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EFFECTS OF STATISTICAL DEPENDENCE ON MULTIPLE
TESTING UNDER A HIDDEN MARKOV MODEL

BY ZHIYI CHI1

University of Connecticut

The performance of multiple hypothesis testing is known to be affected
by the statistical dependence among random variables involved. The mech-
anisms responsible for this, however, are not well understood. We study the
effects of the dependence structure of a finite state hidden Markov model
(HMM) on the likelihood ratios critical for optimal multiple testing on the
hidden states. Various convergence results are obtained for the likelihood ra-
tios as the observations of the HMM form an increasing long chain. Analytic
expansions of the first and second order derivatives are obtained for the case
of binary states, explicitly showing the effects of the parameters of the HMM
on the likelihood ratios.

1. Introduction. Statistical dependence in data poses a challenge to multiple
hypothesis testing. Under the framework of the false discovery rate (FDR), many
efforts have been made to establish the control of FDR under dependence [5, 14,
25, 27, 29]. Meanwhile, many empirical and analytical works have described the
effects of dependence on the outputs of multiple tests [12, 16, 22, 23]. However,
in what way the dependence impacts multiple testing is not well understood.

A useful model that incorporates tractable dependence in multiple testing is the
hidden Markov model (HMM) [27]. In the model, the nulls are organized as Ht ,
where the index t takes integer values. Each Ht is associated with a random vari-
able that determines whether the null is true or false. The random variables form a
Markov chain but are hidden and unobservable. Instead, the observations Xt each
is a many-to-one transform of the hidden variable corresponding to Ht . In the con-
text of multiple testing, it will be useful to treat the hidden variable as consisting
of two parts, ηt and Zt . On the one hand, ηt encodes the “true identity,” or state of
the signal associated with Ht and in general can take two or more possible values.
On the other, Zt acts as the noise that blurs or distorts the signal. Then Xt can be
thought of as the result of a deterministic interaction between ηt and Zt .

To understand the role of dependence in the multiple tests on the nulls, the
“oracle” approach assumes the parameters in the HMM are known and explores
what amounts to an optimal testing procedure. The advantage of this approach is
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that it can reveal effects purely due to dependence, without confounding with ef-
fects due to specific parameter estimation methods. Suppose the observations are
X−m, . . . ,Xn. With the parameters being known, for each null Ht , the conditional
likelihood Pr{Ht is true | X−m, . . . ,Xn} can be computed. The importance of the
conditional likelihood for multiple testing has been shown in various contexts [6,
13, 21, 26, 27]. For the HMM, [27] shows that under a certain loss function, an
optimal procedure is to reject Ht if and only if the corresponding conditional like-
lihood is small enough. The loss function is a linear combination of the numbers
of Types I and II errors and is related to the FDR. The importance of the condi-
tional likelihood can also be argued directly based on the FDR criterion, and in
fact without particular assumption on dependence; see the Appendix.

In view of the role of the conditional likelihood, our aim is to investigate how it
is affected by the parameters of the HMM. The parameters can be divided into two
types, respectively, characterizing the dependence among ηt and the “strength”
of useful signals. In addition, the conditional likelihood also depends on how ηt

and Zt interact. The next example illustrates what role may be expected for these
factors.

EXAMPLE 1.1. Suppose the states ηt are equal to 1{Ht is false} and form a
stationary Markov chain with transition probabilities qij = Pr{ηt = j | ηt−1 = i} >

0; moreover, conditional on η = (ηt ), Xt are independent ∼ N(εηt ,1) with ε > 0.
Write Xt = Zt + εηt . Then (Zt , ηt ) form a hidden Markov chain, with Zt i.i.d.
∼ N(0,1). The strength of the signals is measured by ε, the interaction between
the noise Zt and ηt is additive, such that Xt = ϕ(Zt , εηt ) with ϕ(z,ϑ) = z + ϑ .

In many cases, the observations form a long chain X−m, . . . ,Xn, with m, n � 1,
so the effect of the parameters can be studied through the properties of

Pr{ηt = 0 | X} = lim
m,n→∞ Pr{ηt = 0 | X−m, . . . ,Xn}

for each t , where X = (Xt , t ∈ Z). Since Pr{ηt = 0 | X−m, . . . ,Xn} form a mar-
tingale for any increasing sequence of m and n, the (almost sure) existence of the
limit is guaranteed. However, this says nothing about how the limit depends on ε

and qij . To get some insight, consider instead the likelihood ratios

Pr{ηt = 1 | X}
Pr{ηt = 0 | X} = 1

Pr{ηt = 0 | X} − 1,

which turn out to be a little more convenient to study. Regarding them as functions
of ε, we next consider their Taylor expansions. In principle, the likelihood ratios
can be expanded around any value of ε. Since large values of |ε| correspond to
strong signals whose detection is easy, we shall expand around ε = 0 to get insight
into the case where the strength of signal ranges from being weak to moderate.
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Without loss of generality, consider the likelihood ratio for η0. Since η is stationary,
Pr{ηt−1 = j | ηt = i} = qij . By the Bayes rule and Markov property,

Pr{η0 = a | X−m, . . . ,Xn}

∝ P(a)
∑

σ−m,...,σn

σ0=a

exp

{
−1

2

n∑
t=−m

(Zt + εηt − εσt )
2

}
n−1∏
t=0

qσtσt+1

m−1∏
t=0

qσ−t σ−t−1

for a = 0,1, where P(a) = Pr{η0 = a}. Then, formally, one can get

d

dε

[
ln

Pr{η0 = 1 | X}
Pr{η0 = 0 | X}

]
ε=0

= lim
m,n→∞

d

dε

[
ln

Pr{η0 = 1 | X−m, . . . ,Xn}
Pr{η0 = 0 | X−m, . . . ,Xn}

]
ε=0

=
∞∑

t=−∞
Zt [Pr{ηt = 1 | η0 = 1} − Pr{ηt = 1 | η0 = 0}]

=
∞∑

t=−∞
r |t |Zt,

where r �= 1 is one of the two eigenvalues of the matrix (qij ), the other being 1.
We shall refer to the above conditional likelihood ratio as the full likelihood

ratio (FLR), as it is based on the entire X. On the other hand, if the information of
the dependence (i.e., qij ) is not available, but the values of all other parameters are
known, including P(a), then the likelihood ratio would have to be evaluated as

Pr{η0 = 1 | X0}
Pr{η0 = 0 | X0} = P(1)

P (0)

f (X0 − ε)

f (X0)
= P(1)

P (0)
exp

{
εZ0 + ε2

2
(2η0 − 1)

}
,

where f (x) is the density of N(0,1). We shall refer to this conditional likelihood
ratio as the local likelihood ratio (LLR). It then can be seen that

ln
FLR

LLR
= ε

∑
t �=0

r |t |Zt + o(ε).

Thus, at the first order, the dependence in η merely adds noise but no “net effect,”
regardless of the actual values of η. If there is any state-dependent effect, it should
be reflected in a higher order term of ε. To see if this is the case, take the second
order derivative in ε. Again, the calculation can be done formally. To evaluate the
state-dependent net effect, proceed with

E[(ln FLR)′′ε=0 | η0] = lim
m,n→∞ E

[
d2

dε2

[
ln

Pr{η0 = 1 | X−m, . . . ,Xn}
Pr{η0 = 0 | X−m, . . . ,Xn}

]
ε=0

∣∣∣ η0

]

= (2η0 − 1)
∑
t

r |2t |,
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giving

E
[(

ln
FLR

LLR

)′′

ε=0

∣∣∣ η0

]
= (2η0 − 1)

∑
t �=0

r2|t |.

It follows that, comparing to ln LLR, if η0 = 1, on average ln FLR is larger, making
H0 more likely to be (correctly) rejected, whereas if η0 = 0, it is smaller, making
H0 less likely to be (falsely) rejected.

So far the expansions are expressed in terms of the unobservable Zt . One ques-
tion is whether similar expansions in terms of the observable Xt can be obtained.
As will be seen in Section 3.2, this is possible after we get more information on
higher order derivatives.

From the expansions, the effect of the dependence in η on the likelihood ratio
is apparent. In both the first and second order derivatives, the effect is determined
by r . In particular, when r = 0, ηt are i.i.d. and FLR is equal to LLR. Consistent
with this, the derivatives of the difference between the two ratios become 0.

As the example, the rest of the paper develops Taylor’s expansion in terms of
ε for the FLRs Pr{Ht is false | X}/Pr{Ht is true | X} to study the effects of depen-
dence structure of HMM. The differentiation involved in the expansion should be
interpreted as follows. During the differentiation, both the signal η and noise Z

are fixed. As the strength ε of the signal varies, the observed values Xt become
functions of ε. The likelihood ratio is affected by ε in two ways: not only the value
of Xt is changed, but also the parametric form of the density function of Xt . Both
have to be taken into account in the derivatives.

