B is, by the union bound, at most tεµ(A2) = µ(A2)/4.
The fraction of sequences that have their first element in A2 is µ(A2). Thus, con-
ditioned on having x1 ∈ A2, the probability that xt ∈ B ∪ A1 is at most 1/3. Since
the stationary measure of B ∪ A1 is at least 1/2, the claim follows. �

PROOF OF THEOREM 1. The proof now follows from Lemmas 21 and 22
— we take the two sets corresponding to T1 and T2 with all edge lengths strictly
between 0 and ∞. The proof follows from the observation that T1 and T2 are not
connected by either NNI, SPR or TBR transitions. �
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3. Future directions. A popular program is MrBayes [13], which addition-
ally uses what is known as Metropolis-coupled Markov chain Monte Carlo, re-
ferred to as MC3 [10]. Analysis of this approach requires more detailed results
and it is unclear whether our techniques can be extended this far. Some theoretical
work analyzing MC3 in a different context was done by Bhatnagar and Randall [1].

An interesting future direction would be to prove a positive result. In particular,
is there a class of trees where we can prove fast convergence to the stationary
distribution when the data are generated by a tree in this class? More generally,
if the data are generated by a single tree, do the Markov chains always converge
quickly to their stationary distribution?
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[15] JANSON, S., ĹUCZAK, T. and RUCINŃSKI, A. (2000). Random Graphs. Wiley, New York.
MR1782847

http://www.ams.org/mathscinet-getitem?mr=0503936
http://www.ams.org/mathscinet-getitem?mr=1936657
http://www.ams.org/mathscinet-getitem?mr=1887626
http://www.ams.org/mathscinet-getitem?mr=2054977
http://www.ams.org/mathscinet-getitem?mr=1782847


2234 E. MOSSEL AND E. VIGODA

[16] LARGET, B. and SIMON, D. L. (1999). Markov chain Monte Carlo algorithms for the Bayesian
analysis of phylogenetic trees. Mol. Biol. Evol. 16 750–759.

[17] LI, S., PEARL, D. K. and DOSS, H. (2000). Phylogenetic tree construction using Markov
chain Monte Carlo. J. Amer. Statist. Assoc. 95 493–508.

[18] NEI, M. and KUMAR, S. (2000). Molecular Evolution and Phylogenetics. Oxford Univ. Press.
[19] NEYMAN, J. (1971). Molecular studies of evolution: A source of novel statistical problems.

In Statistical Decision Theory and Related Topics (S. S Gupta and J. Yackel, eds.) 1–27.
Academic Press, New York. MR0327321

[20] MOSSEL, E. and VIGODA, E. (2005). Phylogenetic MCMC algorithms are misleading on mix-
tures of trees. Science 309 2207–2209.

[21] RANNALA, B. and YANG, Z. (1996). Probability distribution of molecular evolutionary trees:
A new method of phylogenetic inference. J. Mol. Evol. 43 304–311.

[22] SIMON, D. L. and LARGET, B. (2000). Bayesian analysis in molecular biology and evolu-
tion (BAMBE). Version 2.03 beta, Dept. Mathematics and Computer Science, Duquesne
Univ., Pittsburgh, PA.

[23] SPEYER, D. and STURMFELS, B. (2004). The tropical Grassmannian. Adv. Geom. 4 389–411.
MR2071813

[24] YANG, Z. (2000). Complexity of the simplest phylogenetic estimation problem. Proc. R. Soc.
Lond. B Biol. Sci. 267 109–116.

[25] YANG, Z. and RANNALA, B. (1997). Bayesian phylogenetic inference using DNA sequences:
A Markov chain Monte Carlo method. Mol. Biol. Evol. 14 717–724.

DEPARTMENT OF STATISTICS

UNIVERSITY OF CALIFORNIA AT BERKELEY

BERKELEY, CALIFORNIA 94720
USA
E-MAIL: mossel@stat.berkeley.edu

COLLEGE OF COMPUTING

GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332
USA
E-MAIL: vigoda@cc.gatech.edu

http://www.ams.org/mathscinet-getitem?mr=0327321
http://www.ams.org/mathscinet-getitem?mr=2071813
mailto:mossel@stat.berkeley.edu
mailto:vigoda@cc.gatech.edu

	Introduction
	Formal statement of results for binary model
	General mutation models
	Statement of the general theorem

	Proof of the general theorem
	Future directions
	Acknowledgments
	References
	Author's Addresses

