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SPARSITY IN MULTIPLE KERNEL LEARNING

BY VLADIMIR KOLTCHINSKII1 AND MING YUAN2

Georgia Institute of Technology

The problem of multiple kernel learning based on penalized empirical
risk minimization is discussed. The complexity penalty is determined jointly
by the empirical L2 norms and the reproducing kernel Hilbert space (RKHS)
norms induced by the kernels with a data-driven choice of regularization pa-
rameters. The main focus is on the case when the total number of kernels is
large, but only a relatively small number of them is needed to represent the
target function, so that the problem is sparse. The goal is to establish oracle
inequalities for the excess risk of the resulting prediction rule showing that
the method is adaptive both to the unknown design distribution and to the
sparsity of the problem.

1. Introduction. Let (Xi, Yi), i = 1, . . . , n be independent copies of a ran-
dom couple (X,Y ) with values in S × T , where S is a measurable space with
σ -algebra A (typically, S is a compact subset of a finite-dimensional Euclidean
space) and T is a Borel subset of R. In what follows, P will denote the distribution
of (X,Y ) and � the distribution of X. The corresponding empirical distributions,
based on (X1, Y1), . . . , (Xn,Yn) and on (X1, . . . ,Xn), will be denoted by Pn and
�n, respectively. For a measurable function g :S × T �→ R, we denote

Pg :=
∫
S×T

g dP = Eg(X,Y ) and Png :=
∫
S×T

g dPn = n−1
n∑

j=1

g(Xj ,Yj ).

Similarly, we use the notations �f and �nf for the integrals of a function f :S �→
R with respect to the measures � and �n.

The goal of prediction is to learn “a reasonably good” prediction rule f :S → R

from the empirical data {(Xi, Yi) : i = 1,2, . . . , n}. To be more specific, consider a
loss function � :T × R → R+ and define the risk of a prediction rule f as

P(� ◦ f ) = E�(Y,f (X)),

where (� ◦ f )(x, y) = �(y, f (x)). An optimal prediction rule with respect to this
loss is defined as

f∗ = arg min
f : S �→R

P(� ◦ f ),
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where the minimization is taken over all measurable functions and, for simplicity,
it is assumed that the minimum is attained. The excess risk of a prediction rule f

is defined as

E (� ◦ f ) := P(� ◦ f ) − P(� ◦ f∗).

Throughout the paper, the notation a � b means that there exists a numerical
constant c > 0 such that c−1 ≤ a

b
≤ c. By “numerical constants” we usually mean

real numbers whose precise values are not necessarily specified, or, sometimes,
constants that might depend on the characteristics of the problem that are of little
interest to us (e.g., some constants that depend only on the loss function).

1.1. Learning in reproducing kernel Hilbert spaces. Let HK be a reproducing
kernel Hilbert space (RKHS) associated with a symmetric nonnegatively definite
kernel K :S × S → R such that for any x ∈ S, Kx(·) := K(·, x) ∈ HK and f (x) =
〈f,Kx〉HK

for all f ∈ HK [Aronszajn (1950)]. If it is known that if f∗ ∈ HK and
‖f∗‖HK

≤ 1, then it is natural to estimate f∗ by a solution f̂ of the following
empirical risk minimization problem:

f̂ := arg min
‖f ‖HK

≤1

1

n

n∑
i=1

�(Yi, f (Xi)).(1)

The size of the excess risk E (� ◦ f̂ ) of such an empirical solution depends on the
“smoothness” of functions in the RKHS HK . A natural notion of “smoothness”
in this context is related to the unknown design distribution �. Namely, let TK be
the integral operator from L2(�) into L2(�) with kernel K . Under a standard as-
sumption that the kernel K is square integrable (in the theory of RKHS it is usually
even assumed that S is compact and K is continuous), the operator TK is compact
and its spectrum is discrete. If {λk} is the sequence of the eigenvalues (arranged
in decreasing order) of TK and {φk} is the corresponding L2(�)-orthonormal se-
quence of eigenfunctions, then it is well known that the RKHS-norms of functions
from the linear span of {φk} can be written as

‖f ‖2
HK

=∑
k≥1

|〈f,φk〉L2(�)|2
λk

,

which means that the “smoothness” of functions in HK depends on the rate of
decay of eigenvalues λk that, in turn, depends on the design distribution �. It is
also clear that the unit balls in the RKHS HK are ellipsoids in the space L2(�)

with “axes”
√

λk .
It was shown by Mendelson (2002) that the function

γ̆n(δ) :=
(
n−1

∑
k≥1

(λk ∧ δ2)

)1/2

, δ ∈ [0,1],
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provides tight upper and lower bounds (up to constants) on localized Rademacher
complexities of the unit ball in HK and plays an important role in the analysis
of the empirical risk minimization problem (1). It is easy to see that the func-
tion γ̆ 2

n (
√

δ) is concave, γ̆n(0) = 0 and, as a consequence, γ̆n(δ)/δ is a decreasing
function of δ and γ̆n(δ)/δ

2 is strictly decreasing. Hence, there exists unique posi-
tive solution of the equation γ̆n(δ) = δ2. If δ̄n denotes this solution, then the results
of Mendelson (2002) imply that with some constant C > 0 and with probability at
least 1 − e−t

E (� ◦ f̂ ) ≤ C

(
δ̄2
n + t

n

)
.

The size of the quantity δ̄2
n involved in this upper bound on the excess risk de-

pends on the rate of decay of the eigenvalues λk as k → ∞. In particular, if
λk � k−2β for some β > 1/2, then it is easy to see that γ̆n(δ) � n−1/2δ1−1/(2β)

and δ̄2
n � n−2β/(2β+1). Recall that unit balls in HK are ellipsoids in L2(�) with

“axes” of the order k−β and it is well known that, in a variety of estimation prob-
lems, n−2β/(2β+1) represents minimax convergence rates of the squared L2-risk
for functions from such ellipsoids (e.g., from Sobolev balls of smoothness β), as
in famous Pinsker’s theorem [see, e.g., Tsybakov (2009), Chapter 3].

EXAMPLE. Sobolev spaces Wα,2(G),G ⊂ R
d of smoothness α > d/2 is a

well-known class of concrete examples of RKHS. Let T
d, d ≥ 1 denote the d-

dimensional torus and let � be the uniform distribution in T
d . It is easy to check

that, for all α > d/2, the Sobolev space Wα,2(Td) is an RKHS generated by the
kernel K(x,y) = k(x − y), x, y ∈ T, where the function k ∈ L2(T

d) is defined by
its Fourier coefficients

k̂n = (|n|2 + 1)−α, n = (n1, . . . , nd) ∈ Z
d, |n|2 := n2

1 + · · · + n2
d .

In this case, the eigenfunctions of the operator TK are the functions of the Fourier
basis and its eigenvalues are the numbers {(|n|2 + 1)−α :n ∈ Z

d}. For d = 1 and
α > 1/2, we have λk � k−2α (recall that {λk} are the eigenvalues arranged in de-
creasing order) so, β = α and δ̄2

n � n−2α/(2α+1), which is a minimax nonparametric
convergence rate for Sobolev balls in Wα,2(T) [see, e.g., Tsybakov (2009), The-
orem 2.9]. More generally, for arbitrary d ≥ 1 and α > d/2, we get β = α/d and
δ̄2
n � n−2α/(2α+d), which is also a minimax optimal convergence rate in this case.

Suppose now that the distribution � is uniform in a torus T
d ′ ⊂ T

d of dimension
d ′ < d . We will use the same kernel K , but restrict the RKHS HK to the torus
T

d ′
of smaller dimension. Let d ′′ = d − d ′. For n ∈ Z

d , we will write n = (n′, n′′)
with n′ ∈ Z

d ′
, n′′ ∈ Z

d ′′
. It is easy to prove that the eigenvalues of the operator TK

become in this case∑
n′′∈Zd′′

(|n′|2 + |n′′|2 + 1)−α � (|n′|2 + 1)−(α−d ′′/2).
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Due to this fact, the norm of the space HK (restricted to T
d ′

) is equivalent to the
norm of the Sobolev space Wα−d ′′/2,2(Td ′

). Since the eigenvalues of the operator
TK coincide, up to a constant, with the numbers {(|n′|2 + 1)−(α−d ′′/2) :n′ ∈ Z

d ′ },
we get δ̄2

n � n−(2α−d ′′)/(2α−d ′′+d ′) [which is again the minimax convergence rate
for Sobolev balls in Wα−d ′′/2,2(Td ′

)]. In the case of more general design distribu-
tions �, the rate of decay of the eigenvalues λk and the corresponding size of the
excess risk bound δ̄2

n depends on �. If, for instance, � is supported in a submani-
fold S ⊂ T

d of dimension dim(S) < d , the rate of convergence of δ̄2
n to 0 depends

on the dimension of the submanifold S rather than on the dimension of the ambient
space T

d .
Using the properties of the function γ̆n, in particular, the fact that γ̆n(δ)/δ is

decreasing, it is easy to observe that γ̆n(δ) ≤ δ̄nδ + δ̄2
n, δ ∈ (0,1]. Moreover, if

ε̆ = ε̆(K) denotes the smallest value of ε such that the linear function εδ + ε2, δ ∈
(0,1] provides an upper bound for the function γ̆n(δ), δ ∈ (0,1], then ε̆ ≤ δ̄n ≤
2(

√
5 − 1)−1ε̆. Note that ε̆ also depends on n, but we do not have to emphasize

this dependence in the notation since, in what follows, n is fixed. Based on the
observations above, the quantity δ̄n coincides (up to a numerical constant) with
the slope ε̆ of the “smallest linear majorant” of the form εδ + ε2 of the function
γ̆n(δ). This interpretation of δ̄n is of some importance in the design of complexity
penalties used in this paper.

