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KERNEL ESTIMATORS OF ASYMPTOTIC VARIANCE FOR
ADAPTIVE MARKOV CHAIN MONTE CARLO1

BY YVES F. ATCHADÉ

University of Michigan

We study the asymptotic behavior of kernel estimators of asymptotic
variances (or long-run variances) for a class of adaptive Markov chains. The
convergence is studied both in Lp and almost surely. The results also apply
to Markov chains and improve on the existing literature by imposing weaker
conditions. We illustrate the results with applications to the GARCH(1,1)

Markov model and to an adaptive MCMC algorithm for Bayesian logistic
regression.

1. Introduction. Adaptive Markov chain Monte Carlo (adaptive MCMC)
provides a flexible framework for optimizing MCMC samplers on the fly (see, e.g.,
[3, 8, 27] and the reference therein). If π is the probability measure of interest, then
these adaptive MCMC samplers generate random processes {Xn,n ≥ 0} that typi-
cally are not Markov, but they nevertheless satisfy a law of large numbers and the
empirical average n−1 ∑n

k=1 h(Xk) provides a consistent estimate of the integral

π(h)
def= E(h(X)), X ∼ π . A measure of uncertainty in approximating π(h) by the

random variable n−1 ∑n
k=1 h(Xk) is given by the variance Var(n−1/2 ∑n

k=1 h(Xk)).

In particular, the asymptotic variance σ 2(h)
def= limn→∞ Var(n−1/2 ∑n

k=1 h(Xk))

(also known as the long-run variance) plays a fundamental role in assessing the
performances of Monte Carlo simulations. But the problem of estimating asymp-
totic variances for adaptive MCMC samplers has not been addressed in the litera-
ture.

We study kernel estimators of asymptotic variances for a general class of adap-
tive Markov chains. These adaptive Markov chains (the precise definition is given
in Section 2 below), which include Markov chains, constitute a theoretical frame-
work for analyzing adaptive MCMC algorithms. More precisely, if {Xn,n ≥ 0} is
an adaptive Markov chain and h : X → R a function of interest, then we consider
estimators of the form

�2
n(h) =

n∑
k=−n

w(kb)γn(k),
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where γn(k) = γn(k;h) is the kth order sample autocovariance of {h(Xn), n ≥ 0},
w : R → R is a kernel with support [−1,1] and b = bn is the bandwidth. These
are well-known methods pioneered by M. S. Bartlett, M. Rosenblatt, E. Parzen
and others (see, e.g., [26] for more details). But, with a few notable exceptions in
the econometrics literature (see references below), these estimators have mostly
been studied with the assumption of stationarity. Thus, more broadly, this paper
contributes to the literature on the behavior of kernel estimators of asymptotic
variances for ergodic nonstationary processes.

It turns out that, in general, the asymptotic variance σ 2(h) does not char-
acterize the limiting distribution of n−1/2 ∑n

k=1(h(Xk) − π(h)) as, for exam-
ple, with ergodic Markov chains. For adaptive Markov chains, we show that
n−1/2 ∑n

k=1(h(Xk) − π(h)) converges weakly to a mixture of normal distribu-
tions of the form

√
�2(h)Z for some mixing random variable �2(h), where Z is

a standard normal random variable independent of �2(h). Under a geometric drift
stability condition on the adaptive Markov chain and some verifiable conditions
on the kernel w and the bandwidth bn, we prove that the kernel estimator �2

n(h)

converges to �2(h) in Lp-norm, p > 1, and almost surely. For Markov chains,
�2(h) coincides with σ 2(h), the asymptotic variance of h. Another important spe-
cial case where we have �2(h) = σ 2(h) is the one where the adaptation parameter
converges to a deterministic limit as, for instance, with the adaptive Metropolis
algorithm of [17]. The general case where �2(h) is random poses some new dif-
ficulties to Monte Carlo error assessment in adaptive MCMC that we discuss in
Section 4.3.

We derive the rate of convergence for �2
n(h), which suggests selecting the band-

width to be bn ∝ n−(2/3)(1−0.5∨(1/p)). When p = 2 is admissible, we obtain the
bandwidth bn ∝ n−1/3, as in [16].

The problem of estimating asymptotic variances is well known in MCMC and
Monte Carlo simulation in general. Besides the estimator described above, sev-
eral other methods have been proposed, including batch means, overlapping batch
means and regenerative simulation ([12, 13, 16, 24]). For the asymptotics of ker-
nel estimators, the important work of [16] proves the L2-consistency and strong
consistency of kernel estimators for Markov chains under the assumption of ge-
ometric ergodicity and E(|h(X)|4+ε) < ∞, X ∼ π , for some ε > 0. We weaken
these moment conditions to E(|h(X)|2+ε) < ∞.

Estimating asymptotic variances is also a well-known problem in econometrics
and time series modeling. For example, if β̂n is the ordinary least-squares estimator
of β in the simple linear model yi = α + βxi + ui, i = 1, . . . , n, where {uk, k ≥ 1}
is a dependent noise process, then, under some mild conditions on the sequence
{xi} and on the noise process,

√
n(β̂n − β) converges weakly to a normal distribu-

tion N (0, σ 2/c2), where

σ 2 = lim
n→∞ Var

(
n−1/2

n∑
k=1

uk

)
, c2 = lim

n→∞n−1
n∑

k=1

(xi − x̄n)
2, x̄n = n−1

n∑
k=1

xk.
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Therefore, a valid inference on β requires the estimation of the asymptotic vari-
ance σ 2. The multivariate version of this problem involves estimating the so-called
heteroskedasticity and autocorrelation (HAC) matrices. Several authors have stud-
ied the kernel estimation of HAC matrices and attention has been paid to nonsta-
tionarity under various mixing assumptions or mixingale-type assumptions ([1, 14,
15, 19]). But these results require mixing conditions that do not hold in the present
setup.

On a more technical note, the proof of our main results (Theorems 4.1–4.3) is
based on a martingale approximation approach adapted from [29]. The crux of the
argument consists in approximating the periodogram of the adaptive Markov chain
by a quadratic form of a martingale difference process which is then treated as a
martingale array. As part of the proof, we develop a strong law of large numbers for
martingale arrays which may also be of some independent interest. The approach
taken here thus differs from the almost sure strong approximation approach taken
in [13, 16].