Several issues need to be addressed. First, we have only considered a stationary
process of the signals η. In applications, it is useful to consider nonstationary η

that has time-dependent transition probabilities. Moreover, it is useful to consider
various types of interactions between ηt and Zt besides the additive one.

Second, in Example 1.1, each ηt is binary, indicating whether a null is true
or false. For more generality, one can assume a finite state Markov chain, such
that a subset of the states are associated with true nulls and the rest with false
nulls. Even for a binary process, it can be useful to reformulate it as a multistate
Markov chain. For example, let η be a second order binary Markov chain, that is,
Pr{ηt | ηs, s < t} = Pr{ηt | ηt−1, ηt−2}. Then one can define a first order Markov
chain η̃ by η̃t = (ηt−1, ηt ). If ηt = 1{Ht is false}, then in terms of η̃, (0,0) and
(1,0) are states associated with true nulls, and (0,1) and (1,1) are states associated
with false nulls.

Third, in Example 1.1, limit operation, differentiation, and expectation are
freely interchanged for Pr{ηt | X−m, . . . ,Xn} for fixed t . This has to be justified.
Note that the likelihood bears similarity to Pr{ηn | X0, . . . ,Xn}, a quantity exten-
sively studied in the literature on nonlinear filtering and related issues [1–3, 7–11,
15, 17–20, 28]. As in most of the cited works, in this paper, convergence results
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are established using geometric contraction. On the other hand, in those works, the
goal is to establish weak convergence of the conditional probability for ηn under
the assumption of stationary transition probabilities. As seen in Example 1.1, the
convergence of the conditional probability for ηt follows from the martingale con-
vergence. So instead, the goal here is to establish convergence for the derivatives
of the conditional likelihood with arbitrary transition probabilities.

The rest of the paper proceeds as follows. In Section 2, a HMM is set up in the
context of multiple testing and then various convergence results on the likelihood
ratio are stated. In Section 3, the likelihood ratio for a first order HMM with binary
states is considered in more detail, which allows more explicit expressions for the
first and second derivatives of the likelihood ratio. Several examples are given, with
Example 1.1 being a special case. Theoretical details are provided in Section 4.

2. Main results.

2.1. A HMM setup. Let η = {ηt , t ∈ Z} be a finite state process, such that the
state space H is partitioned into H0 and H1, with states in H0 being associated
with true nulls, while those in H1 associated with false nulls. The noise process
is Z = {Zt, t ∈ Z}, with each Zt taking values in a Euclidean space Z . To model
the interaction between ηt and Zt , let {ϕ(z,ϑ),ϑ ∈ �} be a family of mappings
Z → X indexed by ϑ , where � is an open set in R

d and X a Euclidean space.
Then, let

θa : Rp → �, a ∈ H,

be a family of functions, such that each ε ∈ R
p specifies a scenario where the

observations are

Xt = Xt(ε) = ϕ(Zt , θηt (ε)).(2.1)

Intuitively, ϕ(Zt ,ϑ) determines how Zt interacts with a possible manifestation
of ηt to generate an observation Xt ; the manifestation of ηt is θηt (ε), with ε being
the tuning parameter that determines how strongly ηt manifests itself. The dimen-
sion p of ε may be greater than 1 to take into account different aspects of the
tuning. We will assume that (η,Z) is defined on the canonical space HZ × Z Z

equipped with the product Borel σ -algebra.
For function h : Rs → R and s-tuple of nonnegative integers ν = (ν1, . . . , νs),

denote the νth derivative of h and its order, respectively, by

h(ν)(x) = ∂ |ν|h(x)

∂x
ν1
1 · · · ∂x

νs
s

, |ν| = ν1 + · · · + νs.

Denote h(ν) := h if ν = 0 := (0, . . . ,0). For q ∈ N, denote h ∈ C(q) if h(ν) exists
and is continuous for every |ν| ≤ q . If i = (i1, . . . , is) and ν = (ν1, . . . , νs), denote
i ≤ ν if ik ≤ νk for every k = 1, . . . , s and denote i < ν if i ≤ ν and i �= ν.
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Assumptions. The following assumptions will be needed for different occa-
sions:

1. Z is independent of η and Zt are i.i.d. such that for each ϑ ∈ � and t ∈ Z,
ϕ(Zt ,ϑ) has a density f (x,ϑ).

2. η is a Markov chain and there are κ ≥ 1, φ∗ > 0, such that for all a, b ∈ H and
s, t ∈ Z with |s − t | ≥ κ , Pr{ηt = b | ηs = a} ≥ φ∗.

3. For each z ∈ Z and a, b ∈ H, 0 < f (ϕ(z, θa(ε)), θb(ε)) < ∞ and is continuous
in ε.

4. There is q ∈ N, such that for each z ∈ Z and a, b ∈ H, f (ϕ(z, θa(ε)), θb(ε)) as
a function in ε belongs to C(q) and all its partial derivatives of order ≤ q are
continuous in (z, ε). Furthermore, for r > 0, there is c = c(r) > 2, such that

Pr{Mq(Z0, r) ≥ u} = O((logu)−c), u → ∞,

where, letting z,ab(ε) = lnf (ϕ(z, θa(ε)), θb(ε)), M0(z, r) = 1 and for k > 0,

Mk(z, r) = sup
{∣∣(ν)

z,ab(ε)
∣∣ : 1 ≤ |ν| ≤ k, |ε| ≤ r, a, b ∈ H

}
.

5. For any r > 0, E[Mq(Z0, r)
k] < ∞, where k = q2(q + 1)/2.

Henceforth, for s, t ∈ Z and a, b ∈ H, denote

Pt(a) = Pr{ηt = a}, Pst (a, b) = Pr{ηt = b | ηs = a}.

Remarks. 1. Some examples of ϕ are given Section 3.3.
2. η need not be stationary or have time-homogeneous transitions.
3. Assumption 3 implies that no value of Xt can decisively identify or rule out

any elements in H as possible values for ηt .
4. In Example 1.1, since z,ab(ε) = −1

2 [z + ε(a − b)]2 − ln
√

2π and Zt ∼
N(0,1), Assumption 5 is satisfied. The assumption is stronger than Assumption 4.
To get results on almost sure convergence, Assumption 4 suffices. However, to get
results on expectations, Assumption 5 will be used.

5. Assumption 2 can be relaxed as follows: there are φ∗ > 0 and · · · < sk < tk <

sk+1 < tk+1 < · · · , with sk → ±∞ as k → ±∞, such that Psk,tk (a, b) ≥ φ∗ and
for n � 1, #{k :−n ≤ sk ≤ 0}/n and #{k : 0 ≤ sk ≤ n}/n are bounded away from
0. The analysis under the relaxed assumption follows the same line as the rest of
the paper but is more technical. We will not pursue it here.

2.2. Derivatives of full likelihood ratios. Given ε and m, n ∈ N, if the obser-
vations consist of Xs(ε) = ϕs(Zs, θηs (ε)) with s = −m, . . . , n, the likelihood ratio
for false null vs. true null at t is

ρt,mn(ε) = Pr{ηt ∈ H1 | X−m(ε), . . . ,Xn(ε)}
Pr{ηt ∈ H0 | X−m(ε), . . . ,Xn(ε)} .
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Let σ = (σt ) be an independent copy of η that is independent of Z as well.
Denote by Eσ the expectation with respect to σ . By Bayes formula,

ρt,mn(ε) =
∑

a∈H1
Pt(a)Eσ [∏n

s=−m ψs(ε, σs) | σt = a]∑
a∈H0

Pt(a)Eσ [∏n
s=−m ψs(ε, σs) | σt = a] ,(2.2)

where for c ∈ H,

ψt(ε, c) = f (Xt(ε), θc(ε)) = f (ϕ(Zt , θηt (ε)), θc(ε)).(2.3)

As discussed in the Introduction,

ρt (ε) = lim
m,n→∞ρt,mn(ε) = Pr{ηt ∈ H1 | Xs(ε), s ∈ Z}

Pr{ηt ∈ H0 | Xs(ε), s ∈ Z}
exists almost surely due to martingale convergence and plays an important role in
optimal multiple testing procedures.

THEOREM 2.1. Suppose Assumptions 1–4 hold.
1. Almost surely, ρt,mn ∈ C(q) for t = −m + κ, . . . , n − κ .
2. Almost surely, ρt (ε) is strictly positive for all t and ε.
3. There is a deterministic function rt,ν(ε0) ∈ (0,1) in ε0 > 0 for each t ∈ Z and

ν with |ν| ≤ q , such that almost surely, as m, n → ∞, ρ
(ν)
t,mn(ε) converges, with

sup
|ε|≤ε0

∣∣∣ρ(ν)
t,mn(ε) − lim

m,n→∞ρ
(ν)
t,mn(ε)

∣∣∣= o(rm∧n
t,ν (ε0)),

for all t ∈ Z, ν with |ν| ≤ q and ε0 > 0.

