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A simple formula for asymptotic distributional risk
of some estimators

Sévérien Nkurunziza
University of Windsor

Abstract. In this article, we are interested in deriving the asymptotic distri-
butional risk function of a class of estimator concerning the mean parameter
matrix of matrices variate random sample. The proposed result is useful in
decision theory, more precisely in risk analysis of a class of some robust esti-
mators such as Stein-rule types estimators.

1 Introduction

In this article, we are interested in establishing the asymptotic distributional risk
function of a class of estimators concerning the common mean parameter matrix
θ of n identically distributed random variate matrices of order q × k. Namely, let
X1,X2, . . . ,Xn be ergodic and strictly stationary random matrices with mean θ

and covariance–variance � ⊗ � where �, � are respectively k × k and q × q

positive definite matrices. Here, A ⊗ B stands for the Kronecker product of the
matrices A and B . In the sequel, and for the sake of simplicity, we assume that
the random matrices X1,X2, . . . ,Xn are mutually independent and identically dis-
tributed. However, the proposed result holds for an ergodic and strictly stationary
process that satisfies the conditions for the central limit theorem for stationary pro-
cesses (see, e.g., Eagleson, 1975, and references therein).

As mentioned above, the main contribution is to establish the asymptotic dis-
tributional risk function of a class of estimators of θ . Also, as intermediate
step, we extend Theorem 1 and Theorem 2 in Bock and Judge (1978). Briefly,
these theorems are useful in evaluating the asymptotic efficiency of a large class
of Shrinkage-type estimators. To set up notation, let A be a matrix and let
‖A‖2

�1,�2
= trace(A′�1A�2) with �1 a known nonnegative definite matrix, and

�2 a known positive definite matrix. Further, let h be known Borel measurable
and real-valued integrable function, let F and L be respectively p × q and k × m-
known matrix full rank with p < q and p ≤ m ≤ k, and let d be a p × m-known
matrix. We consider the following class of estimator

θ̂ = θ̃ + h
(‖(X − θ̃)L‖2

�1,�2

)
(X − θ̃), (1.1)
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with X the sample mean, �1 = F′(F�̂F′)−1F, �2 = (L′�̂L)−1 where �̂ and �̂
are strongly consistent estimators of � and � respectively. For example, one can
take

�̂ = n−1
n∑

i=1

(X − X)(X − X)′, and �̂ = n−1
n∑

i=1

(X − X)′(X − X).

Further,

θ̃ = X − �̂F′(F�̂F′)−1(FXL − d)(L′�̂L)−1L′�̂. (1.2)

It is noticed that X is the unrestricted least-square estimator (LSE) of θ while θ̃
corresponds to the restricted LSE of θ with respect to the restriction

FθL = d, (1.3)

with � and � replaced by their corresponding strongly consistent estimators. The
restriction in (1.3) is useful for example in variable selection and model assess-
ment as well as in profile analysis. For more details, we refer to Izenman (2008,
Chapter 6).

Further, θ̂ can be seen as a shrinkage-pretest type estimator of θ that combines
the sample information and the nonsample information from uncertain restriction
in (1.3). In case where X1,X2, . . . ,Xn are p-column random vectors, it has been
shown that if p ≥ 3, for some h, the estimator θ̂ outperforms over the unrestricted
LSE X. In such an investigation, the derivation of the asymptotic distributional risk
function of the estimator θ̂ is required, but this is not straightforward for the case
as studied here where θ̂ is a q × k-matrix estimator.

In this paper, we consider the loss function l(̂θ , θ;W) = n trace[L′(̂θ −
θ)′W(̂θ − θ)L], for a nonnegative definite matrix W, and thus, we consider to
compute risk function of θ̂ ,

Rn(̂θ , θ) = nE
[
trace

(
L′(̂θ − θ)′W(̂θ − θ)L

)]
.

