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WISHART DISTRIBUTIONS FOR DECOMPOSABLE COVARIANCE
GRAPH MODELS

BY KSHITIJ KHARE1 AND BALA RAJARATNAM2

University of Florida and Stanford University

Gaussian covariance graph models encode marginal independence among
the components of a multivariate random vector by means of a graph G.
These models are distinctly different from the traditional concentration graph
models (often also referred to as Gaussian graphical models or covariance
selection models) since the zeros in the parameter are now reflected in the
covariance matrix �, as compared to the concentration matrix � = �−1.
The parameter space of interest for covariance graph models is the cone PG

of positive definite matrices with fixed zeros corresponding to the missing
edges of G. As in Letac and Massam [Ann. Statist. 35 (2007) 1278–1323],
we consider the case where G is decomposable. In this paper, we construct on
the cone PG a family of Wishart distributions which serve a similar purpose
in the covariance graph setting as those constructed by Letac and Massam
[Ann. Statist. 35 (2007) 1278–1323] and Dawid and Lauritzen [Ann. Statist.
21 (1993) 1272–1317] do in the concentration graph setting. We proceed to
undertake a rigorous study of these “covariance” Wishart distributions and
derive several deep and useful properties of this class. First, they form a
rich conjugate family of priors with multiple shape parameters for covari-
ance graph models. Second, we show how to sample from these distribu-
tions by using a block Gibbs sampling algorithm and prove convergence of
this block Gibbs sampler. Development of this class of distributions enables
Bayesian inference, which, in turn, allows for the estimation of �, even in
the case when the sample size is less than the dimension of the data (i.e.,
when “n < p”), otherwise not generally possible in the maximum likelihood
framework. Third, we prove that when G is a homogeneous graph, our covari-
ance priors correspond to standard conjugate priors for appropriate directed
acyclic graph (DAG) models. This correspondence enables closed form ex-
pressions for normalizing constants and expected values, and also establishes
hyper-Markov properties for our class of priors. We also note that when G

is homogeneous, the family IWQG
of Letac and Massam [Ann. Statist. 35

(2007) 1278–1323] is a special case of our covariance Wishart distributions.
Fourth, and finally, we illustrate the use of our family of conjugate priors on
real and simulated data.
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1. Introduction. Due to recent advances in science and information technol-
ogy, there has been a huge influx of high-dimensional data from various fields
such as genomics, environmental sciences, finance and the social sciences. Mak-
ing sense of all the many complex relationships and multivariate dependencies
present in the data, formulating correct models and developing inferential proce-
dures is one of the major challenges in modern day statistics. In parametric mod-
els, the covariance or correlation matrix (or its inverse) is the fundamental object
that quantifies relationships between random variables. Estimating the covariance
matrix in a sparse way is crucial in high-dimensional problems and enables the
detection of the most important relationships. In this light, graphical models have
served as tools to discover structure in high-dimensional data.

The primary aim of this paper is to develop a new family of conjugate prior
distributions for covariance graph models (a subclass of graphical models) and
study the properties of this family of distributions. It is shown in this paper that
these properties are highly attractive for Bayesian inference in high-dimensional
settings. In covariance graph models, specific entries of the covariance matrix are
restricted to be zero, which implies marginal independence in the Gaussian case.
Covariance graph models correspond to curved exponential families and are dis-
tinctly different from the well-studied concentration graph models, which, in turn,
correspond to natural exponential families.

A rich framework for Bayesian inference for natural exponential families has
been established in the last three decades, starting with the seminal and celebrated
work of Diaconis and Ylvisaker [10] that laid the foundations for constructing
conjugate prior distributions for natural exponential family models. The Diaconis–
Ylvisaker (henceforth referred to as “DY”) conjugate priors are characterized by
posterior linearity of the mean. An analogous framework for curved exponential
families is not available in the literature.

Concentration graph models (or covariance selection models) were one of the
first graphical models to be formally introduced to the statistics community. These
models reflect conditional independencies in multivariate probability distributions
by means of a graph. In the Gaussian case, they induce sparsity or zeros in the
inverse covariance matrix and correspond to natural exponential families. In their
pioneering work, Dawid and Lauritzen [9] developed the DY prior for this class
of models. In particular, they introduced the hyper-inverse Wishart as the DY con-
jugate prior for concentration graph models. In a recent major contribution to this
field, a rich family of conjugate priors that subsumes the DY class has been de-
veloped by Letac and Massam [20]. Both the hyper-inverse Wishart priors and the
“Letac–Massam” priors have attractive properties which enable Bayesian infer-
ence, with the latter allowing multiple shape parameters and hence being suitable
in high-dimensional settings. Bayesian procedures corresponding to these Letac–
Massam priors have been derived in a decision theoretic framework in the recent
work of Rajaratnam, Massam and Carvalho [26].
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Consider an undirected3 graph G with a finite set of vertices V (of size p) and a
finite set E of edges between these vertices, that is, G = (V ,E). The Gaussian
covariance graph model corresponding to the graph G is the collection of p-
variate Gaussian distributions with covariance matrix � such that �ij = 0 when-
ever (i, j) /∈ E. This class of models was first formally introduced by Cox and
Wermuth [6, 7]. In the frequentist setting, maximum likelihood estimation in co-
variance graph models has been a topic of interest in recent years. Many iterative
methods that obtain the maximum likelihood estimate have been proposed in the
literature. The graphical modeling software MIM in Edwards [12] fits these mod-
els by using the “dual likelihood method” from Kauermann [17]. In Wermuth, Cox
and Marchetti [31], the authors derive asymptotically efficient approximations to
the maximum likelihood estimate in covariance graph models for exponential fam-
ilies. Chaudhuri, Drton and Richardson [4] propose an iterative conditional fitting
algorithm for maximum likelihood estimation in this class of models. Covariance
graph models have also been used in applications in Butte et al. [3], Grzebyk, Wild
and Chouaniere [15], Mao, Kschischang and Frey [21] and others.

Although Gaussian covariance graph models are simple and intuitive to un-
derstand, no comprehensive theoretical framework for Bayesian inference for this
class of models has been developed in the literature. In that sense, Bayesian infer-
ence for covariance graph models has been an open problem since the introduction
of these models by Cox and Wermuth [6, 7] more than fifteen years ago. The main
difficulty is that these models give rise to curved exponential families. The zero
restrictions on the entries of the covariance matrix � translate into complicated re-
strictions on the corresponding entries of the natural parameter, � = �−1. Hence,
the sparseness in � does not translate into sparseness in �−1 and thus a covariance
graph model cannot be viewed as a concentration graph model. No general theory
is available for Bayesian inference in curved exponential families for continuous
random variables, akin to the Diaconis–Ylvisaker [10] or standard conjugate the-
ory for natural exponential families.

There are several desirable properties that one might want when constructing
a class of priors, but one of the foremost requirements is to be able to compute
quantities such as the mean or mode of the posterior distribution, either in closed
form or by sampling from the posterior distribution by a simple mechanism. This is
especially important in high-dimensional situations, where computations are com-
plex and can become infeasible very quickly. Another desirable and related feature
is conjugacy, that is, the class of priors is such that the posterior distribution also
belongs to this class. Among other things, this increases the prospects of obtain-
ing closed form Bayes estimators and can also add to the interpretability of the
hyper-parameters. The class of Wishart distributions developed by Letac and Mas-
sam [20] (and later used for flexible Bayesian inference for concentration graph

3We shall use dotted edges for our graphs, in keeping with the notation in the literature; bi-directed
edges have also been used for representing covariance graphs.
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models by Rajaratnam, Massam and Carvalho [26]), known as the IWPG
family

of distributions, are not appropriate for the covariance graph setting. There is the
additional option of using the IWQG

class as priors for this situation. We, however,
establish that the posterior distribution fails to belong to the same class and there
are no known results for computing the posterior mean or mode, either in closed
form or by sampling from the posterior distribution.

A principal objective of this paper is to develop a framework for Bayesian in-
ference for Gaussian covariance graph models. We proceed to construct a rich and
flexible class of conjugate Wishart distributions, with multiple shape parameters,
on the space of positive definite matrices with fixed zeros, that corresponds to a
decomposable graph G. This class of distributions is specified up to a normalizing
constant, and conditions under which this normalizing constant can be evaluated
in closed form are derived. We explore the distributional properties of our class of
priors and, in particular, show that the parameter can be partitioned into blocks so
that the conditional distribution of each block, given the others, is tractable. Based
on this property, we propose a block Gibbs sampling algorithm to simulate from
the posterior distribution. We proceed to formally prove the convergence of this
block Gibbs sampler. Our priors yield proper inferential procedures, even in the
case when the sample size n is less than the dimension p of the data, whereas
maximum likelihood estimation is, in general, only possible when n ≥ p (in fact,
in the homogeneous case, it can be shown that the condition n ≥ p is actually
also necessary, thus highlighting the fact that results from the concentration graph
setting do not carry over to the covariance model setting). We also show that our
covariance Wishart distributions are, in the decomposable nonhomogeneous case,
very different from the Letac–Massam priors WPG

and IWQG
. However, when the

underlying graph G is homogeneous, the Letac–Massam IWQG
priors are a special

case of our distributions. We establish, in the homogeneous setting, a correspon-
dence between the covariance priors in this paper and the natural conjugate priors
for appropriate directed acyclic graph (DAG) models. This correspondence helps
us to explicitly evaluate quantities like the normalizing constant and the posterior
mean of the covariance matrix in closed form. In this scenario, we also show that
our class of priors satisfies the strong directed hyper-Markov property (as intro-
duced in Dawid and Lauritzen [9] for concentration graph models). It should be
pointed out that these aforementioned results for homogeneous graphs can also be
established directly, without exploiting the correspondence with the DAG models.
The direct approach is self-contained, whereas the latter invokes an external result
which states that for the restrictive class of homogeneous graphs, covariance graph
models and DAGs are Markov equivalent.

We noted above that for concentration graph models or the traditional Gaussian
graphical models, a rich theory has been established by Dawid and Lauritzen [9],
who derive the single parameter DY conjugate prior for these models, and by Letac
and Massam [20], who derive a larger flexible class with multiple shape parame-
ters. In essence, this paper is the analog of the results in the two aforementioned
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papers in the covariance graph model setting, with parallel results, all of which are
contained in a single comprehensive piece. Hence, this work completes the pow-
erful theory that has been developed in the mathematical statistics literature for
decomposable models.

We also point out that a class of priors in the recent work [29] is a special
case of our class of flexible covariance Wishart distributions.4 Our family allows
multiple shape parameters, as compared to a single shape parameter, and hence
yields a richer class suitable to high-dimensional problems. Moreover, we show
that their iterative algorithm to sample from the posterior is different from ours.
Since the authors do not undertake a theoretical investigation of the convergence
properties of their algorithm, it is not clear if it does indeed converge to the desired
distribution. On the other hand, we proceed to formally prove that our algorithm
converges to the desired distribution. The remaining sections of this paper are con-
siderably different from [29] since we undertake a rigorous probabilistic analysis
of our conjugate Wishart distributions for covariance graph models, whereas they
give a useful and novel treatment of latent variables and mixed graph models in a
machine learning context.

This paper is structured as follows. Section 2 introduces the required prelim-
inaries and notation. In Section 3, the class of covariance Wishart distributions
is formally constructed. Conjugacy to the class of covariance graph models and
sufficient conditions for integrability are established. Comparison with the Letac–
Massam IWQG

priors, which are not, in general, conjugate in the covariance graph
setting, is also undertaken. In Section 4, a block Gibbs sampler which enables sam-
pling from the posterior distribution is proposed and the corresponding conditional
distributions are derived. Thereafter, a formal proof of convergence of this block
Gibbs sampler is provided. In Section 5, we restrict ourselves to the case when G

is a homogeneous graph. We examine the distributional properties of our class of
priors in this section and prove that the covariance priors introduced in this pa-
per correspond to natural conjugate priors for DAG models in the homogeneous
setting. This correspondence helps in establishing closed form expressions for nor-
malizing constants, expected values and hyper-Markov properties for our class of
priors for G homogeneous. Finally, we illustrate the use of our family of conjugate
priors and the methodology developed in this paper on a real example, as well as
on simulated data. The Appendix contains the proofs of some of the results stated
in the main text.