Due to the uniform convergence of ρ
(ν)
t,mn on every compact set,

ρt ∈ C(q), ρ
(ν)
t (ε) = lim

m,n→∞ρ
(ν)
t,mn(ε), t ∈ Z, |ν| ≤ q(2.4)

(cf. [24], Theorem 7.17). Then, as ρt (ε) are strictly positive, the interchange be-
tween limit operation and differentiation for the logarithms of ρt,mn(ε) in Exam-
ple 1.1 is justified.

Since Z is countable, in order to establish Theorem 2.1, it suffices to show it
holds for each fixed t ∈ Z. Without loss of generality, we shall focus on t = 0. For
ease of notation, henceforth denote ρmn = ρ0,mn.

By the conditional independence of (σt , t < 0) and (σt , t > 0) given σ0,

Eσ

[
n∏

s=−m

ψs(ε, σs)

∣∣∣∣ σ0

]
= ψ0(ε, σ0)Eσ

[
n∏

s=1

ψs(ε, σs)

∣∣∣∣ σ0

]

× Eσ

[
m∏

s=1

ψ−s(ε, σ−s)

∣∣∣∣ σ0

]
.
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Fix an arbitrary ı ∈ H. Define

�±n,a = �±n,a(ε) = Eσ [∏n
s=1 ψs(ε, σ±s) | σ0 = a]

Eσ [∏n
s=1 ψs(ε, σ±s) | σ0 = ı] .(2.5)

Then (2.2) for t = 0 can be written as

ρmn(ε) =
∑

a∈H1
ψ0(ε, a)P0(a)�−m,a�n,a∑

a∈H0
ψ0(ε, a)P0(a)�−m,a�n,a

.(2.6)

Although �±n,a depends on ı, ρmn(ε) is independent of ı. For brevity, ı is omitted
in the notation.

From (2.6), it is seen that Theorem 2.1 follows from the next two assertions on
uniform geometric contraction of functions and their derivatives on any compact
interval of ε.

THEOREM 2.2. Let Assumptions 1–3 hold. Almost surely, as n → ∞, for all
a ∈ H, �±n,a(ε) converge uniformly on every compact set of ε. The limits

La(ε) = lim
n→∞�n,a(ε), L̄a(ε) = lim

n→∞�−n,a(ε)(2.7)

are strictly positive and continuous, and there is a deterministic increasing func-
tion r(ε0) ∈ (0,1) in ε0 > 0, such that almost surely, as n → ∞,

sup
|ε|≤ε0

|�n,a(ε) − La(ε)| = o(r(ε0)
n) ∀ε0 > 0,

and likewise for �−n,a and L̄a(ε).

THEOREM 2.3. Let Assumptions 1–4 hold. Almost surely, as n → ∞, for each
nonzero ν with |ν| ≤ q and a ∈ H, �

(ν)
±n,a converge uniformly on every compact

set of ε. Let

Lν,a(ε) = lim
n→∞�(ν)

n,a(ε), L̄ν,a(ε) = lim
n→∞�

(ν)
−n,a(ε).

There is an increasing deterministic function rν(ε0) ∈ (0,1) in ε0 > 0, such that
almost surely, as n → ∞,

max
a

sup
|ε|≤ε0

∣∣�(ν)
n,a(ε) − Lν,a(ε)

∣∣= o(rn
ν (ε0)) ∀ε0 > 0,

and likewise for �−n,a and L̄ν,a(ε).

Basically, the two theorems say that La(ε) and L̄a(ε) are q times differ-
entiable, and for ν with |ν| ≤ q , L(ν)

a (ε) = Lν,a(ε), L̄(ν)
a (ε) = L̄ν,a(ε), that is,

(lim�±n,a)
(ν) = lim�

(ν)
±n,a . As a result, ρ(ε) is q times differentiable, with

ρ(ν)(ε) =
[∑

a∈H1
ψ0(ε, a)P0(a)La(ε)L̄a(ε)∑

a∈H0
ψ0(ε, a)P0(a)La(ε)L̄a(ε)

](ν)

.(2.8)

Note that although we are mainly interested on the property of ρt around ε = 0,
the above results allow Taylor’s expansion around nonzero values of ε as well.



LIKELIHOOD RATIO UNDER HMM 447

In Example 1.1, limit operation, differentiation, and expectation were freely
interchanged. The next assertion justifies this.

THEOREM 2.4. Let Assumptions 1–3 and 5 hold and κ = 1 in Assumption 2.
1. There are 0 < c < C < ∞, such that almost surely, c ≤ �n,a(ε) ≤ C for all

n � 1, a ∈ H and ε, thus

E[ln La(ε)|η] = lim
n→∞ E[ln�n,a(ε)|η].

2. For ν with 1 ≤ |ν| ≤ q and a ∈ H,

E[ln La(ε)|η](ν) = E
[
(ln La)

(ν)(ε)|η]= lim
n→∞ E

[
(ln�n,a)

(ν)(ε)|η].
Similar results hold for �−n,a and L̄a .

3. Binary state HMM with univariate parameters. In this section, we con-
sider in more detail the case where η is a first order binary state Markov chain,
with ηt = 1{Ht is false}. Also, we suppose ε ∈ R and

θ0(0) = θ1(0) = 0,(3.1)

that is, at ε = 0, false and true nulls are no longer distinguishable based on the
data.

3.1. Derivatives of likelihood ratio. We shall focus t = 0. Analysis for other t

can be done likewise. By (2.8), the full likelihood ratio (FLR) ρ(ε) satisfies

ln
ρ(ε)

ρ̃(ε)
= r(ε) + r̄(ε) with r(ε) = ln

L1(ε)

L0(ε)
, r̄(ε) = ln

L̄1(ε)

L̄0(ε)
,(3.2)

where ρ̃(ε) is the local likelihood ratio (LLR) for η0 only based on X0:

ρ̃(ε) = Pr{η0 = 1 | X0}
Pr{η0 = 0 | X0} = P0(1)ψ0(ε,1)

P0(0)ψ0(ε,0)
,

with ψt(ε, a) being defined in (2.3).
Consider r(ε). The treatment of r̄(ε) is similar. By Theorem 2.2,

r(ε) = lim
n→∞λn(ε) with λn(ε) = ln

Eσ [∏n
s=1 ψs(ε, σs) | σ0 = 1]

Eσ [∏n
s=1 ψs(ε, σs) | σ0 = 0] .(3.3)

By (3.1), for t ∈ Z,

ψt(0, σt ) = f (ϕ(Zt , θηt (0)), θσt (0)) = f (ϕ(Zt ,0),0)(3.4)

is independent of σ , so λn(0) = 0, giving r(0) = 0. Next, define

dt (ε) = lnψt(ε,1) − lnψt(ε,0),
(3.5)

Dst = Pst (1,1) − Pst (0,1), s, t ∈ Z.
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In general, unless η is stationary, Dst �= Dts for s �= t . By simple algebra, we
have the following identity, which the next result relies upon

DrsDst = Drt , DtsDsr = Dtr, r ≤ s ≤ t.(3.6)

THEOREM 3.1. Let Assumptions 1–4 hold. Then

r′(0) =
∞∑
t=1

D0t d
′
t (0),(3.7)

r′′(0) =
∞∑
t=1

D0t {d ′′
t (0) + [P0t (1,0) − P0t (0,1)][d ′

t (0)]2}
(3.8)

+ 2
∞∑
t=1

D0t d
′
t (0)

t−1∑
s=1

[P0s(1,0) − P0s(0,1)]d ′
s(0),

where ′, ′′, . . . , denote differentiations with respect to ε.

Simplifications can be made when η is stationary and ergodic. In this case, pa =
P0(a) ∈ (0,1) and the transition matrix can be written as

Q =
(

1
1

)
(p0,p1) + r

(
p1

−p0

)
(1,−1),

where r ∈ (−1,1) is the eigenvalue of Q different from 1. Then for t ≥ 1,

Qt =
(

1
1

)
(p0,p1) + rt

(
p1

−p0

)
(1,−1) =

(
p0 + rtp1 p1 − rtp1
p0 − rtp0 p1 + rtp0

)
,

so that in (3.7) and (3.8), D0t = rt and P0s(1,0) − P0s(0,1) = (p0 − p1)(1 − rs).

3.2. A univariate case. In this section, suppose both Xt and θηt (ε) are univari-
ate. Suppose the following regularity conditions are satisfied:

1. λ(x,ϑ) = lnf (x,ϑ) ∈ C(2) and ϕ(z, v) as a function in v belongs to C(2), such
that for any ϑ , v, and ν with |ν| ≤ 2,

E
[
λ(ν)(ϕ(Zt , v),ϑ)

]= (E[λ(ϕ(Zt , v),ϑ)])(ν),

where the differentiation is with respect to v and ϑ .
2. θa(ε) ∈ C(2) for any a ∈ H.

