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ANOVA FOR LONGITUDINAL DATA WITH MISSING VALUES1

BY SONG XI CHEN AND PING-SHOU ZHONG

Iowa State University and Peking University, and Iowa State University

We carry out ANOVA comparisons of multiple treatments for longitudi-
nal studies with missing values. The treatment effects are modeled semipara-
metrically via a partially linear regression which is flexible in quantifying the
time effects of treatments. The empirical likelihood is employed to formulate
model-robust nonparametric ANOVA tests for treatment effects with respect
to covariates, the nonparametric time-effect functions and interactions be-
tween covariates and time. The proposed tests can be readily modified for a
variety of data and model combinations, that encompasses parametric, semi-
parametric and nonparametric regression models; cross-sectional and longi-
tudinal data, and with or without missing values.

1. Introduction. Randomized clinical trials and observational studies are of-
ten used to evaluate treatment effects. While the treatment versus control stud-
ies are popular, multi-treatment comparisons beyond two samples are commonly
practised in clinical trails and observational studies. In addition to evaluate overall
treatment effects, investigators are also interested in intra-individual changes over
time by collecting repeated measurements on each individual over time. Although
most longitudinal studies are desired to have all subjects measured at the same set
of time points, such “balanced” data may not be available in practice due to missing
values. Missing values arise when scheduled measurements are not made, which
make the data “unbalanced.” There is a good body of literature on parametric,
nonparametric and semiparametric estimation for longitudinal data with or with-
out missing values. This includes Liang and Zeger (1986), Laird and Ware (1982),
Wu, Chiang and Hoover (1998), Wu and Chiang (2000), Fitzmaurice, Laird and
Ware (2004) for methods developed for longitudinal data without missing values;
and Little and Rubin (2002), Little (1995), Laird (2004), Robins, Rotnitzky and
Zhao (1995) for missing values.

The aim of this paper is to develop ANOVA tests for multi-treatment compar-
isons in longitudinal studies with or without missing values. Suppose that at time t ,
corresponding to k treatments there are k mutually independent samples,

{(Y1i (t),X
τ
1i(t))}n1

i=1, . . . , {(Yki(t),X
τ
ki(t))}nk

i=1,
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where the response variable Yji(t) and the covariate Xji(t) are supposed to be
measured at time points t = tj i1, . . . , tj iTj

. Here Tj is the fixed number of sched-
uled observations for the j th treatment. However, {Yji(t),X

τ
ji(t)} may not be ob-

served at some times, resulting in missing values in either the response Yji(t) or
the covariates Xji(t).

We consider a semiparametric regression model for the longitudinal data

Yji(t) = Xτ
ji(t)βj0 + Mτ(Xji(t), t)γj0 + gj0(t) + εji(t),

(1.1)
j = 1,2, . . . , k,

where M(Xji(t), t) are known functions of Xji(t) and time t representing inter-
actions between the covariates and the time, βj0 and γj0 are p- and q-dimensional
parameters, respectively, gj0(t) are unknown smooth functions representing the
time effect, and {εji(t)} are residual time series. Such a semiparametric model
may be viewed as an extended partially linear model. The partially linear model
has been used for longitudinal data analysis; see Zeger and Diggle (1994), Zhang
et al. (1998), Lin and Ying (2001), Wang, Carroll and Lin (2005). Wu, Chiang and
Hoover (1998) and Wu and Chiang (2000) proposed estimation and confidence re-
gions for a semiparametric varying coefficient regression model. Despite a body
of works on estimation for longitudinal data, analysis of variance for longitudinal
data have attracted much less attention. A few exceptions include Forcina (1992)
who proposed an ANOVA test in a fully parametric setting; and Scheike and Zhang
(1998) who considered a two sample test in a fully nonparametric setting.

In this paper, we propose ANOVA tests for differences among the βj0’s and
the baseline time functions gj0’s, respectively, in the presence of the interactions.
The ANOVA statistics are formulated based on the empirical likelihood [Owen
(1988, 2001)], which can be viewed as a nonparametric counterpart of the conven-
tional parametric likelihood. Despite its not requiring a fully parametric model, the
empirical likelihood enjoys two key properties of a conventional likelihood, the
Wilks’ theorem [Owen (1990), Qin and Lawless (1994), Fan and Zhang (2004)]
and Bartlett correction [DiCicco, Hall and Romano (1991), Chen and Cui (2006)];
see Chen and Van Keilegom (2009) for an overview on the empirical likelihood
for regression. This resemblance to the parametric likelihood ratio motivates us to
consider using empirical likelihood to formulate ANOVA test for longitudinal data
in nonparametric situations. This will introduce a much needed model-robustness
in the ANOVA testing.

Empirical likelihood has been used in studies for either missing or longitudinal
data. Wang and Rao (2002), Wang, Linton and Härdle (2004) considered an empir-
ical likelihood inference with a kernel regression imputation for missing responses.
Liang and Qin (2008) treated estimation for the partially linear model with miss-
ing covariates. For longitudinal data, Xue and Zhu (2007a, 2007b) proposed a bias
correction method to make the empirical likelihood statistic asymptotically pivotal
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in a one sample partially linear model; see also You, Chen and Zhou (2006) and
Huang, Qin and Follmann (2008).

In this paper, we propose three empirical likelihood based ANOVA tests for
the equivalence of the treatment effects with respect to (i) the covariate Xji ; (ii)
the interactions M(Xji(t), t) and (iii) the time effect functions gj0(·)’s, by for-
mulating empirical likelihood ratio test statistics. It is shown that for the proposed
ANOVA tests for the covariates effects and the interactions, the empirical likeli-
hood ratio statistics are asymptotically chi-squared distributed, which resembles
the conventional ANOVA statistics based on parametric likelihood ratios. This is
achieved without parametric model assumptions for the residuals in the presence
of the nonparametric time effect functions and missing values. Hence, the empiri-
cal likelihood ANOVA tests have the needed model-robustness. Another attraction
of the proposed ANOVA tests is that they encompass a set of ANOVA tests for a
variety of data and model combinations. Specifically, they imply specific ANOVA
tests for both cross-sectional and longitudinal data; for parametric, semiparametric
and nonparametric regression models; and with or without missing values.

The paper is organized as below. In Section 2, we describe the model and the
missing value mechanism. Section 3 outlines the ANOVA test for comparing treat-
ment effects due to the covariates: whereas the tests regarding interaction are pro-
posed in Section 5. Section 4 considers ANOVA test for the nonparametric time
effects. The bootstrap calibration to the ANOVA test on the nonparametric part is
outlined in Section 6. Section 7 reports simulation results. We applied the proposed
ANOVA tests in Section 8 to analyze an HIV-CD4 data set. Technical assumptions
are presented in the Appendix. All the technical proofs to the theorems are reported
in a supplement article [Chen and Zhong (2010)].

2. Models, hypotheses and missing values. For the ith individual of the j th
treatment, the measurements taken at time tj im follow a semiparametric model

Yji(tj im) = Xτ
ji(tj im)βj0 + Mτ(Xji(tj im), tjim)γj0

(2.1)
+ gj0(tjim) + εji(tj im),

for j = 1, . . . , k, i = 1, . . . , nj , m = 1, . . . , Tj . Here βj0 and γj0 are un-
known p- and q-dimensional parameters and gj0(t) are unknown functions
representing the time effects of the treatments. The time points {tj im}Tj

m=1 are
known design points. For ease of notation, we write (Yjim,Xτ

jim,Mτ
jim) to

denote (Yji(tj im),Xτ
ji(tj im),Mτ (Xji(tj im), tjim)). Also, we will use X

τ
jim =

(Xτ
jim,Mτ

jim) and ξτ
j = (βτ

j , γ τ
j ). For each individual, the residuals {εji(t)} satisfy

E{εji(t)|Xji(t)} = 0, Var{εji(t)|Xji(t)} = σ 2
j (t) and

Cov{εji(t), εji(s)|Xji(t),Xji(s)} = ρj (s, t)σj (t)σj (s),

where ρj (s, t) is the conditional correlation coefficient between two residuals at
two different times. And the residual time series {εji(t)} from different subjects
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and different treatments are independent. Without loss of generality, we assume
t, s ∈ [0,1]. For the purpose of identifying βj0, γj0 and gj0(t), we assume

(βj0, γj0, gj0) = arg min
(βj ,γj ,gj )

1

njTj

nj∑
i=1

Tj∑
m=1

E{Yjim −Xτ
jimβj −Mτ

jimγj −gj (tjim)}2.

We also require that 1
nj Tj

∑nj

i=1
∑Tj

m=1 E(X̃jimX̃
τ
jim) > 0, where X̃jim = Xjim −

E(Xjim|tj im). This condition also rules out M(Xji(t), t) being a pure function
of t , and hence it has to be genuine interaction. For the same reason, the intercept
in model (2.1) is absorbed into the nonparametric part gj0(t).