2. Preliminaries. In this section, we give the necessary notation, background
and preliminaries that are needed in subsequent sections.

4This is in a similar spirit to the way in which the HIW prior of Dawid and Lauritzen [9] is a
special case of the generalized family of Wishart distributions proposed by Letac and Massam [20]
for the concentration graph setting.



WISHART DISTRIBUTIONS 519

2.1. Modified Cholesky decomposition. If � is a positive definite matrix, then
there exists a unique decomposition

� = LDLT ,(2.1)

where L is a lower-triangular matrix with diagonal entries equal to 1 and D a
diagonal matrix with positive diagonal entries. This decomposition of � is referred
to as the modified Cholesky decomposition of � (see [25]). We now provide a
formula that explicitly computes the inverse of a lower-triangular matrix with 1’s
on the diagonal, such as those that appear in (2.1).

PROPOSITION 1. Let L be an m × m lower-triangular matrix with 1’s on the
diagonal. Let

A =
m⋃

r=2

{
τ :τ ∈ {1,2, . . . ,m}r , τi < τi−1 ∀2 ≤ i ≤ r

}
and

Lτ =
dim(τ )∏
i=2

Lτi−1τi
∀τ ∈ A,

where dim(τ ) denotes the length of the vector τ . Then, L−1 = N , where N is
lower-triangular matrix with 1’s on the diagonal and, for i > j ,

Nij = ∑
τ∈A,τ1=i,τdim τ =j

(−1)dim(τ )−1
dim(τ )∏
i=2

Lτi−1τi
.

The proof is provided in the Appendix.
An undirected graph G is a pair (V ,E), where V is a permutation5 of the set

{1,2, . . . ,m} denoting the set of vertices of G. The set E ⊆ V × V denotes the
set of edges in the graph. If vertices u and v are such that (u, v) ∈ E, then we say
that there is an edge between u and v. It is also understood that (u, v) ∈ E implies
that (v, u) ∈ E, that is, the edges are undirected. Although the dependence of G =
(V ,E) on the particular ordering in V is often suppressed, the reader should bear
in mind that unlike traditional graphs, the graphs defined above are not equivalent
up to permutation of the vertices6 modulo the edge structure. Below, we describe
two classes of graphs which play a central role in this paper.

5The ordering in V is emphasized here since the elements of V will later correspond to rows or
columns of matrices.

6This has been done for notational convenience, as will be seen later.
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2.2. Decomposable graphs. An undirected graph G is said to be decompos-
able if any induced subgraph does not contain a cycle of length greater than or
equal to four. The reader is referred to Lauritzen [19] for all of the common no-
tions of graphical models (and, in particular, decomposable graphs) that we will
use here. One such important notion is that of a perfect order of the cliques. Every
decomposable graph admits a perfect order of its cliques. Let (C1,C2, . . . ,Ck) be
one such perfect order of the cliques of the graph G. The history for the graph is
given by H1 = C1 and

Hj = C1 ∪ C2 ∪ · · · ∪ Cj , j = 2,3, . . . , k,

and the minimal separators of the graph are given by

Sj = Hj−1 ∩ Cj , j = 2,3, . . . , k.

Let

Rj = Cj \ Hj−1 for j = 2,3, . . . , k.

Let k′ ≤ k − 1 denote the number of distinct separators and ν(S) denote the
multiplicity of S, that is, the number of j such that Sj = S. Generally, we will
denote by C the set of cliques of a graph and by S its set of separators.

Now, let � be an arbitrary positive definite matrix with zero restrictions accord-
ing to G = (V ,E),7 that is, �ij = 0 whenever (i, j) /∈ E. It is known that if G is
decomposable, then there exists an ordering of the vertices such that if � = LDLT

is the modified Cholesky decomposition corresponding to this ordering, then, for
i > j ,

Lij = 0 whenever (i, j) /∈ E.(2.2)

Although the ordering is not unique in general, the existence of such an ordering
characterizes decomposable graphs (see [24]). A constructive way to obtain such
an ordering is given as follows. Label the vertices in descending order, starting with
vertices in C1,R2,R3, . . . ,Rk , with vertices belonging to a particular set being
ordered arbitrarily (see [19, 24, 30] for more details).

2.3. The spaces PG, QG and LG. An m-dimensional Gaussian covariance
graph model8 can be represented by the class of multivariate normal distributions
with fixed zeros in the covariance parameter (i.e., marginal independencies) de-
scribed by a given graph G = (V ,E). That is, if (i, j) /∈ E, then the ith and j th
components of the multivariate random vector are marginally independent. With-
out loss of generality, we can assume that these models have mean zero and are

7It is emphasized here that the ordering of the vertices reflected in V plays a crucial role in the
definitions and results that follow.

8A brief overview of the literature in this area is provided in the Introduction.
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characterized by the parameter set PG of positive definite covariance matrices �

such that �ij = 0 whenever the edge (i, j) is not in E. Following the notation in
[20, 26] for G decomposable, we define QG to be the space on which the free
elements of the precision matrices (or inverse covariance matrices) � live.

More formally, let M denote the set of symmetric matrices of order m, M+
m ⊂ M

the cone of positive definite matrices (abbreviated as “> 0”), IG the linear space of
symmetric incomplete matrices x with missing entries xij , (i, j) /∈ E, and κ :M �→
IG the projection of M into IG. The parameter set of the precision matrices of
Gaussian covariance graph models can also be described as the set of incomplete
matrices � = κ(�−1),� ∈ PG. The entries �ij , (i, j) /∈ E, are not free parameters
of the precision matrix for Gaussian covariance graph models (see [20, 26] for
details). We are therefore led to consider the two cones

PG = {y ∈ M+
m |yij = 0, (i, j) /∈ E},(2.3)

QG = {x ∈ IG|xCi
> 0, i = 1, . . . , k},(2.4)

where PG ⊂ ZG, QG ⊂ IG and ZG denotes the linear space of symmetric matrices
with zero entries yij , (i, j) /∈ E. Furthermore Grone et al. [14] prove that for G

decomposable, the spaces PG and QG are isomorphic (once more, see [20, 26] for
details).

We now introduce new spaces LG and �G (the modified Cholesky space) that
will be needed in our subsequent analysis9:

LG = {L :Lij = 0 whenever i < j, or (i, j) /∈ E, and Lii = 1,∀1 ≤ i, j ≤ m};
�G = {θ = (L,D) :L ∈ LG,D diagonal with Dii > 0 ∀1 ≤ i ≤ m}.

We define the mapping ψ :�G → M+
m as follows:

ψ(L,D) = LDLT .(2.5)

This mapping ψ plays an important role in our analysis and shall be studied later.

2.4. Homogeneous graphs. A graph G = (V ,E) is defined to be homoge-
neous if, for all (i, j) ∈ E, either

{u :u = j or (u, j) ∈ E} ⊆ {u :u = i or (u, i) ∈ E}
or

{u :u = i or (u, i) ∈ E} ⊆ {u :u = j or (u, j) ∈ E}.
Equivalently, a graph G is said to be homogeneous if it is decomposable and does

not contain the graph
1• − 2• − 3• − 4•, denoted by A4, as an induced subgraph.

Homogeneous graphs have an equivalent representation in terms of directed rooted

9These spaces are not defined in [20, 26].
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trees, called Hasse diagrams. The reader is referred to [20] for a detailed account
of the properties of homogeneous graphs. We write i → j whenever

{u :u = j or (u, j) ∈ E} ⊆ {u :u = i or (u, i) ∈ E}.
Denote by R the equivalence relation on V defined by

iRj ⇔ i → j and j → i.

Let ī denote the equivalence class in V/R containing i. The Hasse diagram of
G is defined as a directed graph with vertex set VH = V/R = {ī : i ∈ V } and edge
set EH consisting of directed edges with (ī, j̄ ) ∈ EH for ī �= j̄ if the following
holds: i → j and �k such that i → k → j , k̄ �= ī, k̄ �= j̄ .

If G is a homogeneous graph, then the Hasse diagram described above is a
directed rooted tree such that the number of children of a vertex is never equal
to one. It was proven in [20] that there is a one-to-one correspondence between
the set of homogeneous graphs and the set of directed rooted trees with vertices
weighted by positive integers [w(ī) = |ī|], such that no vertex has exactly one
child. Also, when iRj , we say that i and j are twins in the Hasse diagram of G.
Figure 1 provides an example of a homogeneous graph with seven vertices and the
corresponding Hasse diagram.

The following proposition for homogeneous graphs plays an important role in
our analysis.

PROPOSITION 2. If G is a homogeneous graph, then there exists an ordering
of the vertices, such that, for this ordering:

1. � ∈ PG ⇔ L ∈ LG, where � = LDLT is the modified Cholesky decomposition
of �;

2. L ∈ LG ⇔ L−1 ∈ LG.

(a) (b)

FIG. 1. (a) An example of a homogeneous graph with 7 vertices; (b) the corresponding Hasse
diagram.
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The proof of this proposition is well known and so is omitted for the sake of
brevity (see [1, 18, 27]). We now describe a procedure for ordering the vertices,
under which Proposition 2 holds. Given a homogeneous graph G, we first con-
struct the Hasse diagram for G. The vertices are labeled in descending order, start-
ing from the root of the tree. If the equivalence class at any node has more than
one element, then they are labeled in any order. Hereafter, we shall refer to this
ordering scheme as the Hasse perfect vertex elimination scheme. For example, if
we apply this ordering procedure to the graph in Figure 1, then the resulting labels
are {a, b, c, d, e, f, g} → {4,5,1,3,7,6,2}.

2.5. Vertex ordering. Let G = (V ,E) be an undirected decomposable graph
with vertex set V = {1,2, . . . ,m} and edge set E. Let SV denote the permuta-
tion group associated with V . For any σ ∈ SV , let Gσ := (σ (V ),Eσ ), where
(u, v) ∈ Eσ if and only if (σ−1(u), σ−1(v)) ∈ E. Let SD ⊆ SV denote the sub-
set of permutations σ of V such that, for any � ∈ M+

m with � = LDLT , L ∈
LGσ ⇔ � ∈ PGσ . Hence, for every σ ∈ SD , the mapping ψσ :�Gσ → M+

m defined
in (2.5) is a bijection from �Gσ to PGσ . In particular, the ordering correspond-
ing to any perfect vertex elimination scheme lies in SD (see Section 2.2). If G is
homogeneous, let SH ⊆ SD denote the subset of permutations σ of V such that
L ∈ LGσ ⇔ L−1 ∈ LGσ . In particular, any ordering of the vertices corresponding
to the Hasse perfect vertex elimination scheme lies in SH (see Section 2.4). The
above defines a nested triplet of permutations of V given by SH ⊆ SD ⊆ SV .

3. Wishart distributions for covariance graphs. Let G = (V ,E) be an
undirected decomposable graph with vertex set V and edge set E. We assume
that the vertices in V are ordered so that V ∈ SD . The covariance graph model
associated with G is the family of distributions

G = {Nm(0,�) :� ∈ PG}
∼= {Nm(0,LDLT ) : (L,D) ∈ �G}.