Since we do not assume any specific distribution population, Rn(̂θ , θ) cannot be
explicitly determined. Thus, we consider a sequence of local alternative restrictions

FθL = d + δ/
√

n, n = 1,2,3, . . . (1.4)

with δ a nonzero p × m-matrix. Also, we assume that ‖δ‖ < ∞. Further, we con-
sider to derive the asymptotic distributional risk (ADR) of θ̂ as introduced by
Ahmed (2001), Ahmed and Saleh (1999) among others. As in the quoted arti-
cles, (ADR) of θ̂ is defined as ADR(̂θ, θ) = E[trace(ρ′

0Wρ0)], with ρ0 the limit
in distribution of

√
n(̂θ − θ)L. Under some regularities conditions, ρ0 is also the

limit in mean-square sense and then, we have limn→∞Rn(̂θ , θ) = ADR(̂θ , θ). It
should be noticed that such regularities conditions hold for example if the random
sample is from multivariate normal population.
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The reminder of this paper is organized as follows. Section 2 presents a proposi-
tion and two theorems which are used in deriving the asymptotic distributional risk
function. Section 3 gives the main contribution of the paper, that is, the asymptotic
distributional risk function formula. Finally, Section 4 is the Conclusion, and for
the convenience of the reader, technical details are given in the Appendix.

2 Preliminary results

In this section, we present some intermediate results which are useful in deriv-
ing the asymptotic distributional risk function, that is the main contribution of
the paper. To set up some notation, note that for a m × p-matrix A, one can
write A = (A1,A2, . . . ,Ap), Aj ∈ R

p , j = 1,2, . . . , p, where R
p denotes the

p dimensional real space. Further, let Vec(A) denote the np column vector ob-
tained by stacking together the columns of A one underneath the other, that is,
Vec(A) = (A′

1,A
′
2, . . . ,A

′
p)′. It is noticed, some authors define Vec(A) as np col-

umn vector obtained by stacking together the rows of A one underneath the other.
Both concepts are equivalent through transposition. Indeed, Vec(A) obtained that
way corresponds to Vec(A′) used in this paper. Further, to simplify the notation,
let �n = √

n(̂θ − θ)L, let ξn = √
n(̂θ − θ̃)L and let ζ n = √

n(̃θ − θ)L. Further,
let J = �F′(F�F′)−1, let δ∗ = Jδ and let � = JF�. The following proposition
plays a central role in establishing the main result. Indeed, even though the orig-
inal measurements are not normals, the following proposition allows us to apply
some properties of matrices normal variate.

Proposition 2.1. Let X1,X2, . . . ,Xn be iid random matrices with E(X1) = θ and
Var(Vec(X1)) = � ⊗ � with �, � positive definite matrices. Then, under local
alternative in (1.4), we have(

�n

ξn

)
L−−→

n→∞

(
�
ξ

)
∼ N2k×2m

((
0
δ∗

)
,

(
� ⊗ (L′�L) � ⊗ (L′�L)

� ⊗ (L′�L) � ⊗ (L′�L)

))
.

Furthermore,(
ξn

ζ n

)
L−−→

n→∞

(
ξ
ζ

)
∼ N2k×2m

((
δ∗

−δ∗
)

,

(
� ⊗ L′�L 0

0 (� − �) ⊗ L′�L

))
.

The proof is outlined in the Appendix.
Further, below we present two theorems which extend Theorem 1 and Theo-

rem 2 in Bock and Judge (1978).

Theorem 2.1. Let

(X′,Y′)′ ∼ N2q×2k

(
(M1,M2),

(
ϒ11 ⊗ �11 0

0 ϒ22 ⊗ �22

))
,
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where �11 is a positive definite matrix, and ϒ11, ϒ11, �22 are nonnegative definite
matrices with rank p ≤ k. Also, let � be a symmetric and positive definite matrix
which satisfies the two following conditions:

(i) ϒ11� is idempotent matrix;
(ii) �ϒ11�M1 = �M1.

Then, for any h Borel measurable and real-valued integrable function, and any
nonnegative definite matrix A, we have

E[h(trace(�−1
11 X′�ϒ11�X))Y′AX]

= E[h(χ2
pq+2(trace(�−1

11 M′
1�ϒ11�M1)))]M′

2AM1.

Proof. Since X and Y are independent, we have

E[h(trace(�−1
11 X′�ϒ11�X))Y′AX]

= (E(Y))′A E[h(trace(�−1
11 X′�ϒ11�X))X],

and then, the rest of the proof follows directly from Theorem A.1 given in the
Appendix. �

Also, the following theorem is the crucial role in deriving the ADR(̂θ , θ).