PROPOSITION 3.2. Let Assumptions 1–4 hold. Then for each t ,

d ′
t (0) = [θ ′

1(0) − θ ′
0(0)] ∂λ(x,0)

∂ϑ
,(3.9)

d ′′
t (0) = 2[θ ′

1(0) − θ ′
0(0)]θ ′

ηt
(0)

∂2λ(x,0)

∂x ∂ϑ

∂ϕ(Zt ,0)

∂v
(3.10)

+ [θ ′
1(0)2 − θ ′

0(0)2] ∂2λ(x,0)

∂ϑ2 + [θ ′′
1 (0) − θ ′′

0 (0)] ∂λ(x,0)

∂ϑ
,
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where the partial derivatives of λ are evaluated at x = ϕ(Zt ,0).

PROPOSITION 3.3. Let Assumptions 1–3 and 5 hold and κ = 1 in Assump-
tion 2. Then

E[r′(0) | η] = 0,(3.11)

E[r′′(0) | η] = Var[d ′
0(0)]

∞∑
t=1

D0t [2ηt − P0t (1,1) − P0t (0,1)].(3.12)

Moreover, for all t , E[d ′
t (0)] = 0 and Var[d ′

t (0)] = [θ ′
1(0) − θ ′

0(0)]2J (0), where
J (ϑ) is the Fisher information for the parametric family f (x,ϑ).

Note that (3.12) implies E[r′′(0) | η0] = (2η0 − 1)Var[d ′
0(0)]∑∞

t=1 D2
0t , which

is what we got toward the end of Example 1.1.
We next use the results to get a better view on the structure of ρ(ε). Since

r(0) = 0, by Taylor’s expansion and Theorem 3.1,

r(ε) =
∞∑
t=1

D0t

[
d ′
t (0)ε + d ′′

t (0)ε2

2

]
+ ε2

2

∞∑
t=1

D0t [P0t (1,0) − P0t (0,1)][d ′
t (0)]2

+ ε2
∞∑
t=1

D0t d
′
t (0)

t−1∑
s=1

[P0s(1,0) − P0s(0,1)]d ′
s(0) + o(ε2).

Since dt (0) = 0, then d ′
t (0)ε + d ′′

t (0)ε2/2 = dt (ε) + o(ε2). Under the condition
of Proposition 3.3, by Propositions 3.2 and 3.3, all d ′

t (0) are independent of η, have
mean 0 and the same variance. Similar assertions can be made about the expansion
of r̄(ε). It follows that

r(ε) + r̄(ε) =∑
t �=0

D0t dt (ε) + ε2 Var[d ′
0(0)]K + ε2ξ + o(ε2),

where K = (1/2)
∑

t �=0 D0t [P0t (1,0) − P0t (0,1)] and ξ is a random variable in-
dependent of η and has mean 0. Then by (3.2) and the definition of dt (ε) in (3.5),

ρ(ε) = ρ̃(ε)
∏
t �=0

[
ψt(ε,1)

ψt (ε,0)

]D0t

× exp
{
ε2(Var[d ′

0(0)]K + ξ
)+ o(ε2)

}
.(3.13)

According to (2.3), ψt(ε,1)/ψt(ε,0) is the marginal likelihood ratio of Xt for
the isolated test on ηt = 1 vs. ηt = 0, which completely ignores the dependence
among the sites. The above expansion shows that all these likelihood ratios are
factored into the FLR, with effects being adjusted by D0t . For example, if D0t

is positive (resp., negative), then a large likelihood ratio at site t increases (resp.,
decreases) the FLR for the test on η0. Also, by (3.6), if s has the same sign as t but
farther away from 0, then the effect of the marginal likelihood ratio at site s on the
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test on η0 is determined by D0t and Dts . In contrast, the LLR ρ̃(ε) only takes into
account the marginal likelihood ratio at site 0.

The above expansion is obtained for η0. Taking into account explicitly the de-
pendence on site location, the FLRs for the multiple tests on ηs , s ∈ Z, are

ρs(ε) = ρ̃s(ε)
∏
t �=s

[
ψt(ε,1)

ψt (ε,0)

]Dst

× exp
{
ε2(Var[d ′

0(0)]Ks + ξs

)+ o(ε2)
}
,(3.14)

where the LLR ρ̃s(ξ) and constants Ks are now expressed as

ρ̃s(ε) = Ps(1)ψs(ε,1)

Ps(0)ψs(ε,0)
, Ks = (1/2)

∑
t �=s

Dst [Pst (1,0) − Pst (0,1)]

and ξs are centered random variables independent of η. The conditional likelihoods
of ηs can then be computed via Pr{ηs = 0 | X} = [1 + ρs(ε)]−1.

3.3. Examples.

EXAMPLE 3.1 (Translation). Suppose ϕ is defined on R × R such that
ϕ(z, v) = z + v and for a = 0, 1, θa(ε) = εa. Let each Zt have density h(z) =
e−V (z). Apparently, Example 1.1 belongs to this case.

For each ϑ ∈ R, ϕ(Zt ,ϑ) = Zt +ϑ has density f (x,ϑ) = h(x −ϑ). Therefore,
λ(x,ϑ) = lnf (x,ϑ) = −V (x − ϑ). It is easy to check

θ ′
a(0) = a,

∂ϕ(z,0)

∂v
= 1,

∂λ(x,ϑ)

∂ϑ
= V ′(x − ϑ),

∂2λ(x,ϑ)

∂x ∂ϑ
= −∂2λ(x,ϑ)

∂ϑ2 = V ′′(x − ϑ).

Provided necessary conditions are satisfied, by Proposition 3.2,

d ′
t (0) = V ′(Zt ), d ′′

t (0) = (2ηt − 1)V ′′(Zt ),

Var[d ′
t (0)] =

∫
V ′(x)2e−V (x) dx.

Then we can get r′(0), r′′(0) and E[r′′(0) | η] by Theorem 3.1 and (3.12).

EXAMPLE 3.2 (Scaling). Suppose ϕ is defined on R × R such that ϕ(z, v) =
e−vz and for a = 0, 1, θa(ε) = εa. Let each Zt have density h(z) = e−V (z). For
v ∈ R, ϕ(Zt , v) has density f (x, v) = evh(evx). Therefore, λ(x, v) = v −V (evx).
By Proposition 3.2,

d ′
t (0) = 1 − ZtV

′(Zt ), d ′′
t (0) = (2ηt − 1)Zt [V ′(Zt ) + ZtV

′′(Zt )],
Var[d ′

0(0)] =
∫

[1 − xV ′(x)]2e−V (x) dx.

Then we can get r′(0), r′′(0), and E[r′′(0) | η] by Theorem 3.1 and (3.12).
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EXAMPLE 3.3 (t-statistics). Suppose the data observed at each time point t

is a random vector ξt = (ξt,1, . . . , ξt,ν+1), such that conditional on η, ξt are in-
dependent of each other, and for each t , ξt,j are i.i.d. ∼ N(εstηt , s

2
t ) for some

st = st (η) > 0. Suppose st are completely intractable, that is, there is no informa-
tion on the values of st or their interrelations. In this case, it is reasonable to use
the t-statistics

Xt =
√

ν + 1ξ̄t√
S2

t /ν

to test on ηt , where ξ̄t is the mean of ξt,j and S2
t the sum of squares of ξt,j − ξ̄t .

By scaling, we assume without loss of generality that st = 1. Let ζt =√
ν + 1(ξ̄t − εηt ). Then, given η, ζt ∼ N(0,1) and S2

t ∼ χ2
ν are independent of

each other. Define Zt = (ζt , St ) and, for z = (r, s) and a = 0,1, define

ϕ(z, v) = √
ν(r + v)/s, θa(ε) = √

ν + 1aε.

Then Xt = √
ν(ζt + √

ν + 1ηtε)/St = ϕ(Zt , θηt (ε)). Conditional on η, Xt ∼
tν,ϑ (x) with ϑ = θηt (ε), that is, the noncentral t-distribution with ν degrees of
freedom (df) and noncentrality parameter ϑ . In the notation of Assumption 1,
f (x,ϑ) = tν,ϑ (x).

Recall

tν(x) = Cν

(ν + x2)(ν+1)/2 with Cν = νν/2�((ν + 1)/2)√
π�(ν/2)

,

tν,ϑ (x) = tν(x)e−ϑ2/2

[
1 +

∞∑
k=1

ckx
k

(ν + x2)k/2

ϑk

k!
]

with ck = �((ν+k+1)/2)2k/2

�((ν+1)/2)
.

Therefore,

λ(x,ϑ) = lnf (x,ϑ) = ln tν(x) − 1

2
ϑ2 + ln

[
1 +

∞∑
k=1

ckx
k

(ν + x2)k/2

ϑk

k!
]
.

By ln(1 + x) = x − 1
2x2 + 1

3x3 − · · · ,

λ(x,ϑ) = c1x√
ν + x2

ϑ + 1

2

{
(c2 − c2

1)x
2

ν + x2 − 1
}
ϑ2 + ln tν(x) + O(ϑ3).