The paper is organized as follows. In Section 2, we define the class of adaptive
Markov chains that will be studied. In Section 3, we give a general central limit
theorem for adaptive Markov chains that sets the stage to better understand the
limiting behavior of the kernel estimator �2

n(h). In Section 4, we state the assump-
tions and the main results of the paper. We also discuss some practical implications
of these theoretical results. The proofs are postponed to Section 6 and to the sup-
plementary paper [5]. Section 5 presents applications to generalized autoregressive
conditional heteroscedastic (GARCH) processes and to a Bayesian analysis of lo-
gistic regression.

We end this introduction with some general notation that will be used through-
out the paper. For a Markov kernel Q on a measurable space (Y, A), say, we
denote by Qn, n ≥ 0, its nth iterate. Any such Markov kernel Q acts both on

bounded measurable functions f and on σ -finite measures μ, as in Qf (·) def=∫
Q(·, dy)f (y) and μQ(·) def= ∫

μ(dx)Q(x, ·). If W : Y → [1,+∞) is a function,

then the W -norm of a function f : Y → R is defined as |f |W def= supY |f |/W . The
set of measurable functions f : Y → R with finite W -norm is denoted by LW .
Similarly, if μ is a signed measure on (Y, A), then the W -norm of μ is defined

as ‖μ‖W
def= sup{g,|g|W ≤1} |μ(g)|, where μ(g)

def= ∫
g(y)μ(dy). If ν is a σ -finite

measure on (Y, A) and q ≥ 1, we denote by Lq(ν) the space of all measurable
functions f : (Y, A) → R such that ν(|f |q) < ∞. Finally, for a, b ∈ R, we define
a ∧ b = min(a, b) and a ∨ b = max(a, b).

2. Adaptive Markov chains. Let (X, X ) be a measure state space measure
space endowed with a countably generated σ -field X . Let (
, B(
)) be a mea-
sure space. In practice, we will take 
 to be a compact subspace of R

q , the q-
dimensional Euclidean space. Let {Pθ , θ ∈ 
} be a family of Markov transition
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kernels on (X, X ) such that for any (x,A) ∈ X × X , θ → Pθ(x,A) is measurable.
Let π be a probability measure on (X, X ). We assume that for each θ ∈ 
, Pθ

admits π as its invariant distribution.
The stochastic processes of interest in this work are defined as follows. Let

� = (X × 
)∞ be the product space equipped with its product σ -algebra F and
let μ̄ be a probability measure on (X × 
, X × B(
)). Let Pμ̄ be the probability
measure on (�, F ) with associated expectation operator Eμ̄, associated process
{(Xn, θn), n ≥ 0} and associated natural filtration {Fn, n ≥ 0}, with the follow-
ing properties: (X0, θ0) ∼ μ̄ and, for each n ≥ 0 and any nonnegative measurable
function f : X → R,

Eμ̄(f (Xn+1)|Fn) = Pθnf (Xn) =
∫

Pθn(Xn, dy)f (y), Pμ̄-a.s.(2.1)

We call the X-marginal process {Xn,n ≥ 0} an adaptive Markov chain. In this def-
inition, we have left the adaptation dynamics (i.e., the conditional distribution of
θn+1 given Fn and Xn+1) unspecified. This can be done in many different ways
(see, e.g., [27]). But it is well known, as we will see later, that the adaptation dy-
namics needs to be diminishing in order for the adaptive Markov chain to maintain
π as its limiting distribution.

The simplest example of an adaptive Markov chain is the case where θn ≡ θ̄ ∈

 for all n ≥ 0. Then {Xn,n ≥ 0} is a Markov chain with transition kernel Pθ̄ .
In other words, our analysis also applies to Markov chains and, in particular, to
Markov chain Monte Carlo.

EXAMPLE 2.1. To illustrate the definitions and, later, the results, we present a
version of the adaptive Metropolis algorithm of [17]. We take X = R

d equipped
with its Euclidean norm and inner product, denoted by | · | and 〈·, ·〉, respec-
tively. Let π be a positive, possibly unnormalized, density (with respect to the
Lebesgue measure). We construct the parameter space 
 as follows. We equip
the set M+ of all d-dimensional symmetric positive semidefinite matrices with

the Frobenius norm |A| def= √
Tr(AT A) and inner product 〈A,B〉 = Tr(AT B). For

r > 0, let 
+(r) be the compact subset of elements A ∈ M+ such that |A| ≤ r .
Let 
μ(r) be the ball centered at 0 and with radius r in R

d . We then define



def= 
μ(r1) × 
+(r2) for some constants r1, r2 > 0.
We introduce the functions μ : Rd → 
μ(r1) and + : M+ → 
+(r2), de-

fined as follows. For v ∈ 
μ(r1), μ(v) = v and for v /∈ 
μ(r1), μ(v) = M
|v|v.

Similarly, for � ∈ 
+(r2), +(�) = � and for � /∈ 
+(r2), +(�) = M
|�|�.

For θ = (μ,�) ∈ 
, let Pθ be the transition kernel of the random walk Metropo-
lis (RWM) algorithm with proposal kernel N (x, 2.382

d
� + εId) and target distribu-

tion π . The adaptive Metropolis algorithm works as follows.

ALGORITHM 2.1. Initialization: Choose X0 ∈ R
d , (μ0,�0) ∈ 
. Let {γn} be

a sequence of positive numbers (we use γn = n−0.7 in the simulations).
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Iteration: Given (Xn,μn,�n):

(1) generate Yn+1 ∼ N (Xn,
2.382

d
�n + εId); with probability αn+1 = α(Xn,

Yn+1), set Xn+1 = Yn+1 and with probability 1 − αn+1, set Xn+1 = Xn;
(2) set

μn+1 = μ

(
μn + (n + 1)−1(Xn+1 − μn)

)
,(2.2)

�n+1 = +
(
�n + (n + 1)−1(

(Xn+1 − μn)(Xn+1 − μn)
T − �n

))
.(2.3)

Thus, given Fn = σ {Xk,μk,�k, k ≤ n}, Xn+1 ∼ Pθn(Xn, ·), where Pθn is
the Markov kernel of the random walk Metropolis with target π and proposal

N (x, 2.382

d
�n +εId). So, this algorithm generates a random process {(Xn, θn), n ≥

0} that is an adaptive Markov chain, as defined above. Here, the adaptation dynam-
ics is given by (2.2) and (2.3).

Throughout the paper, we fix the initial measure of the process to some arbitrary
measure μ̄ and simply write E and P for Eμ̄ and Pμ̄, respectively. We impose the
following geometric ergodicity assumption.