Theorem 2.2. Let X ∼ Nq×k(M,ϒ ⊗ �) where � is a positive definite matrix,
and ϒ is a nonnegative definite matrix with rank p ≤ k. Also, let A and � be
positive definite symmetric matrices and assume that � satisfies the two following
conditions:

(i) ϒ� is idempotent matrix;
(ii) �ϒ�M = �M.

Then, for any h Borel measurable and real-valued integrable function, we have

E[h(trace(�−1X′�ϒ�X)) trace(X′AX)]
= E[h(χ2

pq+2(trace(�−1M′�ϒ�M)))] trace(Aϒ) trace(�)

+ E[h(χ2
pq+4(trace(�−1M′�ϒ�M)))] trace(M′AM).

The proof of this theorem is given in the Appendix. Note that the theorem ex-
tends Theorem 2 given in Judge and Bock (1978) that becomes a particular case by
taking k = 1, ϒ = � = 1, � = Iq . Using Proposition 2.1 along with Theorems 2.1
and 2.2, we establish the asymptotic distributional risk function of the estimator θ̂ ,
that is given in the following section.
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3 Main result

Theorem 3.1. Assume that Proposition 2.1 holds. Then, the asymptotic distribu-
tional risk function of θ̂ is

ADR(̂θ , θ;W)

= trace(W(� − �)) trace(L′�L) + trace(δ∗′Wδ∗)
− 2E[h(χ2

pq+2(trace((L′�L)−1δ∗′�1δ
∗)))] trace(δ∗′Wδ∗)

+ E[h2(χ2
pq+2(trace((L′�L)−1δ∗′�1δ

∗)))] trace(W�) trace(L′�L)

+ E[h2(χ2
pq+4(trace((L′�L)−1δ∗′�1δ

∗)))] trace(δ∗′Wδ∗).

Proof. We have

ADR(̂θ , θ;W) = E
{
trace

[(
η + h(‖ξ‖2

�1,�2
)ξ

)′W(
η + h(‖ξ‖2

�1,�2
)ξ

)]}
and since h is a real-valued function, we get

ADR(̂θ , θ;W) = E{trace[η′Wη]} + 2E{h(‖ξ‖2
�1,�2

) trace[ξ ′Wη]}
+ E{h2(‖ξ‖2

�1,�2
) trace[ξ ′Wξ ]}.

Then, combining Theorem 2.1, Theorem 2.2 and Proposition 2.1, we get

E{trace[η′Wη]} = trace
(
W(� − �)

)
trace(L′�L) + trace(δ∗′Wδ∗)

E{h(‖ξ‖2
�1,�2

) trace[ξ ′Wη]} = −E[h(χ2
pq+2(trace(�−1

11 δ∗′�1δ
∗)))]

× trace(δ∗′Wδ∗)

E{h2(‖ξ‖2
�1,�2

) trace[ξ ′Wξ ]}
= E[h2(χ2

pq+4(trace((L′�L)−1δ∗′�1δ
∗)))] trace(δ∗′Wδ∗)

+ E[h2(χ2
pq+2(trace((L′�L)−1δ∗′�1δ

∗)))] trace(W�) trace(L′�L),

that completes the proof. �

4 Conclusion

In this article, we derive a formula for the asymptotic distributional risk function of
a class of estimator concerning the common mean parameter matrix of a random
sample of n matrices variables. For the sake of simplicity, we assume that the
random matrices are independent and identically distributed. However, the result
holds for a general ergodic and strictly process which satisfies the conditions for
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the central limit theorem for stationary processes. Also, we present two results
which extend Theorem 1 and Theorem 2 in Bock and Judge (1978). Finally, the
established result is useful in evaluating the performance of a class of Shrinkage-
pretest types estimators.

Appendix

In this section, we present some technical details that are used in establishing the
main result. The following lemma is useful in deriving the asymptotic joint distri-
bution of the estimators X and θ̃ given in (1.1).

Lemma A.1. Let A and B be m × p and n × q matrices respectively. Further, let
X ∼ Np×n(μ,� ⊗ �). Then, AXB ∼ Nm×q(AμB, (A�A′) ⊗ (B′�B)).