1.2. Sparse recovery via regularization. Instead of minimizing the empirical
risk over an RKHS-ball [as in problem (1)], it is very common to define the es-
timator f̂ of the target function f∗ as a solution of the penalized empirical risk
minimization problem of the form

f̂ := arg min
f ∈H

[
1

n

n∑
i=1

�(Yi, f (Xi)) + ε‖f ‖α
HK

]
,(2)

where ε > 0 is a tuning parameter that balances the tradeoff between the empiri-
cal risk and the “smoothness” of the estimate and, most often, α = 2 (sometimes,
α = 1). The properties of the estimator f̂ has been studied extensively. In par-
ticular, it was possible to derive probabilistic bounds on the excess risk E (� ◦ f̂ )

(oracle inequalities) with the control of the random error in terms of the rate of
decay of the eigenvalues {λk}, or, equivalently, in terms of the function γ̆n [see,
e.g., Blanchard, Bousquet and Massart (2008)].

In the recent years, there has been a lot of interest in a data dependent choice of
kernel K in this type of problems. In particular, given a finite (possibly large) dic-
tionary {Kj : j = 1,2, . . . ,N} of symmetric nonnegatively definite kernels on S,
one can try to find a “good” kernel K as a convex combination of the kernels from
the dictionary:

K ∈ K :=
{

N∑
j=1

θjKj : θj ≥ 0, θ1 + · · · + θN = 1

}
.(3)
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The coefficients of K need to be estimated from the training data along with the
prediction rule. Using this approach for problem (2) with α = 1 leads to the fol-
lowing optimization problem:

f̂ := arg min
f ∈HK

K∈K

(
Pn(� ◦ f ) + ε‖f ‖HK

)
.(4)

This learning problem, often referred to as the multiple kernel learning, has been
studied recently by Bousquet and Herrmann (2003), Crammer, Keshet and Singer
(2003), Lanckriet et al. (2004), Micchelli and Pontil (2005), Lin and Zhang (2006),
Srebro and Ben-David (2006), Bach (2008) and Koltchinskii and Yuan (2008)
among others. In particular [see, e.g., Micchelli and Pontil (2005)], problem (4)
is equivalent to the following:

(f̂1, . . . , f̂N) := arg min
fj∈HKj

,j=1,...,N

(
Pn

(
� ◦ (f1 + · · · + fN)

)
(5)

+ ε

N∑
j=1

‖fj‖HKj

)
,

which is an infinite-dimensional version of LASSO-type penalization. Koltchinskii
and Yuan (2008) studied this method in the case when the dictionary is large,
but the target function f∗ has a “sparse representation” in terms of a relatively
small subset of kernels {Kj : j ∈ J }. It was shown that this method is adaptive to
sparsity extending well-known properties of LASSO to this infinite-dimensional
framework.

In this paper, we study a different approach to the multiple kernel learning. It
is closer to the recent work on “sparse additive models” [see, e.g., Ravikumar et
al. (2008) and Meier, van de Geer and Bühlmann (2009)] and it is based on a
“double penalization” with a combination of empirical L2-norms (used to enforce
the sparsity of the solution) and RKHS-norms (used to enforce the “smoothness”
of the components). Moreover, we suggest a data-driven method of choosing the
values of regularization parameters that is adaptive to unknown smoothness of the
components (determined by the behavior of distribution dependent eigenvalues of
the kernels).

Let Hj := HKj
, j = 1, . . . ,N . Denote H := l.s.(

⋃N
j=1 Hj ) (“l.s.” meaning “the

linear span”), and

H(N) := {(h1, . . . , hN) :hj ∈ Hj , j = 1, . . . ,N}.
Note that f ∈ H if and only if there exists an additive representation (possibly,
nonunique) f = f1 + · · · + fN, where fj ∈ Hj , j = 1, . . . ,N . Also, H(N) has a
natural structure of a linear space and it can be equipped with the following inner
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product:

〈(f1, . . . , fN), (g1, . . . , gN)〉H(N) :=
N∑

j=1

〈fj , gj 〉Hj

to become the direct sum of Hilbert spaces Hj , j = 1, . . . ,N .
Given a convex subset D ⊂ H(N), consider the following penalized empirical

risk minimization problem:

(f̂1, . . . , f̂N ) = arg min
(f1,...,fN )∈D

[
Pn

(
� ◦ (f1 + · · · + fN)

)
(6)

+
N∑

j=1

(
εj‖fj‖L2(�n) + ε2

j ‖fj‖Hj

)]
.

Note that for special choices of set D, for instance, for D := {(f1, . . . , fN) :fj ∈
Hj ,‖fj‖Hj

≤ Rj } for some Rj > 0, j = 1, . . . ,N , one can replace each com-
ponent fj involved in the optimization problem by its orthogonal projections in
Hj onto the linear span of the functions {Kj(·,Xi), i = 1, . . . , n} and reduce the
problem to a convex optimization over a finite-dimensional space (of dimension
nN ).

The complexity penalty in the problem (6) is based on two norms of the com-
ponents fj of an additive representation: the empirical L2-norm, ‖fj‖L2(�n), with
regularization parameter εj , and an RKHS-norm, ‖fj‖Hj

, with regularization pa-
rameter ε2

j . The empirical L2-norm (the lighter norm) is used to enforce the spar-
sity of the solution whereas the RKHS norms (the heavier norms) are used to en-
force the “smoothness” of the components. This is similar to the approach taken in
Meier, van de Geer and Bühlmann (2009) in the context of classical additive mod-
els, that is, in the case when S := [0,1]N , Hj := Wα,2([0,1]) for some smooth-
ness α > 1/2 and the space Hj is a space of functions depending on the j th vari-
able. In this case, the regularization parameters εj are equal (up to a constant) to
n−α/(2α+1). The quantity ε2

j , used in the “smoothness part” of the penalty, coin-
cides with the minimax convergence rate in a one component smooth problem. At
the same time, the quantity εj , used in the “sparsity part” of the penalty, is equal
to the square root of the minimax rate (which is similar to the choice of regulariza-
tion parameter in standard sparse recovery methods such as LASSO). This choice
of regularization parameters results in the excess risk of the order dn−2α/(2α+1),
where d is the number of components of the target function (the degree of sparsity
of the problem).

The framework of multiple kernel learning considered in this paper includes
many generalized versions of classical additive models. For instance, one can think
of the case when S := [0,1]m1 × · · · × [0,1]mN and Hj = Wα,2([0,1]mj ) is a
space of functions depending on the j th block of variables. In this case, a proper
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choice of regularization parameters (for uniform design distribution) would be
εj = n−α/(2α+mj ), j = 1, . . . ,N (so, these parameters and the error rates for dif-
ferent components of the model are different). It should be also clear from the
discussion in Section 1.1 that, if the design distribution � is unknown, the min-
imax convergence rates for the one component problems are also unknown. For
instance, if the projections of design points on the cubes [0,1]mj are distributed in
lower-dimensional submanifolds of these cubes, then the unknown dimensions of
the submanifolds rather than the dimensions mj would be involved in the minimax
rates and in the regularization parameters εj . Because of this, data driven choice
of regularization parameters εj that provides adaptation to the unknown design
distribution � and to the unknown “smoothness” of the components (related to
this distribution) is a major issue in multiple kernel learning. From this point of
view, even in the case of classical additive models, the choice of regularization
parameters that is based only on Sobolev type smoothness and ignores the design
distribution is not adaptive. Note that, in the infinite-dimensional LASSO studied
in Koltchinskii and Yuan (2008), the regularization parameter ε is chosen the same

way as in the classical LASSO (ε �
√

logN
n

), so, it is not related to the smoothness
of the components. However, the oracle inequalities proved in Koltchinskii and
Yuan (2008) give correct size of the excess risk only for special choices of kernels
that depend on unknown “smoothness” of the components of the target function f∗,
so, this method is not adaptive either.

1.3. Adaptive choice of regularization parameters. Denote

K̂j :=
(

Kj(Xl,Xk)

n

)
l,k=1,n

.

This n × n Gram matrix can be viewed as an empirical version of the integral op-
erator TKj

from L2(�) into L2(�) with kernel Kj . Denote λ̂
(j)
k , k = 1,2, . . . ,

the eigenvalues of K̂j arranged in decreasing order. We also use the notation

λ
(j)
k , k = 1,2, . . . , for the eigenvalues of the operator TKj

:L2(�) �→ L2(�) with

kernel Kj arranged in decreasing order. Define functions γ̆
(j)
n , γ̂

(j)
n ,

γ̆ (j)
n (δ) :=

(
1

n

n∑
k=1

(
λ

(j)
k ∧ δ2))1/2

and γ̂ (j)
n (δ) :=

(
1

n

n∑
k=1

(
λ̂

(j)
k ∧ δ2))1/2

,

and, for a fixed given A ≥ 1, let

ε̂j := inf

{
ε ≥
√

A logN

n
: γ̂ (j)

n (δ) ≤ εδ + ε2,∀δ ∈ (0,1]
}
.(7)

One can view ε̂j as an empirical estimate of the quantity ε̆j = ε̆(Kj ) that (as we
have already pointed out) plays a crucial role in the bounds on the excess risk in
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empirical risk minimization problems in the RKHS context. In fact, since most
often ε̆j ≥ √

A logN/n, we will redefine this quantity as

ε̆j := inf

{
ε ≥
√

A logN

n
: γ̆ (j)

n (δ) ≤ εδ + ε2,∀δ ∈ (0,1]
}
.(8)

We will use the following values of regularization parameters in problem (6):
εj = τ ε̂j , where τ is a sufficiently large constant.

It should be emphasized that the structure of complexity penalty and the choice
of regularization parameters in (6) are closely related to the following bound on
Rademacher processes indexed by functions from an RKHS HK : with a high prob-
ability, for all h ∈ HK ,

|Rn(h)| ≤ C
[
ε̆(K)‖h‖L2(�) + ε̆2(K)‖h‖HK

]
.

Such bounds follow from the results of Section 3 and they provide a way to prove
sparsity oracle inequalities for the estimators (6). The Rademacher process is de-
fined as

Rn(f ) := n−1
n∑

j=1

εjf (Xj ),

where {εj } is a sequence of i.i.d. Rademacher random variables (taking values +1
and −1 with probability 1/2 each) independent of {Xj }.