It follows that

∂λ(x,0)

∂ϑ
= c1x√

ν + x2
,

∂2λ(x,0)

∂x ∂ϑ
= c1ν

(ν + x2)3/2 ,

∂2λ(x,0)

∂ϑ2 = (c2 − c2
1)x

2

ν + x2 − 1.
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At ε = 0, Xt = √
νζt/St . Since θ ′

a(0) = √
ν + 1a, (3.9) yields

d ′
t (0) =

√
ν + 1c1Xt√
ν + X2

t

=
√

2(ν + 1)�(ν/2 + 1)ζt

�((ν + 1)/2)

√
ζ 2
t + S2

t

.

Next, since ∂ϕ(Zt ,0)/∂v = √
ν/St , by (3.10),

d ′′
t (0) = 2c1(ν + 1)ηtS

2
t

(S2
t + ζ 2

t )3/2
+ (ν + 1)

[
(c2 − c2

1)ζ
2
t

S2
t + ζ 2

t

− 1
]
.

Then r′(0) and r′′(0) can be calculated by Theorem 3.1.
To apply Proposition 3.3, we need to check if Assumption 5 holds. It is not

hard to see that for g(ε) := λ(ϕ(Zt , θa(ε)), θb(ε)), g(k)(ε) is a linear combi-

nation of S
−j
t

∂j λ(x,ϑ)

∂xj
∂k−j λ(x,ϑ)

∂ϑk−j evaluated at x = ϕ(Zt , θa(ε)) and ϑ = θb(ε).

It is also not hard to see that ∂j λ(x,ϑ)

∂xj and ∂k−j λ(x,ϑ)

∂ϑk−j are bounded, so as long

as E[S−jq2(q+1)/2
t ] < ∞ for j ≤ q , Assumption 5 holds. Since here q = 2 and

S2
t ∼ χ2

ν , it suffices to have ν > 12. Under this condition,

Var[d ′
0(0)] =

[√
2(ν + 1)�(ν/2 + 1)

�((ν + 1)/2)

]2

E
[

ζ 2
t

ζ 2
t + S2

t

]
.

Because S2
t is the sum of squares of ν i.i.d. N(0,1) random variables that are

independent of ζt ∼ N(0,1), by symmetry,

E
[

ζ 2
t

S2
t + ζ 2

t

]
= 1

ν + 1
�⇒ Var[d ′

0(0)] = 1

2

[
ν�(ν/2)

�((ν + 1)/2)

]2

.

Then E[r′′(0) | η] can be calculated by (3.12).

4. Technical details.

4.1. Some inequalities. For any set A, denote by #A the number of its ele-
ments.

LEMMA 4.1. Let H be a finite set and Wa ≥ 0, Va ≥ 0 for a ∈ H such that
W :=∑

a Wa > 0 and V :=∑
a Va > 0. Then for any xa , a ∈ H,∣∣∣∣W−1

∑
a

Waxa − V −1
∑
a

Vaxa

∣∣∣∣≤ max
a,b∈H

|xa − xb|
[
1 − mina(Va/Wa)

maxa(Va/Wa)

]
.

PROOF. Enumerate the elements in H in an arbitrary order. Then the left-hand
side equals |T |/D, where

T =∑
a,b

(WaVbxa − WbVaxa) = ∑
a<b

(WaVb − WbVa)(xa − xb),

D =∑
a,b

(WaVb + WbVa) ≥ ∑
a<b

(WaVb + WbVa).
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Denote � = maxa,b |xa − xb|. Then

|T |
D

≤ �
∑

a<b |WaVb − WbVa|∑
a<b(WaVb + WbVa)

≤ �max
a,b

WaVb − WbVa

WaVb + WbVa

= �

[
1 − min

a,b

2Va/Wa

Va/Wa + Vb/Wb

]
≤ �

[
1 − mina(Va/Wa)

maxa(Va/Wa)

]
,

completing the proof. �

LEMMA 4.2. Let A and B be finite sets and Wa , Va , xa > 0 for a ∈ A ∪ B.
Then∣∣∣∣

∑
b∈B Wbxb∑
a∈A Waxa

−
∑

b∈B Vbxb∑
a∈A Vaxa

∣∣∣∣≤ #B ×
(

maxb∈B xb

mina∈A xa

)
max

a∈A,b∈B

∣∣∣∣Wb

Wa

− Vb

Va

∣∣∣∣.
PROOF. The left-hand side equals |T |/D, where

T = ∑
a∈A,b∈B

xaxb(WbVa − WaVb) = ∑
a∈A,b∈B

xaxbWaVa

(
Wb

Wa

− Vb

Va

)
,

D = ∑
a,a′∈A

xaxa′WaVa′ ≥
(
min
a∈A

xa

)∑
a∈A

WaVaxa.

Then by

|T | ≤ #B
(
max
b∈B

xb

)
max

a∈A,b∈B

∣∣∣∣Wb

Wa

− Vb

Va

∣∣∣∣ ∑
a∈A

WaVaxa,

the lemma follows. �

LEMMA 4.3. Let H be a finite set and q ∈ N. For a ∈ H, let Wa : Rp → [0,∞)

and ga : Rp → R be q times differentiable. Suppose W := ∑
a Wa > 0. Define

function ḡ = W−1∑
a Waga . Enumerate H in an arbitrary order. Then for ν with

|ν| = 1,

ḡ(ν) = W−1
∑
a

Wag
(ν)
a + W−2

∑
a<b

(
W(ν)

a Wb − WaW
(ν)
b

)
(ga − gb),(4.1)

and more generally, for ν with |ν| ≤ q ,

ḡ(ν) = W−1
∑
a

Wag
(ν)
a +

|ν|+1∑
k=2

∑
0≤j<ν

W−kUk,ν,j ,(4.2)

where Uk,ν,j can be written as

Uk,ν,j = ∑
a1,...,ak∈H,a1<a2

i1+···+ik=ν−j

ck,ν(a1, . . . , ak, i1, . . . , ik)

k∏
s=1

W(is)
as

× (
g(j)

a1
− g(j)

a2

)
,

with ck,ν(a1, . . . , ak, i1, . . . , ik) being constants.
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PROOF. If |ν| = 1, then

ḡ(ν) = W−1
∑
a

Wag
(ν)
a + W−1

∑
a

W(ν)
a ga − W−2

∑
a

Waga

∑
b

W
(ν)
b

= W−1
∑
a

Wag
(ν)
a + W−2

∑
a �=b

(
W(ν)

a Wb − WaW
(ν)
b

)
ga

= W−1
∑
a

Wag
(ν)
a + W−2

∑
a<b

(
W(ν)

a Wb − WaW
(ν)
b

)
(ga − gb),

showing (4.1), and hence (4.2) for |ν| = 1. Let ν = e + μ, where |e| = 1 and
0 ≤ μ < ν. Suppose ḡ(μ) has the form (4.2). Then

ḡ(ν) = (
ḡ(μ))(e) = f̄ (e) +

|ν|∑
k=2

∑
0≤j<ν

(W−kUk,μ,j )
(e),

where f̄ = W−1∑Wafa , with fa = g
(μ)
a . By (4.1),

f̄ (e) = W−1
∑
a

Waf
(e)
a + W−2

∑
a<b

(
W(e)

a Wb − WaW
(e)
b

)
(fa − fb)

= W−1
∑
a

Wag
(ν)
a + W−2

∑
a<b

(
W(e)

a Wb − WaW
(e)
b

)(
g(μ)

a − g
(μ)
b

)
.

On the other hand, for each k = 2, . . . , |ν| and 0 ≤ j < ν,

(W−kUk,μ,j )
(e) = −kW−k−1

∑
a∈H

W(e)
a Uk,μ,j + W−kU

(e)
k,μ,j .

It is then not hard to see that ḡ(ν) has the form (4.2). The proof is complete by
induction. �

4.2. Basic facts. Define matrix-valued functions Ln(ε) = (Ln,ab(ε), a, b ∈
H), such that for n ≥ 0,

L±n,ab(ε) = Eσ

[
1{σ±n = b}

n∏
s=1

ψ±s(ε, σ±s)

∣∣∣∣ σ0 = a

]
.(4.3)

Then from (2.5),

�n,a(ε) =
∑

b∈H Ln,ab(ε)∑
b∈H Ln,ıb(ε)

.(4.4)

For ease of notation, when there is no confusion, ε will be omitted.

LEMMA 4.4. Let Assumptions 1–4 hold. Then for each n and a, b ∈ H,
Ln,ab ∈ C(q), and for |n| ≥ κ , Ln,ab is positive and finite.
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PROOF. By Assumption 4, ψn(ε, a) ∈ C(q) for each n ∈ Z and a ∈ H, im-
plying L±n,ab ∈ C(q). For n ≥ κ and a, b ∈ H, as P0n(a, b) > 0, there is at least
one v = (v1, . . . , vn) with vn = b and Pr{σ1 = v1, . . . , σn = vn | σ0 = a} > 0. For
each such v and t = 1, . . . , n, by Assumption 3, ψt(ε, vt ) ∈ (0,∞). Therefore,
Ln,ab(ε) ∈ (0,∞). The proof for L−n,ab is similar. �

According to the lemma, �n,a ∈ (0,∞) once |n| ≥ κ . Also, by assumptions 2
and 3, P0(a) > 0, ψ0(ε, a) > 0. Therefore, ρmn(ε) ∈ (0,∞).