The proof of Lemma A.1 follows directly from the following well-known alge-
braic property on matrices vectorization (see, e.g., Izenman, 2008 among others).

Lemma A.2. Let A, B and C be matrices such that ABC is well defined. Also,
let I denote an identity matrix. Then, Vec(ABC) = (AB ⊗ I)Vec(C) = (A ⊗
C′)Vec(B).

Proof of Proposition 2.1. To simplify the proof, let us replace θ̃ by θ̃0 = X −
�F′(F�F′)−1(FXL − d)(L′�L)−1L′�. Indeed, since �̂ and �̂ are strongly con-
sistent, the estimators θ̃0 and θ̃ are asymptotically equivalent, as n tends to infinity.
Also, let �n = √

n(X − θ)L, let ξ0,n = √
n(X − θ̃0)L and let ζ 0,n = √

n(̃θ0 − θ)L.
We have

(�′
n, ζ

′
0,n)

′ = (Ik, Ik − F′J′)′�n − Jδ.

Then, using the central limit theorem along with Slutsky theorem, we get

(�′
n, ζ

′
0,n)

′ L−−→n→∞(Ik, Ik − F′J′)′� − Jδ where � ∼ Nk×m(0,� ⊗ L′�L).
Hence,

(�′
n, ζ

′
0,n)

′ L−−→
n→∞ N2k×2m

(−Jδ, (Ik, Ik − F′J′)′�(Ik, Ik − FJ) ⊗ L′�L
)
. (A.1)

Further, (
�n

ξ0,n

)
=

(
Ik 0
Ik − Ik

)(
�n

ζ 0,n

)
. (A.2)

Therefore, by combining (A.1) and (A.2), we get the first statement of the propo-
sition. The second statement of the proposition is proved by noting that(

ζ 0,n

ξ0,n

)
=

(
Ik −Ik

0 Ik

)(
�n

ξ0,n

)
, (A.3)

and then, the proof follows directly from the first statement of the proposition and
Slutsky theorem. �
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Theorem A.1. Let X ∼ Nq×k(M,ϒ ⊗ �) where � is a positive definite matrix,
and ϒ is a nonnegative definite matrix with rank p ≤ k. Also, let � be a symmetric
and positive definite matrix which satisfies the two following conditions:

(i) ϒ� is idempotent matrix;
(ii) �ϒ�M = �M.

Then, for any h Borel measurable and real-valued integrable function, we have

E[h(trace(�−1X′�ϒ�X))X] = E[h(χ2
pq+2(trace(�−1M′�ϒ�M)))]M.

Proof. Since ϒ� is idempotent matrix, �1/2ϒ�1/2 is a symmetric and idempo-
tent matrix and then, there exists an orthogonal matrix Q such that

Q�1/2ϒ�1/2Q′ =
(

Ip 0
0 0

)
. (A.4)

Moreover, let V = Q�1/2X�−1/2. Then, Vec(V) = (Q�1/2 ⊗�−1/2)Vec(X) and
hence,

Vec(V) =
(

V1
V2

)
∼ Nq×k

((
μ1
0

)
,

(
Ip 0
0 0

)
⊗ Iq

)
, (A.5)

with

μ1 = [Ipq,0]E(Vec(V)) = ([Ip,0] ⊗ Iq)(Q�1/2 ⊗ �−1/2)Vec(M). (A.6)

Therefore,

trace(�−1X′�ϒ�X) = trace(V′Q�1/2ϒ�1/2Q′V) = V′
1V1.