Consider the class of measures on �G with density [with respect to∏
i>j,(i,j)∈E dLij

∏m
i=1 dDii]

π̃U,α(L,D) = e−(tr((LDLT )−1U)+∑m
i=1 αi logDii)/2, θ = (L,D) ∈ �G.(3.1)

These measures are parameterized by a positive definite matrix U and a vector
α ∈ Rm with nonnegative entries. Let us first establish some notation:

• N (i) := {j : (i, j) ∈ E};
• N ≺(i) := {j : (i, j) ∈ E, i > j};
• U≺i := ((Ukl))k,l∈N ≺(i);
• U�i := ((Ukl))k,l∈N ≺(i)∪{i};
• U≺·i := (Uki)k∈N ≺(i).
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Let

zG(U,α) :=
∫

e−(tr((LDLT )−1U)+∑m
i=1 αi logDii)/2 dLdD.

If zG(U,α) < ∞, then π̃U,α can be normalized to obtain a probability measure.
A sufficient condition for the existence of a normalizing constant for π̃U,α(L,D)

is provided in the following proposition.

THEOREM 1. Let dL :=∏(i,j)∈E,i>j dLij and dD :=∏m
i=1 dDii . Then,∫

�G

e−(tr((LDLT )−1U)+∑m
i=1 αi logDii)/2 dLdD < ∞

if

αi > |N ≺(i)| + 2 ∀i = 1,2, . . . ,m.

As the proof of this proposition is rather long and technical, it is deferred to the
Appendix. The normalizing constant zG(U,α) is not generally available in closed
form. Let us consider a simple example to illustrate the difficulty of computing the
normalizing constant explicitly.

Let G = A4, that is, the path on four vertices, or
1• − 2• − 3• − 4•. Note that

this is a decomposable (but not homogeneous) graph. The restrictions on L are
L31 = L41 = L42 = 0. Let U ∈ PG and α = (4,4,4,4). Then, after integrating out
the elements Dii,1 ≤ i ≤ 4 (recognizing them as inverse-gamma integrals) and
transforming the entries of L to the independent entries of L−1 (as in the proof of
Proposition 1), the normalizing constant reduces to an integral of the form∫

R3
(U22 + 2U12x1 + U11x

2
1)−1

× (U11x
2
1x2

2 + U22x
2
2 + U33 + 2U12x1x

2
2 + 2U13x1x2 + 2U23x2)

−1

× (U11x
2
1x2

2x2
3 + U22x

2
2x2

3 + U33x
2
3 + U44 + 2U12x1x

2
2x2

3

+ 2U13x1x2x
2
3 + 2U14x1x2x3 + 2U23x2x

2
3 + 2U24x2x3 + U34x3)

−1 dx.

The above integral does not seem to be computable by standard techniques for gen-
eral U . Despite this inherent difficulty, we propose a novel method which allows
sampling from this rich family of distributions (see Section 4).

We will show later that the condition in Theorem 1 is necessary and sufficient
for the existence of a normalizing constant for homogeneous graphs. Moreover,
in this case, the normalizing constant can be computed in closed form. We denote
by πU,α the normalized version of π̃U,α whenever zG(U,α) < ∞. The following
lemma shows that the family πU,α is a conjugate family for Gaussian covariance
graph models.
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LEMMA 1. Let G = (V ,E) be a decomposable graph, where vertices in
V are ordered so that V ∈ SD . Let Y1,Y2, . . . ,Yn be an i.i.d. sample from
Nm(0,LDLT ), where (L,D) ∈ �G. Let S = 1

n

∑n
i=1 YiYT

i denote the empiri-
cal covariance matrix. If the prior distribution on (L,D) is πU,α , then the pos-
terior distribution of (L,D) is given by πŨ,α̃ , where Ũ = nS + U and α̃ =
(n + α1, n + α2, . . . , n + αm).

PROOF. The likelihood of the data is given by

f (y1,y2, . . . ,yn | L,D) = 1

(
√

2π)nm
e−(tr((LDLT )−1(nS))+n log |D|)/2.

Using πU,α as a prior for (L,D), the posterior distribution of (L,D) given the
data (Y1,Y2, . . . ,Yn) is

πU,α(L,D | Y1,Y2, . . . ,Yn)

∝ e−(tr((LDLT )−1(nS+U))+∑m
i=1(n+αi) logDii)/2, θ ∈ �G.

Hence, the posterior distribution belongs to the same family as the prior, that is,

πU,α(· | Y1,Y2, . . . ,Yn) = πŨ,α̃(·),
where Ũ = nS + U and α̃ = (n + α1, n + α2, . . . , n + αm). �

REMARK. If we assume that the observations have unknown mean μ, that is,
Y1,Y2, . . . ,Yn are i.i.d. N (μ,�) with μ ∈ Rm,� ∈ PG, then

S̃ := 1

n

n∑
i=1

(Yi − Ȳ)(Yi − Ȳ)T

is the minimal sufficient statistic for �. Here, nS̃ has a Wishart distribution with
parameter � and n − 1 degrees of freedom. Hence, if we assume a prior πU,α for
(L,D), then the posterior distribution is given by

πU,α(· | S̃) = πŨ,α̃(·),
where Ũ = nS̃ + U and α = (n − 1 + α1, n − 1 + α2, . . . , n − 1 + αm).

REMARK. Note that, as with the distributions in [20, 26], the functional form
of the prior distribution depends on the ordering of the vertices specified—but this
is not as restrictive as it first appears. In this sense, an ordering is essentially an-
other “parameter” to be specified and thus can also be viewed as imposing extra
information. We return to this point in the examples section where we investigate
the impact of ordering on a real-world example (see Section 6). But, more impor-
tantly, given a perfect ordering of the vertices, any rearrangement of the vertices
within the residuals Rj = Cj\Hj−1 will still preserve the zeros between � and L,
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and will thus be sufficient for our purposes. In this sense, the covariance Wishart
distributions introduced in this paper do not actually depend on a full ordering of
the vertices. In fact, for the class of decomposable graphs, any perfect ordering
is sufficient, that is, any ordering that is used in [20] will also be relevant for the
covariance Wishart distributions defined above. In this sense, these decomposable
covariance Wishart distributions are very flexible, especially since we are work-
ing in the curved exponential family setting and are still able to use any ordering
that is appropriate for the [20] distributions which address the natural exponential
family (NEF) concentration graph situation. The technical reason why any perfect
ordering will suffice is that any perfect ordering will preserve the zeros between
� and the matrix L from its Cholesky decomposition [24, 27]. Moreover, from an
applications perspective, since matrix operations are not invariant with respect to
ordering of the nodes, an ordering that facilitates calculations is desirable. All that
the ordering does is to relabel the vertices, but the edge structure is completely and
fully retained. To further clarify what is meant, if one has a list of a genes/proteins
called ABLIM1, BCL6, etc. and their names are replaced with the numbers 1, 2,
3, etc., the problem can first be analyzed with the integer labels and one can then
go back to the original labels after the analysis is done. So, in many applications,
the ordering is not a real restriction.

3.1. Induced prior on PG and QG. The prior πU,α on �G (the modified
Cholesky space) induces a prior on PG (the covariance matrix space) and QG.
We provide an expression for the induced priors on these spaces in order to com-
pare our Wishart distributions with other classes of distributions. Note that since
the vertices have been ordered so that V ∈ SD , the transformation

ψ :�G → M+
m

defined by

ψ(L,D) = LDLT =: �
is a bijection from �G to PG. The lemma below provides the required Jacobians
for deriving the induced priors on PG and QG. The reader is referred to Section 2.2
for notation on decomposable graphs. Note that if x is a matrix, then |x| denotes
its determinant, while if C is a set, then |C| denotes its cardinality.

LEMMA 2 (Jacobians of transformations).

1. The Jacobian of the transformation ψ : (L,D) → � from �G to PG is
m∏

i=1

Djj (�)−nj .

Here, Djj (�) denotes that Djj is a function of �, and nj := |{i : (i, j) ∈ E, i >

j}| for j = 1,2, . . . ,m.
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2. The absolute value of the Jacobian of the bijection ζ :x → x̂−1 from QG to PG

is ∏
C∈C

|xC |−|C|−1
∏
S∈S

|xS |(|S|+1)ν(S).

PROOF. The first part is a direct consequence of a result in [28] and the proof
of the second part can be found in [27]. �

These Jacobians allow us to compute the induced priors on PG and QG. The
induced prior corresponding to π̃U,α on PG is given by

π̃
PG

U,α(�) ∝ e−(tr(�−1U)+∑m
i=1(2ni+αi) logDii(�))/2, � ∈ PG.(3.2)

We first note that the traditional inverse Wishart distribution (see [23]) with pa-
rameters U and n is a special case of (3.2) when G is the complete graph and
αi = n − 2m + 2i,∀1 ≤ i ≤ m. We also note that the G -inverse Wishart priors
introduced in [29] have a one-dimensional shape parameter δ and are a very spe-
cial case of our richer class π̃

PG

U,α . The single shape parameter δ is given by the
relationship αi + 2ni = δ + 2m,1 ≤ i ≤ m.10

We now proceed to derive the induced prior on QG. Let x = κ(�−1) denote the
image of � in QG and let x̂ denote �−1 (see [20, 26] for more details). Using the
second part of Lemma 2, the induced prior corresponding to π̃U,α on QG is given
by

π̃
QG

U,α(x) ∝ e−(tr(x̂U)+∑m
i=1(2ni+αi) logDii((x̂)−1))/2

×
∏

S∈S |xS |(|S|+1)ν(S)∏
C∈C |xC ||C|+1 , x ∈ QG.

3.2. Comparison with the Letac–Massam priors. We now carefully compare
our class of priors to those proposed in Letac and Massam [20]. In [20], the authors
construct two classes of distributions, named WPG

and WQG
, on the spaces PG and

QG, respectively, for G decomposable (see [20], Section 3.1). These distributions
are generalizations of the Wishart distribution on these convex cones and have been
found to be very useful for high-dimensional Bayesian inference, as illustrated in
[26]. These priors lead to corresponding classes of inverse Wishart distributions
IWPG

(on QG) and IWQG
(on PG), that is, U ∼ IWPG

whenever Û−1 ∼ WPG
, and

10There is an interesting parallel here that becomes apparent from our derivations above. In the
concentration graph setting, the single shape parameter hyper-inverse Wishart (HIW) prior of Dawid
and Lauritzen [9] is a special case of the multiple shape parameter class of priors introduced by Letac
and Massam [20], in the sense that αi = − 1

2 (δ + ci − 1) (see [26] for notation). In a similar spirit,
we discover that the single shape parameter class of priors in [29] is a special case of the multiple
shape parameter class of priors π̃U,α introduced in this paper, in the sense that αi = δ − 2ni + 2m.
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V ∼ IWQG
whenever κ(V −1) ∼ WQG

. In [20], it is shown that the family of dis-
tributions IWPG

yields a family of conjugate priors in the Gaussian concentration
graph setting, that is, when � ∈ QG.

As the IWQG
priors of [20] are defined on the space PG, in principle, they can

potentially serve as priors11 in the covariance graph setting since the parameter of
interest � lives in PG. Let us examine this class more carefully, first with a view
to understanding their use in the covariance graph setting and second to compare
them to our priors. Following the notation for decomposable graphs in Section 2.2
and in [20], the density of the IWQG

distribution is given by

IWU,α,β
QG

(�) ∝ etr(�−1U)/2
∏

C∈C |(�−1)C |α(C)+(c+1)/2∏
S∈S |(�−1)S |ν(S)(β(S)+(s+1)/2)

, � ∈ PG,

where U ∈ PG, and α(C), C ∈ C and β(S), S ∈ S are real numbers. The posterior
density of � under this prior is given by

π IW
U,α,β(� | Y1,Y2, . . . ,Yn) ∝ e− tr(�−1(U+nS))/2

×
∏

C∈C |(�−1)C |α(C)+(c+1)/2+n/2∏
S∈S |(�−1)S |ν(S)(β(S)+(s+1)/2)+nν(S)/2 .