We will use several basic facts of the empirical processes theory throughout the
paper. They include symmetrization inequalities and contraction (comparison) in-
equalities for Rademacher processes that can be found in the books of Ledoux and
Talagrand (1991) and van der Vaart and Wellner (1996). We also use Talagrand’s
concentration inequality for empirical processes [see, Talagrand (1996), Bousquet
(2002)].

The main goal of the paper is to establish oracle inequalities for the excess risk
of the estimator f̂ = f̂1 + · · · + f̂N . In these inequalities, the excess risk of f̂ is
compared with the excess risk of an oracle f := f1 + · · · + fN, (f1, . . . , fN) ∈ D

with an error term depending on the degree of sparsity of the oracle, that is, on the
number of nonzero components fj ∈ Hj in its additive representation. The oracle
inequalities will be stated in the next section. Their proof relies on probabilistic
bounds for empirical L2-norms and data dependent regularization parameters ε̂j .
The results of Section 3 show that they can be bounded by their respective pop-
ulation counterparts. Using these tools and some bounds on empirical processes
derived in Section 5, we prove in Section 4 the oracle inequalities for the estima-
tor f̂ .

2. Oracle inequalities. Considering the problem in the case when the domain
D of (6) is not bounded, say, D = H(N), leads to additional technical complica-
tions and might require some changes in the estimation procedure. To avoid this,
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we assume below that D is a bounded convex subset of H(N). It will be also as-
sumed that, for all j = 1, . . . ,N , supx∈S Kj (x, x) ≤ 1, which, by elementary prop-
erties of RKHS, implies that ‖fj‖L∞ ≤ ‖fj‖Hj

, j = 1, . . . ,N. Because of this,

RD := sup
(f1,...,fN )∈D

‖f1 + · · · + fN‖L∞ < +∞.

Denote R∗
D := RD ∨ ‖f∗‖L∞ . We will allow the constants involved in the oracle

inequalities stated and proved below to depend on the value of R∗
D (so, implicitly,

it is assumed that this value is not too large).
We shall also assume that N is large enough, say, so that logN ≥ 2 log logn.

This assumption is not essential to our development and is in place to avoid an
extra term of the order n−1 log logn in our risk bounds.

2.1. Loss functions of quadratic type. We will formulate the assumptions on
the loss function �. The main assumption is that, for all y ∈ T , �(y, ·) is a non-
negative convex function. In addition, we will assume that �(y,0), y ∈ T is uni-
formly bounded from above by a numerical constant. Moreover, suppose that, for
all y ∈ T , �(y, ·) is twice continuously differentiable and its first and second deriv-
atives are uniformly bounded in T × [−R∗

D,R∗
D]. Denote

m(R) := 1

2
inf
y∈T

inf|u|≤R

∂2�(y,u)

∂u2 , M(R) := 1

2
sup
y∈T

sup
|u|≤R

∂2�(y,u)

∂u2(9)

and let m∗ := m(R∗
D),M∗ := M(R∗

D). We will assume that m∗ > 0.
Denote

L∗ := sup
|u|≤R∗

D,y∈T

∣∣∣∣ ∂�

∂u
(y,u)

∣∣∣∣.
Clearly, for all y ∈ T , the function �(y, ·) satisfies Lipschitz condition with con-
stant L∗.

The constants m∗,M∗,L∗ will appear in a number of places in what follows.
Without loss of generality, we can also assume that m∗ ≤ 1 and L∗ ≥ 1 (otherwise,
m∗ and L∗ can be replaced by a lower bound and an upper bound, resp.).

The loss functions satisfying the assumptions stated above will be called the
losses of quadratic type.

If � is a loss of quadratic type and f = f1 + · · · + fN, (f1, . . . , fN) ∈ D, then

m∗‖f − f∗‖2
L2(�) ≤ E (� ◦ f ) ≤ M∗‖f − f∗‖2

L2(�).(10)

This bound easily follows from a simple argument based on Taylor expansion and
it will be used later in the paper. If H is dense in L2(�), then (10) implies that

inf
f ∈H

P(� ◦ f ) = inf
f ∈L2(�)

P (� ◦ f ) = P(� ◦ f∗).(11)
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The quadratic loss �(y,u) := (y − u)2 in the case when T ⊂ R is a bounded
set is one of the main examples of such loss functions. In this case, m(R) = 1 for
all R > 0. In regression problems with a bounded response variable, more general
loss functions of the form �(y,u) := φ(y − u) can be also used, where φ is an
even nonnegative convex twice continuously differentiable function with φ′′ uni-
formly bounded in R, φ(0) = 0 and φ′′(u) > 0, u ∈ R. In classification problems,
the loss functions of the form �(y,u) = φ(yu) are commonly used, with φ being
a nonnegative decreasing convex twice continuously differentiable function such
that, again, φ′′ is uniformly bounded in R and φ′′(u) > 0, u ∈ R. The loss function
φ(u) = log2(1 + e−u) (often referred to as the logit loss) is a specific example.

2.2. Geometry of the dictionary. Now we introduce several important geomet-
ric characteristics of dictionaries consisting of kernels (or, equivalently, of RKHS).
These characteristics are related to the degree of “dependence” of spaces of ran-
dom variables Hj ⊂ L2(�), j = 1, . . . ,N and they will be involved in the oracle
inequalities for the excess risk E (� ◦ f̂ ).

First, for J ⊂ {1, . . . ,N} and b ∈ [0,+∞], denote

C
(b)
J :=

{
(h1, . . . , hN) ∈ H(N) :

∑
j /∈J

‖hj‖L2(�) ≤ b
∑
j∈J

‖hj‖L2(�)

}
.

Clearly, the set C
(b)
J is a cone in the space H(N) that consists of vectors

(h1, . . . , hN) whose components corresponding to j ∈ J “dominate” the rest of
the components. This family of cones increases as b increases. For b = 0, C

(b)
J co-

incides with the linear subspace of vectors for which hj = 0, j /∈ J . For b = +∞,

C
(b)
J is the whole space H(N).
The following quantity will play the most important role:

β2,b(J ;�) := β2,b(J )

:= inf

{
β > 0 :

(∑
j∈J

‖hj‖2
L2(�)

)1/2

≤ β

∥∥∥∥∥
N∑

j=1

hj

∥∥∥∥∥
L2(�)

,

(h1, . . . , hN) ∈ C
(b)
J

}
.

Clearly, β2,b(J ;�) is a nondecreasing function of b. In the case of “simple dic-
tionary” that consists of one-dimensional spaces similar quantities have been used
in the literature on sparse recovery [see, e.g., Koltchinskii (2008, 2009a, 2009b,
2009c); Bickel, Ritov and Tsybakov (2009)].

The quantity β2,b(J ;�) can be upper bounded in terms of some other geomet-
ric characteristics that describe how “dependent” the spaces of random variables
Hj ⊂ L2(�) are. These characteristics will be introduced below.
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Given hj ∈ Hj , j = 1, . . . ,N , denote by κ({hj : j ∈ J }) the minimal eigenvalue
of the Gram matrix (〈hj ,hk〉L2(�))j,k∈J . Let

κ(J ) := inf
{
κ({hj : j ∈ J }) :hj ∈ Hj ,‖hj‖L2(�) = 1

}
.(12)

We will also use the notation

HJ = l.s.
(⋃

j∈J

Hj

)
.(13)

The following quantity is the maximal cosine of the angle in the space L2(�)

between the vectors in the subspaces HI and HJ for some I, J ⊂ {1, . . . ,N}:

ρ(I, J ) := sup
{ 〈f,g〉L2(�)

‖f ‖L2(�)‖g‖L2(�)

:f ∈ HI , g ∈ HJ , f �= 0, g �= 0
}
.(14)

Denote ρ(J ) := ρ(J, J c). The quantities ρ(I, J ) and ρ(J ) are very similar to the
notion of canonical correlation in the multivariate statistical analysis.

There are other important geometric characteristics, frequently used in the the-
ory of sparse recovery, including so called “restricted isometry constants” by
Candes and Tao (2007). Define δd(�) to be the smallest δ > 0 such that for all
(h1, . . . , hN) ∈ H(N) and all J ⊂ {1, . . . ,N} with card(J ) = d ,

(1 − δ)

(∑
j∈J

‖hj‖2
L2(�)

)1/2

≤
∥∥∥∥∑
j∈J

hj

∥∥∥∥
L2(�)

≤ (1 + δ)

(∑
j∈J

‖hj‖2
L2(�)

)1/2

.

This condition with a sufficiently small value of δd(�) means that for all choices of
J with card(J ) = d the functions in the spaces Hj , j ∈ J are “almost orthogonal”
in L2(�).

The following simple proposition easily follows from some statements in
Koltchinskii (2009a, 2009b), (2008) (where the case of simple dictionaries con-
sisting of one-dimensional spaces Hj was considered).

PROPOSITION 1. For all J ⊂ {1, . . . ,N},

β2,∞(J ;�) ≤ 1√
κ(J )(1 − ρ2(J ))

.

Also, if card(J ) = d and δ3d(�) ≤ 1
8b

, then β2,b(J ;�) ≤ 4.

Thus, such quantities as β2,∞(J ;�) or β2,b(J ;�), for finite values of b, are
reasonably small provided that the spaces of random variables Hj , j = 1, . . . ,N

satisfy proper conditions of “weakness of correlations.”
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2.3. Excess risk bounds. We are now in a position to formulate our main the-
orems that provide oracle inequalities for the excess risk E (� ◦ f̂ ). In these the-
orems, E (� ◦ f̂ ) will be compared with the excess risk E (� ◦ f ) of an oracle
(f1, . . . , fN) ∈ D. Here and in what follows, f := f1 + · · · + fN ∈ H. This is
a little abuse of notation: we are ignoring the fact that such an additive representa-
tion of a function f ∈ H is not necessarily unique. In some sense, f denotes both
the vector (f1, . . . , fN) ∈ H(N) and the function f1 +· · ·+fN ∈ H. However, this
is not going to cause a confusion in what follows. We will also use the following
notation:

Jf := {1 ≤ j ≤ N :fj �= 0} and d(f ) := card(Jf ).