Hence,

Vec(E[h(trace(�−1X′�ϒ�X))X]) =
(

E[h(V′
1V1)V1]

E[h(V′
1V1)V2]

)
. (A.7)

Also, from (A.5), V2 is zero with probability one and then,

E[h(V′
1V1)V2] = 0, (A.8)

and using Theorem 1 in Judge and Bock (1978), we have

E[h(V′
1V1)V1] = μ1E(h(χ2

pq+2(μ
′
1μ1))), (A.9)

where μ1 is given by (A.6). Further, from (A.6),

μ′
1μ1 = Vec(M)′(�1/2Q′ ⊗ �−1/2)

((
Ip 0
0 0

)
⊗ Iq

)
(Q�1/2 ⊗ �−1/2)Vec(M),

and using (A.4), we get μ′
1μ1 = Vec(M)′(�ϒ� ⊗ �−1)Vec(M), and then

μ′
1μ1 = trace(M′�ϒ�M�−1). (A.10)
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Further, combining (A.7), (A.8) and (A.9), we have

Vec(E[h(trace(�−1X′�ϒ�X))X])
= E(h(χ2

pq+2(μ
′
1μ1)))(�

−1/2Q′ ⊗ �1/2)

((
Ip 0
0 0

)
⊗ Iq

)

× (Q�1/2 ⊗ �−1/2)Vec(M),

that gives

Vec(E[h(trace(�−1X′�ϒ�X))X]) = E(h(χ2
pq+2(μ

′
1μ1)))Vec(ϒ�M).

Then, since � is nonsingular matrix, we have ϒ�M = M. Therefore,

Vec(E[h(trace(�−1X′�ϒ�X))X]) = Vec(E(h(χ2
pq+2(μ

′
1μ1)))M),

that completes the proof. �

Proof of Theorem 2.2. From the above computations, we have

h(trace(�−1X′�ϒ�X)) = h(V′
1V1).

Further, as in Theorem 1, we have V = Q�1/2X�−1/2 where Q is the same as
in (A.4). We have X = �−1/2Q′V�1/2 and hence,

X′AX = �1/2V′Q�−1/2A�−1/2Q′V�1/2. (A.11)

Therefore,

E[h(trace(�−1X′�ϒ�X)) trace(X′AX)]
= E[h(V′

1V1) trace(�1/2V′Q�−1/2A�−1/2Q′V�1/2)],
then,

E[h(trace(�−1X′�ϒ�X)) trace(X′AX)]
= E[h(V′

1V1) trace(�1/2V′Q�−1/2A�−1/2Q′V�1/2)]
= E[h(V′

1V1) trace(Q�−1/2A�−1/2Q′V�V′)].
Also, we have

trace(Q�−1/2A�−1/2Q′V�V′) = (Vec(V))′(Q�−1/2A�−1/2Q′ ⊗ �)Vec(V).

Further, let

(Q�−1/2A�−1/2Q ⊗ �) = G =
(

G11 G12
G21 G22

)
. (A.12)

Therefore, since Vec(V) = (V′
1,0)′, we have

(Vec(V))′(� ⊗ Q�−1/2A�−1/2Q)Vec(V) = V′
1G11V1,
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and then,

E[h(V′
1V1)(Vec(V))′(� ⊗ Q�−1/2A�−1/2Q)Vec(V)]

= E[h(V′
1V1)V′

1G11V1],
and using Theorem 2 in Judge and Bock (1978), we have

E[h(V′
1V1)V′

1G11V1] = E[h(χ2
pq+2(trace(μ′

1μ1)))] trace(G11)
(A.13)

+ E[h(χ2
pq+4(trace(μ′

1μ1)))](μ′
1G11μ1),

where μ1 is given by (A.6). Further, note that

G11 = ([Ip,0] ⊗ Iq)G
[(

Ip

0

)
⊗ Iq

]
(A.14)

and then, combining this relation with (A.6), we get

μ′
1G11μ1 = Vec(M)′(�1/2Q′ ⊗ �−1/2)

((
Ip 0
0 0

)
⊗ Iq

)
G

((
Ip 0
0 0

)
⊗ Iq

)

× (Q�1/2 ⊗ �−1/2)Vec(M),

that gives

μ′
1G11μ1 = trace(MM′�ϒA).

Also, under Assumption (ii), M′�ϒ = M′, and then

μ′
1G11μ1 = trace(MM′A) = trace(M′AM). (A.15)

Further, using (A.4), (A.12) and (A.14), we have

trace(G11) = trace[(Q�−1/2A�−1/2Q ⊗ �)(Q�1/2ϒ�1/2Q′ ⊗ Iq)]
= trace(Aϒ) trace(�). (A.16)

Finally, the proof is completed by combining (A.10), (A.13), (A.15) and (A.16). �
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