However, U + nS may not, in general, be in PG, which is a crucial assumption in
the analysis in [20]. Hence, the conjugacy breaks down.

We now investigate similarities and differences between our class of priors and
the IWQG

class. Since the IWU,α,β
QG

density is defined only for U ∈ PG, a perti-
nent question is whether our class of priors has the same functional form when
U ∈ PG. We discover that this is not the case and demonstrate this through an ex-
ample. Consider the 4-chain A4. One can easily verify that the terms e− tr(�−1U)/2

are identical in both priors. We now show that the remaining terms are not iden-
tical. If � = LDLT is the modified Cholesky decomposition of �, then, for this
particular graph with C1 = {1,2}, C2 = {2,3}, C3 = {3,4} and S2 = {3}, S3 = {4},
the expression that is not in the exponential term for the IWQG

density is of the
form ∏3

i=1 |(�−1)Ci
|αi∏3

i=2 |(�−1)Si
|βi

=
(

1

D11

)α1( 1

D22
+ L2

32

D33
+ L2

32L
2
43

D44

)α1−β1

×
(

1

D22

)α2( 1

D33
+ L2

43

D44

)α2−β2( 1

D33D44

)α3

.

This expression is clearly different from the term, other than the exponent
e− tr(�−1U)/2 in π

PG

U,α , which is a product of different powers of Dii, i = 1,2,3,4.

11The use of this class of nonconjugate priors for Bayesian inference in covariance graph models
was already explored in [22].
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However, an interesting property emerges when G is homogeneous. Note that,
in this case, for any clique C and any separator S,

|(�−1)C | =∏
i∈C

1

Dii

, |(�−1)S | =∏
i∈S

1

Dii

.

Hence, when G is homogeneous, the class IWQG
is contained in the class πPG .

The containment is strict because U need not be in PG for our class πPG . Also, in
IWQG

, the exponent of Dii and Djj is the same if iRj , that is, the shape parameter,
is shared for vertices in the same equivalence class, as defined by the relation R.
We, however, note that the difference in the number of shape parameters is not a
major difference, due to the result of Consonni and Veronese [5], together with
fact that for the WQG

(and, correspondingly, for the IWQG
), each one of the blocks

x[i]· has a Wishart distribution (see Theorem 4.5 of [20]).
We therefore note that in the restrictive case when G is homogeneous and when

U ∈ PG, the two classes of distributions πPG and IWQG
have the same functional

form. The fact that we do not restrict U ∈ PG is an important difference since,
even in the homogeneous case, they yield a larger class of distributions on the
homogeneous cone PG compared to those in Andersson and Wojnar [2], resulting
in nonsuperficial consequences for inference in covariance graph models.12

4. Sampling from the posterior distribution. In this section, we study the
properties of our family of distributions and thereby provide a method that allows
us to generate samples from the posterior distribution corresponding to the priors
defined in Section 3. In particular, we prove that θ = (L,D) ∈ �G can be par-
titioned into blocks so that the conditional distribution of each block given the
others is a standard distribution in statistics and hence easy to sample from. We
can therefore generate samples from the posterior distribution by using the block
Gibbs sampling algorithm.

4.1. Distributional properties and the block Gibbs sampler. Let us intro-
duce some notation before deriving the required conditional distributions. Let
G = (V ,E) be a decomposable graph such that V ∈ SD . For a lower-triangular
matrix L with diagonal entries equal to 1,

Lu· := uth row of L, u = 1,2, . . . ,m,

L·v := vth column of L, v = 1,2, . . . ,m,

LG·v := (Luv)u>v,(u,v)∈E, v = 1,2, . . . ,m − 1.

12We note, however, that the distributions in [2] are quite general since the authors consider other
homogeneous cones and not just PG.
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So, LG·v is the vth column of L without the components which are specified to be
zero under the model G (and without the vth diagonal entry, which is 1). In terms
of this notation, the parameter space can be represented as

�G = {(LG·1,LG·2,LG·3, . . . ,LG·m−1,D) :
(4.1)

Lij ∈ R,∀1 ≤ j < i ≤ m, (i, j) ∈ E,Dii > 0,∀1 ≤ i ≤ m}.
Suppose that θ ∼ πU,α for some positive definite U and α ∈ Rm with nonnegative
entries. The posterior distribution is then πŨ,α̃ , where Ũ = nS + U, α̃ = (n +
α1, n + α2, . . . , n + αm). In the following proposition, we derive the distributional
properties which provide the essential ingredients for our block Gibbs sampling
procedure.

THEOREM 2. Using the notation above, the conditional distributions of
each component of θ [as in (4.1)] given the other components and the data
Y1,Y2, . . . ,Yn are as follows:

1.

LG·v | (L\LG·v,D,Y1,Y2, . . . ,Yn) ∼ N (μv,G,Mv,G) ∀v = 1,2, . . . ,m−1,

where

μv,G
u := μv

u + ∑
u′>v:(u′,v)∈E

∑
w>v:(w,v)/∈E

or w<v,L
−1
vw=0

M
v,G
uu′ (L−1Ũ (LT )−1)vv

× (LDLT )−1
u′wμv

w

∀u > v, (u, v) ∈ E,

μv
u := (L−1Ũ )vu

(L−1Ũ (LT )−1)vv

∀u such that L−1
vu = 0,

(Mv,G)−1
uu′ := (L−1Ũ (LT )−1)vv(LDLT )−1

uu′ ∀u,u′ > v, (u, v), (u′, v) ∈ E;
2.

Dii | L,Y1,Y2, . . . ,Ym ∼ IG
(

α̃i

2
− 1,

(L−1Ũ (LT )−1)ii

2

)
,

independently for i = 1,2, . . . ,m, where “IG” represents the inverse-gamma
distribution.

REMARK. The notation w : L−1
vw = 0 in the definition of μv,G above means

indices w for which L−1
vw is 0 as a function of entries of L.

Deriving the required conditional distributions in Theorem 2 entails careful
analysis. We first state two lemmas which are essential for deriving these distri-
butions.
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LEMMA 3. Let u > v, (u, v) ∈ E. Then,

∂L−1
ij

∂Luv

= −L−1
iu L−1

vj ∀1 ≤ j < i ≤ m.

PROOF. The proof is straightforward and is therefore omitted for brevity. �

Recall from Proposition 1 that L−1
ij functionally depends on Luv only if i ≥

u > v ≥ j . We use this observation repeatedly in our arguments. For a given v,
to prove conditional multivariate normality of the conditional distribution of LG·v
given the others, we shall demonstrate that if we treat D and the other columns of
L as constants, then tr((LDLT )−1Ũ ) is a quadratic form in the entries of LG·v .

LEMMA 4. Let u,u′ > v, (u, v), (u′, v) ∈ E. Then,

∂2

∂Luv ∂Lu′v
tr((LDLT )−1Ũ ) = 2(L−1Ũ (LT )−1)vv(LDLT )−1

uu′,

which is functionally independent of the elements of LG·v .

PROOF. First, note that,

∂

∂Luv

tr((LDLT )−1Ũ )

= ∂

∂Luv

(
m∑

i=1

m∑
j=1

m∑
k=1

L−1
ki L−1

kj

Dkk

Ũij

)

= −
m∑

i=1

m∑
j=1

m∑
k=1

(L−1
ku L−1

vi L−1
kj + L−1

ki L−1
ku L−1

vj

Dkk

)
Ũij (by Lemma 3)

= −2
m∑

i=1

m∑
j=1

m∑
k=1

L−1
ku L−1

vi L−1
kj

Dkk

Ũij .

Note that L−1 is a lower-triangular matrix. Hence,

∂2

∂Luv ∂Lu′v
tr((LDLT )−1Ũ )

= −2
∂

∂Lu′v

(
m∑

i=1

m∑
j=1

m∑
k=1

L−1
ku L−1

vi L−1
kj

Dkk

Ũij

)

= 2
m∑

i=1

m∑
j=1

m∑
k=1

L−1
ku L−1

vi L−1
ku′L−1

vj

Dkk

Ũij
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= 2

(
m∑

i=1

m∑
j=1

L−1
vi ŨijL

−1
vj

)(
m∑

k=1

L−1
ku L−1

ku′
Dkk

)

= 2(L−1Ũ (LT )−1)vv(LDLT )−1
uu′ .

The second equality above follows by noting that by Proposition 1, L−1
vi is func-

tionally independent of LG·v for all 1 ≤ i ≤ m and L−1
ku is functionally indepen-

dent of LG·v for all 1 ≤ k ≤ m and u > v, and then applying Lemma 3. Using this
functional independence argument above once more, we thereby conclude that
2(L−1Ũ (LT )−1)vv(LDLT )−1

uu′ is independent of LG·v . �

PROOF OF THEOREM 2. An immediate consequence of Lemma 4 and the
preceding remark is that we can write tr((LDLT )−1Ũ ) as follows:

tr((LDLT )−1Ũ )

= ∑
u>v,(u,v)∈E

∑
u′>v,(u′,v)∈E

((L−1Ũ (LT )−1)vv(LDLT )−1
uu′)

× (Luv − bu)(Lu′v − bu′) + C,

where b = (bu)u>v,(u,v)∈E and C are independent of LG·v . In order to evaluate
(bu)u>v,(u,v)∈E , note that the term in ∂

∂Luv
tr((LDLT )−1Ũ ) which is independent

of LG·v is given by

−2
∑

u′>v,(u′,v)∈E

((L−1Ũ (LT )−1)vv(LDLT )−1
uu′)bu′(4.2)

for every u > v, (u, v) ∈ E. However, from the proof of Lemma 4, we alternatively
know that

∂

∂Luv

tr((LDLT )−1Ũ ) = −2
m∑

i=1

m∑
j=1

m∑
k=1

L−1
ku L−1

vi L−1
kj

Dkk

Ũij .

Note that by Lemma 3, L−1
ku L−1

kj is functionally dependent on LG·v if and

only if L−1
ku �= 0 and L−1

vj �= 0 (as a function of L). Hence, the term in
∂

∂Luv
tr((LDLT )−1Ũ ) which is independent of LG·v is given by

−2
m∑

i=1

m∑
j=1

m∑
k=1

L−1
ku L−1

vi L−1
kj

Dkk

Ũij 1{L−1
vj =0 or L−1

ku =0}

= −2
∑

j :L−1
vj =0

(
m∑

i=1

L−1
vi Ũij

)(
m∑

k=1

L−1
ku L−1

kj

Dkk

)
(4.3)
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= −2
∑

j :L−1
vj =0

(L−1Ũ )vj (LDLT )−1
uj

= −2
∑

j :L−1
vj =0

(L−1Ũ )vj

(L−1Ũ (LT )−1)vv

(L−1Ũ (LT )−1)vv(LDLT )−1
uj .

Now, observe the following facts:

1. the expressions in (4.2) and (4.3) should be the same for every u > v, (u, v) ∈
E;

2. if A =
(

A1 A2
AT

2 A3

)
, ξ =

(
ξ1
ξ2

)
and η are such that

A1ξ1 + A2ξ2 = A1η,

then

η = ξ1 + A−1
1 A2ξ2.

If we choose A, ξ and η as

Auu′ := (L−1Ũ (LT )−1)vv(LDLT )−1
uu′ ∀u,u′ such that L−1

vu ,L−1
vu′ = 0,

ξu := (L−1Ũ )vu

(L−1Ũ (LT )−1)vv

∀u such that L−1
vu = 0,

ηu := bu ∀u > v, (u, v) ∈ E,

then combining the observations above with (4.2) and (4.3), we obtain

tr((LDLT )−1Ũ )

= ∑
u>v,(u,v)∈E

∑
u′>v,(u′,v)∈E

((L−1Ũ (LT )−1)vv(LDLT )−1
uu′)

× (Luv − μv,G
u )(Lu′v − μ

v,G
u′ ) + C.