The following relation will be repeatedly used:

Ln,ab = ψn(ε, b)
∑
e

Ln−k,aeI
(k)
n,eb, a, b ∈ H,1 ≤ k < n,(4.5)

where

I
(k)
n,eb = I

(k)
n,eb(ε) = Eσ

[
1{σn = b}

n−1∏
n−k+1

ψt(ε, σt )

∣∣∣∣ σn−k = e

]
.(4.6)

Similar relation holds when n < 0.

4.3. Proof of Theorem 2.2.

LEMMA 4.5. Let Assumptions 1–3 hold.
1. Given a, b ∈ H and ε, for |n| ≥ κ , mine

Ln,be(ε)

Ln,ae(ε)
is strictly positive and in-

creasing in n, and maxe
Ln,be(ε)

Ln,ae(ε)
is finite and decreasing in |n|.

2. There is an increasing deterministic function r(ε0) ∈ (0,1), such that given
ε0 > 0, for almost all realizations of Z and η,

�n(ε) := max
a,b,c,d

∣∣∣∣Ln,bc(ε)

Ln,ac(ε)
− Ln,bd(ε)

Ln,ad(ε)

∣∣∣∣≤ Cr(ε0)
|n|, |n| ≥ κ, |ε| ≤ ε0,(4.7)

where C = C(ε0,Z) is a random variable that only depends on ε0 and Z and is
finite almost surely. Additionally, for fixed ε, �±n(ε) are decreasing in n.

PROOF. We only consider n > 0. The case n < 0 is similar. Given a �= b ∈ H,
for n ≥ κ and c ∈ H, by Lemma 4.4, Ln,bc

Ln,ac
∈ (0,∞). Then by (4.5),

Ln,bc

Ln,ac

=
∑

e Ln−k,beI
(k)
n,ec∑

e Ln−k,aeI
(k)
n,ec

.(4.8)

Letting k = 1, it is easy to see that

min
e

Ln−1,be

Ln−1,ae

≤ Ln,bc

Ln,ac

≤ max
e

Ln−1,be

Ln−1,ae

all c ∈ H,

which implies part 1.
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Given 1 ≤ k < n and ε, for each a, b, c, d ∈ H, apply Lemma 4.1 to xe = Ln−k,be

Ln−k,ae
,

We = Ln−k,aeI
(k)
n,ec and Ve = Ln−k,aeI

(k)
n,ed . Then by (4.8),

∣∣∣∣Ln,bc

Ln,ac

− Ln,bd

Ln,ad

∣∣∣∣≤ max
c,d

∣∣∣∣Ln−k,bc

Ln−k,ac

− Ln−k,bd

Ln−k,ad

∣∣∣∣×
[
1 − mine I

(k)
n,ed/I

(k)
n,ec

maxe I
(k)
n,ed/I

(k)
n,ec

]
.

Take maximum over c and d and then over a and b. It follows that

�n(ε) ≤ γn�n−k(ε) with γn = γn(ε, k) = 1 − minc,d,e I
(k)
n,ed/I

(k)
n,ec

maxc,d,e I
(k)
n,ed/I

(k)
n,ec

.(4.9)

For z = (z1, . . . , zκ−1) ∈ Z κ−1, where κ is as in Assumption 2, define

α(z, ε) = min
ut ,vt∈H

1≤t≤κ−1

κ−1∏
t=1

f (ϕ(zt , θut (ε)), θvt (ε)), α∗(z, ε0) = inf|ε|≤ε0
α(z, ε),

β(z, ε) = max
ut ,vt∈H

1≤t≤κ−1

κ−1∏
t=1

f (ϕ(zt , θut (ε)), θvt (ε)), β∗(z, ε0) = sup
|ε|≤ε0

β(z, ε).

For n ≥ κ , let

ζn = ζn(ε0) = α∗(Zn−κ+1, . . . ,Zn−1, ε0),

ξn = ξn(ε0) = β∗(Zn−κ+1, . . . ,Zn−1, ε0).

Since ψt(ε, σt ) = f (ϕ(Zt , θηt (ε)), θσt (ε)), then for |ε| ≤ ε0,

ζn ≤
n−1∏

n−κ+1

ψt(ε, σt ) ≤ ξn(4.10)

�⇒ ζnPn−κ,n(e, c) ≤ I (κ)
n,ec(ε) ≤ ξnPn−κ,n(e, c).(4.11)

Given z ∈ Z κ−1, by #H < ∞ and Assumption 3, α(z, ε) and β(z, ε) are contin-
uous in ε and 0 < α(z, ε) ≤ β(z, ε) < ∞, yielding 0 < α∗(z, ε0) ≤ β∗(z, ε0) < ∞.
As a result, Pr{0 < ζn ≤ ξn < ∞} = 1. Fix 0 < x < y < ∞, such that p0 := Pr{x ≤
ζκ ≤ ξκ ≤ y} > 0. Note that x and y can be chosen in such as way that they only
depend on ε0, the distribution of Z, and κ . Because Zt are i.i.d., from the defini-
tions of ζn and ξn, almost surely, there is an infinite sequence ns = ns(Z, ε0) ≥ κ ,
s ≥ 0, such that

x ≤ ζns ≤ ξns ≤ y(4.12)

and furthermore, ns can be chosen in such a way that

ns ≥ ns−1 + κ, |{s :ns ≤ n}| ≥ p0n

2κ
for n � 1.(4.13)
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On the other hand, since #H > 1, Assumption 2 implies that

φ∗ ≤ Pn−κ,n(e, c) ≤ 1 − φ∗ all c, e ∈ H.(4.14)

Combine (4.11), (4.12) and (4.14) to get

0 < φ∗x ≤ I (κ)
ns,ec

(ε) ≤ (1 − φ∗)y < ∞ ∀c, e ∈ H

and hence

γns = 1 − minc,d,e I
(κ)
ns,ed

/I
(κ)
ns,ec

maxc,d,e I
(κ)
ns,ed

/I
(κ)
ns,ec

≤ r0 = r0(ε0)

(4.15)

:= 1 −
[

φ∗x
(1 − φ∗)y

]2

< 1.

Now by (4.9), �ns (ε) ≤ �ns−κ(ε)r0. Since ns−1 ≤ ns − κ while (4.9) implies
that �n(ε) is decreasing, �ns (ε) ≤ �ns−1(ε)r0 and hence �ns (ε) ≤ �n1(ε)r

s−1
0 by

induction. For any n, if ns ≤ n < ns+1, then �n(ε) ≤ �n1(ε)r
s−1
0 ≤ �κ(ε)rs−1

0 .
Combining (4.13), for n � 1,

�n(ε) ≤ [�κ(ε)/r0]r(ε0)
n with r(ε0) = r

p0/(2κ)
0 .

Note �κ(ε) ≤ maxa,b,c
Lκ,ac(ε)

Lκ,bc(ε)
. Using (4.3) and (4.10) followed by assump-

tion 2, it is seen that

max
a,b,c

Lκ,ac(ε)

Lκ,bc(ε)
≤ ξκ

ζκ

max
a,b,c

P0κ(b, c)

P0κ(a, c)
≤ (1 − φ∗)ξκ

φ∗ζκ

< ∞.

Therefore, (4.7) is proved.
To make r(ε0) increasing, replace r(ε0) with, say, [infc≥ε0 r(c) + 1]/2. From

the construction, r(ε0) only depends on the distributional properties of Z and η,
but not specific realizations of the processes. Therefore, r(ε0) is deterministic. �

LEMMA 4.6. Fix a ∈ H and ε.
1. For a ∈ H,

0 < inf|n|≥κ
�n,a(ε) ≤ sup

|n|≥κ

�n,a(ε) < ∞.

2. For s ≥ n ≥ κ and s ≤ n ≤ −κ ,

|�n,a(ε) − �s,a(ε)| ≤ 2�n(ε) + �s(ε).