The error terms of the oracle inequalities will depend on the quantities ε̆j =
ε̆(Kj ) related to the “smoothness” properties of the RKHS and also on the geomet-
ric characteristics of the dictionary introduced above. In the first theorem, we will
use the quantity β2,∞(Jf ;�) to characterize the properties of the dictionary. In
this case, there will be no assumptions on the quantities ε̆j : these quantities could
be of different order for different kernel machines, so, different components of the
additive representation could have different “smoothness.” In the second theorem,
we will use a smaller quantity β2,b(J ;�) for a proper choice of parameter b < ∞.
In this case, we will have to make an additional assumption that ε̆j , j = 1, . . . ,N

are all of the same order (up to a constant).
In both cases, we consider penalized empirical risk minimization problem (6)

with data-dependent regularization parameters εj = τ ε̂j , where ε̂j , j = 1, . . . ,N

are defined by (7) with some A ≥ 4 and τ ≥ BL∗ for a numerical constant B .

THEOREM 2. There exist numerical constants C1,C2 > 0 such that, for all all
oracles (f1, . . . , fN) ∈ D, with probability at least 1 − 3N−A/2,

E (� ◦ f̂ ) + C1

(
τ

N∑
j=1

ε̆j‖f̂j − fj‖L2(�) + τ 2
N∑

j=1

ε̆2
j ‖f̂j‖Hj

)

(15)

≤ 2E (� ◦ f ) + C2τ
2
∑
j∈Jf

ε̆2
j

(
β2

2,∞(Jf ,�)

m∗
+ ‖fj‖Hj

)
.

This result means that if there exists an oracle (f1, . . . , fN) ∈ D such that:

(a) the excess risk E (� ◦ f ) is small;
(b) the spaces Hj , j ∈ Jf are not strongly correlated with the spaces Hj , j /∈ Jf ;
(c) Hj , j ∈ Jf are “well posed” in the sense that κ(Jf ) is not too small;
(d) ‖fj‖Hj

, j ∈ Jf are all bounded by a reasonable constant,

then the excess risk E (� ◦ f̂ ) is essentially controlled by
∑

j∈Jf
ε̆2
j . At the same

time, the oracle inequality provides a bound on the L2(�)-distances between the
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estimated components f̂j and the components of the oracle (of course, everything
is under the assumption that the loss is of quadratic type and m∗ is bounded away
from 0).

Not also that the constant 2 in front of the excess risk of the oracle E (� ◦ f ) can
be replaced by 1 + δ for any δ > 0 with minor modifications of the proof (in this
case, the constant C2 depends on δ and is of the order 1/δ).

Suppose now that there exists ε̆ > 0 and a constant � > 0 such that

�−1 ≤ ε̆j

ε̆
≤ �, j = 1, . . . ,N.

THEOREM 3. There exist numerical constants C1,C2, b > 0 such that, for all
oracles (f1, . . . , fN) ∈ D, with probability at least 1 − 3N−A/2,

E (� ◦ f̂ ) + C1

�

(
τ ε̆

N∑
j=1

‖f̂j − fj‖L2(�) + τ 2ε̆2
N∑

j=1

‖f̂j‖Hj

)

(16)

≤ 2E (� ◦ f ) + C2�τ 2ε̆2
(β2

2,b�2(Jf ,�)

m∗
d(f ) + ∑

j∈Jf

‖fj‖Hj

)
.

As before, the constant 2 in the upper bound can be replaced by 1 + δ, but, in
this case, the constants C2 and b would be of the order 1

δ
. The meaning of this

result is that if there exists an oracle (f1, . . . , fN) ∈ D such that:

(a) the excess risk E (� ◦ f ) is small;
(b) the “restricted isometry” constant δ3d(�) is small for d = d(f );
(c) ‖fj‖Hj

, j ∈ Jf are all bounded by a reasonable constant,

then the excess risk E (�◦ f̂ ) is essentially controlled by d(f )ε̆2. At the same time,
the distance

∑N
j=1 ‖f̂j − fj‖L2(�) between the estimator and the oracle is con-

trolled by d(f )ε̆. In particular, this implies that the empirical solution (f̂1, . . . , f̂N )

is “approximately sparse” in the sense that
∑

j /∈Jf
‖f̂ ‖L2(�) is of the order d(f )ε̆.

REMARKS. 1. It is easy to check that Theorems 2 and 3 hold also if one re-
places N in the definitions (7) of ε̂j and (8) of ε̆j by an arbitrary N̄ ≥ N such
that log N̄ ≥ 2 log logn (a similar condition on N introduced early in Section 2
is not needed here). In this case, the probability bounds in the theorems become
1−3N̄−A/2. This change might be of interest if one uses the results for a dictionary
consisting of just one RKHS (N = 1), which is not the focus of this paper.

2. If the distribution dependent quantities ε̆j , j = 1, . . . ,N are known and used
as regularization parameters in (6), the oracle inequalities of Theorems 2 and 3
also hold (with obvious simplifications of their proofs). For instance, in the case
when S = [0,1]N , the design distribution � is uniform and, for each j = 1, . . . ,N ,
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Hj is a Sobolev space of functions of smoothness α > 1/2 depending only on the
j th variable, we have ε̆j � n−α/(2α+1). Taking in this case

εj = τ

(
n−α/(2α+1) ∨

√
A logN

n

)

would lead to oracle inequalities for sparse additive models is spirit of Meier,
van de Geer and Bühlmann (2009). More precisely, if Hj := {h ∈ Wα,2[0,1] :∫ 1

0 h(x) dx = 0}, then, for uniform distribution �, the spaces Hj are orthogonal
in L2(�) (recall that Hj is viewed as a space of functions depending on the j th
coordinate). Assume, for simplicity, that � is the quadratic loss and that the re-
gression function f∗ can be represented as f∗ =∑j∈J f∗,j , where J is a subset
of {1, . . . ,N} of cardinality d and ‖f∗,j‖Hj

≤ 1. Then it easily follows from the
bound of Theorem 3 that with probability at least 1 − 3N−A/2

E (f ) = ‖f − f∗‖2
L2(�) ≤ Cτ 2d

(
n−2α/(2α+1) ∨ A logN

n

)
.

Note that, up to a constant, this essentially coincides with the minimax lower bound
in this type of problems obtained recently by Raskutti, Wainwright and Yu (2009).
Of course, if the design distribution is not necessarily uniform, an adaptive choice
of regularization parameters might be needed even in such simple examples and
the approach described above leads to minimax optimal rates.

3. Preliminary bounds. In this section, the case of a single RKHS HK as-
sociated with a kernel K is considered. We assume that K(x,x) ≤ 1, x ∈ S. This
implies that, for all h ∈ HK , ‖h‖L2(�) ≤ ‖h‖L∞ ≤ ‖h‖HK

.

3.1. Comparison of ‖ · ‖L2(�n) and ‖ · ‖L2(�). First, we study the relationship
between the empirical and the population L2 norms for functions in HK .

THEOREM 4. Assume that A ≥ 1 and logN ≥ 2 log logn. Then there exists
a numerical constant C > 0 such that with probability at least 1 − N−A for all
h ∈ HK

‖h‖L2(�) ≤ C
(‖h‖L2(�n) + ε̄‖h‖HK

);(17)

‖h‖L2(�n) ≤ C
(‖h‖L2(�) + ε̄‖h‖HK

)
,(18)

where

ε̄ = ε̄(K)
(19)

:= inf

{
ε ≥
√

A logN

n
: E sup

‖h‖HK
=1

‖h‖L2(�)≤δ

|Rn(h)| ≤ εδ + ε2,∀δ ∈ (0,1]
}
.



3674 V. KOLTCHINSKII AND M. YUAN

PROOF. Observe that the inequalities hold trivially when h = 0. We shall
therefore consider only the case when h �= 0. By symmetrization inequality,

E sup
‖h‖HK

=1

2−j<‖h‖L2(�)≤2−j+1

|(�n − �)h2| ≤ 2E sup
‖h‖HK

=1

2−j<‖h‖L2(�)≤2−j+1

|Rn(h
2)|(20)

and, by contraction inequality, we further have

E sup
‖h‖HK

=1

2−j<‖h‖L2(�)≤2−j+1

|(�n − �)h2| ≤ 8E sup
‖h‖HK

=1

2−j<‖h‖L2(�)≤2−j+1

|Rn(h)|.(21)

The definition of ε̄ implies that

E sup
‖h‖HK

=1

2−j<‖h‖L2(�)≤2−j+1

|(�n − �)h2|

(22)
≤ 8E sup

‖h‖HK
=1

‖h‖L2(�)≤2−j+1

|Rn(h)| ≤ 8(ε̄2−j+1 + ε̄2).

An application of Talagrand’s concentration inequality yields

sup
‖h‖HK

=1

2−j<‖h‖L2(�)≤2−j+1

|(�n − �)h2|

≤ 2

(
E sup

‖h‖HK
=1

2−j<‖h‖L2(�)≤2−j+1

|(�n − �)h2|

+ 2−j+1

√
t + 2 log j

n
+ t + 2 log j

n

)

≤ 32

(
ε̄2−j + ε̄2 + 2−j

√
t + 2 log j

n
+ t + 2 log j

n

)

with probability at least 1 − exp(−t − 2 log j) for any natural number j . Now, by
the union bound, for all j such that 2 log j ≤ t ,

sup
‖h‖HK

=1

2−j<‖h‖L2(�)≤2−j+1

|(�n − �)h2|

(23)

≤ 32

(
ε̄2−j + ε̄2 + 2−j

√
t + 2 log j

n
+ t + 2 log j

n

)
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with probability at least

1 − ∑
j : 2 log j≤t

exp(−t − 2 log j) = 1 − exp(−t)
∑

j : 2 log j≤t

j−2

(24)
≥ 1 − 2 exp(−t).