As defined earlier,

μv
u = (L−1Ũ )vu

(L−1Ũ (LT )−1)vv

∀u such that L−1
vu = 0,

μv,G
u = μv

u + ∑
u′>v,(u′,v)∈E

∑
w>v,(w,v)/∈E

or w<v,L
−1
vw=0

M
v,G
uu′ (L−1Ũ (LT )−1)vv(LDLT )−1

u′wμv
w

∀u > v, (u, v) ∈ E

and C is independent of LG·v . It follows that under πŨ,α̃ , the conditional distribution
of LG·v given the other parameters and the data Y1,Y2, . . . ,Yn is N (μv,G,Mv,G).
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For deriving the conditional distribution of the entries of D, we note that

e−(tr((LDLT )−1Ũ)+∑m
i=1 α̃i logDii)/2 =

m∏
j=1

1

D
α̃j /2
jj

e−(L−1Ũ (LT )−1)jj /(2Djj ).

The above leads us to conclude that the conditional distribution of Djj given the

other parameters and the data Y1,Y2, . . . ,Yn is IG(
α̃j

2 − 1,
(L−1Ũ(LT )−1)jj

2 ), inde-
pendently for every j = 1,2, . . . ,m. �

4.2. Convergence of block Gibbs sampler. The block Gibbs sampling proce-
dure, based on the conditional distributions derived above, gives rise to a Markov
chain. It is natural to ask whether this Markov chain converges to the desired distri-
bution πŨ,α̃ . Convergence properties are sometimes overlooked due to the theoret-
ical demands in establishing them. However, they yield theoretical safeguards that
the block Gibbs sampling algorithm can be used for sampling from the posterior
distribution.

We now prove that sufficient conditions for convergence of a Gibbs sampling
Markov chain to its stationary distribution (see [2], Theorem 6) are satisfied by the
Markov chain corresponding to our block Gibbs sampler. Let φ(x | μ,�) denote
the N (μ,�) density evaluated at x. Let fIG(d | α,λ) denote the IG(α,λ) density
evaluated at d . Let us fix ψ,d1, d2 > 0 arbitrarily. Let

�ψ,d1,d2 := {θ = (L,D) ∈ �G : |Lij | ≤ ψ,d1 ≤ Dii ≤ d2 ∀i > j, (i, j) ∈ E}.
We now formally prove the conditions which are sufficient for establishing con-
vergence.

PROPOSITION 3. There exists some δ > 0 such that, uniformly for all θ =
(L,D) ∈ �ψ,d1,d2 ,

φ(LG·,v | μv,G,Mv,G) > δ ∀v = 1,2, . . . ,m − 1,

fIG

(
Dii

∣∣ α̃i

2
− 1,

(L−1Ũ (LT )−1)ii

2

)
> δ ∀i = 1,2, . . . ,m.

PROOF. First, by Proposition 1, all entries of L−1 are polynomials in the en-
tries of L. Since �ψ,d1,d2 is bounded and closed, there exists ψ1 > 0 such that

(L,D) ∈ �ψ,d1,d2 ⇒ |L−1
uv | ≤ ψ1 ∀u > v, (u, v) ∈ E.

Using the above, there exists a constant ψ2 > 0 such that if (L,D) ∈ �ψ,d1,d2 ,
then

|(L−1Ũ )vu| ≤ ψ2, |(LDLT )−1
uu′ | ≤ ψ2, |(L−1Ũ (LT )−1)vv| ≤ ψ2(4.4)
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for every 1 ≤ v,u,u′ ≤ m. Second, since L−1
vv = 1 for all 1 ≤ v ≤ m and Ũ is

positive definite, it follows that there exists a constant ψ3 > 0 such that if (L,D) ∈
�ψ,d1,d2 , then

ψ3 ≤ (L−1Ũ (LT )−1)vv(4.5)

for every 1 ≤ v ≤ m.
Let (L,D) ∈ �ψ,d1,d2 . Note that

(LG·v − μv,G)T (Mv,G)−1(LG·v − μv,G)

= (LG·v)T (Mv,G)−1LG·v − 2(LG·v)T (Mv,G)−1μv,G + (μv,G)T (Mv,G)−1μv,G.

Observe that if ζ =
(

ζ 1
ζ 2

)
∈ Rm and � =

(
�11 �12
�21 �22

)
is a positive definite matrix,

then

(ζ 1 + �−1
11 �12ζ 2)

T �11(ζ 1 + �−1
11 �12ζ 2) ≤ ζ T �ζ ∀ζ ∈ Rm.

If we choose ζ and � as

�uu′ := (L−1Ũ (LT )−1)vv(LDLT )−1
uu′ ∀u,u′ such that L−1

vu ,L−1
vu′ = 0,

ζu = μv
u ∀u such that L−1

vu = 0,

then combining the observation above and the definition of μv,G, we get that

(μv,G)T (Mv,G)−1μv,G ≤ ∑
u:L−1

vu =0

∑
u′:L−1

vu′=0

μv
u(L

−1Ũ (LT )−1)vv(LDLT )−1
uu′μv

u′ .

From the definitions in Theorem 2, we also have

((Mv,G)−1μv,G)u = ∑
j :L−1

vj =0

(L−1Ũ )vj (LDLT )−1
uj ∀u > v, (u, v) ∈ E.

It follows by (4.4) that for (L,D) ∈ �ψ,d1,d2 , there exists ψ4 > 0 such that

(LG·v − μv,G)T (Mv,G)−1(LG·v − μv,G) ≤ ψ4(4.6)

for every v = 1,2, . . . ,m − 1. Also, by the definition of Mv,G, it follows that
for (L,D) ∈ �ψ,d1,d2,0 < |Mv,G| < ∞ and |Mv,G| is a continuous function
of (L,D). Recall that for a matrix A, |A| denotes the determinant of A. Since
�ψ,d1,d2 is a bounded and closed set, both the maximum and minimum of the
function |Mv,G| are attained in �ψ,d1,d2 . It follows that for (L,D) ∈ �ψ,d1,d2 ,
there exist 0 < κ1 < κ2 such that

κ1 < |Mv,G| < κ2(4.7)

for every v = 1,2, . . . ,m − 1. It follows by (4.4), (4.5), (4.6) and (4.7) that for
(L,D) ∈ �ψ,d1,d2 , there exists δ1 > 0 such that

φ(LG·v | μv,G,Mv,G) > δ1 ∀v = 1,2, . . . ,m − 1.
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Note, furthermore, that if (L,D) ∈ �ψ,d1,d2 , then, from (4.4) and (4.5),

ψ3 ≤ (L−1Ũ (LT )−1)ii ≤ ψ2

for every 1 ≤ i ≤ m. Hence, there exists δ2 > 0 such that

fIG

(
Dii

∣∣ α̃i

2
− 1,

(L−1Ũ (LT )−1)ii

2

)
> δ2 ∀i = 1,2, . . . ,m.

Let δ = min(δ1, δ2). Hence, for θ = (L,D) ∈ �ψ,d1,d2 ,

φ(LG·v | μv,G,Mv,G) > δ ∀v = 1,2, . . . ,m − 1,

fIG

(
Dii

∣∣ α̃i

2
− 1,

(L−1Ũ (LT )−1)ii

2

)
> δ ∀i = 1,2, . . . ,m. �

Recall that nv = |{u :u > v, (u, v) ∈ E}|. Note that the measures correspond-
ing to N (μv,G,Mv,G) and N (0, Inv ) are mutually absolutely continuous and the
corresponding densities with respect to Lebesgue measure are positive everywhere
on Rnv for all v = 1,2, . . . ,m − 1. In addition, the measures corresponding to

IG( α̃i

2 − 1, (L−1Ũ(LT )−1)ii
2 ) and IG( α̃i

2 − 1,1) are mutually absolutely continuous
and the corresponding densities with respect to Lebesgue measure are positive
everywhere on (0,∞) for all i = 1,2, . . . ,m. Also, since �ψ,d1,d2 is bounded and
closed,

∏m−1
v=1 φ(LG·v | 0, Inv )

∏m
i=1 fIG( α̃i

2 −1,1) is bounded on �ψ,d1,d2 . Combin-
ing this with Proposition 3, all required conditions in [2], Theorem 6 are satisfied.
Hence, the block Gibbs sampling Markov chain, based on the derived conditional
distributions, converges to the desired stationary distribution πU,α .

We note that in [29], page 18, the authors introduce a procedure to sample from
the G -inverse Wishart distributions (these are a narrow subclass of our priors π

PG

U,α).
Essentially, at every iteration, they cycle through all of the rows of �. At the ith
step in an iteration, they sample the vector �G

i· := (�ij )j∈N (i) from its conditional
distribution (Gaussian) given the other entries of � and then sample γi := 1

�−1
ii

from its conditional distribution (inverse-gamma) given the other entries of �.
Since � is a symmetric matrix, for (i, j) ∈ E, the variable �ij appears in �G

i· as
well as �G

j · . Hence, ((�G
1· , γ1), (�

G
2· , γ2), . . . , (�

G
m·, γm)) is not a disjoint partition

of the variable space. Therefore, their procedure is not strictly a Gibbs sampling
procedure and its convergence properties are not clear. On the other hand, in our
procedure, we cycle through (LG·1,LG·2, . . . ,LG·m,D), which is a disjoint partition
of the variable space. Hence, our procedure is a Gibbs sampler in the true sense.
There are also other differences between the two procedures, such as the fact that
γi �= Dii unless i = m.

REMARK. It is useful to compare our covariance priors to the conditionally
conjugate priors introduced by [8] in the complete case. Upon closer investiga-
tion we discover that the priors of [8] are quite different from π̃U,α(L,D). First,
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they do not consider structural zeros. More importantly, under their posterior, the
distribution of L−1 conditional on D is jointly multivariate normal. In the gen-
eral decomposable covariance graph setting however, the zeros of L do not carry
over to L−1, and so it is not possible in our framework for the distribution of the
(constrained or unconstrained) elements of L−1, conditional on D, to be jointly
multivariate normal.

5. The special case of homogeneous graphs: Closed form expressions.
Note that the covariance graph model, that is, the family of distributions

G = {Nm(0,�) :� ∈ PG}
(supported on Rm) is a curved exponential family for any connected noncom-
plete graph G. As discussed earlier, the fact that the family is curved renders the
Diaconis–Ylvisaker framework no longer applicable in this setting. Hence, a rich
and flexible class of distributions was introduced in order to serve as priors for the
class of covariance graph models. A natural question to ask is whether the class
of priors itself belongs to a curved exponential family.13 Indeed, this class of pri-
ors is interesting in its own right and warrants an independent investigation. Such
analysis has the potential to place the class of priors in a known framework and
thus exploit this property.

Let us therefore now turn our attention to the class of priors {π̃PG

U,α}U∈M+
m

as
a family of distributions supported on PG, with U as a parameter. We now state
a lemma which formally establishes that the class of priors can be framed in the
context of natural exponential families.

LEMMA 5. For arbitrarily fixed α, the family of distributions {π̃PG

U,α}U∈M+
m

is
a general exponential family, that is, it can be transformed into a natural expo-
nential family. The natural parameter is U = ((Uij ))1≤i≤j≤m, the corresponding
set of sufficient statistics is �−1 = ((�−1

ij ))1≤i≤j≤m and the cumulant generating
function is log zG(U,α).