A1: For each θ ∈ 
, Pθ is phi-irreducible and aperiodic with invariant distri-
bution π . There exists a measurable function V : X → [1,∞) with

∫
V (x)μ̄(dx,

dθ) < ∞ such that for any β ∈ (0,1], there exist ρ ∈ (0,1), C ∈ (0,∞) such that
for any (x, θ) ∈ X × 
,

‖P n
θ (x, ·) − π(·)‖V β ≤ CρnV β(x), n ≥ 0.(2.4)

Furthermore, there exist constants b ∈ (0,∞), λ ∈ (0,1) such that for any (x, θ) ∈
X × 
,

PθV (x) ≤ λV (x) + b.(2.5)

Condition (2.4) is a standard geometric ergodicity assumption. We impose (2.5)
in order to control the moments of the adaptive process. Condition (2.5) is probably
redundant since geometric ergodicity intuitively implies a drift behavior of the
form (2.5). But this is rarely an issue because both (2.4) and (2.5) are implied by
the following minorization and drift conditions.

DR: Uniformly for θ ∈ 
, there exist C ∈ X , ν a probability measure on (X, X ),
b, ε > 0 and λ ∈ (0,1) such that ν(C) > 0, Pθ(x, ·) ≥ εν(·)1C (x) and

PθV ≤ λV + b1C .(2.6)

This assertion follows from Theorem 1.1 of [10]. DR is known to hold for many
Markov kernels used in MCMC simulation (see, e.g., [16] for some references).
Either drift condition (2.5) or (2.6) implies that π(V ) < ∞ ([22], Theorem 14.3.7).
Therefore, under A1, if f ∈ LV β for some β ∈ [0,1], then f ∈ L1/β(π). Finally,
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we note that under A1, a law of large numbers can be established for the adaptive
chain (see, e.g., [7]). A short proof is provided here for completeness.

To state the law of large numbers, we need the following pseudo-metric on 
.
For β ∈ [0,1], θ, θ ′ ∈ 
, set

Dβ(θ, θ ′) def= sup
|f |

V β ≤1
sup
x∈X

|Pθf (x) − Pθ ′f (x)|
V β(x)

.

PROPOSITION 2.1. Assume A1. Let β ∈ [0,1) and {hθ ∈ LV β , θ ∈ 
} be
a family of functions such that π(hθ ) = 0, (x, θ) → hθ(x) is measurable and
supθ∈
 |hθ |V β < ∞. Suppose also that∑

k≥1

k−1(
Dβ(θk, θk−1) + |hθk

− hθk−1 |V β

)
V β(Xk) < ∞, P-a.s.(2.7)

Then n−1 ∑n
k=1 hθk−1(Xk) converges almost surely (P) to zero.

PROOF. See Section 6.1. �

3. A central limit theorem. Central limit theorems are useful in assessing
Monte Carlo errors. Several papers have studied central limit theorems for adaptive
MCMC ([2, 7, 28]). The next proposition is adapted from [6]. For h ∈ LV , we
introduce the resolvent functions

gθ (x)
def= ∑

j≥0

P̄
j
θ h(x),

where P̄θ
def= Pθ − π . The dependence of gθ on h is omitted for notational

convenience. We also define Gθ(x, y) = gθ (y) − Pθgθ (x), where Pθgθ (x)
def=∫

Pθ(x, dz)gθ (z). Whenever gθ is well defined, it satisfies the so-called Poisson
equation

h(x) = gθ (x) − P̄θgθ (x).(3.1)

PROPOSITION 3.1. Assume A1. Let β ∈ [0,1/2) and h ∈ LV β be such that
π(h) = 0. Suppose that there exists a nonnegative random variable �2(h), finite
P-a.s., such that

lim
n→∞

1

n

n∑
k=1

G2
θk−1

(Xk−1,Xk) = �2(h) in P-probability.(3.2)

Suppose also that∑
k≥1

k−1/2Dβ(θk, θk−1)V
β(Xk) < ∞, P-a.s.(3.3)

Then n−1/2 ∑n
k=1 h(Xk) converges weakly to a random variable

√
�2(h)Z, where

Z ∼ N (0,1) is a standard normal random variable independent of �2(h).
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PROOF. See Section 6.2. �

Condition (3.3), which strengthens (2.7), is a diminishing adaptation condition
and is not hard to check in general. It follows from the following assumption which
is much easier to check in practice.

A2: There exist η ∈ [0,1/2) and a nonincreasing sequence of positive numbers
{γn,n ≥ 1}, γn = O(n−α), α > 1/2, such that for any β ∈ [0,1], there exists a
finite constant C such that

Dβ(θn−1, θn) ≤ CγnV
η(Xn), P-a.s.(3.4)

[2] establishes A2 for the random walk Metropolis and the independence sampler.
A similar result is obtained for the Metropolis adjusted Langevin algorithm in [4].
The constant η in A2 reflects the additional fluctuations due to the adaptation.
For example, for a Metropolis algorithm with adaptation driven by a stochastic ap-
proximation of the form θn+1 = θn +γnH(θn,Xn+1), η is any nonnegative number
such that supθ∈
 |H(θ, ·)|V η < ∞.

PROPOSITION 3.2. Under A1–A2, (3.3) holds.

PROOF. Under A2, the left-hand side of (3.3) is bounded almost surely by
C

∑
k≥1 k−1/2γkV

η+β(Xk), the expectation of which is bounded by the term
C

∑
k≥1 k−1/2γk according to Lemma A.1(a), assuming A1. Since α > 1/2, we

conclude that (3.3) holds. �

Equation (3.2) is also a natural assumption. Indeed, in most adaptive MCMC
algorithms, we seek to find the “best” Markov kernel from the family {Pθ , θ ∈ 
}
to sample from π . Thus, it is often the case that θn converges to some limit θ�, say
(see, e.g., [2, 3, 6, 9]). In these cases, (3.2) actually holds.

PROPOSITION 3.3. Assume A1–A2. Let β ∈ [0, (1 − η)/2), where η is as in
A2, and let h ∈ LV β be such that π(h) = 0. Suppose that there exists a 
-valued
random variable θ� such that Dβ(θn, θ�)+D2β(θn, θ�) converges in probability to
zero. Then (3.2) holds. Furthermore,

�2(h) =
∫

X×X
π(dx)Pθ�(x, dy)G2

θ�
(x, y).

PROOF. See Section 6.3. �

DEFINITION 3.1. We call the random variable �2(h) the asymptotic average

squared variation of h and σ 2(h)
def= E(�2(h)) the asymptotic variance of h.