Recall that ε̄ ≥ (A logN/n)1/2 and ‖h‖L2(�) ≤ ‖h‖HK
. Taking t = A logN +

log 4, we easily get that, for all h ∈ HK such that ‖h‖HK
= 1 and ‖h‖L2(�) ≥

exp{−NA/2},
|(�n − �)h2| ≤ C

(
ε̄‖h‖L2(�) + ε̄2)(25)

with probability at least 1−0.5N−A and with a numerical constant C > 0. In other

words, with the same probability, for all h ∈ HK such that
‖h‖L2(�)

‖h‖HK

≥ exp{−NA/2},
|(�n − �)h2| ≤ C

(
ε̄‖h‖L2(�)‖h‖HK

+ ε̄2‖h‖2
HK

)
.(26)

Therefore, for all h ∈ HK such that

‖h‖L2(�)

‖h‖HK

> exp(−NA/2)(27)

we have

‖h‖2
L2(�) = �h2 ≤ ‖h‖2

L2(�n) + C
(
ε̄‖h‖L2(�)‖h‖HK

+ ε̄2‖h‖2
HK

)
,

‖h‖2
L2(�n) = �nh

2 ≤ ‖h‖2
L2(�) + C

(
ε̄‖h‖L2(�)‖h‖HK

+ ε̄2‖h‖2
HK

)
.

It can be now deduced that, for a proper value of numerical constant C,

‖h‖L2(�) ≤ C
(‖h‖L2(�n) + ε̄‖h‖HK

)
and

(28)
‖h‖L2(�n) ≤ C

(‖h‖L2(�) + ε̄‖h‖HK

)
.

It remains to consider the case when
‖h‖L2(�)

‖h‖HK

≤ exp(−NA/2).(29)

Following a similar argument as before, with probability at least 1 − 0.5N−A,

sup
‖h‖HK

=1

‖h‖L2(�)≤exp(−NA/2)

|(�n − �)h2|

≤ 16

(
ε̄ exp(−NA/2) + ε̄2 + exp(−NA/2)

√
A logN

n
+ A logN

n

)
.

Under the conditions A ≥ 1, logN ≥ 2 log logn,

ε̄ ≥
(

A logN

n

)1/2

≥ exp(−NA/2).(30)
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Then

sup
‖h‖HK

=1

‖h‖L2(�)≤exp(−NA/2)

|(�n − �)h2| ≤ Cε̄2(31)

with probability at least 1 − 0.5N−A, which also implies (17) and (18), and the
result follows. �

Theorem 4 shows that the two norms ‖h‖L2(�n) and ‖h‖L2(�) are of the same
order up to an error term ε̄‖h‖HK

.

3.2. Comparison of ε̂(K), ε̄(K), ε̆(K) and ε̌(K). Recall the definitions

γ̆n(δ) :=
(
n−1

∞∑
k=1

(λk ∧ δ2)

)1/2

, δ ∈ (0,1],

where {λk} are the eigenvalues of the integral operator TK from L2(�) into L2(�)

with kernel K , and, for some A ≥ 1,

ε̆(K) := inf

{
ε ≥
√

A logN

n
: γ̆n(δ) ≤ εδ + ε2,∀δ ∈ (0,1]

}
.

It follows from Lemma 42 of Mendelson (2002) [with an additional application
of Cauchy–Schwarz inequality for the upper bound and Hoffmann–Jørgensen in-
equality for the lower bound; see also Koltchinskii (2008)] that, for some numeri-
cal constants C1,C2 > 0,

C1

(
n−1

n∑
k=1

(λk ∧ δ2)

)1/2

− n−1 ≤ E sup
‖h‖HK

=1

‖h‖L2(�)≤δ

|Rn(h)|

(32)

≤ C2

(
n−1

n∑
k=1

(λk ∧ δ2)

)1/2

.

This fact and the definitions of ε̆(K), ε̄(K) easily imply the following result.

PROPOSITION 5. Under the condition K(x,x) ≤ 1, x ∈ S, there exist numer-
ical constants C1,C2 > 0 such that

C1ε̆(K) ≤ ε̄(K) ≤ C2ε̆(K).(33)

If K is the kernel of the projection operator onto a finite-dimensional subspace

HK of L2(�), it is easy to check that ε̆(K) �
√

dim(HK)
n

(recall the notation a � b,

which means that there exists a numerical constant c > 0 such that c−1 ≤ a/b ≤ c).
If the eigenvalues λk decay at a polynomial rate, that is, λk � k−2β for some β >

1/2, then ε̆(K) � n−β/(2β+1).
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Recall the notation

ε̂(K) := inf

{
ε ≥
√

A logN

n
:

(
1

n

n∑
k=1

(λ̂k ∧ δ2)

)1/2

≤ εδ + ε2,∀δ ∈ (0,1]
}
,(34)

where {λ̂k} denote the eigenvalues of the Gram matrix K̂ := (K(Xi,Xj ))i,j=1,...,n.

It follows again from the results of Mendelson (2002) [namely, one can follow
the proof of Lemma 42 in the case when the RKHS HK is restricted to the sam-
ple X1, . . . ,Xn and the expectations are conditional on the sample; then one uses
Cauchy–Schwarz and Hoffmann–Jørgensen inequalities as in the proof of (32)]
that for some numerical constants C1,C2 > 0

C1

(
n−1

n∑
k=1

(λ̂k ∧ δ2)

)1/2

− n−1 ≤ Eε sup
‖h‖HK

=1

‖h‖L2(�n)≤δ

|Rn(h)|

(35)

≤ C2

(
n−1

n∑
k=1

(λ̂k ∧ δ2)

)1/2

,

where Eε indicates that the expectation is taken over the Rademacher random vari-
ables only (conditionally on X1, . . . ,Xn). Therefore, if we denote by

ε̃(K) := inf

{
ε ≥
√

A logN

n
: Eε sup

‖h‖HK
=1

‖h‖L2(�n)≤δ

|Rn(h)| ≤ εδ + ε2,∀δ ∈ (0,1]
}

(36)

the empirical version of ε̄(K), then ε̂(K) � ε̃(K). We will now show that ε̃(K) �
ε̄(K) with a high probability.

THEOREM 6. Suppose that A ≥ 1 and logN ≥ 2 log logn. There exist numer-
ical constants C1,C2 > 0 such that

C1ε̄(K) ≤ ε̃(K) ≤ C2ε̄(K),(37)

with probability at least 1 − N−A.

PROOF. Let t := A logN + log 14. It follows from Talagrand concentration
inequality that

E sup
‖h‖HK

=1

2−j <‖h‖L2(�)≤2−j+1

|Rn(h)|

≤ 2

(
sup

‖h‖HK
=1

2−j<‖h‖L2(�)≤2−j+1

|Rn(h)| + 2−j+1

√
t + 2 log j

n
+ t + 2 log j

n

)
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with probability at least 1 − exp(−t − 2 log j). On the other hand, as derived in the
proof of Theorem 4 [see (23)]

sup
‖h‖HK

=1

2−j<‖h‖L2(�)≤2−j+1

|(�n − �)h2|

(38)

≤ 32

(
ε̄2−j + ε̄2 + 2−j

√
t + 2 log j

n
+ t + 2 log j

n

)

with probability at least 1 − exp(−t − 2 log j). We will use these bounds only
for j such that 2 log j ≤ t . In this case, the second bound implies that, for
some numerical constant c > 0 and all h satisfying the conditions ‖h‖HK

=
1,2−j < ‖h‖L2(�) ≤ 2−j+1, we have ‖h‖L2(�n) ≤ c(2−j + ε̄) (again, see the
proof of Theorem 4). Combining these bounds, we get that with probability at
least 1 − 2 exp(−t − 2 log j),

E sup
‖h‖HK

=1

2−j<‖h‖L2(�)≤2−j+1

|Rn(h)|

≤ 2

(
sup

‖h‖HK
=1

‖h‖L2(�n)≤cδj

|Rn(h)| + 2−j+1

√
t + 2 log j

n
+ t + 2 log j

n

)
,

where δj = ε̄ + 2−j .
Applying now Talagrand concentration inequality to the Rademacher process

conditionally on the observed data X1, . . . ,Xn yields

sup
‖h‖HK

=1

‖h‖L2(�n)≤cδj

|Rn(h)| ≤ 2

(
Eε sup

‖h‖HK
=1

‖h‖L2(�n)≤cδj

|Rn(h)|

+ Cδj

√
t + 2 log j

n
+ t + 2 log j

n

)
,

with conditional probability at least 1 − exp(−t − 2 log j). From this and from the
previous bound it is not hard to deduce that, for some numerical constants C,C′
and for all j such that 2 log j ≤ t ,

E sup
‖h‖HK

=1

2−j<‖h‖L2(�)≤2−j+1

|Rn(h)|

≤ C′
(

Eε sup
‖h‖HK

=1

‖h‖L2(�n)≤cδj

|Rn(h)| + δj

√
t + 2 log j

n
+ t + 2 log j

n

)
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≤ C(ε̃δj + ε̃2) ≤ C(ε̃2−j + ε̃ε̄ + ε̃2)

with probability at least 1−3 exp(−t −2 log j). In obtaining the second inequality,
we used the definition of ε̃ and the fact that, for t = A logN + log 14,2 log j ≤ t ,
c1ε̃ ≥ (t + 2 log j/n)1/2, where c1 is a numerical constant. Now, by the union
bound, the above inequality holds with probability at least

1 − 3
∑

j : 2 log j≤t

exp(−t − 2 log j) ≥ 1 − 6 exp(−t)(39)

for all j such that 2 log j ≤ t simultaneously. Similarly, it can be shown that

E sup
‖h‖HK

=1

‖h‖L2(�)≤exp(−NA/2)

|Rn(h)| ≤ C
(
ε̃ exp(−NA/2) + ε̃ε̄ + ε̃2)

with probability at least 1 − exp(−t).
For t = A logN + log 14, we get

E sup
‖h‖HK

=1

‖h‖L2(�)≤δ

|Rn(h)| ≤ C(ε̃δ + ε̃ε̄ + ε̃2),(40)

for all 0 < δ ≤ 1, with probability at least 1 − 7 exp(−t) = 1 − N−A/2. Now by
the definition of ε̄, we obtain

ε̄ ≤ C max{ε̃, (ε̃ε̄ + ε̃2)1/2},(41)

which implies that ε̄ ≤ Cε̃ with probability at least 1 − N−A/2.
Similarly one can show that

Eε sup
‖h‖HK

=1

‖h‖L2(�)≤δ

|Rn(h)| ≤ C(ε̄δ + ε̃ε̄ + ε̄2),(42)

for all 0 < δ ≤ 1, with probability at least 1 − N−A/2, which implies that ε̃ ≤ Cε̄

with probability at least 1−N−A/2. The proof can then be completed by the union
bound. �

Define

ε̌ := ε̌(K)
(43)

:= inf

{
ε ≥
√

A logN

n
: sup

‖h‖HK
=1

‖h‖L2(�)≤δ

|Rn(h)| ≤ εδ + ε2,∀δ ∈ (0,1]
}
.