As commonly exercised in the partially linear model [Speckman (1988); Linton
and Nielsen (1995)], there is a secondary model for the covariate Xjim:

Xjim = hj (tjim) + ujim,
(2.2)

j = 1,2, . . . , k, i = 1, . . . , nj ,m = 1, . . . , Tj ,

where hj (·)’s are p-dimensional smooth functions with continuous second deriv-
atives, the residual ujim = (u1

jim, . . . , u
p
jim)τ satisfy E(ujim) = 0 and ujl and ujk

are independent for l �= k, where ujl = (ujl1, . . . , ujlTj
). By the identification con-

dition given above, the covariance matrix of ujim is assumed to be finite and posi-
tive definite.

We are interested in testing three ANOVA hypotheses. The first one is on the
treatment effects with respect to the covariates:

H0a :β10 = β20 = · · · = βk0 vs. H1a :βi0 �= βj0 for some i �= j.

The second one is regarding the time effect functions:

H0b :g10(·) = · · · = gk0(·) vs. H1b :gi0(·) �= gj0(·) for some i �= j.

The third one is on the existence of the interaction H0c :γj0 = 0 and H1c :γj0 �= 0.
And the last one is the ANOVA test for

H0d :γ10 = γ20 = · · · = γk0 vs. H1d :γi0 �= γj0 for some i �= j.

Let Xji = {Xji0, . . . ,XjiTj
} and Yji = {Yji0, . . . , YjiTj

} be the complete
time series of the covariates and responses of the (j, i)th subject (the ith sub-
ject in the j th treatment), and

↼

Yjit,d = {Yji(t−d), . . . , Yji(t−1)} and
↼

Xjit,d =
{Xji(t−d), . . . ,Xji(t−1)} be the past d observations at time t for a positive inte-
ger d ≤ minj {Tj }. For t < d , we set d = t − 1.

Define the missing value indicator δjit = 1 if (Xτ
jit , Yjit ) is observed and δjit =

0 if (Xτ
jit , Yjit ) is missing. Here, we assume Xjit and Yjit are either both observed

or both missing. This simultaneous missingness of Xjit and Yjit is for the ease of
mathematical exposition. We also assume that δji0 = 1, namely the first visit of
each subject is always made.
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Monotone missingness is a common assumption in the analysis of longitudi-
nal data [Robins, Rotnitzky and Zhao (1995)]. It assumes that if δji(t−1) = 0
then δjit = 0. However, in practice after missing some scheduled appointments
people may rejoin the study. This kind of casual drop-out appears quite often in
empirical studies. To allow more data being included in the analysis, we relax
the monotone missingness to allow segments of consecutive d visits being used.
Let δjit,d = ∏d

l=1 δji(t−l). We assume the missingness of (Xτ
jit , Yjit ) is missing at

random (MAR) Rubin (1976) given its immediate past d complete observations,
namely

P(δjit = 1|δjit,d = 1,Xji, Yji) = P(δjit = 1|δjit,d = 1,
↼

Xjit,d ,
↼

Yjit,d)
(2.3)

= pj (
↼

Xjit,d ,
↼

Yjit,d; θj0).

Here the missing propensity pj is known up to a parameter θj0. To allow derivation
of a binary likelihood function, we need to set δjit = 0 if δjit,d = 0 when there is
some drop-outs among the past d visits, which is only temporarily if δjit = 1. This
set-up ensures

P(δjit = 0|δjit,d = 0,
↼

Xjit,d ,
↼

Yjit,d) = 1.(2.4)

Now the conditional binary likelihood for {δjit }Tj

t=1 given Xji and Yji is

P(δji0, . . . , δjiTj
|Xji, Yji)

=
Tj∏

m=1

P
(
δjim|δji(m−1), . . . , δji0,Xji, Yji

)

=
Tj∏

m=1

P(δjim|δjim,d = 1,
↼

Xjim,d,
↼

Yjim,d)

=
Tj∏

m=1

[
pj (

↼

Xjim,d,
↼

Yjim,d; θj )
δjim{1 − pj (

↼

Xjim,d,
↼

Yjim,d; θj )}(1−δjim)]δjim,d .

In the second equation above, we use both the MAR in (2.3) and (2.4). Hence, the
parameters θj0 can be estimated by maximizing the binary likelihood

LBj
(θj ) =

nj∏
i=1

Tj∏
t=1

[
pj (

↼

Xjit,d ,
↼

Yjit,d; θj )
δjit

(2.5)
× {1 − pj (

↼

Xjit,d ,
↼

Yjit,d; θj )}(1−δjit )
]δjit,d .

Under some regular conditions, the binary maximum likelihood estimator θ̂j is√
n-consistent estimator of θj0; see Chen, Leung and Qin (2008) for results on

a related situation. Some guidelines on how to choose models for the missing
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propensity are given in Section 8 in the context of the empirical study. The ro-
bustness of the ANOVA tests with respect to the missing propensity model are
discussed in Sections 3 and 4.

3. ANOVA test for covariate effects. We consider testing for H0a :β10 =
β20 = · · · = βk0 with respect to the covariates. Let πjim(θj ) = ∏m

l=m−d pj (
↼

Xjil,d ,
↼

Yjil,d; θj ) be the overall missing propensity for the (j, i)th subject up to time tj im.
To remove the nonparametric part in (2.1), we first estimate the nonparametric
function gj0(t). If βj0 and γj0 were known, gj0(t) would be estimated by

ĝj (t;βj0) =
nj∑
i=1

Tj∑
m=1

wjim,h(t)(Yjim − Xτ
jimβj0 − Mτ

jimγj0),(3.1)

where

wjim,hj
(t) = (δjim/πjim(θ̂j ))Khj

(tjim − t)∑nj

s=1
∑Tj

l=1(δjsl/πjsl(θ̂j ))Khj
(tjsl − t)

(3.2)

is a kernel weight that has been inversely weighted by the propensity πjim(θ̂j )

to correct for selection bias due to the missing values. In (3.2), K is a univariate
kernel function which is a symmetric probability density, Khj

(t) = K(t/hj )/hj

and hj is a smoothing bandwidth. The conventional kernel estimation of gj0(t)

without weighting by πjsl(θ̂j ) may be inconsistent if the missingness depends on
the responses Yjil , which can be the case for missing covariates.

Let Ajim denote any of Xjim,Yjim and Mjim and define

Ãjim = Ajim −
nj∑

i1=1

Tj∑
m1=1

wji1m1,hj
(tj im)Aji1m1(3.3)

to be the centering of Ajim by the kernel conditional mean estimate, as is com-
monly exercised in the partially linear regression [Härdle, Liang and Gao (2000)].
An estimating function for the (j, i)th subject is

Zji(βj ) =
Tj∑

m=1

δjim

πjim(θ̂j )
X̃jim(Ỹjim − X̃τ

jimβj − M̃τ
jimγ̃j ),

where γ̃j is the solution of

nj∑
i=1

Tj∑
m=1

δjim

πjim(θ̂j )
M̃jim(Ỹjim − X̃τ

jimβj0 − M̃τ
jimγ̃j ) = 0

at the true βj0. Note that E{Zji(βj0)} = o(1). Although it is not exactly zero,
Zji(βj0) can still be used as an approximate zero mean estimating function to
formulate an empirical likelihood for βj as follows.
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Let {pji}nj

i=1 be nonnegative weights allocated to {(Xτ
ji, Yji)}nj

i=1. The empirical
likelihood for βj is

Lnj
(βj ) = max

{ nj∏
i=1

pji

}
,(3.4)

subject to
∑nj

i=1 pji = 1 and
∑nj

i=1 pjiZji(βj ) = 0.

By introducing a Lagrange multiplier λj to solve the above optimization prob-
lem and following the standard derivation in empirical likelihood [Owen (1990)],
it can be shown that

Lnj
(βj ) =

nj∏
i=1

{
1

nj

1

1 + λτ
jZji(βj )

}
,(3.5)

where λj satisfies

nj∑
i=1

Zji(βj )

1 + λτ
jZji(βj )

= 0.(3.6)

The maximum of Lnj
(βj ) is

∏nj

i=1
1
nj

, achieved at βj = β̂j and λj = 0, where β̂j

solves
∑nj

i=1 Zji(β̂j ) = 0.
Let n = ∑k

i=1 nj , nj/n → ρj for some nonzero ρj as n → ∞ such that∑k
i=1 ρj = 1. As the k samples are independent, the joint empirical likelihood

for (β1, β2, . . . , βk) is

Ln(β1, β2, . . . , βk) =
k∏

j=1

Lnj
(βj ).