PROOF. From (4.4), for s ≥ n ≥ κ and s ≤ n ≤ −κ ,

�n,a(ε),
Ls,ae(ε)

Ls,ıe(ε)
∈
[
min

e

Ln,ae(ε)

Ln,ıe(ε)
,max

e

Ln,ae(ε)

Ln,ıe(ε)

]
.
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Together with part 1 of Lemma 4.5, this yields the first part of the lemma and also∣∣∣∣�n,a(ε) − Ln,ab(ε)

Ln,ıb(ε)

∣∣∣∣≤ �n,

∣∣∣∣Ln,ab(ε)

Ln,ıb(ε)
− Ls,ab(ε)

Ls,ıb(ε)

∣∣∣∣≤ �n,

where b ∈ H is arbitrary. Then by

|�n,a(ε) − �s,a(ε)| ≤
∣∣∣∣�n,a(ε) − Ln,ab(ε)

Ln,ıb(ε)

∣∣∣∣+
∣∣∣∣�s,a(ε) − Ls,ab(ε)

Ls,ıb(ε)

∣∣∣∣
+
∣∣∣∣Ln,ab(ε)

Ln,ıb(ε)
− Ls,ab(ε)

Ls,ıb(ε)

∣∣∣∣,
the second part of the lemma follows. �

PROOF OF THEOREM 2.2. From Lemmas 4.5–4.6, it is seen that given ε0 > 0,
almost surely, as n → ∞, �n,a(ε) → La(ε) and �−n,a(ε) → L̄a(ε) uniformly for
|ε| ≤ ε0, at rate o(r(ε0)

n). Since �±n,a(ε) are continuous, the uniform conver-
gence implies that La(ε) and L̄a(ε) are continuous. Also, the lemmas imply that
La(ε) and L̄a(ε) are strictly positive. By monotonicity argument, almost surely, the
convergence holds simultaneously for all ε0 > 0. �

4.4. Proof of Theorem 2.3. For t �= 0, n ≥ 1 and ε0 > 0, define

V±n(ε0) = n max
1≤t≤n

D±t (ε0)

(4.16)

with Dt(ε0) = max|ν|≤q
max
a∈H

sup
|ε|≤ε0

∣∣∣∣ψ
(ν)
t (ε, a)

ψt (ε, a)

∣∣∣∣,
where ψ

(ν)
t is a derivative with respect to ε. Note Dt(ε0) ≥ 1 since the maximiza-

tion in its definition takes into account ν = 0.

LEMMA 4.7. The following statements are true.
1. For ε0 > 0 and n ≥ 1,

Vn(ε0) ≤ nmax|t |≤n
[q + Mq(Zt , ε0)]q.(4.17)

2. If Assumptions 1–4 hold, then Pr{limn β−nVn(ε0) = 0,∀β > 1, ε0 > 0} = 1.

PROOF. To show part 1, it suffices to show that for all ν with |ν| = l ≤ q , and
all ε0 > 0 and t �= 0,

dν,t (ε0) := max
a∈H

sup
|ε|≤ε0

∣∣∣∣ψ
(ν)
t (ε, a)

ψt(ε, a)

∣∣∣∣≤ [l + Ml(Zt , ε0)]l .(4.18)

It is easily seen that (4.18) holds for l = 0. Suppose (4.18) holds if |ν| ≤ l. Let
|ν| = l + 1. Without loss of generality, let ν = e + μ, where e = (1,0, . . . ,0) and
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μ = (μ1, . . . ,μp) ≥ 0. Let z,ab(ε) = lnf (ϕ(z, θa(ε)), θb(ε)) as in Assumption 4.

Then by ψ
(e)
t (ε, a) = ψt(ε, a)

(e)
Zt ,ηt a

(ε),

ψ
(ν)
t (ε, a) = [

ψt(ε, a)
(e)
Zt ,ηt a

(ε)
](μ) =∑

i≤μ

(
μ

i

)
ψ

(i)
t (ε, a)

(ν−i)
Zt ,ηt a

(ε),

where
(μ
i

)= (μ1
i1

) · · · (μp

ip

)
.

For i ≤ μ, |(ν−i)
Zt ,ηt a

(ε)| ≤ Ml(Zt , ε0). Then, as |μ| = l, by induction the hypoth-
esis,

max
a∈H

sup
|ε|≤ε0

∣∣∣∣ψ
(ν)
t (ε, a)

ψt (ε, a)

∣∣∣∣ ≤ Ml(Zt , ε0)
∑
i≤μ

(
μ

i

)
[|i| + Ml(Zt , ε0)]|i|

≤ Ml(Zt , ε0)
∑
i≤μ

(
μ

i

)
[l + Ml(Zt , ε0)]|i|

= Ml(Zt , ε0)[|ν| + Ml(Zt , ε)]l ,
which implies (4.18). By induction, (4.18) holds for all |ν| ≤ q .

Because Vn(ε0) is increasing in ε0, to show part 2, it suffices to show that for
each fixed ε0 > 0 and β > 1, limn β−nVn(ε0) = 0 almost surely. Fix an arbitrary
c ∈ (1, β), such that cq < β . By part 1 and Assumption 4, for some p = p(ε0) > 2,

Pr{Vn(ε0) ≥ ncqn} ≤ Pr
{
max|t |≤n

Mq(Zt , ε0) ≥ cn − q
}

≤ 2nPr{Mq(Z0, ε0) ≥ cn − q} = o(n−p+1).

Then part 2 follows from the Borel–Cantelli lemma and ncqn = o(βn). �

LEMMA 4.8. Let Assumptions 1–4 hold. Fix a, b, c ∈ H and k ≥ 1. Let

Wn(ε) = Ln−k,ab(ε)I
(k)
n,bc(ε), n ≥ k,

where I
(k)
n,bc is defined in (4.6). Given ν > 0 with |ν| ≤ q and ε0 > 0, for n ≥ 0,

sup
|ε|≤ε0

|L(ν)
n,ab(ε)|

Ln,ab(ε)
≤ [Vn(ε0)]|ν|,

with Vn(ε0) := 0 if n = 0, while for n ≥ k,

sup
|ε|≤ε0

|W(ν)
n (ε)|

Wn(ε)
≤ [Vn−1(ε0)]|ν|.

PROOF. For ν = (ν1, . . . , νp) with 1 ≤ |ν| ≤ q , it is not hard to get

L
(ν)
n,ab(ε) = Eσ

[
1{σn = b} ∑

l1+···+ln=ν

n∏
t=1

ψ
(lt )
t (ε, σt )

∣∣∣∣ σ0 = a

]
.
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For any sequence l1, . . . , ln in the sum, at most |ν| of them are nonzero. For
each lt > 0, |ψ(lt )

t (ε, σt )| ≤ Dt(ε0)ψt (ε, σt ) for |ε| ≤ ε0. As a result,

n∏
t=1

∣∣ψ(lt )
t (ε, σt )

∣∣≤ [ max
1≤t≤n

Dt(ε0)
]|ν| n∏

t=1

ψt(ε, σt ).

On the other hand, there are nν1 · · ·nνp = n|ν| such sequences. Then

∣∣L(ν)
n,ab(ε)

∣∣ ≤ [
n max

1≤t≤n
Dt(ε0)

]|ν|
Eσ

[
1{σn = b}

n∏
t=1

ψt(ε, σt )

∣∣∣∣ σ0 = a

]

=
[
n max

1≤t≤n
Dt(ε0)

]|ν|
Ln,ab(ε).

This completes the proof of the first inequality. To show the second inequality,
first,

W(ν)
n (ε) =∑

i≤ν

(
ν

i

)
L

(i)
n−k,ab(ε)

[
I

(k)
n,bc

](ν−i)
(ε).

Using the definition of I
(k)
n,bc and following the treatment for L

(ν)
n,ab(ε),

∣∣[I (k)
n,bc

](ν−i)
(ε)
∣∣≤ (k − 1)|ν|−|i|[ max

n−k+1≤t≤n−1
Dt(ε0)

]|ν|−|i|
I

(k)
n,bc(ε).

Combining the bound with the one for L
(i)
n−k,ab(ε),

∣∣W(ν)
n (ε)

∣∣≤ [ max
1≤t≤n−1

Dt(ε0)
]|ν|

×∑
i≤ν

(
ν

i

)
(n − k)|i|(k − 1)|ν|−|i|Ln−k,ab(ε)I

(k)
n,bc(ε)

≤ [Vn−1(ε0)]|ν|Wn(ε).

This finishes the proof. �

LEMMA 4.9. Let Assumptions 1–4 hold. Define, for ν with |ν| = 1, . . . , q ,

�n,ν(ε) := max
a,b,c,d

∣∣∣∣
(

Ln,bc

Ln,ac

)(ν)

(ε) −
(

Ln,bd

Ln,ad

)(ν)

(ε)

∣∣∣∣.(4.19)

Then for each ν, there is an increasing deterministic function 0 ≤ rν(ε0) < 1 in
ε0 > 0, such that almost surely, as n → ∞,

sup
|ε|≤ε0

�n,ν(ε) = o
(
rν(ε0)

|n|) all ε0 > 0.
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PROOF. We only consider n > 0. The case n < 0 can be handled simi-
larly. Given k, define I

(k)
n,ec(ε) as in (4.6). Given a �= b ∈ H, write Wn,ec(ε) =

Ln−k,ae(ε)I
(k)
n,ec(ε), Wn,c(ε) =∑

e Wn,ec(ε). Then by (4.8), for n ≥ κ ,

Ln,bc

Ln,ac

= W−1
n,c

∑
e

Wn,ec

Ln−k,be

Ln−k,ae

.