The next statement can be proved similarly to Theorem 6.
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THEOREM 7. There exist numerical constants C1,C2 > 0 such that

C1ε̄(K) ≤ ε̌(K) ≤ C2ε̄(K)(44)

with probability at least 1 − N−A.

Suppose now that {K1, . . . ,KN } is a dictionary of kernels. Recall that ε̄j =
ε̄(Kj ), ε̂j = ε̂(Kj ) and ε̌j = ε̌(Kj ).

It follows from Theorems 4, 6, 7 and the union bound that with probability at
least 1 − 3N−A+1 for all j = 1, . . . ,N

‖h‖L2(�) ≤ C
(‖h‖L2(�n) + ε̄j‖h‖HK

)
,

(45)
‖h‖L2(�n) ≤ C

(‖h‖L2(�) + ε̄j‖h‖HK

)
, h ∈ Hj ,

C1ε̄j ≤ ε̂j ≤ C2ε̄j and C1ε̄j ≤ ε̌j ≤ C2ε̄j .(46)

Note also that

3N−A+1 = exp{−(A − 1) logN + log 3} ≤ exp{−(A/2) logN} = N−A/2,

provided that A ≥ 4 and N ≥ 3. Thus, under these additional constraints, (45) and
(46) hold for all j = 1, . . . ,N with probability at least 1 − N−A/2.

4. Proofs of the oracle inequalities. For an arbitrary set J ⊆ {1, . . . ,N} and
b ∈ (0,+∞), denote

K(b)
J :=

{
(f1, . . . , fN) ∈ H(N) :

∑
j /∈J

ε̄j‖fj‖L2(�) ≤ b
∑
j∈J

ε̄j‖fj‖L2(�)

}
(47)

and let

βb(J ) = inf
{
β ≥ 0 :

∑
j∈J

ε̄j‖fj‖L2(�) ≤ β‖f1 + · · · + fN‖L2(�),

(48)

(f1, . . . , fN) ∈ K(b)
J

}
.

It is easy to see that, for all nonempty sets J , βb(J ) ≥ maxj∈J ε̄j ≥
√

A logN
n

.

Theorems 2 and 3 will be easily deduced from the following technical result.

THEOREM 8. There exist numerical constants C1,C2,B > 0 and b > 0 such
that, for all τ ≥ BL∗ in the definition of εj = τ ε̂j , j = 1, . . . ,N and for all oracles
(f1, . . . , fN) ∈ D,

E (� ◦ f̂ ) + C1

(
N∑

j=1

τ ε̄j‖f̂j − fj‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)
(49)

≤ 2E (� ◦ f ) + C2τ
2
(∑

j∈Jf

ε̄2
j ‖fj‖Hj

+ β2
b (Jf )

m∗

)
(50)
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with probability at least 1 − 3N−A/2. Here, A ≥ 4 is a constant involved in the
definitions of ε̄j , ε̂j , j = 1, . . . ,N .

PROOF. Recall that

(f̂1, . . . , f̂N ) := arg min
(f1,...,fN )∈D

[
Pn

(
� ◦ (f1 + · · · + fN)

)

+
N∑

j=1

(
τ ε̂j‖fj‖L2(�n) + τ 2ε̂2

j ‖fj‖Hj

)]
,

and that we write f := f1 + · · · + fN, f̂ := f̂1 + · · · + f̂N . Hence, for all
(f1, . . . , fN) ∈ D,

Pn(� ◦ f̂ ) +
N∑

j=1

(
τ ε̂j‖f̂j‖L2(�n) + τ 2ε̂2

j ‖f̂j‖Hj

)

≤ Pn(� ◦ f ) +
N∑

j=1

(
τ ε̂j‖fj‖L2(�n) + τ 2ε̂2

j ‖fj‖Hj

)
.

By a simple algebra,

E (� ◦ f̂ ) +
N∑

j=1

(
τ ε̂j‖f̂j‖L2(�n) + τ 2ε̂2

j ‖f̂j‖Hj

)

≤ E (� ◦ f ) +
N∑

j=1

(
τ ε̂j‖fj‖L2(�n) + τ 2ε̂2

j ‖fj‖Hj

)

+ |(Pn − P)(� ◦ f̂ − � ◦ f )|
and, by the triangle inequality,

E (� ◦ f̂ ) + ∑
j /∈Jf

τ ε̂j‖f̂j‖L2(�n) +
N∑

j=1

τ 2ε̂2
j ‖f̂j‖Hj

≤ E (� ◦ f ) + ∑
j∈Jf

τ ε̂j‖f̂j − fj‖L2(�n)

+ ∑
j∈Jf

τ 2ε̂2
j ‖fj‖Hj

+ |(Pn − P)(� ◦ f̂ − � ◦ f )|.

We now take advantage of (45) and (46) to replace ε̂j ’s by ε̄j ’s and ‖ · ‖L2(�n)

by ‖ · ‖L2(�). Specifically, there exists a numerical constant C > 1 and an event E

of probability at least 1 − N−A/2 such that

1

C
≤ min

{
ε̂j

ε̄j

: j = 1, . . . ,N

}
≤ max

{
ε̂j

ε̄j

: j = 1, . . . ,N

}
≤ C(51)
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and, for all j = 1, . . . ,N ,

1

C
‖f̂j‖L2(�) − ε̄j‖f̂j‖Hj

≤ ‖f̂j‖L2(�n) ≤ C
(‖f̂j‖L2(�) + ε̄j‖f̂j‖Hj

)
.(52)

Taking τ ≥ C/(C − 1), we have that, on the event E,

E (� ◦ f̂ ) + ∑
j /∈Jf

τ ε̂j‖f̂j‖L2(�n) +
N∑

j=1

τ 2ε̂2
j ‖f̂j‖Hj

≥ E (� ◦ f̂ ) + 1

C2

(∑
j /∈Jf

τ ε̄j‖f̂j‖L2(�n) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

≥ E (� ◦ f̂ ) + 1

C2

(∑
j /∈Jf

τ ε̄j

(
1

C
‖f̂j‖L2(�) − ε̄j‖f̂j‖Hj

)
+

N∑
j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

≥ E (� ◦ f̂ ) + 1

C3

(∑
j /∈Jf

τ ε̄j‖f̂j‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)
.

Similarly,

E (� ◦ f ) + ∑
j∈Jf

(
τ ε̂j‖fj − f̂j‖L2(�n) + τ 2ε̂2

j ‖fj‖Hj

)

≤ E (� ◦ f ) + C2
∑
j∈Jf

(
τ ε̄j‖fj − f̂j‖L2(�n) + τ 2ε̄2

j ‖fj‖Hj

)

≤ E (� ◦ f ) + C3
∑
j∈Jf

τ ε̄j

(‖fj − f̂j‖L2(�) + ε̄j‖fj − f̂j‖Hj

)

+ C2
∑
j∈Jf

τ 2ε̄2
j ‖fj‖Hj

≤ E (� ◦ f ) + C3
∑
j∈Jf

τ ε̄j

(‖fj − f̂j‖L2(�) + ε̄j‖fj‖Hj
+ ε̄j‖f̂j‖Hj

)

+ C2
∑
j∈Jf

τ 2ε̄2
j ‖fj‖Hj

≤ E (� ◦ f ) + 2C3
∑
j∈Jf

(
τ ε̄j‖fj − f̂j‖L2(�) + τ 2ε̄2

j ‖fj‖Hj

)

+ C3
∑
j∈Jf

τ ε̄2
j ‖f̂j‖Hj

.
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Therefore, by taking τ large enough, namely τ ≥ C
C−1 ∨ (2C6), we can find nu-

merical constants 0 < C1 < 1 < C2 such that, on the event E,

E (� ◦ f̂ ) + C1

(∑
j /∈Jf

τ ε̄j‖f̂j‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

≤ E (� ◦ f ) + C2
∑
j∈Jf

(
τ ε̄j‖fj − f̂j‖L2(�) + τ 2ε̄2

j ‖fj‖Hj

)

+ |(Pn − P)(� ◦ f̂ − � ◦ f )|.
We now bound the empirical process |(Pn −P)(�◦ f̂ −�◦f )|, where we use the

following result that will be proved in the next section. Suppose that f =∑N
j=1 fj ,

fj ∈ Hj and ‖f ‖L∞ ≤ R (we will need it with R = R∗
D). Denote

G(�−,�+,R) =
{
g :

N∑
j=1

ε̄j‖gj − fj‖L2(�) ≤ �−,

N∑
j=1

ε̄2
j ‖gj − fj‖Hj

≤ �+,

∥∥∥∥∥
N∑

j=1

gj

∥∥∥∥∥
L∞

≤ R

}
.