This definition is justified by the following result.
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PROPOSITION 3.4. Assume A1–A2. Let β ∈ [0,1/2) and h ∈ LV β be such
that π(h) = 0. Assume that (3.2) holds. Then

lim
n→∞ Var

(
n−1/2

n∑
k=1

h(Xk)

)
= σ 2(h).

PROOF. See Section 6.4. �

4. Asymptotic variance estimation. Denote by πn(h) = n−1 ∑n
k=1 h(Xk)

the sample mean of h(Xk) and denote by γn(k) the sample autocovariance:
γn(k) = 0 for |k| ≥ n, γn(−k) = γn(k) and for 0 ≤ k < n,

γn(k) = 1

n

n−k∑
j=1

(
h(Xj ) − πn(h)

)(
h(Xj+k) − πn(h)

)
.

Let w : R → R be a function with support [−1,1] [w(x) = 0 for |x| ≥ 1]. We
assume that w satisfies the following.

A3. The function w is even [w(−x) = w(x)] and w(0) = 1. Moreover, the
restriction w : [0,1] → R is twice continuously differentiable.

Typical examples of kernels that satisfy A3 include, among others, the family
of kernels

w(x) =
{

1 − |x|q, if |x| ≤ 1,
0, if |x| > 1,

(4.1)

for q ≥ 1. The case q = 1 corresponds to the Bartlett kernel. A3 is also satisfied
by the Parzen kernel

w(x) =
⎧⎪⎨
⎪⎩

1 − 6x2 + 6|x|3, if |x| ≤ 1
2 ,

2(1 − |x|)3, if 1
2 ≤ |x| ≤ 1,

0, if |x| > 1.

(4.2)

Our analysis does not cover nontruncated kernels such as the quadratic spectral
kernel. But truncated kernels have the advantage of being computationally more
efficient.

Let {bn,n ≥ 1} be a nonincreasing sequence of positive numbers such that

b−1
n = O(n1/2) and |bn − bn−1| = O(bnn

−1) as n → ∞.(4.3)

We consider the class of kernel estimator of the form

�2
n(h) =

n∑
k=−n

w(kbn)γn(k) =
b−1
n −1∑

k=−b−1
n +1

w(kbn)γn(k).(4.4)

The following is the main Lp-convergence result.
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THEOREM 4.1. Assume A1–A3. Let β ∈ (0,1/2 − η) and h ∈ LV β , where η

is as in A2. Then

�2
n(h) = 1

n

n∑
k=1

G2
θk−1

(Xk−1,Xk) + Qn + Dn + εn, n ≥ 1.(4.5)

The random process {(Qn,Dn, εn), n ≥ 1} is such that for any p > 1 such that
2p(β + η) ≤ 1, there exists a finite constant C such that

E(|Qn|p) ≤ C
(
bn + n−αb−1+α

n + n−1+(1/2)∨(1/p)b−1/2
n

)p
,

(4.6)
E(|Dn|p) ≤ Cbp

n and E(|εn|p) ≤ C(n−1b−1
n )p.

In particular, if limn→∞ n−1+(1/2)∨(1/p)b
−1/2
n = 0, then

�2
n(h) − 1

n

n∑
k=1

G2
θk−1

(Xk−1,Xk)

converges to zero in Lp .

PROOF. The proof is given in the supplementary article [5]. �

REMARK 4.1. In Theorem 4.1, we can always take p = 1/(2(β + η)) > 1.
In this case, the condition limn→∞ n−1+(1/2)∨(1/p)b

−1/2
n = 0 translates to 0.5 ∨

(2(β + η)) + 0.5δ < 1. Therefore, if β + η is close to 1/2, we need to choose δ

small. This remark implies that in applying the above result, one should always try
to find the smallest possible β such that h ∈ LV β .

It can be easily checked that the choice of bandwidth bn ∝ n−δ with δ = 2
3(1 −

0.5 ∨ (2(β + η))) always satisfies Theorem 4.1. In fact, we will see in Section 4.2
that this choice of bn is optimal in the Lp-norm, p = (2(β + η))−1.

It is possible to investigate more carefully the rate of convergence of �2
n(h)

in Theorem 4.1. Indeed, consider the typical case where p = 2 is admissible
and we have α = 1. If we choose bn such that bn = o(n−1/3) and n−1 = o(bn),

then the slowest term in (4.6) is n−1+(1/2)∨(1/p)b
−1/2
n = (nbn)

−1/2. By inspect-
ing the proof of Theorem 4.1, the only term whose Lp-norm enjoys such rate
n−1+(1/2)∨(1/p)b

−1/2
n is

Q(1)
n = 2n−1

n∑
j=2

Z
(1)
n,jGθj−1(Xj−1,Xj ),

where

Z
(1)
n,j =

j−1∑
�=1

w
(
(j − �)bn

)
Gθ�−1(X�−1,X�).

Now, {(Q(1)
n , Fn), n ≥ 2} is a martingale array and we conjecture that as n → ∞,

(nbn)
1/2

(
�2

n(h) − 1

n

n∑
k=1

G2
θk−1

(Xk−1,Xk)

)
w→ N (0,�2),
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at least in the special case where θn converges to a deterministic limit. But we do
not pursue this further since the issue of a central limit theorem for �2

n(h) is less
relevant for Monte Carlo simulation.

When {Xn,n ≥ 0} is a Markov chain, Theorem 4.1 improves on [16], as it im-
poses weaker moment conditions. Almost sure convergence is often more desirable
in Monte Carlo settings, but typically requires stronger assumptions. One can im-
pose either more restrictive growth conditions on h (which translates into stronger
moment conditions, as in [16]) or one can impose stronger smoothness conditions
on the function w. We prove both types of results.

THEOREM 4.2. Assume A1–A3 with η < 1/4, where η is as in A2. Let β ∈
(0,1/4−η) and h ∈ LV β . Suppose that bn ∝ n−δ , where δ ∈ (2(β +η),1/2). Then

lim
n→∞

(
�2

n(h) − 1

n

n∑
k=1

G2
θk−1

(Xk−1,Xk)

)
= 0

almost surely.

PROOF. The proof is given in the supplementary article [5]. �

We can remove the growth condition h ∈ LV β , 0 < β < 0.25 − η, and the con-
straint on bn in Theorem 4.2 if we are willing to impose a stronger smoothness
condition on w. To do so, we replace A3 with A4.

A4: The function w is even [w(−x) = w(x)] and w(0) = 1. Moreover, the
restriction w : [0,1] → R is (r + 1)-times continuously differentiable for some
r ≥ 2.