PROOF. The proof is straightforward and is therefore omitted. �

Placing the class of covariance priors in a natural exponential family framework
yields insights into the structure and functional form of this class of distributions.
As noted earlier, zG(U,α) is not generally available in closed form. A question
that naturally arises is whether there are any conditions under which zG(U,α) can
be evaluated in closed form. In this section, we establish that when G is homoge-
neous, zG(U,α) and EU,α can be evaluated in closed form. It is known that when

13Note: not the class of distributions associated with the covariance graph probability model but
rather the class of priors that is introduced in this paper.
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G is a homogeneous graph, the covariance graph model is Markov equivalent to
an appropriate DAG (see [11]). It is, however, important to clarify that the Markov
equivalence of covariance graph models and DAGs does not immediately imply
that Bayesian inference for covariance graph models using our priors automati-
cally follows. We also need to establish a correspondence between our priors and
known priors for DAG models. We now prove that in the special case when G is
homogeneous, our priors correspond to the standard conjugate priors for an appro-
priate DAG. This yields yet another property of our class of priors. The following
theorem is the main result of this section and helps us establish the aforementioned
correspondence.

THEOREM 3. Let G = (V ,E) be homogeneous, with vertices ordered accord-
ing to the Hasse perfect vertex elimination scheme specified in Section 2.4, that
is, V ∈ SH . If � ∼ π

PG

U,α and � = LDLT is its modified Cholesky decomposition,
then

{(Dii, (�
≺i)−1�≺·i )}1≤i≤m

are mutually independent. Furthermore, the distributions of these quantities are
specified as follows:

(�≺i )−1�≺·i | Dii ∼ N ((U≺i )−1U≺·i ,Dii(U
≺i )−1);

Dii ∼ IG
(

αi

2
− |N ≺(i)|

2
− 1,

Uii − (U≺·i )T (U≺i )−1U≺·i
2

)
∀i = 1,2, . . . ,m.

REMARK. The above result decomposes � into mutually independent coor-
dinates. Note that for any i such that ī is a leaf of the Hasse tree and i has the
minimal label in its equivalence class ī, we have

N ≺(i) = φ.

In this case, it is understood that �≺i and �≺·i are vacuous parameters and that
Dii = �ii .

PROOF OF THEOREM 3. Let G be a homogeneous graph with m vertices, with
the vertices ordered according to the Hasse perfect elimination scheme specified
in Section 2.4. Recall that the vertices of the Hasse diagram of G are equivalence
classes formed by the relation R defined in Section 2.4. The vertex labeled m

clearly lies in the equivalence class of vertices at the root of the corresponding
Hasse diagram. Let us remove the vertex labeled m from the graph G and let G′
denote the induced graph on the remaining m − 1 vertices. The graph G′ can be of
the following two types.

• Case I: If the equivalence class of m contains more than one element, then G′
is a homogeneous graph with the Hasse diagram having the same depth as the
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Hasse diagram of G, but with one less vertex in the equivalence class at the root.
Recall that the depth of a tree is the length of the longest path from its root to
any leaf.

• Case II: If the equivalence class of m contains only one element, then G′ is a
disconnected graph, with the connected components being homogeneous graphs
with the Hasse diagram having depth one less than the depth of the Hasse dia-
gram of G.

Note that for every 1 ≤ i ≤ m such that N ≺(i) �= φ,��i can be partitioned as

��i =
[

�≺i �≺·i
(�≺·i )T �ii

]
.

Also, note that if Z ∼ N (0,�), then Dii is the conditional variance of Zi given
Z1,Z2, . . . ,Zi−1 (see [16]). Note that �kl = 0 for all 1 ≤ k, l ≤ i, k ∈ N ≺(i), l /∈
N ≺(i). It follows that Dii = �ii − (�≺·i )T (�≺i )−1�≺·i . Hence, by the formula for
the inverse of a partitioned matrix, it follows that

(��i )−1 =

⎡⎢⎢⎣ (�≺i )−1 + ((�≺i )−1�≺·i )((�≺i )−1�≺·i )T

Dii

−(�≺i )−1�≺·i
Dii

−((�≺i )−1�≺·i )T

Dii

1

Dii

⎤⎥⎥⎦ .

Hence,

tr((��i )−1U�i )

= tr((�≺i )−1U≺i )
(5.1)

+ 1

Dii

(
(�≺i )−1�≺·i − (U≺i )−1U≺·i

)T
U≺i((�≺i )−1�≺·i − (U≺i )−1U≺·i

)
+ 1

Dii

(
Uii − (U≺·i )T (U≺i )−1U≺·i

)
.

We again note that from our argument at the beginning of the proof, �≺i =
��(i−1) or �≺i has a block diagonal structure (after an appropriate permutation
of the rows and columns) with blocks ��i1,��i2, . . . ,��ik for some k > 1,1 ≤
i1, i2, . . . , ik < i.14 It follows that

tr((�≺i )−1U≺i ) =
k∑

j=1

tr((��ij )−1U�ij ).

14If the equivalence class of i has k children in the Hasse diagram of G and Vj is the set of
vertices in V belonging to the subtree rooted at the j th child, then Vj , for 1 ≤ j ≤ k, are disjoint
subsets. In fact, if ij = max{i′ : i′ ∈ Vj }, then it follows by the construction of the Hasse diagram
that Vj = N �(ij ) for 1 ≤ j ≤ k.
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Note that � = ��m. Using (5.1) recursively, we get

tr(�−1U)

=
m∑

i=1

1

Dii

(
(�≺i )−1�≺·i − (U≺i )−1U≺·i

)T
U≺i((�≺i )−1�≺·i − (U≺i )−1U≺·i

)
(5.2)

+ 1

Dii

(
Uii − (U≺·i )T (U≺i )−1U≺·i

)
.

Let us now evaluate the Jacobian of the transformation

� → {(Dii, (�
≺i )−1�≺·i )}1≤i≤m.

It follows by simple matrix manipulations that the Jacobian of the transformation

��i → (�≺i , (�≺i)−1�≺·i ,Dii)

is given by |�≺i |.
Once more, note that � = ��m and, as mentioned earlier, �≺i = ��(i−1) or

�≺i (after an appropriate permutation of the rows and columns) has a block di-
agonal structure with blocks ��i1,��i2, . . . ,��ik for some k > 1,1 ≤ i1, i2, . . . ,

ik < i. Hence, by regarding the transformation

� → {(Dii, (�
≺i )−1�≺·i )}1≤i≤m

as a series of transformations of the type ��i → (�≺i , (�≺i)−1�≺·i ,Dii), it fol-
lows that the determinant of the Jacobian is given by

m∏
i=1

|�≺i | =
m∏

i=1

∏
j∈N ≺(i)

Djj =
m∏

j=1

D
nj

jj .(5.3)

Here, as in Section 3.1 Lemma 2,

nj = |{(i > j : (i, j) ∈ E}| ∀j = 1,2, . . . ,m.

Also, from Section 3.1,

π
PG

U,α(�) = 1

zG(U,α)
e
−(tr(�−1U)+∑m

j=1(2nj+αj ) logDjj )/2
, � ∈ PG.

Let


 = {(Dii, (�
≺i )−1�≺·i )}1≤i≤m.

It follows from the decomposition of tr(�−1U) from (5.2) and the computation of
the determinant of the Jacobian (5.3) that

π�
U,α({(Dii, (�

≺i)−1�≺·i )1≤i≤m})

= 1

zG(U,α)

m∏
i=1

e−1/(2Dii)((�
≺i )−1�≺·i −(U≺i )−1U≺·i )T U≺i ((�≺i )−1�≺·i −(U≺i )−1U≺·i )(5.4)

×
m∏

i=1

e−1/(2Dii)(Uii−(U≺·i )T (U≺i )−1U≺·i )D
−αi/2
ii .
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The above proves the mutual independence of {(Dii, (�
≺i )−1�≺·i )}1≤i≤m. From

the joint density of (Dii, (�
≺i )−1�≺·i ), it is clear that

(�≺i )−1�≺·i | Dii ∼ N ((U≺i )−1U≺·i ,Dii(U
≺i )−1).

To evaluate the marginal density of Dii , we integrate out (�≺i )−1�≺·i from the
joint density of (Dii, (�

≺i )−1�≺·i ). Note that∫
R|N ≺(i)|

e−1/(2Dii)((�
≺i )−1�≺·i −(U≺i )−1U≺·i )T U≺i ((�≺i )−1�≺·i −(U≺i )−1U≺·i ) d((�≺i )−1�≺·i )

= CD
−|N ≺(i)|/2
ii ,

where C is a constant, since the above integral is essentially an unnormalized mul-
tivariate normal integral. Hence, the marginal density of Dii is given by

π
Dii

U,α(d) ∝ e−(Uii−(U≺·i )T (U≺i )−1U≺·i )/(2d)d−(αi/2+|N ≺(i)|/2).

We can therefore conclude that

Dii ∼ IG
(

αi

2
− |N ≺(i)|

2
− 1,

Uii − (U≺·i )T (U≺i )−1U≺·i
2

)
. �

REMARK. At first glance, it seems as if the only part of U that appears in
Theorem 3 is (Uij )(i,j)∈E , that is, the projection of U onto IG. Hence, one could
incorrectly conclude that up to the number of shape parameters in each equiva-
lence class, in the homogeneous case, the priors introduced in this paper and the
IWQG

are identical. However, a careful inspection shows that this is not the case.
Note that the conditional covariance of (�≺i )−1�≺·i is Dii(U

≺i )−1, and U≺i can
contain entries of the form Ukl such that (k, l) /∈ E. For example, suppose that G =
1• − 3• − 2•. Then,

U≺3 =
(

U11 U12
U21 U22

)
,

but (1,2) /∈ E. Hence, in the homogeneous setting, π
PG

U,α is truly a larger class than
the IWQG

family of distributions.
We now establish the correspondence between π�

U,α in (5.4) and the conjugate
prior for an appropriate Gaussian DAG model. Let G = (V ,E) be a homogeneous
graph with V ∈ SH , that is, the vertices have been ordered according to the perfect
vertex elimination scheme for homogeneous graphs outlined in Section 2.4. Let us
construct a DAG as follows:

1. Consider the Hasse diagram of G (for simplicity and clarity of exposition, as-
sume that the equivalence class at each vertex has just one element).

2. Assign a directed edge from u to v if u is a descendant of v in the Hasse tree,
that is, reverse the directions of all the arrows, including those that do not appear
in the Hasse tree, but which are implied by transitivity.



542 K. KHARE AND B. RAJARATNAM

FIG. 2. Example of homogeneous covariance graph (left); associated DAG model (right).

An example of a DAG constructed in this manner is given in Figure 2.
Now, let pa(i) denote the set of parents of i according to the direction specified

above. If Y ∼ Nm(0,�) has a distribution which is Markov with respect to the
above DAG, then the density of Y factorizes as

f (y) =
m∏

i=1

f
(
yi | ypa(i)

)

=
m∏

i=1

1√
2πD

1/2
ii

e−(yi−((�≺i )−1�≺·i )T ypa(i))
T D−1

ii (yi−((�≺i )−1�≺·i )T ypa(i)),

where Dii := �ii − (�≺·i )T (�≺i )−1�≺·i = �i|pa(i).
The standard conjugate prior for each factor of the product above can be ob-

tained as follows. Given an arbitrary positive definite matrix U and α′
i > 0 for

i = 1,2, . . . ,m, let

(�≺i )−1�≺·i | Dii ∼ N ((U≺i )−1U≺·i ,Dii(U
≺i )−1),

Dii ∼ IG
(
α′

i ,
Uii − (U≺·i )T (U≺i )−1U≺·i

2

)
for i = 1,2, . . . ,m, where {(Dii, (�

≺i)−1�≺·i )}1≤i≤m are mutually independent.
This corresponds precisely to the π�

U,α density in (5.4).
We now proceed to state, without proof, results for homogeneous covariance

graph models by exploiting the correspondence of our priors to the standard con-
jugate priors for DAGs. In particular, hyper-Markov properties, the normalizing
constant and expected values for covariance graph models, for G homogeneous,
are formally stated below.