The log likelihood ratio statistic for H0a is

�n := −2 max
β

logLn(β,β, . . . , β) +
k∑

j=1

nj lognj

(3.7)

= 2 min
β

k∑
j=1

nj∑
i=1

log{1 + λτ
jZji(β)}.

Using a Taylor expansion and the Lagrange multiplier to carry out the mini-
mization in (3.7), the optimal solution to β is(

k∑
j=1

�xj
B−1

j �xj

)−1(
k∑

j=1

�xj
B−1

j �xj yj

)
+ op(1),(3.8)
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where Bj = limnj→∞ (njTj )
−1 ∑nj

i=1 E{Zji(βj0)Zji(βj0)
τ },

�xj
= 1√

njTj

nj∑
i=1

Tj∑
m=1

E

{
δjim

πjim(θ̂j )
X̃jimX̃τ

jim

}
and

�xjyj
= 1√

njTj

nj∑
i=1

Tj∑
m=1

δjim

πjim(θ̂j )
X̃jim(Ỹjim − Mτ

jimγ̃j ).

The ANOVA test statistic (3.7) can be viewed as a nonparametric counterpart of
the conventional parametric likelihood ratio ANOVA test statistic, for instance that
considered in Forcina (1992). Like its parametric counterpart, the Wilks theorem
is maintained for �n.

THEOREM 1. If conditions A1–A4 given in the Appendix hold, then under

H0a , �n
d→ χ2

(k−1)p as n → ∞.

The theorem suggests an empirical likelihood ANOVA test that rejects H0a if
�n > χ2

(k−1)p,α where α is the significant level and χ2
(k−1)p,α is the upper α quantile

of the χ2
(k−1)p distribution.

We next evaluate the power of the empirical likelihood ANOVA test under a
series of local alternative hypotheses:

H1a :βj0 = β10 + cnn
−1/2
j for 2 ≤ j ≤ k,

where {cn} is a sequence of bounded constants. Define �β = (βτ
10 − βτ

20, β
τ
10 −

βτ
30, . . . , β

τ
10 − βτ

k0)
τ , D1j = �−1

x1
�x1y1 − �−1

xj
�xj yj

for 2 ≤ j ≤ k and D =
(Dτ

12,D
τ
13, . . . ,D

τ
1k)

τ . Let �D = Var(D) and γ 2 = �τ
β�−1

D �β . Theorem 2 gives
the asymptotic distribution of �n under the local alternatives.

THEOREM 2. Suppose conditions A1–A4 in the Appendix hold, then under

H1a , �n
d→ χ2

(k−1)p(γ 2) as n → ∞.

It can be shown that

�D = �−1
x1

B1�
−1
x1

1(k−1) ⊗ 1(k−1) + diag{�−1
x2

B2�
−1
x2

, . . . ,�−1
xk

Bk�
−1
xk

}.(3.9)

As each �−1
xj

is O(n1/2), the noncentral component γ 2 is nonzero and bounded.
The power of the α level empirical likelihood ANOVA test is

β(γ ) = P
{
χ2

(k−1)p(γ 2) > χ2
(k−1)p,α

}
.

This indicates that the test is able to detect local departures of size O(n−1/2)

from H0a , which is the best rate we can achieve under the local alternative set-up.



3638 S. X. CHEN AND P.-S. ZHONG

This is attained despite the fact that nonparametric kernel estimation is involved in
the formulation, which has a slower rate of convergence than

√
n, as the centering

in (3.3) essentially eliminates the effects of the nonparametric estimation.

REMARK 1. When there is no missing values, namely all δjim = 1, we will
assign all πjim(θ̂j ) = 1 and there is no need to estimate each θj0. In this case,
Theorems 1 and 2 remain valid. It is a different matter for estimation as estimation
efficiency with missing values will be less than that without missing values.

REMARK 2. The above ANOVA test is robust against misspecifying the miss-
ing propensity pj (·; θj0) provided the missingness does not depend on the re-
sponses

↼

Yjit,d . This is because despite the mispecification, the mean of Zji(β)

is still approximately zero and the empirical likelihood formulation remains valid,
as well as Theorems 1 and 2. However, if the missingness depends on the responses
and if the model is misspecified, Theorems 1 and 2 will be affected.

REMARK 3. The empirical likelihood test can be readily modified for ANOVA
testing on pure parametric regressions with some parametric time effects gj0(t;ηj )

with parameters ηj . When there is absence of interaction, we may formulate the
empirical likelihood for (βj , ηj ) ∈ Rp+s using

Zji(βj ;ηj ) =
Tj∑

m=1

δjim

πjim(θ̂j )

(
Xτ

jim,
∂gτ

j (tjim;ηj )

∂ηj

)τ

× {Yjim − Xτ
jimβj − gj0(tjim;ηj )}

as the estimating function for the (j, i)th subject. The ANOVA test can be for-
mulated following the same procedures from (3.5) to (3.7), and both Theorems 1
and 2 remaining valid after updating p with p + s where s is the dimension of ηj .

In our formulation for the ANOVA test here and in the next section, we rely
on the Nadaraya–Watson type kernel estimator. The local linear kernel estimator
may be employed when the boundary bias may be an issue. However, as we are
interested in ANOVA tests instead of estimation, the boundary bias does not have
a leading order effect.

4. ANOVA test for time effects. In this section, we consider the ANOVA test
for the nonparametric part

H0b :g10(·) = · · · = gk0(·).
We will first formulate an empirical likelihood for gj0(t) at each t , which then
lead to an overall likelihood ratio for H0b. We need an estimator of gj0(t) that is
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less biased than the one in (3.1). Recall the notation defined in Section 2: X
τ
jim =

(Xτ
jim,Mτ

jim) and ξτ
j = (βτ

j , γ τ
j ). Plugging-in the estimator ξ̂j to (3.1), we have

g̃j (t) =
nj∑
i=1

Tj∑
m=1

wjim,hj
(t)(Yjim − X

τ
jimξ̂j ).(4.1)

It follows that, for any t ∈ [0,1],

g̃j (t) − gj0(t) =
nj∑
i=1

Tj∑
m=1

wjim,hj
(t){εji(tj im) + X

τ
jim(ξj − ξ̂j )

(4.2)
+ gj0(tjim) − gj0(t)}.

However, there is a bias of order h2
j in the kernel estimation since

nj∑
i=1

Tj∑
m=1

wjim,hj
(t){gj0(tjim) − gj0(t)} = 1

2

{∫
z2K(z)dz

}
g′′

j0(t)h
2
j + op(h2

j ).

If we formulated the empirical likelihood based on g̃j (t), the bias will contribute
to the asymptotic distribution of the ANOVA test statistic. To avoid that, we use
the bias-correction method proposed in Xue and Zhu (2007a) so that the estimator
of gj0 is

ĝj (t) =
nj∑
i=1

Tj∑
m=1

wjim,hj
(t)

{
Yjim − X

τ
jimξ̂j − (

g̃j (tj im) − g̃j (t)
)}

.

Based on this modified estimator ĝj (t), we define the auxiliary variable

Rji{gj (t)} =
Tj∑

m=1

δjim

πjim(θ̂j )
K

(
tj im − t

hj

)
× {

Yjim − X
τ
jimξ̂j − gj (t) − (

g̃j (tj im) − g̃j (t)
)}

for empirical likelihood formulation. At true function gj0(t), E[Rji{gj0(t)}] =
o(1).

Using a similar procedure to Lnj
(βj ) as given in (3.5) and (3.6), the empirical

likelihood for gj0(t) is

Lnj
{gj0(t)} = max

{ nj∏
i=1

pji

}

subject to
∑nj

i=1 pji = 1 and
∑nj

i=1 pjiRji{gj (t)} = 0. The latter is obtained in a
similar fashion as we obtain (3.5) by introducing Lagrange multipliers so that

Lnj
{gj0(t)} =

nj∏
i=1

{
1

nj

1

1 + ηj (t)Rji{gj0(t)}
}
,
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where ηj (t) is a Lagrange multiplier that satisfies

nj∑
i=1

Rji{gj0(t)}
1 + ηj (t)Rji{gj0(t)} = 0.(4.3)

The log empirical likelihood ratio for g10(t) = · · · = gk0(t) := g(t), say, is

Ln(t) = 2 min
g(t)

k∑
j=1

nj∑
i=1

log
(
1 + ηj (t)Rji{g(t)}),(4.4)

which is analogues of �n in (3.7). As shown in the proof of Theorem 3 given in the
supplement article [Chen and Zhong (2010)], the leading order term of the Ln(t)

is a studentized version of the distance(
ĝ1(t) − ĝ2(t), ĝ1(t) − ĝ3(t), . . . , ĝ1(t) − ĝk(t)

)
,

namely between ĝ1(t) and the other ĝj (t)(j �= 1). This motivates us to propose
using

Tn =
∫ 1

0
Ln(t)�(t) dt(4.5)

to test for the equivalence of {gj0(·)}kj=1, where �(t) is a probability weight func-
tion over [0,1].