THEOREM 4.3. Assume A1–A2 and A4. Let β ∈ (0,1/2 − η) and h ∈ LV β ,
where η is as in A2. Let p > 1 be such that 2p(β + η) ≤ 1. Suppose, in addition,
that ∑

n≥1

(n−1b−1
n )p < ∞,

∑
n≥1

(n−2b−1
n )1∧(p/2) < ∞,

(4.7) ∑
n≥1

n−2+(1/2)∨(1/p)b−1/2
n < ∞ and

∑
n≥1

b(r−1)p
n < ∞.

The conclusion of Theorem 4.2 then holds.

PROOF. The proof is given in the supplementary article [5]. �

REMARK 4.2. Not all kernels used in practice will satisfy A4. For instance,
A4 holds for kernels in the family (4.1) but fails to hold for the Parzen kernel (4.2).

In Theorem 4.3, we can again choose bn ∝ n−δ , where δ = 2
3(1 − 0.5 ∨ (2(β +

η))). It is easy to check that if A4 holds with r > 1 + 2(β + η)δ−1 and we take
p = (2(β + η))−1, then this choice of bn satisfies (4.7).
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In the next corollary, we consider the Markov chain case.

COROLLARY 4.1. Suppose that {Xn,n ≥ 0} is a phi-irreducible, aperiodic
Markov chain with transition kernel P and invariant distribution π . Assume
that P satisfies A1. Let β ∈ (0,1/2) and h ∈ LV β . Then σ 2(h) := π(h2) +
2

∑
j≥1 π(hP jh) is finite. Assume A3 and take bn ∝ n−δ with δ = 2

3(1 − 0.5 ∨
(2β)). Then

lim
n→∞�2

n(h) = σ 2(h) in L(2β)−1
.

Supposing, in addition, that β ∈ (0,1/4) and δ ∈ (2β,1/2), or that A4 holds with
r > 1 + 2βδ−1, then the convergence holds almost surely (P) as well.

4.1. Application to the adaptive Metropolis algorithm. We shall now apply the
above result to the adaptive Metropolis algorithm described in Example 2.1. We
continue to use the notation established in that example. We recall that X = R

d ,

 = 
μ(r1) × 
+(r2), where 
μ(r1) is the ball in X with center 0 and radius
r1 > 0 and 
+(r2) is the set of all symmetric positive semidefinite matrices A

with |A| ≤ r2. Define �(x) = logπ(x). We assume that:

B1: π is positive and continuously differentiable,

lim|x|→∞

〈
x

|x| ,∇�(x)

〉
= −∞

and

lim|x|→∞

〈
x

|x| ,
∇�(x)

|∇�(x)|
〉
< 0,

where ∇� is the gradient of �.

B1 is known to imply A1 with V (x) = (supx∈X πζ (x))π−ζ (x), for any ζ ∈
(0,1) ([2, 20]). We denote by μ� and �� the mean and covariance matrix of π , re-
spectively. We assume that (μ�,��) ∈ 
, which can always be achieved by taking
r1, r2 large enough.

By Lemma 12 of [2], for any β ∈ (0,1],
Dβ(θn, θn−1) ≤ C|�n − �n−1| ≤ γnV

η(Xn)(4.8)

for any η > 0. Thus, A2 holds and η can be taken to be arbitrarily small. We can
now summarize Proposition 3.1 and Theorems 4.1–4.3 for the random Metropolis
algorithm. We focus here on the choice of bandwidth bn ∝ n−δ , where δ = 2

3(1 −
0.5 ∨ (2β)), but similar conclusions can be derived from the theorems for other
bandwidths.

PROPOSITION 4.1. Assume B1, let V (x) = (supx∈X πζ (x))π−ζ (x) for ζ ∈
(0,1) and suppose that (μ�,��) ∈ 
. Then θn = (μn,�n) converges in probability
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to θ� = (μ�,��). Let β ∈ (0,1/2) and h ∈ LV β .

1. n−1/2 ∑n
k=1 h(Xk) converges weakly to N (π(h), σ 2

� (h)) as n → ∞, where

σ 2
� (h) = π(h2) + 2

∑
j≥1 π(hP

j
θ�

h) and θ� = �� + εId .

2. Suppose that A3 holds and we choose bn ∝ n−δ , δ = 2
3(1 − 0.5 ∨ (2β)).

Then �2
n(h) converges to σ 2

� (h) in Lp for p = (2β)−1. If we additionally suppose
that β ∈ (0,1/4) and δ ∈ (2β,1/2), or that A4 holds with r > 1 + 2βδ−1, then the
convergence of �2

n(h) holds almost surely (P) as well.

4.2. Choosing the bandwidth bn. Consider Theorem 4.1. Suppose that α ≥
2/3 and that we take bn ∝ n−δ for some δ ∈ (0,1/2]. Then n−αb−1+α

n = O(n−1/2).
Similarly, n−1b−1

n = O(n−1/2). Thus, the Lp-rate of convergence of �2
n(h) is

driven by bn and n−1+(1/2)∨(1/p)b
−1/2
n , and we deduce from equating these two

terms that the optimal choice of bn is given by bn ∝ n−δ for δ = 2
3(1 − 1

2 ∨ 1
p
).

Equation (4.6) then gives that

E
1/p

(∣∣∣∣∣�2
n(h) − 1

n

n∑
k=1

G2
θk−1

(Xk−1,Xk)

∣∣∣∣∣
p)

≤ Cn−δ.

In particular, if 4(β + η) ≤ 1 (and α ≥ 2/3), we can take p = 2 and then δ = 1/3,

which leads to

E
1/2

(∣∣∣∣∣�2
n(h) − 1

n

n∑
k=1

G2
θk−1

(Xk−1,Xk)

∣∣∣∣∣
2)

≤ Cn−1/3.