Let G = (V ,E) be a homogeneous graph with V ∈ SH , that is, the vertices
have been ordered according to the perfect vertex elimination scheme for homo-
geneous graphs outlined in Section 2.4. Let D be the directed graph obtained from
G by directing all edges in G from the vertex with the smallest number to the
vertex with the highest number. Let pa(i) denote the set of parents of i accord-
ing to the direction specified in D. It follows that pa(i) = N ≺(i). As in [9, 20],
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let pr(i) = {1,2, . . . , i − 1} denote the set of predecessors of i according to the
direction specified in D. We now proceed to define the hyper-Markov property.

DEFINITION 1. A family of priors F on PG satisfies the strong hyper-Markov
property with respect to the direction D if, whenever π ∈ F and � ∼ π ,

�i|pa(i) ⊥ �pr(i) ∀1 ≤ i ≤ m,

where �i|pa(i) := �ii − (�≺·i )T (�≺i )−1�≺·i = Dii .

In the following corollary, we state, without proof, that the family of priors π
PG

U,α
satisfies the strong hyper-Markov property with respect to the direction D.

COROLLARY 1. Let G = (V ,E) be homogeneous with V ∈ SH . If � ∼ π
PG

U,α ,
then

Dii ⊥ �{1,2,...,i−1} ∀1 ≤ i ≤ m.

REMARK. Recall that

�≺i = ((�uv))u,v∈N ≺(i)

is different from

�{1,2,...,i−1} = ((�uv))1≤u,v≤i−1.

We demonstrated in Section 3.2 that the family IWQG
of Letac and Massam [20]

is a subfamily of our class of priors π
PG

U,α when G is homogeneous. Consequently,
we can now prove hyper-Markov properties for the IWQG

family.

COROLLARY 2. Let G = (V ,E) be homogeneous with V ∈ SH . Let D be the
directed graph obtained from G by directing all edges in G from the vertex with
the smallest number to the vertex with the highest number. The family IWQG

is
then strong hyper-Markov with respect to the direction GH .

Hyper-Markov properties for the IWQG
family were not established in [20].

Hence, we note that the corollary above is a new result for this family.
We now proceed to state, without proof, the functional form of the normaliz-

ing constant for homogeneous graphs, once again exploiting the correspondence
between our covariance priors and the conjugate priors for DAGs. In particular, be-
low, we state necessary and sufficient conditions for existence of the normalizing
constant and give an explicit expression for it in such cases.
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COROLLARY 3. Let G = (V ,E) be a homogeneous graph with vertices or-
dered such that V ∈ SH . Then, zG(U,α) < ∞ if and only if α satisfies the condi-
tions in Proposition 1, that is, αi > |N ≺(i)| + 2 ∀i = 1,2, . . . ,m. In this case,

zG(U,α) =
m∏

i=1

�

(
αi

2
− |N ≺(i)|

2
− 1
)

2αi/2−1(
√

π)|N ≺(i)|

(5.5)
× |U≺i |αi/2−|N ≺(i)|/2−3/2/|U�i |αi/2−|N ≺(i)|/2−1.

We now proceed to state, without proof, expected values related to our class of
priors π

PG

U,α when G is homogeneous, again by exploiting the correspondence be-
tween our covariance priors and conjugate priors for DAGs. In particular, we now
provide a recursive method that gives closed form expressions for the expected
value of the covariance matrix when � ∼ π

PG

U,α . Since �uv = 0 ∀(u, v) /∈ E, we
only need to evaluate the expectation of �ii and �≺·i for every 1 ≤ i ≤ m. Let

A1 := {i ∈ V : N ≺(i) = φ}.
Clearly, if i ∈ A1, then �≺i and �·i are vacuous parameters and Dii = �ii . It

follows from Theorem 3 that for i ∈ A1,

EU,α[�ii] = EU,α[Dii] = Uii − (U≺·i )T (U≺i )−1U≺·i
αi − 4

,

assuming that αi > 4, since X ∼ IG(λ, γ ) implies that E[X] = λ
γ−1 .

For k = 2,3,4, . . . , define

Ak =
{
i ∈ V : N ≺(i) ⊆

k−1⋃
l=1

Al

}∖(k−1⋃
l=1

Al

)
.

Since there are finitely many vertices in V , there exists some k∗ such that Ak = φ

for k > k∗. The sets {Ak}1≤k≤k∗ essentially provide a way of computing EU,α[�],
by starting at the bottom of the Hasse diagram of G and then moving up sequen-
tially.

COROLLARY 4. Let G be a homogeneous graph. Given the expectations of
�≺·j and �jj for j ∈ ⋃k−1

l=1 Al , the expectations of �≺·i and �ii for i ∈ Ak are
given, respectively, by the expressions

EU,α[�≺·i ] = EU,α[�≺i](U≺i )−1U≺·i ;

EU,α[�ii] = Uii − (U≺·i )T (U≺i )−1U≺·i
αi − |N ≺(i)| − 4

+ tr
(

EU,α[�≺i]
(

(U≺i )−1(Uii − (U≺·i )T (U≺i )−1U≺·i )

αi − |N ≺(i)| − 4

+ (U≺i )−1U≺·i (U≺·i )T (U≺i )−1
))

,
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provided that αi > |N ≺(i)| + 4.

The corollary is not formally proved since it follows directly from the cor-
respondence between our covariance priors and the natural conjugate priors for
DAGs. We note once more that the expressions above yield a recursive but closed
form method to calculate E[�] when � ∼ π

PG

U,α .

REMARK. There is an intriguing parallel between the expressions for the nor-
malizing constant and the expected values for the π

PG

U,α distribution and the IWPG

distribution (as derived in [20, 26]) when G is homogeneous. This automatically
leads one to wonder if the π

PG

U,α and the IWPG
distributions are the same. We now

show that this is not the case.
If one compares the density of (Dii, (�

≺i )−1�≺·i )1≤i≤m in (5.4) and the IW∗
PG

density in (3.16) of [20], they initially appear to have the same functional form.
We now proceed to show that they are supported on different spaces. This differ-

ence is illustrated by the following example. Let G = 1• − 3• − 2•. In this case, each
equivalence class in the Hasse tree of G has exactly one vertex. Note that vertex
3 has two descendants, and vertices 1 and 2 do not have any descendants in the
Hasse tree of G. Hence, it follows that the density of (Dii, (�

≺i )−1�≺·i )1≤i≤3 is
supported on (R × NULL,R × NULL,R × R2). On the other hand, vertices 1 and
2 have one ancestor, and vertex 3 has no ancestors in the Hasse tree of G. Hence,
it follows that the IW∗

PG
density is supported on (R × R,R × R,R × NULL).

So, at first glance, it looks as if (Dii, (�
≺i)−1�≺·i )1≤i≤m has the same form as

IW∗
PG

, but, upon further examination, we see that even for the simplest homoge-
neous graph, they are structurally different. In fact, (R × NULL,R × NULL,R ×
R2) does not support the IW∗

PG
distribution for any G that is homogeneous.

6. Examples. The main purpose of this paper is to undertake a theoretical
investigation of our class of distributions and their efficacy for use in Bayesian
estimation in covariance graph models. We nevertheless provide two examples
(one real and one simulated) to demonstrate how the methodology developed in
this paper can be implemented.

6.1. Genomics example. We provide an illustration of our methods on a data
set consisting of gene expression data from microarray experiments with yeast
strands from Gasch et al. [13]. This data set has also been analyzed in [4, 11].
As in [4, 11], we consider a subset of eight genes involved in galactose utiliza-
tion. There are n = 134 experiments and the empirical covariance matrix for these
measurements is provided in Table 1. Note that the sample covariance matrix is
obtained after centering since the mean is not assumed to be zero.

We consider the covariance graph model specified by the graph G in Fig-
ure 3 with the overall aim of estimating � under this covariance graph model.
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TABLE 1
Empirical covariance matrix for yeast data

GAL11 GAL4 GAL80 GAL3 GAL7 GAL10 GAL1 GAL2

GAL11 0.152
GAL4 0.034 0.130
GAL80 0.015 0.039 0.221
GAL3 −0.055 0.034 0.073 0.608
GAL7 −0.051 −0.053 0.183 0.722 3.423
GAL10 −0.048 −0.039 −0.188 0.553 2.503 2.372
GAL1 −0.066 −0.061 0.224 0.517 2.768 2.409 2.890
GAL2 −0.119 −0.018 0.208 0.583 2.547 2.278 2.514 2.890

The maximum likelihood estimate for � ∈ PG, provided by the iterative condi-
tional fitting algorithm described in [4], yields a deviance of 4.694 over 7 de-
grees of freedom, thus indicating a good model fit. The maximum likelihood es-
timate is provided in Table 1. We use the following ordering for our analysis:
{GAL11,GAL4,GAL80,GAL3,GAL7,GAL10,GAL1,GAL2}.

Our goal is to obtain the posterior mean for � under our new class of priors
and then to provide Bayes estimators for �. We use two diffuse priors to illustrate
our methodology. The first prior is denoted as π̃U1,α1 , where U1 = tr(S)

8 I8, α
1
i =

5 + |N ≺(i)|, i = 1,2, . . . ,8, that is, α1 = (5,6,6,8,7,8,9,12). The second prior

FIG. 3. Covariance graph for yeast data.
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used is π̃U2,α2 , where U2 = 0, α2
i = 2, i = 1,2, . . . ,8. Note that we could have

used any ordering in SD for our analysis. As an example, we select an alternate or-
dering, {GAL11,GAL4,GAL80,GAL10,GAL2,GAL3,GAL1,GAL7}, and also
consider the two priors mentioned above under this alternative ordering. The block
Gibbs sampling procedure was run for the four priors as specified in Section 4. The
burn-in period was chosen to be 1,000 iterations and the subsequent 1,000 itera-
tions were used to compute the posterior mean. Increasing the burn-in period to
more than 1,000 iterations results in insignificant changes to our estimates, thus
indicating that the burn-in period chosen is sufficient. The posterior mean estimates
for both the priors, together with the MLE estimates, are provided in Table 2. The
running time for the Gibbs sampling procedure for each prior is approximately 26
seconds on a Pentium M 1.6 GHz processor. We find that the Bayesian approach
using our priors and the corresponding block Gibbs sampler gives stable estimates
and thus yields a useful alternative methodology for inference in covariance graph
models. We also note that the two different vertex orderings yield very similar
results.

6.2. Simulation example. A proof of convergence of the block Gibbs sam-
pling algorithm proposed in Section 4.1 was provided in Section 4.2. The speed
at which convergence occurs is also a very important concern for implementation
of the algorithm. The number of steps that are required before one can generate a
reasonable approximate sample from the posterior distribution is reflective of the
rate of convergence. Understanding this is important for the accuracy of Bayes esti-
mates such as the posterior mean. We proceed to investigate the performance of the
block Gibbs sampling algorithm in a situation where the posterior mean is known
exactly and hence allows a direct comparison. Consider a homogeneous graph G

with 50 vertices, with the corresponding Hasse tree given by Figure 4. Let � ∈ PG,
where the vertices have been ordered according to the Hasse perfect vertex elim-
ination scheme of Section 2.4, the diagonal entries are 50 and all other nonzero
entries are 1. We simulate 100 observation vectors Y1,Y2,Y3, . . . ,Y99,Y100 from
N50(0,�). For illustration purposes, we choose a diffuse prior π�

U,α with U = 0
and αi = 2|N <(i)| + 5, i = 1,2, . . . ,50.