To define the asymptotic distribution of Tn, we assume without loss of generality
that for each hj and Tj , j = 1, . . . , k, there exist fixed finite positive constants αj

and bj such that αjTj = T and bjhj = h for some T and h as h → 0. Effectively,

T is the smallest common multiple of T1, . . . , Tk . Let K
(2)
c (t) = ∫

K(w)K(t −
cw)dt and K

(4)
c (0) = ∫

K
(2)
c (w

√
c)K

(2)
1/c(w/

√
c) dw. For c = 1, we resort to the

standard notations of K(2)(t) and K(4)(0) for K
(2)
1 (t) and K

(4)
1 (0), respectively.

For each treatment j , let fj be the super-population density of the design points
{tj im}. Let aj = ρ−1

j αj ,

Wj(t) = fj (t)/{ajbjσ
2
εj }∑k

l=1 fl(t)/{alblσ
2
εl}

and Vj (t) = K(2)(0)σ 2
εjfj (t) where σ 2

εj = 1
njTj

∑nj

i=1
∑Tj

m=1 E{ ε2
jim

πjim(θj0)
}. Further-

more, we define

�(t) =
k∑

j=1

b−1
j K(4)(0)

(
1 − Wj(t)

)2

+
k∑

j �=j1

(bjbj1)
−1/2K

(4)
bj /bj1

(0)Wj (t)Wj1(t)
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and

μ1 =
∫ 1

0

[
k∑

j=1

b
−1/2
j V −1

j (t)f 2
j (t)�2

nj (t)

−
(

k∑
s=1

b−1/4
s V −1/2

s (t)W 1/2
s (t)fs(t)�ns(t)

)2]
�(t) dt.

We consider a sequence of local alternative hypotheses:

gj0(t) = g10(t) + Cjn�nj (t),(4.6)

where Cjn = (njTj )
−1/2h

−1/4
j for j = 2, . . . , k and {�nj (t)}n≥1 is a sequence of

uniformly bounded functions.

THEOREM 3. Assume conditions A1–A4 in the Appendix and h = O(n−1/5),
then under (4.6),

h−1/2(Tn − μ0)
d→ N(0, σ 2

0 ),

where μ0 = (k − 1) + h1/2μ1 and σ 2
0 = 2K(2)(0)−2 ∫ 1

0 �(t)� 2(t) dt .

We note that under H0b :g10(·) = · · · = gk0(·), �nj (t) = 0 which yields μ1 = 0
and

h−1/2{Tn − (k − 1)} d→ N(0, σ 2
0 ).

This may lead to an asymptotic test at a nominal significance level α that rejects
H0b if

Tn ≥ h1/2σ̂0zα + (k − 1),(4.7)

where zα is the upper α quantile of N(0,1) and σ̂0 is a consistent estimator of
σ0. The asymptotic power of the test under the local alternatives is 1 − �(zα −
μ1
σ0

), where �(·) is the standard normal distribution function. This indicates that
the test is powerful in differentiating null hypothesis and its local alternative at
the convergence rate O(n

−1/2
j h

−1/4
j ) for Cjn. The rate is the best when a single

bandwidth is used [Härdle and Mammen (1993)].
If all the hj (j = 1, . . . , k) are the same, the asymptotic variance σ 2

0 = 2(k −
1)K(2)(0)−2K(4)(0)

∫ 1
0 � 2(t) dt , which means that the test statistic under H0b is

asymptotic pivotal. However, when the bandwidths are not the same, which is most
likely as different treatments may require different amount of smoothness in the
estimation of gj0(·), the asymptotical pivotalness of Tn is no longer available, and
estimation of σ 2

0 is needed for conducting the asymptotic test in (4.7). We will
propose a test based on a bootstrap calibration to the distribution of Tn in Section 6.
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REMARK 4. Similar to Remarks 1 and 2 made on the ANOVA tests for the
covariate effects, the proposed ANOVA test for the nonparametric baseline func-
tions (Theorem 3) remains valid in the absence of missing values or if the missing
propensity is misspecified as long as the responses do not contribute to the miss-
ingness.

REMARK 5. We note that the proposed test is not affected by the within-
subject dependent structure (the longitudinal aspect) due to the fact that the formu-
lation of the empirical likelihood is made for each subject. This is clearly shown in
the construction of Rji{gj (t)} and by the fact that the nonparametric functions can
be separated from the covariate effects in the semiparametric model. Again this
would be changed if we are interested in estimation as the correlation structure in
the longitudinal data will affect the estimation efficiency. However, the test will be
dependent on the choice of the weight function �(·), and {αj }, {ρj } and {bj }, the
relative ratios among {Tj }, {nj } and {hj }.

REMARK 6. The ANOVA test statistics for the time effects for the semipara-
metric model can be readily modified to obtain ANOVA test for purely nonpara-
metric regression by simply setting ξ̂j = 0 in the formulation of the test statistic
Ln(t). In this case, the model (2.1) takes the form

Yji(t) = gj (Xji(t), t) + εji(t),(4.8)

where gj (·) is the unknown nonparametric function of Xji(t) and t . The proposed
ANOVA test can be viewed as generalization of the tests considered in Mund and
Dettle (1998), Pardo-Fernández, Van Keilegom and González-Manteiga (2007)
and Wang, Akritas and Van Keilegom (2008) by considering both the longitudi-
nal and missing aspects. See also Cao and Van Keilegom (2006) for a two sample
test for the equivalence of two probability densities.

5. Tests on interactions. Model (1.1) contains an interactive term M(Xjim, t)

that is flexible in prescribing the interact between Xjim and the time, as long as
the positive definite condition in condition A3 is satisfied. In this section, we pro-
pose tests for the presence of the interaction in the j th treatment and the ANOVA
hypothesis on the equivalence of the interactions among the treatments.

We firstly consider testing H0c :γj0 = 0 vs. H1c :γj0 �= 0 for a fixed j . In the
formulation of the empirical likelihood for γj0, we treat Mjim = M(Xjim, t) as
a covariates with the same role like Xjim in the previous section when we con-
structed empirical likelihood for βj0. For this purpose, we define estimating equa-
tions for γj0

φji(γj0) =
Tj∑

m=1

δjim

πjim(θ̂j )
M̃jim(Ỹjim − X̃τ

jimβ̃j − M̃τ
jimγj0),(5.1)
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where

β̃j =
{ nj∑

i=1

Tj∑
m=1

δjim

πjim(θ̂j )
X̃jimX̃τ

jim

}−1

(5.2)

×
nj∑
i=1

Tj∑
m=1

δjim

πjim(θ̂j )
X̃jim(Ỹjim − M̃τ

jimγj0)

is the “estimator” of βj at the true γj0. Similar to establishing �nj
(βj ) in Section 3,

the log-empirical likelihood for γj0 can be written as

�γ
nj

(γj ) = 2
nj∑
i=1

log{1 + �′
jφji(γj )},

where the Lagrange multipliers �j satisfies
nj∑
i=1

φji(γj )

1 + �′
jφji(γj )

= 0.(5.3)

To test for H0d :γ10 = γ20 = · · · = γk0 vs. H1d :γi0 �= γj0 for some i �= j , we
construct the joint empirical likelihood ratio

�γ
n := 2 min

γ

k∑
j=1

nj∑
i=1

log{1 + �τ
jφji(γ )},(5.4)

where �j satisfy (5.3).
The asymptotic distributions of the empirical likelihood ratios �

γ
nj (0) and �

γ
n

under the null hypotheses are given in the next theorem whose proofs will not be
given as they follow the same routes in the proof of Theorem 1 by exchanging
Xjim and βj0 with Mjim and γj0, respectively.

THEOREM 4. Under conditions A1–A4 given in the Appendix, then (i) under

H0c, �
γ
nj (0)

d→ χ2
q as nj → ∞; (ii) under H0d , �

γ
n

d→ χ2
(k−1)q as n → ∞.

Based on Theorem 4, an α-level empirical likelihood ratio test for the presence
of the interaction in the j th sample rejects H0c if �

γ
nj (0) > χ2

q,α , and the ANOVA

test for the equivalence of the interactive effects rejects H0d if �
γ
n > χ2

(k−1)q,α . The
ANOVA test for H0d has a similar local power performance as that described after
Theorem 2 for the ANOVA test regarding βj0 in Section 3. The power properties
of the test for H0c can be established using a much easier method.