LEMMA 9. There exists a numerical constant C > 0 such that for an arbitrary
A ≥ 1 involved in the definition of ε̄j , j = 1, . . . ,N with probability at least 1 −
2N−A/2, for all

�− ≤ eN, �+ ≤ eN,(53)

the following bound holds:

sup
g∈G(�−,�+,R∗

D)

|(Pn − P)(� ◦ g − � ◦ f )| ≤ CL∗(�− + �+ + e−N).(54)

Assuming that

N∑
j=1

ε̄j‖f̂j − fj‖L2(�) ≤ eN,

N∑
j=1

ε̄2
j ‖f̂j − fj‖Hj

≤ eN(55)

and using the lemma, we get

E (� ◦ f̂ ) + C1

(∑
j /∈Jf

τ ε̄j‖f̂j‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

≤ E (� ◦ f ) + C2
∑
j∈Jf

(
τ ε̄j‖fj − f̂j‖L2(�) + τ 2ε̄2

j ‖fj‖Hj

)
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+ C3L∗
N∑

j=1

(
ε̄j‖f̂j − fj‖L2(�) + ε̄2

j ‖f̂j − fj‖Hj

)+ C3L∗e−N

≤ E (� ◦ f ) + C2
∑
j∈Jf

(
τ ε̄j‖fj − f̂j‖L2(�) + τ 2ε̄2

j ‖fj‖Hj

)

+ C3L∗
N∑

j=1

(
ε̄j‖f̂j − fj‖L2(�) + ε̄2

j ‖f̂j‖Hj
+ ε̄2

j ‖fj‖Hj

)

+ C3L∗e−N

for some numerical constant C3 > 0. By choosing a numerical constant B properly,
τ can be made large enough so that 2C3L∗ ≤ τC1 ≤ τC2. Then, we have

E (� ◦ f̂ ) + 1

2
C1

(∑
j /∈Jf

τ ε̄j‖f̂j‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

≤ E (� ◦ f ) + 2C2
∑
j∈Jf

(
τ ε̄j‖fj − f̂j‖L2(�) + τ 2ε̄2

j ‖fj‖Hj

)
(56)

+ (C2/2)τe−N,

which also implies

E (� ◦ f̂ ) + 1

2
C1

(
N∑

j=1

τ ε̄j‖f̂j − fj‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

≤ E (� ◦ f ) +
(

2C2 + C1

2

) ∑
j∈Jf

τ ε̄j‖fj − f̂j‖L2(�)(57)

+ 2C2τ
2
∑
j∈Jf

ε̄2
j ‖fj‖Hj

+ (C2/2)τe−N.

We first consider the case when

4C2
∑
j∈Jf

τ ε̄j‖fj − f̂j‖L2(�) ≥ E (� ◦ f ) + 2C2
∑
j∈Jf

τ 2ε̄2
j ‖fj‖Hj

(58)
+ (C2/2)τe−N.

Then (56) implies that

E (� ◦ f̂ ) + 1

2
C1

(∑
j /∈Jf

τ ε̄j‖f̂j‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

(59)
≤ 6C2

∑
j∈Jf

τ ε̄j‖fj − f̂j‖L2(�),
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which yields

∑
j /∈Jf

τ ε̄j‖f̂j‖L2(�) ≤ 12C2

C1

∑
j∈Jf

τ ε̄j‖fj − f̂j‖L2(�).(60)

Therefore, (f̂1 −f1, . . . , f̂N −fN) ∈ K(b)
Jf

with b := 12C2/C1. Using the definition
of βb(Jf ), it follows from (57), (58) and the assumption C1 < 1 < C2 that

E (� ◦ f̂ ) + 1

2
C1

(
N∑

j=1

τ ε̄j‖f̂j − fj‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

≤
(

6C2 + C1

2

)
τβb(Jf )‖f − f̂ ‖L2(�)

≤ 7C2τβb(Jf )
(‖f − f∗‖L2(�) + ‖f∗ − f̂ ‖L2(�)

)
.

Recall that for losses of quadratic type

E (� ◦ f ) ≥ m∗‖f − f∗‖2
L2(�) and E (� ◦ f̂ ) ≥ m∗‖f̂ − f∗‖2

L2(�).(61)

Then

E (� ◦ f̂ ) + 1

2
C1

(
N∑

j=1

τ ε̄j‖f̂j − fj‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

≤ 7τC2m
−1/2∗ βb(Jf )

(
E 1/2(� ◦ f ) + E 1/2(� ◦ f̂ )

)
.

Using the fact that ab ≤ (a2 + b2)/2, we get

7τC2m
−1/2∗ βb(Jf )E 1/2(� ◦ f ) ≤ (49/2)τ 2C2

2m−1∗ β2
b (Jf ) + 1

2 E (� ◦ f )(62)

and

7τC2m
−1/2∗ βb(Jf )E 1/2(� ◦ f̂ ) ≤ (49/2)τ 2C2

2m−1∗ β2
b (Jf ) + 1

2 E (� ◦ f̂ ).(63)

Therefore,

E (� ◦ f̂ ) + C1

N∑
j=1

τ ε̄j‖f̂j‖L2(�) + C1

N∑
j=1

τ 2ε̄2
j ‖f̂j‖Hj

(64)
≤ E (� ◦ f ) + 100τ 2C2

2m−1∗ β2
b (Jf ).

We now consider the case when

4C2
∑
j∈Jf

τ ε̄j‖fj − f̂j‖L2(�)

(65)
< E (� ◦ f ) + 2C2

∑
j∈Jf

τ 2ε̄2
j ‖fj‖Hj

+ (C2/2)τe−N.
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It is easy to derive from (57) that in this case

E (� ◦ f̂ ) + 1

2
C1

(
N∑

j=1

τ ε̄j‖f̂j − fj‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

(66)

≤
(

3

2
+ C1

8C2

)(
E (� ◦ f ) + 2C2

∑
j∈Jf

τ 2ε̄2
j ‖fj‖Hj

+ (C2/2)τe−N

)
.

Since βb(Jf ) ≥
√

A logN
n

[see the comment after the definition of βb(Jf )], we have

τe−N ≤ τ 2

√
A logN

n
≤ τ 2β2

b (Jf ),

where we also used the assumptions that logN ≥ 2 log logn and A ≥ 4. Substitut-
ing this in (66) and then combining the resulting bound with (64) concludes the
proof of (49) in the case when conditions (55) hold.

It remains to consider the case when (55) does not hold. The main idea is to
show that in this case the right-hand side of the oracle inequality is rather large
while we still can control the left-hand side, so, the inequality becomes trivial. To
this end, note that, by the definition of f̂ , for some numerical constant c1,

Pn(� ◦ f̂ ) +
N∑

j=1

(
τ ε̂j‖f̂j‖L2(�n) + τ 2ε̂2

j ‖f̂j‖Hj

)≤ n−1
n∑

j=1

�(Yj ;0) ≤ c1

[since the value of the penalized empirical risk at f̂ is not larger than its value
at f = 0 and, by the assumptions on the loss, �(y,0) is uniformly bounded by a
numerical constant]. The last equation implies that, on the event E defined earlier
in the proof [see (51), (52)], the following bound holds:

N∑
j=1

τ

C
ε̄j

(
1

C
‖f̂j‖L2(�) − ε̄j‖f̂j‖Hj

)
+

N∑
j=1

τ 2

C2 ε̄2
j ‖f̂j‖Hj

≤ c1.

Equivalently,

τ

C2

N∑
j=1

ε̄j‖f̂j‖L2(�) +
(

τ 2

C2 − τ

C

) N∑
j=1

ε̄2
j ‖f̂j‖Hj

≤ c1.

As soon as τ ≥ 2C, so that τ 2/C2 − τ/C ≥ τ 2/(2C2), we have

τ

N∑
j=1

ε̄j‖f̂j‖L2(�) + τ 2
N∑

j=1

ε̄2
j ‖f̂j‖Hj

≤ 2c1C
2.(67)
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Note also that, by the assumptions on the loss function,

E (� ◦ f̂ ) ≤ P(� ◦ f̂ )

≤ E�(Y ;0) + |P(� ◦ f̂ ) − P(� ◦ 0)|
(68)

≤ c1 + L∗‖f̂ ‖L2(�) ≤ c1 + L∗
N∑

j=1

‖f̂ ‖L2(�)

≤ c1 + 2c1C
2L∗

1

τ

√
n

A logN
,

where we used the Lipschitz condition on �, and also bound (67) and the fact that
ε̄j ≥ √

A logN/n (by its definition).
Recall that we are considering the case when (55) does not hold. We will con-

sider two cases: (a) when eN ≤ c3, where c3 ≥ c1 is a numerical constant, and (b)
when eN > c3. The first case is very simple since N and n are both upper bounded
by a numerical constant (recall the assumption logN ≥ 2 log logn). In this case,

βb(Jf ) ≥
√

A logN
n

is bounded from below by a numerical constant. As a conse-
quence of these observations, bounds (67) and (68) imply that

E (� ◦ f̂ ) + C1

(
N∑

j=1

τ ε̄j‖f̂j‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

≤ C2τ
2β2

b (Jf )

for some numerical constant C2 > 0. In the case (b), we have

N∑
j=1

ε̄j‖f̂j − fj‖L2(�) +
N∑

j=1

ε̄2
j ‖f̂j − fj‖Hj

≥ eN

and, in view of (67), this implies

N∑
j=1

ε̄j‖fj‖L2(�) +
N∑

j=1

ε̄2
j ‖fj‖Hj

≥ eN − c1/2 ≥ eN/2.

So, either we have

N∑
j=1

ε̄2
j ‖fj‖Hj

≥ eN/4

or

N∑
j=1

ε̄j‖fj‖L2(�) ≥ eN/4.



3688 V. KOLTCHINSKII AND M. YUAN

Moreover, in the second case, we also have

N∑
j=1

ε̄2
j ‖fj‖Hj

≥
√

A logN

n

N∑
j=1

ε̄j‖fj‖L2(�)

≥ (eN/4)

√
A logN

n
.

In both cases we can conclude that, under the assumption that logN ≥ 2 log logn

and eN > c3 for a sufficiently large numerical constant c3,

E (� ◦ f̂ ) +
N∑

j=1

(
τ ε̄j‖f̂j‖L2(�) + τ 2ε̄2

j ‖f̂j‖Hj

)

≤ c1 + 2c1C
2L∗

1

τ

√
n

A logN
+ 2c1C

2

≤ τ 2eN

4

√
A logN

n
≤ τ 2

∑
j∈Jf

ε̄2
j ‖fj‖Hj

.

Thus, in both cases (a) and (b), the following bound holds:

E (� ◦ f̂ ) + C1

(
N∑

j=1

τ ε̄j‖f̂j‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

(69)

≤ C2τ
2
(∑

j∈Jf

ε̄2
j ‖fj‖Hj

+ β2
b (Jf )

)
.