The same L2-rate of convergence was also derived in [16].
Even with bn = 1

cn1/3 , the estimator is still very sensitive to the choice of c.
Choosing c is a difficult issue where more research is needed. Here, we follow a
data-driven approach adapted from [1] and [25]. In this approach, we take bn =

1
cn1/3 , where

c = c0

{
2

∑m
�=1 �ρ̂�

1 + 2
∑m

�=1 ρ̂�

}1/3

for some constants c0 and m, where ρ̂� is the �th order sample autocorrelation
of {h(Xn), n ≥ 0}. [25] suggests choosing m = n2/9. Our simulation results show
that small values of c0 yield small variances but high biases, and inversely for
large values of c0. The value c0 also depends on how fast the autocorrelation of
the process decays. [25] derives some theoretical results on the consistency of
this procedure in the stationary case. Whether these results hold in the present
nonstationary case is an open question.
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4.3. Discussion. The above results raise a number of issues. On one hand, we
note from Theorems 4.1–4.3 that the kernel estimator �2

n(h) does not converge to
the asymptotic variance σ 2(h), but rather to the asymptotic average squared varia-
tion �2(h). On the other hand, Proposition 3.1 shows that although the asymptotic
variance σ 2(h) controls the fluctuations of n−1/2 ∑k

k=1 h(Xk) as n → ∞, the limit-
ing distribution of n−1/2 ∑k

k=1 h(Xk) is not the Gaussian N (0, σ 2(h)), but instead
a mixture of Gaussian distribution of the form

√
�2(h)Z. With these conditions,

how can one undertake a valid error assessment from adaptive MCMC samplers?
If the adaptation parameter θn converges to a deterministic limit θ�, then one

gets a situation similar to that of Markov chains. This is the ideal case. Indeed,
in such cases, �2(h) ≡ σ 2(h), n−1/2 ∑n

k=1 h(Xk) converges weakly to a random
variable N (0, σ 2(h)) and the kernel estimator �2

n(h) converges to the asymptotic
variance σ 2(h), where

σ 2(h) =
∫

X×X
π(dx)Pθ�(x, dy)G2

θ�
(x, y) = π(h2) + 2

∑
j≥1

π(hP
j
θ�

h).

This case includes the adaptive Metropolis algorithm of [17], as discussed in Sec-
tion 4.1.

However, in some other cases (see, e.g., [2, 7]), what one can actually prove
is that θn → θ�, where θ� is a discrete random variable with values in a subset
{τ1, τ2, . . . , τN }, say, of 
. This is typically the case when the adaptation is driven
by a stochastic approximation θn+1 = θn + γnH(θn,Xn+1), where the mean field

equation h(θ)
def= ∫

X H(θ, x)π(dx) = 0 has multiple solutions.
In these cases, �2

n(h) clearly provides a poor estimate for σ 2(h), even though it
is not hard to see that

lim
n→∞ E(�2

n(h)) = E(�2(h)) = σ 2(h).

Furthermore, a confidence interval for π(h) becomes difficult to build. Indeed, the
asymptotic distribution n−1/2 ∑n

k=1 h(Xk) is a mixture∑
k≥1

pk N (0, σk),

where pk
def= P(θ� = τk) and σ 2

k (h) = π(h2) + 2
∑

j≥1 π(hP
j
τkh). As a conse-

quence, a valid confidence interval for π(h) requires the knowledge of the mixing
distribution pk and the asymptotic variances σ 2

k (h), which is much more than one
can obtain from �2

n(h). It is possible to improve on the estimation of σ 2(h) by run-
ning multiple chains, but this takes away some of the advantages of the adaptive
MCMC framework.

In view of this discussion, when Monte Carlo error assessment is important, it
seems that the framework of adaptive MCMC is most useful when the adaptation
mechanism is such that there exists a unique, well-defined, optimal kernel Pθ� that
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the algorithm converges to. This is the case, for example, with the popular adaptive
RWM of [17] discussed above and its extension to the MALA (Metropolis adjusted
Langevin algorithm; see, e.g., [4]).

5. Examples.

5.1. The GARCH(1,1) model. To illustrate the above results in the Markov
chain case, we consider the linear GARCH(1,1) model defined as follows: h0 ∈
(0,∞), u0 ∼ N (0, h0) and, for n ≥ 1,

un = h1/2
n εn,

hn = ω + βhn−1 + αu2
n−1,

where {εn, n ≥ 0} is i.i.d. N (0,1) and ω > 0, α ≥ 0, β ≥ 0. We assume that α,β

satisfy the following.

E1: There exists ν > 0 such that

E[(β + αZ2)ν] < 1, Z ∼ N (0,1).(5.1)

It is shown by [21], Theorem 2, that under (5.1), the joint process {(un,hn), n ≥
0} is a phi-irreducible aperiodic Markov chain that admits an invariant distribu-
tion and is geometrically ergodic with a drift function V (u,h) = 1 + hν + |u|2ν .
Therefore, A1 holds and we can apply Corollary 4.1. We write Eπ to denote ex-
pectation taken under the stationary measure. We are interested in the asymptotic
variance of the functions h(u) = u2. We can calculate the exact value. Define

ρn
def= Corrπ(u2

0, u
2
n). As observed by [11] in introducing the GARCH models, if

(5.1) hold with some ν ≥ 2, then

ρ1 = α(1 − αβ − β2)

1 − 2αβ − β2 , ρn = ρ1(α + β)n−1, n ≥ 2.

Also,

Varπ(u2
0) = 3ω2(1 + α + β)

(1 − α − β)(1 − β2 − 2αβ − 3α2)
−

(
ω

1 − α − β

)2

and we obtain

σ 2(h) = Varπ(u2
0)

(
1 + 2

ρ1

1 − α − β

)
.

For the simulations, we set ω = 1, α = 0.1, β = 0.7, which gives σ 2(h) =
119.1. For these values, (5.1) holds with at least ν = 4. We tested the Bartlett and
the Parzen kernels for which A3 holds. We choose the bandwidth following the
approach outlined in Remark 4.2 with c0 = 1.5. We run the GARCH(1,1) Markov
chain for 250,000 iterations and discard the first 10,000 iterations as burn-in. We
compute �2

n(h) at every 1000 along the sample path. The results are plotted in
Figure 1.
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FIG. 1. Asymptotic variance estimation for GARCH(1,1) with ω = 1, α = 0.1, β = 0.7 based on
250,000 iterations. (a) is Bartlett kernel, (b) is Parzen kernel.

5.2. Logistic regression. We also illustrate the results with MCMC and adap-
tive MCMC. We consider the logistic regression model

yi ∼ B(pβ(xi)), i = 1, . . . , n,

where yi ∈ {0,1} and pβ(x) = exβ(1 + exβ)−1 for a parameter β ∈ R
d and a co-

variate vector xT ∈ R
d , where xT denotes the transpose of x. B(p) is the Bernoulli

distribution with parameter p. The log-likelihood is

�(β|X) =
n∑

i=1

yixiβ − log(1 + exiβ).

We assume a Gaussian prior distribution π(β) ∝ e−1/(2s2)|β|2 for some constant
s > 0 leading to a posterior distribution

π(β|X) ∝ e�(β|X)e−1/(2s2)|β|2 .