We have assumed parametric models for the interaction in model (1.1). A semi-
parametric model would be employed to model the interaction given that the model
for the time effect is nonparametric. The parametric interaction is a simplification
and avoids some of the involved technicalities associated with a semiparametric
model.
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6. Bootstrap calibration. To avoid direct estimation of σ 2
0 in Theorem 3 and

to speed up the convergence of Tn, we resort to the bootstrap. While the wild
bootstrap [Wu (1986), Liu (1988) and Härdle and Mammen (1993)] originally
proposed for parametric regression without missing values has been modified by
Shao and Sitter (1996) to take into account missing values, we extend it further to
suit the longitudinal feature.

Let �toj and �tmj be the sets of the time points with full and missing observa-
tions, respectively. According to model (2.2), we impute a missing Xji(t) from
X̂ji(t), t ∈ �toj , so that for any t ∈ �tmj

X̂ji(t) =
nj∑
i=1

Tj∑
m=1

wjim,hj
(t)Xjim,(6.1)

where wjim,hj
(t) is the kernel weight defined in (3.2).

To mimic the heteroscedastic and correlation structure in the longitudinal data,
we estimate the covariance matrix for each subject in each treatment. Let

ε̂j im = Yjim − X
τ
jimξ̂j − ĝj (tj im).

An estimator of σ 2
j (t), the variance of εji(t), is σ̂ 2

j (t) = ∑nj

i=1
∑Tj

m=1 wjim,hj
(t) ×

ε̂2
jim and an estimator of ρj (s, t), the correlation coefficient between εji(t) and

εji(s) for s �= t , is

ρ̂j (s, t) =
nj∑
i=1

Tj∑
m�=m′

Hjim,m′(s, t)êj imêjim′,

where êj im = ε̂j im/σ̂j (tj im),

Hjim,m′(s, t) = δjimδjim′Kbj
(s − tj im)Kbj

(t − tj im′)/πjim,m′(θ̂j )∑nj

i=1
∑

m�=m′ δjimδjim′Kbj
(s − tj im)Kbj

(t − tj im′)/πjim,m′(θ̂j )

and πjim,m′(θ̂j ) = πjim(θ̂j )πjim′(θ̂j ) if |m − m′| > d; πjim,m′(θ̂j ) = πjimb
(θ̂j )

if |m − m′| ≤ d where mb = max(m,m′). Here bj is a smoothing bandwidth
which may be different from the bandwidth hj for calculating the test sta-
tistics Tn [Fan, Huang and Li (2007)]. Then, the covariance �ji of εji =
(εji1, . . . , εjiTj

)τ is estimated by �̂ji which has σ̂ 2
j (tj im) as its mth diagonal ele-

ment and ρ̂j (tj ik, tj il)σ̂j (tj ik)σ̂j (tj il) as its (k, l)th element for k �= l.
Let Yji, δji, tj i be the vector of random variables of the (j, i)th subject, Xji =

(Xji(tj i1), . . . ,Xji(tj iTj
))τ and gj0(tsl) = (gj0(tsl1), . . . , gj0(tslTk

))τ , where s

may be different from j . Let Xc
ji = {Xo

ji, X̂
m
ji}, where Xo

ji contains observed

Xji(t) for tj ∈ �to and X̂m
ji collects the imputed Xji(t) for t ∈ �tmj according to (6.1).

Plugging the value of Xc
ji , we get Mc

ji = {Mo
ji, M̂

m
ji}, the observed and the imputed

interactions for (j, i)th subject and then X
c
ji .
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The proposed bootstrap procedure consists of the following steps:
Step 1. Generate a bootstrap re-sample {Y ∗

ji,X
c
ji, δ

∗
ji, tj i} for the (j, i)th subject

by

Y ∗
ji = X

c
ji

τ
ξ̂j + ĝ1(tji) + �̂jie

∗
ji ,

where e∗
ji ’s are i.i.d. random vectors simulated from a distribution satisfying

E(e∗
ji) = 0 and Var(e∗

ji) = ITj
, δ∗

jim ∼ Bernoulli(πjim(θ̂j )) where θ̂j is estimated
based on the original sample as given in (2.5). Here, ĝ1(tji) is used as the common
nonparametric time effect to mimic the null hypothesis H0b.

Step 2. For each treatment j , we reestimate ξj , θj and gj (t) based on the resam-
ple {Y ∗

ji,X
c
ji, δ

∗
ji, tj i} and denote them as ξ̂∗

j , θ̂∗
j and ĝ∗

j (t). The bootstrap version
of Rji{g1(t)} is

R∗
ji{ĝ1(t)} =

Tj∑
m=1

δ∗
jim

πjim(θ̂∗
j )

K

(
tj im − t

hj

)
× {

Y ∗
jim − X

τ
jimξ̂∗

j − ĝ1(t) − {ĝ∗
j (tj im) − ĝ∗

j (t)}}
and use it to substitute Rji{gj (t)} in the formulation of Ln(t), we obtain L∗

n(t) and
then T ∗

n = ∫
L∗

n(t)�(t) dt .
Step 3. Repeat the above two steps B times for a large integer B and obtain B

bootstrap values {T ∗
nb}Bb=1. Let t̂α be the 1 − α quantile of {T ∗

nb}Bb=1, which is a
bootstrap estimate of the 1 − α quantile of Tn. Then, we reject the null hypothesis
H0b if Tn > t̂α .

The following theorem justifies the bootstrap procedure.

THEOREM 5. Assume conditions A1–A4 in the Appendix hold and h =
O(n−1/5). Let Xn denote the original sample, h and σ 2

0 be defined as in The-
orem 3. The conditional distribution of h−1/2(T ∗

n − μ0) given Xn converges to
N(0, σ 2

0 ) almost surely, namely,

h−1/2{T ∗
n − (k − 1)}|Xn

d→ N(0, σ 2
0 ) a.s.

7. Simulation results. In this section, we report results from simulation stud-
ies which were designed to confirm the proposed ANOVA tests proposed in the
previous sections. We simulated data from the following three-treatment model:

Yjim = Xjimβj + Mjimγj + gj (tjim) + εjim and
(7.1)

Xjim = 2 − 1.5tj im + ujim,

where Mjim = tj im × (Xjim − 1.5)2, εjim = eji + νjim, ujim ∼ N(0, σ 2
aj

), eji ∼
N(0, σ 2

bj
) and νjim ∼ N(0, σ 2

cj
) for j = {1,2,3}, i = 1, . . . , nj and m = 1, . . . , Tj .
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This structure used to generate {εjim}Tj

m=1 ensures dependence among the repeated
measurements {Yjim} for each subject i. The correlation between Yjim and Yjil

for any m �= l is σ 2
bj

/(σ 2
bj

+ σ 2
cj

). The time points {tj im}Tj

m=1 were obtained by first
independently generating uniform[0,1] random variables and then sorted in the as-
cending order. We set the number of repeated measures Tj to be the same, say T ,
for all three treatments; and chose T = 5 and 10, respectively. The standard devia-
tion parameters in (7.1) were σa1 = 0.5, σb1 = 0.5, σc1 = 0.2 for the first treatment,
σa2 = 0.5, σb2 = 0.5, σc2 = 0.2 for the second and σa3 = 0.6, σb3 = 0.6, σc3 = 0.3
for the third.

The parameters and the time effects for the three treatments were:

Treatment 1: β1 = 2, γ1 = 1, g1(t) = 2 sin(2πt);
Treatment 2: β2 = 2 + D2n, γ2 = 1 + D2n, g2(t) = 2 sin(2πt) − �2n(t);
Treatment 3: β3 = 2 + D3n, γ3 = 1 + D3n, g3(t) = 2 sin(2πt) − �3n(t).

We designated different values of D2n,D3n,�2n(t) and �3n(t) in the evaluation
of the size and the power, whose details will be reported shortly.

We considered two missing data mechanisms. In the first mechanism (I), the
missing propensity was

logit{P(δjim = 1|δjim,m−1 = 1,Xji, Yji)} = θjXji(m−1) for m > 1,(7.2)

which is not dependent on the response Y , with θ1 = 3, θ2 = 2 and θ3 = 2. In the
second mechanism (II),

logit{P(δjim = 1|δjim,m−1 = 1,Xji, Yji)}
(7.3)

=
{

θj1Xji(m−1) + θj2
{
Yji(m−1) − Yji(m−2)

}
, if m > 2,

θj1Xji(m−1), if m = 2;

which is influenced by both covariate and response, with θ1 = (θ11, θ12)
τ =

(2,−1)τ , θ2 = (θ21, θ22)
τ = (2,−1.5)τ and θ3 = (θ31, θ32)

τ = (2,−1.5)τ . In both
mechanisms, the first observation (m = 1) for each subject was always observed
as we have assumed earlier.