To complete the proof, observe that

E (� ◦ f̂ ) + C1

(
N∑

j=1

τ ε̄j‖f̂j − fj‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

≤ E (� ◦ f̂ ) + C1

(
N∑

j=1

τ ε̄j‖f̂j‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

+ C1
∑
j∈Jf

τ ε̄j‖f̂j − fj‖L2(�)(70)

≤ C2τ
2
(∑

j∈Jf

ε̄2
j ‖fj‖Hj

+ β2
b (Jf )

)

+ C2
∑
j∈Jf

τ ε̄j‖f̂j − fj‖L2(�).
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Note also that, by the definition of βb(Jf ), for all b > 0,∑
j∈Jf

τ ε̄j‖f̂j − fj‖L2(�)

≤ τβb(Jf )

∥∥∥∥∑
j∈Jf

(f̂j − fj )

∥∥∥∥
L2(�)

(71)

≤ τβb(Jf )‖f̂ − f ‖L2(�) + τβb(Jf )

√
n

A logN

∑
j /∈Jf

ε̄j‖f̂j‖L2(�)

≤ τβb(Jf )‖f̂ − f ‖L2(�) + τβb(Jf )
2c1C

2

τ

√
n

A logN
,

where we used the fact that, for all j , ε̄j ≥
√

A logN
n

and also bound (67). By an
argument similar to (61)–(64), it is easy to deduce from the last bound that

C2
∑
j∈Jf

τ ε̄j‖f̂j − fj‖L2(�) ≤ 3

2

C2
2τ 2

m∗
β2

b (Jf ) + 1

2
E (� ◦ f̂ ) + 1

2
E (� ◦ f )

(72)

+ 2c2
1C

4

τ 2

n

A logN
.

Substituting this in bound (70), we get

1

2
E (� ◦ f̂ ) + C1

(
N∑

j=1

τ ε̄j‖f̂j − fj‖L2(�) +
N∑

j=1

τ 2ε̄2
j ‖f̂j‖Hj

)

≤ C2τ
2
(∑

j∈Jf

ε̄2
j ‖fj‖Hj

+ β2
b (Jf )

)

+ 3

2

C2
2τ 2

m∗
β2

b (Jf ) + 1

2
E (� ◦ f ) + 2c2

1C
4

τ 2

n

A logN
(73)

≤ 1

2
E (� ◦ f ) + C′

2τ
2
(∑

j∈Jf

ε̄2
j ‖fj‖Hj

+ β2
b (Jf )

m∗

)

+ 2c2
1C

2

τ 2

n

A logN
,

with some numerical constant C′
2. It is enough now to observe [considering again

the cases (a) and (b), as it was done before], that either the last term is upper
bounded by

∑
j∈Jf

ε̄j‖fj‖Hj
, or it is upper bounded by β2

b (Jf ), to complete the
proof. �
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Now, to derive Theorem 2, it is enough to check that, for a numerical constant
c > 0,

βb(Jf ) ≤
(∑

j∈Jf

ε̄2
j

)1/2

β2,∞(Jf )

≤ c

(∑
j∈Jf

ε̆2
j

)1/2

β2,∞(Jf ),

which easily follows from the definitions of βb and β2,∞. Similarly, the proof

of Theorem 3 follows from the fact that, under the assumption that �−1 ≤ ε̆j

ε̆
≤

�, we have K(b)
J ⊂ K

(b′)
J , where b′ = c�2b, c being a numerical constant. This

easily implies the bound βb(Jf ) ≤ c1�β2,b′(Jf )
√

d(f )ε̆, where c1 is a numerical
constant.

5. Bounding the empirical process. We now proceed to prove Lemma 9 that
was used to bound |(Pn − P)(� ◦ f̂ − � ◦ f )|. To this end, we begin with a fixed
pair (�−,�+). Throughout the proof, we write R := R∗

D . By Talagrand’s concen-
tration inequality, with probability at least 1 − e−t

sup
g∈G(�−,�+,R)

|(Pn − P)(� ◦ g − � ◦ f )|

≤ 2

(
E

[
sup

g∈G(�−,�+,R)

|(Pn − P)(� ◦ g − � ◦ f )|
]

+ ‖� ◦ g − � ◦ f ‖L2(P )

√
t

n
+ ‖� ◦ g − � ◦ f ‖L∞

t

n

)
.

Now note that

‖� ◦ g − � ◦ f ‖L2(P ) ≤ L∗‖g − f ‖L2(�)

≤ L∗
N∑

j=1

‖gj − fj‖L2(�)

≤ L∗
(
min

j
ε̄j

)−1 N∑
j=1

ε̄j‖gj − fj‖L2(�),

where we used the fact that the Lipschitz constant of the loss � on the range of
functions from G(�−,�+,R) is bounded by L∗. Together with the fact that ε̄j ≥
(A logN/n)1/2 for all j , this yields

‖� ◦ g − � ◦ f ‖L2(P ) ≤ L∗
√

n

A logN
�−.(74)
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Furthermore,

‖� ◦ g − � ◦ f ‖L∞ ≤ L∗‖g − f ‖L∞

≤ L∗
N∑

j=1

‖gj − fj‖Hj

≤ L∗
n

A logN
�+.

In summary, we have

sup
g∈G(�−,�+,R)

|(Pn − P)(� ◦ g − � ◦ f )|

≤ 2

(
E

[
sup

g∈G(�−,�+,R)

|(Pn − P)(� ◦ g − � ◦ f )|
]

+ L∗�−
√

t

A logN
+ L∗�+

t

n

n

A logN

)
.

Now, by symmetrization inequality,

E

[
sup

g∈G(�−,�+,R)

|(Pn − P)(� ◦ g − � ◦ f )|
]

(75)
≤ 2E sup

g∈G(�−,�+,R)

|Rn(� ◦ g − � ◦ f )|.

An application of Rademacher contraction inequality further yields

E

[
sup

g∈G(�−,�+,R)

|(Pn − P)(� ◦ g − � ◦ f )|
]

(76)
≤ CL∗E sup

g∈G(�−,�+,R)

|Rn(g − f )|,

where C > 0 is a numerical constant [again, it was used here that the Lipschitz
constant of the loss � on the range of functions from G(�−,�+,R) is bounded by
L∗]. Applying Talagrand’s concentration inequality another time, we get that with
probability at least 1 − e−t

E sup
g∈G(�−,�+,R)

|Rn(g − f )| ≤ C

(
sup

g∈G(�−,�+,R)

|Rn(g − f )|

+ �−
√

t

A logN
+ �+

t

n

n

A logN

)

for some numerical constant C > 0.
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Recalling the definition of ε̌j := ε̌(Kj ), we get

|Rn(hj )| ≤ ε̌j‖hj‖L2(�) + ε̌2
j ‖hj‖Hj

, hj ∈ Hj .(77)

Hence, with probability at least 1 − 2e−t and with some numerical constant C > 0

sup
g∈G(�−,�+,R)

|(Pn − P)(� ◦ g − � ◦ f )|

≤ CL∗
(

sup
g∈G(�−,�+,R)

|Rn(g − f )| + �−
√

t

A logN
+ �+

t

n

n

A logN

)

≤ CL∗
(

sup
g∈G(�−,�+,R)

N∑
j=1

|Rn(gj − fj )| + �−
√

t

A logN
+ �+

t

n

n

A logN

)

≤ CL∗
(

sup
g∈G(�−,�+,R)

N∑
j=1

(
ε̌j‖gj − fj‖L2(�) + ε̌2

j ‖gj − fj‖Hj

)

+ �−
√

t

A logN
+ �+

t

n

n

A logN

)
.

Using (46), ε̌j can be upper bounded by cε̄j with some numerical constant c > 0
on an event E of probability at least 1 − N−A/2. Therefore, the following bound
is obtained:

sup
g∈G(�−,�+,R)

|(Pn − P)(� ◦ g − � ◦ f )|

≤ CL∗
(
�− + �+ + �−

√
t

A logN
+ �+

t

n

n

A logN

)
.

It holds on the event E ∩ F(�−,�+, t), where P(F (�−,�+, t)) ≥ 1 − 2e−t .
We will now choose t = A logN + 4 logN + 4 log(2/ log 2) and obtain a bound

that holds uniformly over

e−N ≤ �− ≤ eN and e−N ≤ �+ ≤ eN .(78)

To this end, consider

�−
j = �+

j := 2−j .(79)

For any �−
j and �+

k satisfying (78), we have

sup
g∈G(�−

j ,�+
k ,R)

|(Pn − P)(� ◦ g − � ◦ f )|

≤ CL∗
(
�−

j + �+
k + �−

j

√
t

A logN
+ �+

k

t

n

n

A logN

)
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on the event E ∩ F(�−
j ,�+

k , t). Therefore, simultaneously for all �−
j and �+

k

satisfying (78), we have

sup
g∈G(�−

j ,�+
k ,R)

|(Pn − P)(� ◦ g − � ◦ f )|

≤ CL∗
(
�−

j + �+
k + �−

j

√
A logN + 4 logN + 4 log(2/ log 2)

A logN

+ �+
A logN + 4 logN + 4 log(2/ log 2)

n

n

A logN

)

on the event E′ := E ∩ (
⋂

j,k F (�−
j ,�+

k , t)). The last intersection is over all j, k

such that conditions (78) hold for �−
j ,�+

k . The number of the events in this inter-

section is bounded by (2/ log 2)2N2. Therefore,

P(E′) ≥ 1 − (2/ log 2)2N2 exp
(−A logN − 4 logN − 4 log(2/ log 2)

)
− P(E)(80)

≥ 1 − 2N−A/2.

Using monotonicity of the functions of �−,�+ involved in the inequalities, the
bounds can be extended to the whole range of values of �−,�+ satisfying (78),
so, with probability at least 1 − 2N−A/2 we have for all such �−,�+

sup
g∈G(�−,�+,R)

|(Pn − P)(� ◦ g − � ◦ f )| ≤ CL∗(�− + �+).(81)

If �− ≤ e−N , or �+ ≤ e−N , it follows by monotonicity of the left-hand side that
with the same probability

sup
g∈G(�−,�+,R)

|(Pn − P)(� ◦ g − � ◦ f )| ≤ CL∗(�− + �+ + e−N),(82)

which completes the proof.
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