The RWM algorithm described in Example 2.1 is a possible choice to sample
from the posterior distribution. We compare a plain RWM with proposal density
N (0, ecId) with c = −2.3 and the adaptive RWM described in Algorithm 2.1 using
the family {Pθ , θ ∈ 
}, where 
 = 
μ(r1) × 
+(r2), as defined in Example 2.1.
It is easy to check that B1 holds. Indeed, we have

〈β,∇ logπ(β)〉 = −|β|2
s2 +

n∑
i=1

(
yi − pβ(xi)

)〈β,xT
i 〉

and |∑n
i=1(yi − pβ(xi))〈β,xT

i 〉| ≤ |β|∑n
i=1 |xi |. We deduce that

〈
β

|β|,∇ logπ(β)

〉
≤ −|β|

s2 +
n∑

i=1

|xi | → −∞ as |β| → ∞.
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FIG. 2. Asymptotic variance estimation for logistic regression modeling of the heart data set. Out-
puts of the coefficient β(2) are reported, based on 250,000 iterations.

Similarly,〈
β

|β| ,
∇ logπ(β)

|∇ logπ(β)|
〉
≤ − 1

s2

|β|
|∇ logπ(β)| +

∑n
i=1 |xi |

|∇ logπ(β)| → −1 as |β| → ∞

since |∇ logπ(β)| ∼ s−2|β| as |β| → ∞. Therefore, B1 holds. If we choose r1, r2
large enough so that (μ�,��) ∈ 
, then Proposition 4.1 holds and applies to any
measurable function h such that |h(β)| ≤ cπ−t (β|X) for some t ∈ [0,1/2).

As a simulation example, we test the model with the Heart data set which has
n = 217 cases and d = 14 covariates. The dependent variable is the presence or
absence of a heart disease and the explanatory variables are relevant covariates.
More details can be found in [23]. We use Parzen and Bartlett kernels with c0 = 20
for the Markov chain and c0 = 5 for the adaptive chain. We run both chains for
250,000 iterations and discard the first 50,000 iterations as burn-in. The results
are plotted in Figure 2 for the coefficient β2. We also report in Table 1 below the
resulting confidence for the first four coefficients (β1, . . . , β4).

6. Proofs. This section contains the proofs of the statements from Sec-
tions 2–3. The remaining proofs are available in the supplementary paper [5].
Throughout this section, we shall use C to denote a generic constant whose ac-
tual value might change from one appearance to the next. On multiple occasions,
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TABLE 1
Confidence interval for the first four parameters of the model for

the heart data set

Parameters Plain MCMC Adaptive RWM

β1 [−0.271,−0.239] [−0.272,−0.257]
β2 [−0.203,−0.158] [−0.182,−0.170]
β3 [0.744,0.785] [0.776,0.793]
β4 [0.727,0.756] [0.736,0.750]

we make use of the Kronecker lemma and the Toeplitz lemma. We refer the reader
to [18], Section 2.6, for a statement and proof of these lemmata.

We shall routinely use the following martingale inequality. Let {Di, Fi , i ≥ 1}
be a martingale difference sequence. For any p > 1,

E

(∣∣∣∣∣
n∑

i=1

Di

∣∣∣∣∣
p)

≤ C

{
n∑

i=1

E
1∧(2/p)(|Di |p)

}1∨(p/2)

,(6.1)

where C can be taken as C = (18pq1/2)p , p−1 + q−1 = 1.
We also notice that for any q ∈ [1, β−1], Lemma A.1(a)–(b) implies that

sup
k≥1

E(|Gθk−1(Xk−1,Xk)|q) < ∞.(6.2)

6.1. Proof of Proposition 2.1. Let Sn
def= ∑n

k=1 hθk−1(Xk). For θ ∈ 
, we de-

fine g̃θ (x) = ∑
j≥0 P

j
θ hθ (x). When hθ does not depend on θ , we obtain g̃θ = gθ ,

as defined in Section 3. Similarly, we define G̃θ (x, y) = g̃θ (y) = Pθ g̃θ (x). Using
the Poisson equation g̃θ − Pθ g̃θ = hθ , we rewrite Sn as Sn = Mn + Rn, where

Mn
def=

n∑
k=1

G̃θk−1(Xk−1,Xk)

and

Rn
def= Pθ0 g̃θ0(X0) − Pθng̃θn(Xn) +

n∑
k=1

(
g̃θk

(Xk) − g̃θk−1(Xk)
)
.

Using Lemma A.1 and A1, we easily see that

|Rn| ≤ C

(
V β(X0) + V β(Xn) +

n∑
k=1

(
Dβ(θk, θk−1) + |hθk

− hθk−1 |V β

)
V β(Xk)

)
.

For p > 1 such that βp ≤ 1,
∑

k≥1 n−p
E((V β(X0) + V β(Xn))

p) < ∞. This
is a consequence of Lemma A.1(a) and the Minkowski inequality. Thus, n−1 ×
(V β(X0) + V β(Xn)) converges almost surely to zero. By (2.7) and the Kronecker
lemma, the term n−1 ∑n

k=1(Dβ(θk, θk−1)+ |hθk
−hθk−1 |V β )V β(Xk) converges al-

most surely to zero. We conclude that n−1Rn converges almost surely to zero.
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{(Mn, Fn), n ≥ 1} is a martingale. Again, let p > 1 be such that βp ≤ 1. Equa-
tion (6.1) and Lemma A.1(a) together imply that E(|Mn|p) = O(n1∨(p/2)), which,
combined with Proposition A.1 of [5], implies that n−1Mn converges almost surely
to zero.

6.2. Proof of Proposition 3.1. This is a continuation of the previous proof.
In the present case, hθ ≡ h, so we write gθ and Gθ instead of g̃θ and G̃θ , re-
spectively. Again, let Sn

def= ∑n
k=1 h(Xk). We have Sn = Mn + Rn, where Mn

def=∑n
k=1 Gθk−1(Xk−1,Xk) and

|Rn| ≤ C

(
V β(X0) + V β(Xn) +

n∑
k=1

Dβ(θk, θk−1)V
β(Xk)

)
.

E(V β(X0) + V β(Xn)) is bounded in n, thus n−1/2(V β(X0) + V β(Xn)) con-
verges in probability to zero. By (3.3) and the Kronecker lemma, the term
n−1/2 ∑n

k=1 Dβ(θk, θk−1)V
β(Xk) converges almost surely to zero. We conclude

that n−1/2Rn converges in probability to zero.
{(Mn, Fn), n ≥ 1} is a martingale. Since β < 1/2, (6.2) implies that {(Mn, Fn),

n ≥ 1} is a square integrable martingale and also that we have

sup
n≥1

E

(
max

1≤k≤n
n−1G2

θk−1
(Xk−1,Xk)

)
< ∞ and

(6.3)
lim

n→∞ max
1≤k≤n

n−1/2Gθk−1(Xk−1,Xk) = 0 (in probability).