We used the Epanechnikov kernel K(u) = 0.75(1 − u2)+ throughout the simu-
lation where (·)+ stands for the positive part of a function. The bandwidths were
chosen by the “leave-one-subject” out cross-validation. Specifically, we chose the
bandwidth hj that minimized the cross-validation score functions

nj∑
i=1

Tj∑
m=1

δjim

πjim(θ̂j )

(
Yjim − Xτ

jimβ̂
(−i)
j − Mτ

jimγ̂
(−i)
j − ĝ

(−i)
j (tj im)

)2
,

where β̂
(−i)
j , γ̂

(−i)
j and ĝ

(−i)
j (tj im) were the corresponding estimates without us-

ing observations of the ith subject. The cross-validation was used to choose an
optimal bandwidth for representative data sets and fixed the chosen bandwidths in
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TABLE 1
Empirical size and power of the 5% ANOVA test for H0a :β10 = β20 = β30

Sample size Missingness Missingness

n1 n2 n3 D2n D3n T I II T I II

60 65 55 0.0 0.0 (size) 5 0.042 0.050 10 0.046 0.044
0.2 0.0 0.192 0.254 0.408 0.434
0.3 0.0 0.548 0.630 0.810 0.864
0.0 0.2 0.236 0.214 0.344 0.354
0.0 0.3 0.508 0.546 0.714 0.722
0.2 0.2 0.208 0.262 0.446 0.458
0.2 0.3 0.412 0.440 0.680 0.698
0.3 0.2 0.426 0.490 0.728 0.728
0.3 0.3 0.594 0.620 0.836 0.818

100 110 105 0.0 0.0 (size) 5 0.052 0.054 10 0.042 0.038
0.2 0.0 0.426 0.470 0.686 0.718
0.3 0.0 0.854 0.854 0.964 0.974
0.0 0.2 0.406 0.444 0.612 0.568
0.0 0.3 0.816 0.836 0.936 0.910
0.2 0.2 0.404 0.480 0.674 0.686
0.2 0.3 0.744 0.694 0.944 0.882
0.3 0.2 0.712 0.768 0.922 0.920
0.3 0.3 0.824 0.814 0.972 0.970

the simulations with the same sample size. We fixed the number of simulations to
be 500.

The average missing percentages based on 500 simulations for the missing
mechanism I were 8%, 15% and 17% for treatments 1–3, respectively, when T = 5,
and were 16%, 28% and 31% when T = 10. In the missing mechanism II, the av-
erage missing percentages were 10%, 8% and 15% for T = 5, and 23%, 20% and
36% for T = 10, respectively.

For the ANOVA test for H0a :β10 = β20 = β30 with respect to the covariate ef-
fects, three values of D2n and D3n: 0, 0.2 and 0.3, were used, respectively, while
�2n(t) = �3n(t) = 0. Table 1 summarizes the empirical size and power of the
proposed EL ANOVA test with 5% nominal significant level for H0a for 9 com-
binations of (D2n,D3n), where the sizes corresponding to D2n = 0 and D3n = 0.
We observed that the size of the ANOVA tests improved as the sample sizes and
the observational length T increased, and the overall level of size were close to the
nominal 5%. This is quite reassuring considering the ANOVA test is based on the
asymptotic chi-square distribution. We also observed that the power of the test in-
creased as sample sizes and T were increased, and as the distance among the three
βj0 was increased. For example, when D2n = 0.0 and D3n = 0.3, the L2 distance
was

√
0.32 + 0.32 = 0.424, which is larger than

√
0.12 + 0.22 + 0.32 = 0.374 for
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TABLE 2
Empirical size and power of the 5% test for the existence of interaction H0c :γ20 = 0

Sample size Missingness Missingness

n1 n2 n3 γ20 T I II T I II

60 65 55 0.0 (size) 5 0.052 0.048 10 0.048 0.052
0.2 0.428 0.456 0.568 0.636
0.3 0.722 0.788 0.848 0.882
0.4 0.928 0.952 0.948 0.968

100 110 105 0.0 (size) 5 0.054 0.046 10 0.056 0.042
0.2 0.608 0.718 0.694 0.812
0.3 0.940 0.938 0.940 0.958
0.4 0.986 0.994 0.952 0.966

D2n = 0.2 and D3n = 0.3. This explains why the ANOVA test was more powerful
for D2n = 0.0 and D3n = 0.3 than D2n = 0.2 and D3n = 0.3. At the same time, we
see similar power performance between the two missing mechanisms.

To gain information on the empirical performance of the test on the existence
of interaction, we carried out a test for H0c :γ20 = 0. In the simulation, we chose
γ20 = 0,0.2,0.3,0.4, β20 = 2 + γ20 and fixed �2n(t) = 0, respectively. Table 2
summarizes the sizes and the powers of the test. Table 3 reports the simulation
results of the ANOVA test on the interaction effect H0d :γ10 = γ20 = γ30 with a
similar configurations as those used as the ANOVA tests for the covarites effects
reported in Table 1. We observe satisfactory performance of these two tests in
terms of both the accurate of the size approximation and the empirical power. In
particular, the performance of the ANOVA tests were very much similar to that
conveyed in Table 1.

We then evaluate the power and size of the proposed ANOVA test regarding the
nonparametric components. To study the local power of the test, we set �2n(t) =
Un sin(2πt) and �3n(t) = 2 sin(2πt) − 2 sin(2π(t + Vn)), and fixed D2n = 0 and
D3n = 0.2. Here, Un and Vn were designed to adjust the amplitude and phase of
the sine function. The same kernel and bandwidths chosen by the cross-validation
as outlined earlier in the parametric ANOVA test were used in the test for the
nonparametric time effects. We calculated the test statistic Tn with �(t) being the
kernel density estimate based on all the time points in all treatments. We applied
the wild bootstrap proposed in Section 6 with B = 100 to obtain t̂0.05, the bootstrap
estimator of the 5% critical value. The simulation results of the nonparametric
ANOVA test for the time effects are given in Table 4.

The sizes of the nonparametric ANOVA test were obtained when Un = 0 and
Vn = 0, which were quite close to the nominal 5%. We observe that the power of
the test increased when the distance among g1(·), g2(·) and g3(·) were becoming
larger, and when the sample size or repeated measurement T were increased. We
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TABLE 3
Empirical size and power of the 5% ANOVA test for H0d :γ10 = γ20 = γ30

Sample size Missingness Missingness

n1 n2 n3 D2n D3n T I II T I II

60 65 55 0.0 0.0 (size) 5 0.058 0.058 10 0.068 0.036
0.2 0.0 0.134 0.188 0.232 0.254
0.3 0.0 0.358 0.486 0.510 0.622
0.0 0.2 0.136 0.166 0.230 0.218
0.0 0.3 0.356 0.414 0.466 0.474
0.2 0.2 0.170 0.208 0.286 0.276
0.2 0.3 0.292 0.328 0.462 0.428
0.3 0.2 0.266 0.356 0.498 0.474
0.3 0.3 0.392 0.476 0.578 0.588

100 110 105 0.0 0.0 (size) 5 0.068 0.040 10 0.054 0.046
0.2 0.0 0.262 0.366 0.354 0.432
0.3 0.0 0.654 0.744 0.744 0.820
0.0 0.2 0.272 0.330 0.340 0.334
0.0 0.3 0.590 0.676 0.722 0.672
0.2 0.2 0.282 0.332 0.412 0.410
0.2 0.3 0.528 0.582 0.716 0.640
0.3 0.2 0.502 0.580 0.680 0.728
0.3 0.3 0.672 0.674 0.814 0.808

noticed that the power was more sensitive to change in Vn, the initial phase of the
sine function, than Un.

TABLE 4
Empirical size and power of the 5% ANOVA test for H0b :g1(·) = g2(·) = g3(·) with

�2n(t) = Un sin(2πt) and �3n(t) = 2 sin(2πt) − 2 sin(2π(t + Vn))

Sample size Missingness Missingness

n1 n2 n3 Un Vn T I II T I II

60 65 55 0.00 0.00 (size) 5 0.040 0.050 10 0.054 0.060
0.30 0.00 0.186 0.232 0.282 0.256
0.50 0.00 0.666 0.718 0.828 0.840
0.00 0.05 0.664 0.726 0.848 0.842
0.00 0.10 1.000 1.000 1.000 1.000

100 110 105 0.00 0.00 (size) 5 0.032 0.062 10 0.050 0.036
0.30 0.00 0.434 0.518 0.526 0.540
0.50 0.00 0.938 0.980 0.992 0.998
0.00 0.05 0.916 0.974 1.000 1.000
0.00 0.10 1.000 1.000 1.000 1.000
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We then compared the proposed tests with a test proposed by Scheike and Zhang
(1998). Scheike and Zhang’s test was comparing two treatments for the nonpara-
metric regression model (4.8) for longitudinal data without missing values. Their
test was based on a cumulative statistic

T (z) =
∫ z

a

(
ĝ1(t) − ĝ2(t)

)
dt,

where a, z are in a common time interval [0,1]. They showed that
√

n1 + n2T (z)

converges to a Gaussian Martingale with mean 0 and variance function ρ−1
1 h1(z)+

ρ−1
2 h2(z), where hj (z) = ∫ z

a σ 2
j (y)f −1

j (y) dy. Hence, the test statistic T (1 −
a)/

√
V̂ar{T (1 − a)} is used for two group time-effect functions comparison.