Since the graph G is homogeneous, we can compute the posterior mean
�mean := EU,α[� | Y1,Y2, . . . ,Y100] explicitly. We can therefore assess the abil-
ity of the block Gibbs sampling algorithm to estimate the posterior mean by com-
paring it to the true value of the mean. We run the block Gibbs sampling algorithm
to sample from the posterior distribution and subsequently check its performance
in estimating �mean. We use an initial burn-in period of B iterations and then aver-
age over the next I iterations to get the estimate �̂. The times needed for compu-

tation (using the R software) and the relative errors ‖�̂−�mean‖2‖�mean‖2
corresponding to

various choices of B and I are provided in Table 3. The diagnostics in Table 3 indi-
cate that the block Gibbs sampling algorithm performs exceptionally well, yielding
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TABLE 2
ICF: Maximum likelihood estimate from iterative conditional fitting. BY1: Bayesian posterior mean
estimate for prior πU1,α1 . BY2: Bayesian posterior mean estimate for prior πU2,α2 . B̃Y1: Bayesian
posterior mean estimate for prior πU1,α1 with a different ordering. B̃Y2: Bayesian posterior mean

estimate for prior πU2,α2 with a different ordering

GAL11 GAL4 GAL80 GAL3 GAL7 GAL10 GAL1 GAL2 Method

GAL11 0.152 0.030 0 −0.052 0 0 0 −0.068 ICF
0.164 0.030 0 −0.050 0 0 0 −0.068 BY1
0.156 0.030 0 −0.052 0 0 0 −0.068 BY2
0.152 0.030 0 −0.051 0 0 0 −0.069 B̃Y1
0.155 0.030 0 −0.052 0 0 0 −0.070 B̃Y2

GAL4 0.128 0.040 0.042 0 0 0 0.030 ICF
0.142 0.040 0.041 0 0 0 0.027 BY1
0.133 0.041 0.042 0 0 0 0.028 BY2
0.128 0.039 0.040 0 0 0 0.026 B̃Y1
0.132 0.040 0.042 0 0 0 0.0278 B̃Y2

GAL80 0.223 0.082 0.197 0.198 0.239 0.227 ICF
0.237 0.072 0.193 0.194 0.235 0.216 BY1
0.232 0.076 0.199 0.2 0.243 0.223 BY2
0.224 0.076 0.197 0.197 0.240 0.218 B̃Y1
0.232 0.076 0.202 0.203 0.245 0.227 B̃Y2

GAL3 0.612 0.723 0.549 0.515 0.582 ICF
0.626 0.713 0.544 0.509 0.575 BY1
0.643 0.747 0.568 0.532 0.599 BY2
0.628 0.719 0.549 0.517 0.582 B̃Y1
0.667 0.749 0.574 0.531 0.605 B̃Y2

GAL7 3.422 2.593 2.768 2.540 ICF
3.462 2.584 2.756 2.533 BY1
3.588 2.682 2.866 2.636 BY2
3.541 2.588 2.761 2.532 B̃Y1
3.708 2.681 2.865 2.627 B̃Y2

GAL10 2.372 2.409 2.267 ICF
2.373 2.400 2.266 BY1
2.453 2.497 2.358 BY2
2.389 2.407 2.277 B̃Y1
2.473 2.489 2.356 B̃Y2

GAL1 2.890 2.502 ICF
2.961 2.501 BY1
3.086 2.604 BY2
2.969 2.496 B̃Y1
3.087 2.582 B̃Y2

GAL2 2.870 ICF
3.003 BY1
3.153 BY2
2.892 B̃Y1
3.005 B̃Y2
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FIG. 4. Hasse diagram for a homogeneous graph with 50 vertices.

estimates that approach the true mean in only a few thousand steps. The time taken
for running the algorithm is also provided in Table 3.

The diagnostics in Table 3 indicate that the block Gibbs sampling algorithm
performs exceptionally well, yielding estimates that approach the true mean in only
a few thousand steps. The time taken for running the algorithm is also provided in
Table 3.

7. Closing remarks. In this paper, we have proposed a theoretical framework
for Bayesian inference in covariance graph models. The main challenge was the
unexplored terrain of working with curved exponential families in the continuous
setting. A rich class of conjugate priors has been developed in this paper for co-
variance graph models where the underlying graph is decomposable.

We have been able to exploit the structure of the conjugate priors to develop a
block Gibbs sampler to effectively sample from the posterior distribution. A rig-
orous proof of convergence is also given. Comparison with other classes of priors
is also undertaken. We are able to compute the normalizing constant for homoge-

TABLE 3
Performance assessment of the Gibbs sampler in simulation example

Burn-in (B) Average (I) Time (seconds) Relative error

1000 1000 139.77 0.01748220
2000 1000 209.72 0.01240595
3000 1000 279.52 0.01300910
4000 1000 349.44 0.01142864
4000 3000 489.19 0.01246141
4000 5000 631.21 0.01081264
4000 7000 769.70 0.009244206
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neous graphs, thereby making Bayesian model selection possible in a tractable way
for this class of models. The Bayesian approach yields additional dividends, in the
sense that we can now carry out inference in covariance graph models, even when
the sample size n is less than the dimension p of the data, something which is oth-
erwise not generally possible in the maximum likelihood framework. Furthermore,
we thoroughly explore the theoretical properties of our class of conjugate priors.
In particular, in the homogeneous case, hyper-Markov properties and closed form
expressions for the expected value of the covariance matrix are established. Fur-
thermore, the usefulness of the methodology that is developed is illustrated through
examples. A couple of open problems are worth mentioning:

• What are the necessary conditions for the existence of the normalizing constant
for decomposable graphs?

• Does the hyper-Markov property for the class of priors developed in this paper
hold for decomposable graphs?

We conclude by noting that the use of the class of Wishart distributions introduced
in this paper for Bayesian inference, along with a detailed study of Bayes esti-
mators in this context, is clearly an important topic and is the focus of current
research.

APPENDIX

PROOF OF PROPOSITION 1. From the definition of N and L, it is easy to
verify that

(LN)ii = 1 ∀1 ≤ i ≤ m,

(LN)ij = 0 ∀1 ≤ i < j ≤ m.

Now, let i > j . It follows, by the definition of N, that

(LN)ij =
i∑

k=j

LikNkj

= Nij +
i−1∑

k=j+1

Lik

∑
τ∈A,τ1=k,τdim(τ )=j

(−1)dim(τ )−1Lτ + Lij

= Nij −
i−1∑

k=j+1

∑
τ∈A,τ1=k,τdim(τ )=j

(−1)dim(τ )LikLτ + Lij .

Note that any τ ′ ∈ A with τ ′
1 = i, τ ′

dim(τ ′) = j , dim(τ ′) > 2 can be uniquely ex-
pressed as τ ′ = (i,τ ), where j + 1 ≤ τ 1 ≤ i − 1, τdim(τ ) = j . Recall that, by defi-
nition, Lτ ′ = Liτ1Lτ . Also, if τ ′ ∈ A with τ ′

1 = i, τ ′
dim(τ ′) = j , dim(τ ′) = 2, then
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τ ′ = (i, j) and Lτ ′ = Lij . Hence,

(LN)ij = Nij − ∑
τ ′∈A,τ ′

1=i,τ ′
dim(τ ′)=j

(−1)dim(τ ′)−1Lτ ′

= Nij − Nij

= 0.

Hence, LN = I and thus L−1 = N . �

PROOF OF THEOREM 1. Let us simplify the integral by integrating out the
terms Dii , 1 ≤ i ≤ m:∫

e−(tr((LDLT )−1U)+∑m
i=1 αi logDii)/2 dLdD

=
∫

e−(tr(D−1(L−1U(LT )−1))+∑m
i=1 αi logDii)/2 dLdD

=
∫ m∏

i=1

e−(L−1U(LT )−1)ii/(2Dii)D
−αi/2
ii dD dL

=
∫ m∏

i=1

�(αi/2 − 1)2αi/2−1

((L−1U(LT )−1)ii)αi/2−1 dL

(assuming αi > 2 ∀i = 1,2, . . . ,m)

=
∫ m∏

i=1

�(αi/2 − 1)2αi/2−1

((L−1)i·U((L−1)i·)T )αi/2−1 dL. (∗∗)

In order to simplify this integral, we perform a change of measure by transforming
the nonzero elements of L to the corresponding elements of L−1. For convenience
and brevity, the notation L−1

ij is used in place of (L−1)ij . Now, note the following
facts.

1. Let L ∈ LG. From Proposition 1, for (i, j) ∈ E, i > j ,

L−1
ij = −Lij + f

(
(Luv)(u,v)∈E,j≤u<i,j≤v<u or u=i,j<v<i

)
,(A.1)

that is, L−1
ij + Lij is a function (f ) of Luv, (u, v) ∈ E,j ≤ u < i, j ≤ v <

u or u = i, j < v < i, such that f is zero when all its arguments are zero.
We use the above to show that L is a function of {L−1

uv }u>v,(u,v)∈E . Let i∗ =
min{i :Lij �= 0 for some j < i}. Let j∗ = max{j :Li∗j �= 0}. By (A.1) and the
definition of i∗ and j∗, we have Li∗j∗ = −L−1

i∗j∗ . We proceed by induction. Let
i > j , (i, j) ∈ E and suppose that the hypothesis is true for all (u, v) ∈ E,1 ≤
u < i, 1 ≤ v < u or u = i, j < v < i. Then,

Lij = −L−1
ij + f

(
(Luv)(u,v)∈E,j≤u<i,j≤v<u or u=i,j<v<i

)
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and, by the induction hypothesis, the right-hand side of the above equa-
tion is a function of {L−1

uv }u>v,(u,v)∈E . Hence, the matrix L is a function of
{L−1

uv }u>v,(u,v)∈E .
It follows that the transformation

{Lij }(i,j)∈E,i>j → {L−1
ij }(i,j)∈E,i>j

is a bijection and the absolute value of the Jacobian of this transformation is 1
since it is the determinant of a lower-triangular matrix with diagonal entries 1.

2. If x =
(

x1
x2

)
and U =

(
U11 U12
U21 U22

)
is a positive definite matrix, then

xT Ux = zT z + xT
2 (U22 − U21U

−1
11 U12)x2 ≥ xT

2 (U22 − U21U
−1
11 U12)x2,(A.2)

where z = U
1/2
11 x1 + U

−1/2
11 U12x2.

Hence, after transforming the nonzero entries of L to the corresponding entries of
L−1 and using (A.2) to eliminate the dependent entries of L−1 from the integrand,
we get ∫

e−(tr((LDLT )−1U)+∑m
i=1 αi logDii)/2 dLdD

=
∫ m∏

i=1

�(αi/2 − 1)2αi/2−1

((L−1)i·U((L−1)i·)T )αi/2−1 dL

≤ K

m∏
i=2

∫
R|N ≺(i)|

1(
(aT

i 1 )U∗
i

(ai

1

))αi/2−1 dai .

Here, K is a constant, U∗
i is an appropriate positive definite matrix and ai repre-

sents the independent entries in the ith row of L−1. By a suitable linear transfor-
mation bi of each of the ai , i = 2,3, . . . ,m, we get∫

e−(tr((LDLT )−1U)+∑m
i=1 αi logDii)/2 dLdD

≤ K∗
m∏

i=2

∫
R|N ≺(i)|

1

(bT b + u∗∗
i )αi/2−1 dbi .

Here, K∗ and u∗∗
i , i = 2,3, . . . ,m, are constants. Using the standard fact that∫

Rk

1

(xT x + 1)γ
dx < ∞ if γ >

k

2
,

we conclude that∫
e−(tr((LDLT )−1U)+∑m

i=1 αi logDii)/2 dLdD < ∞
if αi > |N ≺(i)| + 2 for all i = 1,2, . . . ,m. �
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