Equations (3.2) and (6.3) imply, by Theorem 3.2 of [18], that n−1/2Mn converges
weakly to a random variable

√
�2(h)Z, where Z ∼ N (0,1), and is independent of

�2(h).

6.3. Proof of Proposition 3.3. We have

1

n

n∑
k=1

G2
θk−1

(Xk−1,Xk)

= 1

n

n∑
k=1

(
G2

θk−1
(Xk−1,Xk) − Pθk−1G

2
θk−1

(Xk−1)
)

+ 1

n

n∑
k=1

(
Pθk−1G

2
θk−1

(Xk−1) −
∫

X
π(dx)Pθk−1G

2
θk−1

(x)

)

+ 1

n

n∑
k=1

∫
X
π(dx)

(
Pθk−1G

2
θk−1

(x) − Pθ�G
2
θ�

(x)
) +

∫
X
Pθ�G

2
θ�

(x)π(dx)

= T (1)
n + T (2)

n + T (3)
n +

∫
X
Pθ�G

2
θ�

(x)π(dx),
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say. The term T
(1)
n is an Fn-martingale. Indeed, E(G2

θk−1
(Xk−1,Xk)|Fk−1) =

Pθk−1G
2
θk−1

(Xk−1), P-a.s. Furthermore, by (6.2), the martingale differences G2
θk−1

(Xk−1,Xk) − Pθk−1G
2
θk−1

(Xk−1) are Lp-bounded for some p > 1. By [18], Theo-

rem 2.22, we conclude that T
(1)
n converges in L1 to zero.

The term T
(2)
n converges in probability to zero as a consequence of the law of

large numbers (Proposition 2.1). Using the definition of Dβ and Lemma A.1(a)–
(b), we can find a constant C such that∣∣∣∣

∫
X
π(dx)

(
PθnG

2
θn

(x) − Pθ�G
2
θ�

(x)
)∣∣∣∣

≤ C
(
Dβ(θn, θ�) + D2β(θn, θ�)

) ∫
X
V 2β(x)π(dx),

almost surely. It follows that T
(3)
n also converges in P-probability to zero.

6.4. Proof of Proposition 3.4. From the proof of Proposition 2.1 above, we
have seen that Sn = Mn + Rn, and it is easy to check that E(|Rn|2) = O(n2(1−α))

and, by (6.2), E(|Mn|2) = O(n). Therefore,

|Var(n−1/2Sn) − n−1
E(M2

n)|
= |2n−1

E(MnRn) + n−1
E(R2

n) − n−1(E(Rn))
2|

= O(n1/2−α) → 0 as n → ∞
since α > 1/2. Now,

n−1
E(M2

n) = E

(
n−1

n∑
k=1

G2
θk−1

(Xk−1,Xk)

)
.

Again, from (6.2), the sequence n−1 ∑n
k=1 G2

θk−1
(Xk−1,Xk) is uniformly inte-

grable which, combined with (3.2) and Lebesgue’s dominated convergence the-
orem, implies that n−1

E(M2
n) converges to E(�2(h)).

APPENDIX A: SOME USEFUL CONSEQUENCES OF A1

LEMMA A.1. Assume that {Pθ , θ ∈ 
} satisfies A1.

(a) There exists a finite constant C such that

sup
n≥0

E(V (Xn)) ≤ C.(A.1)

(b) Let β ∈ (0,1] and {hθ ∈ LV β , θ ∈ 
} be such that π(hθ ) = 0, supθ∈


|hθ |V β < ∞. The function g̃θ
def= ∑

j≥0 P
j
θ hθ (x) is then well defined, |g̃θ |V β ≤
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C|hθ |V β , where the constant C does not depend on {hθ ∈ LV β , θ ∈ 
}. Moreover,
we can take C such that for any θ, θ ′ ∈ 
,

|g̃θ − g̃θ ′ |V β ≤ C sup
θ∈


|hθ |V β

(
Dβ(θ, θ ′) + |hθ − hθ ′ |V β

)
.(A.2)

(c) Assume A2. Let β ∈ (0,1 − η) and h ∈ LV β be such that π(h) = 0. Define

Sn(j) = ∑j+n
�=j+1 h(X�). Let p ∈ (1, (β + η)−1). There then exists a finite constant

C that does not depend on n, j, θ or h such that

E(|Sn(j)|p) ≤ C|h|V βn1∨(p/2).

PROOF. Parts (a) and (b) are standard results (see, e.g., [2]). To prove (c), we
use the Poisson equation (3.1) to write

Sn(j) =
j+n∑

�=j+1

Gθ�−1(X�−1,X�) + Pθj
gθj

(Xj ) − Pθj+n
gθj+n

(Xj+n)

+
j+n∑

�=j+1

(
gθ�−1(X�) − gθ�

(Xl)
)
.

By A1 and part (a), we have

sup
n≥1

sup
j≥0

E[|Pθj
gθj

(Xj ) − Pθj+n
gθj+n

(Xj+n)|p] ≤ C|h|V β .

By Burkholder’s inequality and some standard inequalities,

E

[∣∣∣∣∣
j+n∑

�=j+1

Gθ�−1(X�−1,X�)

∣∣∣∣∣
p]

≤ C

{ j+n∑
�=j+1

E
1∧(2/p)(|Gθ�−1(X�−1,X�)|p)

}1∨(p/2)

≤ C|h|V βn1∨(p/2).

Part (b) and A2 together give

E

[∣∣∣∣∣
j+n∑

�=j+1

gθ�−1(X�) − gθ�
(Xl)

∣∣∣∣∣
p]

≤ C|h|V β E

[( j+n∑
�=j+1

Dβ(θ�−1, θ�)V
β(X�)

)p]

≤ C|h|V β E

[( j+n∑
�=j+1

γk+�V
β+η(X�)

)p]
≤ C|h|V β

( j+n∑
�=j+1

γk+�

)p

and, since γn = O(n−1/2), we are done. �
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SUPPLEMENTARY MATERIAL

Supplement to “Kernel estimators of asymptotic variance for adaptive
Markov chain Monte Carlo” (DOI: 10.1214/10-AOS828SUPP; .pdf). The proofs
of Theorems 4.1–4.3 require some technical and lengthy arguments that we de-
velop in this supplement.
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