To make the proposed test and the test of Scheike and Zhang (1998) comparable,
we conducted simulation in a set-up that mimics the setting of model (7.1) but with
only the first two treatments, no missing values and only the nonparametric part in
the regression by setting βj = γj = 0. Specifically, we test for H0 :g1(·) = g2(·) vs.
H1 :g1(·) = g2(·) + �2n(·) for three cases of the alternative shift function �2n(·)
functions which are spelt out in Table 5 and set a = 0 in the test of Scheike and
Zhang. The simulation results are summarized in Table 5. We found that in the first
two cases (I and II) of the alternative shift function �2n, the test of Scheike and
Zhang had little power. It was only in the third case (III), the test started to pick up
some power although it was still not as powerful as the proposed test.

8. Analysis on HIV-CD4 data. In this section, we analyzed a longitudinal
data set from AIDS Clinical Trial Group 193A Study [Henry et al. (1998)], which
was a randomized, double-blind study of HIV-AIDS patients with advanced im-
mune suppression. The study was carried out in 1993 with 1309 patients who
were randomized to four treatments with regard to HIV-1 reverse transcriptase in-
hibitors. Patients were randomly assigned to one of four daily treatment regimes:
600 mg of zidovudine alternating monthly with 400 mg didanosine (treatment I);
600 mg of zidovudine plus 2.25 mg of zalcitabine (treatment II); 600 mg of zi-
dovudine plus 400 mg of didanosine (treatment III); or 600 mg of zidovudine plus
400 mg of didanosine plus 400 mg of nevirapine (treatment VI). The four treat-
ments had 325, 324, 330 and 330 patients, respectively.

The aim of our analysis was to compare the effects of age (Age), baseline CD4
counts (PreCD4) and gender (Gender) on Y = log(CD4 counts +1). The semi-
parametric model regression is, for j = 1,2,3 and 4,

Yji(t) = βj1 Ageji +βj2 PreCD4ji +βj3 Genderji +gj (t) + εji(t)(8.1)

with the intercepts absorbed in the nonparametric gj (·) functions, and βj =
(βj1, βj2, βj3)

τ is the regression coefficients to the covariates (Age, PreCD4, Gen-
der).
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TABLE 5
The empirical sizes and powers of the proposed test (CZ) and the test (SZ) proposed by Scheike and

Zhang (1998) for H0b :g1(·) = g2(·) vs. H1b :g1(·) = g2(·) + �2n(·)

Sample size Tests Tests

n1 n2 n3 Un T CZ SZ T CZ SZ

60 65 55 Case I: �2n(t) = Un sin(2πt)

0.00 (size) 5 0.060 0.032 10 0.056 0.028
0.30 0.736 0.046 0.844 0.028
0.50 1.000 0.048 1.000 0.026

Case II: �2n(t) = 2 sin(2πt) − 2 sin(2π(t + Un))

0.05 1.000 0.026 1.000 0.042
0.10 1.000 0.024 1.000 0.044

Case III: �2n(t) = −Un

0.10 0.196 0.162 0.206 0.144
0.20 0.562 0.514 0.616 0.532

100 110 105 Case I: �2n(t) = Un sin(2πt)

0.00 (size) 5 0.056 0.028 10 0.042 0.018
0.30 0.982 0.038 0.994 0.040
0.50 1.000 0.054 1.000 0.028

Case II: �2n(t) = 2 sin(2πt) − 2 sin(2π(t + Un))

0.05 1.000 0.022 1.000 0.030
0.10 1.000 0.026 1.000 0.030

Case III: �2n(t) = −Un

0.10 0.290 0.260 0.294 0.218
0.20 0.780 0.774 0.760 0.730

To make gj (t) more interpretable, we centralized Age and PreCD4 so that their
sample means in each treatment were 0, respectively. As a result, gj (t) can be in-
terpreted as the baseline evolution of Y for a female (Gender = 0) with the average
PreCD4 counts and the average age in treatment j . This kind of normalization is
used in Wu and Chiang (2000) in their analyzes for another CD4 data set. Our
objectives were to detect any difference in the treatments with respect to (i) the
covariates; and (ii) the nonparametric baseline functions.

Measurements of CD4 counts were scheduled at the start time 1 and at a 8-
week intervals during the follow-up. However, the data were unbalanced due to
variations from the planned measurement time and missing values resulted from
skipped visits and dropouts. The number of CD4 measurements for patients during
the first 40 weeks of follow-up varied from 1 to 9, with a median of 4. There
were 5036 complete measurements of CD4, and 2826 scheduled measurements
were missing. Hence, considering missing values is very important in this analysis.
Most of the missing values follow the monotone pattern. Therefore, we model the
missing mechanism under the monotone assumption.
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TABLE 6
Difference in the AIC and BIC scores among three models (M1)–(M3)

Treatment I Treatment II Treatment III Treatment VI

Models AIC BIC AIC BIC AIC BIC AIC BIC

(M1)-(M2) 3.85 3.85 14.90 14.90 17.91 17.91 10.35 10.35
(M2)-(M3) −2.47 −11.47 0.93 −8.12 0.30 −8.75 −3.15 −12.27

We considered three logistic regression models for the missing propensi-
ties and used the AIC and BIC criteria to select the one that was the mostly
supported by data. The first model (M1) was a logistic regression model for
pj (

↼

Xjit,3,
↼

Yjit,3; θj0) that effectively depends on Xjit (the PreCD4) and (Yji(t−1),
Yji(t−2), Yji(t−3)) if t > 3. For t < 3, it relies on all Yjit observed before t . In the
second model (M2), we replace the Xjit in the first model with an intercept. In
the third model (M3), we added to the second logistic model with covariates rep-
resenting the square of Yji(t−1) and the interactions between Yji(t−1) and Yji(t−2).
In the formulation of the AIC and BIC criteria, we used the binary conditional like-
lihood given in (2.5) with the respective penalties. The difference of AIC and BIC
values among these models for four treatment groups is given in Table 6. Under
the BIC criterion, M2 was the best model for all four treatments. For treatments II
and III, M3 had smaller AIC values than M2, but the differences were very small.
For treatments I and VI, M2 had smaller AIC than M3. As the AIC tends to select
more explanatory variables, we chose M2 as the model for the parametric missing
propensity.

Model (8.1) does not have interactions. It is interesting to check if there is an
interaction between gender and time. Then the model becomes

Yji(t) = βj1Ageji + βj2 PreCD4ji + βj3 Genderji

(8.2)
+ γj4 Genderji × t + gj (t) + εji(t).

We applied the proposed test in Section 5 for H0c :γj4 = 0 for j = 1,2,3 and 4,
respectively. The p-values were 0.9234,0.9885,0.9862 and 0.5558, respectively,
which means that the interaction was not significant. Therefore, in the following
analyzes, we would not include the interaction term and continue to use model
(8.1).

Table 7 reports the parameter estimates β̂j of βj based on the estimating func-
tion Zji(βj ) given in Section 3. It contains the standard errors of the estimates,
which were obtained from the length of the EL confidence intervals based on
the marginal empirical likelihood ratio for each βj as proposed in Chen and Hall
(1994). In getting these estimates, we use the “leave-one-subject” cross-validation
[Rice and Silverman (1991)] to select the smoothing bandwidths {hj }4

j=1 for the
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TABLE 7
Parameter estimates and their standard errors

Treatment I Treatment II Treatment III Treatment IV

Coefficients β1 β2 β3 β4

Age 0.0063 (0.0039) 0.0050 (0.0040) 0.0047 (0.0058) 0.0056 (0.0046)
PreCD4 0.7308 (0.0462) 0.7724 (0.0378) 0.7587 (0.0523) 0.8431 (0.0425)
Gender 0.1009 (0.0925) 0.1045 (0.0920) −0.3300 (0.1510) −0.3055 (0.1136)

four treatments, which were 12.90,7.61,8.27 and 16.20, respectively. We see that
the estimates of the coefficients for the Age and PreCD4 were similar among all
four treatments with comparable standard errors, respectively. In particular, the es-
timates of the Age coefficients endured large variations while the estimates of the
PreCD4 coefficients were quite accurate. However, estimates of the Gender co-
efficients had different signs among the treatments. We may also notice that the
confidence intervals from treatments I–IV for each coefficient were overlap.

We then formally tested H0a :β1 = β2 = β3 = β4. The empirical likelihood ra-
tio statistic �n was 8.1348, which was smaller than χ2

9,0.95 = 16.9190, which pro-
duced a p-value of 0.5206. So we do not have enough evidence to reject H0a at
a significant level 5 %. The parameter estimates reported in Table 7 suggested
similar covariate effects between treatments I and II, and between treatments III
and IV, respectively; but different effects between the first two treatments and the
last two treatments. To verify this suggestion, we carry out formal ANOVA test
for pair-wise equality among the βj ’s as well as for equality of any three βj ’s.
The p-values of these ANOVA test are reported in Table 8. Indeed, the difference
between the first two treatments and between the last two treatments were insignif-
icant. However, the differences between the first three (I, II and III) treatments and
the last treatment were also not significant.

We then tested for the nonparametric baseline time effects. The kernel esti-
mates ĝj (t) are displayed in Figure 1, which shows that treatments I and II and

TABLE 8
p-values of ANOVA tests for βj ’s

H0a p-value H0a p-value

β1 = β2 0.9661 β1 = β2 = β3 0.7399
β1 = β3 0.4488 β1 = β2 = β4 0.4011
β1 = β4 0.1642 β1 = β3 = β4 0.3846
β2 = β3 0.4332 β2 = β3 = β4 0.4904
β2 = β4 0.2523 β1 = β2 = β3 = β4 0.5206
β3 = β4 0.8450
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FIG. 1. (a) The raw data excluding missing values plots with the estimates of gj (t) (j = 1,2,3,4).
(b) The estimates of gj (t) in the same plot: treatment I (solid line), treatment II (short dashed line),
treatment III (dashed and doted line) and treatment IV (long dashed line).

treatments III and IV had similar baselines evolution overtime, respectively. How-
ever, a big difference existed between the first two treatments and the last two
treatments. Treatment IV decreased more slowly than that of the other three treat-
ments, which seemed to be the most effective in slowing down the decline of CD4.
We also found that during the first 16 weeks the CD4 counts decrease slowly and
then the decline became faster after 16 weeks for treatments I, II and III.

The p-value for testing H0b :g1(·) = g2(·) = g3(·) = g4(·) is shown in Table 9.
The entries were based on 500 bootstrapped resamples according to the procedure
introduced in Section 6. The statistics Tn for testing H0b :g1(·) = g2(·) = g3(·) =
g4(·) was 3965.00, where we take �(t) = 1 over the range of t . The p-value of the
test was 0.004. Thus, there existed significant difference in the baseline time effects
gj (·)’s among treatments I–IV. At the same time, we also calculate the test statis-
tics Tn for testing g1(·) = g2(·) and g3(·) = g4(·). The statistics values were 19.26

TABLE 9
p-values of ANOVA tests on gj (·)’s

H0b p-value H0b p-value

g1(·) = g2(·) 0.894 g1(·) = g2(·) = g3(·) 0.046
g1(·) = g3(·) 0.018 g1(·) = g2(·) = g4(·) 0.010
g1(·) = g4(·) 0.004 g1(·) = g3(·) = g4(·) 0.000
g2(·) = g3(·) 0.020 g2(·) = g3(·) = g4(·) 0.014
g2(·) = g4(·) 0.006 g1(·) = g2(·) = g3(·) = g4(·) 0.004
g3(·) = g4(·) 0.860
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and 26.22, with p-values 0.894 and 0.860, respectively. These p-values are much
bigger than 0.05. We conclude that treatment I and II has similar baseline time
effects, but they are significantly distinct from the baseline time effects of treat-
ment III and IV, respectively. p-values of testing other combinations on equalities
of g1(·), g2(·), g3(·) and g4(·) are also reported in Table 9.

This data set has been analyzed by Fitzmaurice, Laird and Ware (2004) using a
random effects model that applied the Restricted Maximum Likelihood (REML)
method. They conducted a two sample comparison test via parameters in the model
for the difference between the dual therapy (treatment I–III) versus triple therapy
(treatment VI) without considering the missing values. More specifically, they de-
noted Group = 1 if subject in the triple therapy treatment and Group = 0 if subject
in the dual therapy treatment, and the linear mixed effect was

E(Y |b) = β1 + β2t + β3(t − 16)+ + β4 Group × t

+ β5 Group × (t − 16)+ + b1 + b2t + b3(t − 16)+,

where b = (b1, b2, b3) are random effects. They tested H0 :β4 = β5 = 0. This
is equivalent to test the null hypothesis of no treatment group difference in the
changes in log CD4 counts between therapy and dual treatments. Both Wald test
and likelihood ratio test rejected the null hypothesis, indicating the difference be-
tween dual and triple therapy in the change of log CD4 counts. Their results are
consistent with the result we illustrated in Table 9.

APPENDIX: TECHNICAL ASSUMPTIONS

We provides the conditions used for Theorems 1–5 and some remark in this
section. The proofs for Theorems 1, 2, 3 and 5 are contained in the supplement
article [Chen and Zhong (2010)]. The proof for Theorem 4 is largely similar to
that of Theorem 1 and is omitted.

The following assumptions are made in the paper:

A1. Let S(θj ) be the score function of the partial likelihood LBj
(θj ) for a q-

dimensional parameter θj defined in (2.5), and θj0 is in the interior of com-
pact �j . We assume E{S(θj )} �= 0 if θj �= θj0, Var(S(θj0)) is finite and pos-

itive definite, and E(
∂S(θj0)

∂θj0
) exists and is invertible. The missing propensity

πjim(θj0) > b0 > 0 for all j, i,m.
A2. (i) The kernel function K is a symmetric probability density which is dif-

ferentiable of Lipschitz order 1 on its support [−1,1]. The bandwidths
satisfy njh

2
j / log2 nj → ∞, n

1/2
j h4

j → 0 and hj → 0 as nj → ∞.
(ii) For each treatment j (j = 1, . . . , k), the design points {tj im} are thought

to be independent and identically distributed from a super-population
with density fj (t). There exist constants bl and bu such that 0 < bl ≤
supt∈S fj (t) ≤ bu < ∞.
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(iii) For each hj and Tj , j = 1, . . . , k, there exist finite positive constants
αj , bj and T such that αjTj = T and bjhj = h for some h as h → 0.
Let n = ∑k

i=1 nj , nj/n → ρj for some nonzero ρj as n → ∞ such that∑k
i=1 ρj = 1.

A3. The residuals {εji} and {uji} are independent of each other and each of {εji}
and {uji} are mutually independent among different j or i, respectively;

max1≤i≤nj
‖ujim‖ = op{n(2+r)/(2(4+r))

j (lognj )
−1}, max1≤i≤nj

E|εjim|4+r <

∞, for some r > 0; and assume that

lim
nj→∞(njTj )

−1
nj∑
i=1

Tj∑
m=1

E{X̃jimX̃
τ
jim} = �x > 0,

where X̃jim = Xjim − E(Xjim|tj im).
A4. The functions gj0(t) and hj (t) are, respectively, one-dimensional and p-

dimensional smooth functions with continuously second derivatives on S =
[0,1].

REMARK. Condition A1 are the regular conditions for the consistency of the
binary MLE for the parameters in the missing propensity. Condition A2(i) are the
usual conditions for the kernel and bandwidths in nonparametric curve estimation.
Note that the optimal rate for the bandwidth hj = O(n

−1/5
j ) satisfies A2(i). The

requirement of design points {tj im} in A2(ii) is a common assumption similar to the
ones in Müller (1987). Condition A2(iii) is a mild assumption on the relationship
between bandwidths and sample sizes among different samples. In A3, we do not
require the residuals {εji} and {uji} being, respectively, identically distributed for
each fixed j . This allows extra heterogeneity among individuals for a treatment.
The positive definite of �x in condition A3 is used to identify the “parameters”
(βj0, γj0, gj0) uniquely, which is a generalization of the identification condition
used in Härdle, Liang and Gao (2000) to longitudinal data. This condition can be
checked empirically by constructing consistent estimate of �x .
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SUPPLEMENTARY MATERIAL

Supplement to “ANOVA for Longitudinal Data with Missing Values” (DOI:
10.1214/10-AOS824SUPP; .pdf). This supplement material provides technical
proofs to the asymptotic distributions of the empirical likelihood ANOVA test sta-
tistics for comparing the treatment effects with respect to covariates given in The-
orems 1 and 2, the asymptotic normality of the empirical likelihood ratio based
ANOVA test statistic for comparing the nonparametric time effect functions given
in Theorem 3 and justifies the usage of the proposed bootstrap procedure.

http://dx.doi.org/10.1214/10-AOS824SUPP
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