Fix l = 1, . . . , q . By Lemma 4.3, for ν �= 0 with |ν| = l,(
Ln,bc

Ln,ac

)(ν)

= W−1
n,c

∑
e

Wn,ec

(
Ln−k,be

Ln−k,ae

)(ν)

+ Rn,ν,c,(4.20)

where

Rn,ν,c = a linear combination of

[
m∏

s=1

W
(is)
n,esc

Wn,c

][(
Ln−k,be1

Ln−k,ae1

)(j)

−
(

Ln−k,be2

Ln−k,ae2

)(j)]

across m = 2, . . . , |ν| + 1, i1, . . . , im ≥ 0, 0 ≤ j < ν with i1 + · · · + im + j = ν,
and e1, . . . , em ∈ H with e1 < e2. Then, by the same argument that leads to (4.9),

�n,ν(ε) ≤ γn�n−k,ν(ε) + 2 max
c

|Rn,ν,c(ε)|,(4.21)

where γn is given in (4.9).
The rest of the proof is by induction on l. First, let |ν| = 1. By Lemma 4.3,

Rn,ν,c = W−2
n,c

∑
e1<e2

(
W(ν)

n,e1c
Wn,e2c − Wn,e1cW

(ν)
n,e2c

)(Ln−k,be1

Ln−k,ae1

− Ln−k,be2

Ln−k,ae2

)
.

Fix ε0 > 0. By Lemma 4.8, for |ε| ≤ ε0, |W(ν)
n,ec(ε)| ≤ Vn−1(ε0)Wn,ec(ε). Then

|Rn,ν,c(ε)| ≤ W−2
n,c

∑
e1<e2

2Vn−1(ε0)Wn,e1cWn,e2c�n−k(ε)

(4.22)
�⇒ max

c
|Rn,ν,c(ε)| ≤ Vn−1(ε0)�n−k(ε).

By Lemma 4.5, there is increasing deterministic r = r(ε0) ∈ (0,1), such that
sup|ε|≤ε0

�n(ε) ≤ rn for n � 1. Fix β ∈ (1,1/r). Then by (4.21), (4.22) and part 2
of Lemma 4.7, almost surely, for n � 1 and |ε| ≤ ε0,

�n,ν(ε) ≤ γn�n−k,ν(ε) + βnrn−k ≤ �n−k,ν(ε) + βnrn−k.(4.23)

Let k = 1 to get �n,ν(ε) ≤ �n−1,ν(ε) + βnrn−1. So by induction, for s ≤ n,

�n,ν(ε) ≤ �s,ν(ε) + β

n−1∑
t=s

(βr)t ≤ �s,ν(ε) + β

1 − βr
(βr)s.(4.24)

Next let k = κ . By the same argument that leads to (4.15), r can be chosen in
such a way that there is a sequence ns = ns(Z, ε0) that satisfy (4.13) and γns ≤ r .
By the first inequality in (4.23), for s � 1,

�ns,ν(ε) ≤ r�ns−κ,ν(ε) + βns rns−κ ≤ r�ns−κ,ν(ε) + βκ(βr)ns−1 .
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Let n = ns − κ and s = ns−1 in (4.24) and combine it with the last equality to get

�ns,ν(ε) ≤ r�ns−1,ν(ε) + c(βr)ns−1,

where c = βκ + β/(1 − rβ). Then by induction and the fact that ns ≥ κs,

�ns,ν(ε) ≤ rs−1�n1,ν(ε) + c

s−1∑
t=1

rs−t−1(βr)nt

≤ rs−1�n1,ν(ε) + c

s−1∑
t=1

rs−t−1(βr)t

≤ rs−1�n1,ν(ε) + cs(βr)s−1.

Now for any ns ≤ n < ns+1, by (4.24) and the above inequality,

�n,ν(ε) ≤ rs−1�n1,ν +
(

β

1 − rβ
+ cs

)
(βr)s−1.

Since for s � 1, s + 1 ≥ p0
2κ

ns+1 ≥ p0
2κ

n, it can be seen that �n,ν(ε) = O(cn),
with c = (βr)p0/(2κ) < 1. Since β ∈ (1,1/r) is arbitrary, it follows that for a given
ε0 and any r1 > r∗ := rp0/(2κ), say r1 = r1(ε0) = (1 + r∗)/2, sup|ε|≤ε0

�n,ν(ε) =
o(rn

1 ) almost surely. By monotonicity, it can be seen that almost surely, the expo-
nentially fast convergence holds simultaneously for all ε0.

Now let |ν| > 1. To bound Rn,ν,c(ε), for s = 2, . . . , |ν| + 1, and p-tuples of
nonnegative integers, i1, . . . , is , j , i1 + · · · + is = ν − j < ν, and e1, . . . , es ∈ H,
by Lemma 4.8, for |ε| ≤ ε0,

∣∣W(i1)
n,e1c

· · ·W(is)
n,esc

∣∣≤ s∏
k=1

[Vn−1(ε0)]|ik |Wn,ekc ≤ Ws
n,c[Vn−1(ε0)]|ν|

so in place of (4.22), we have

max
c

|Rn,ν,c(ε)| ≤ Cν[Vn−1(ε0)]|ν| ×∑
j<ν

�n−k,j (ε),(4.25)

where �n−k,0(ε) := �n−k(ε) and Cν > 0 is some constant only depending on ν.
Suppose it has been shown that for each j < ν, there is rj = rj (ε0) ∈ (0,1),

such that sup|ε|≤ε0
�n,j (ε) = o(rn

j ). Then using (4.21) and (4.25) and following
the argument for �n,j (ε) with |j | = 1, sup|ε|≤ε0

�n,ν(ε) = o(rn
ν ) for some rν =

rν(ε0) ∈ (0,1). By induction, the exponential rate of convergence holds for all ν

with |ν| ≤ q . Again, from the construction, rν only depends on the distributional
properties of Z and η and hence is deterministic. �

Set k = 1 in (4.20). For n ≥ κ and a, b, c ∈ H,

min
e

(
Ln−1,be

Ln−1,ae

)(ν)

− |Rn,ν,c| ≤
(

Ln,bc

Ln,ac

)(ν)

≤ max
e

(
Ln−1,be

Ln−1,ae

)(ν)

+ |Rn,ν,c|,
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giving ∣∣∣∣
(

Ln,bc

Ln,ac

)(ν)

(ε) −
(

Ln−1,bc

Ln−1,ac

)(ν)

(ε)

∣∣∣∣≤ �n−1,ν(ε) + 2|Rn,ν,c(ε)|.(4.26)

COROLLARY 4.10. Let assumptions 1–4 hold. Then almost surely, as s ≥
n → ∞,

max
a∈H

sup
|ε|≤ε0

|Rn,ν,c(ε)| = o(rn
ν (ε0))

max
a,b,c∈H

sup
|ε|≤ε0

∣∣∣∣
(

Ln,bc

Ln,ac

)(ν)

(ε) −
(

Ls,bc

Ls,ac

)(ν)

(ε)

∣∣∣∣= o(rn
ν (ε0)),

for all ε0 > 0 and ν with 1 ≤ |ν| ≤, q , and likewise for L̄n,ab, where rν(ε0) are
given in Lemma 4.9.

PROOF. The first inequality is already shown in the proof of Lemma 4.9. The
second one follows from summing the inequality in (4.26) over n + 1, . . . , s and
applying the first inequality and Lemma 4.9. �

PROOF OF THEOREM 2.3. Let rν(ε0) be as in Lemma 4.9. For e ∈ H, denote

ωn,e = Ln,ıe, ωn =∑
e

ωn,e.

Then for a ∈ H, �n,a = ω−1
n

∑
e ωn,e(

Ln,ae

Ln,ıe
) and similar to (4.20),

�(ν)
n,a = ω−1

n

∑
e

ωn,e

(
Ln,ae

Ln,ıe

)(ν)

+ Tn,ν,(4.27)

where Tn,ν is a linear combination of

ω−m
n ω(i1)

n,e1
· · ·ω(im)

n,em

[(
Ln−k,ae1

Ln−k,ıe1

)(j)

−
(

Ln−k,ae2

Ln−k,ıe2

)(j)]

across m = 2, . . . , |ν| + 1, 0 ≤ j < ν, i1, . . . , im ≥ 0 with i1 + · · · + im + j = ν,
and e1, . . . , em ∈ H with e1 < e2. Fix any b ∈ H. From the above formulas,∣∣∣∣�(ν)

n,a −
(

Ln,ab

Ln,ıb

)(ν)∣∣∣∣≤ �n,ν + |Tn,ν |.(4.28)

Following the treatment of Rn,ν,c in (4.25), except that we have to use the first
inequality in Lemma 4.8, it can be seen that

|Tn,ν(ε)| ≤ Cν[Vn(ε0)]|ν| ×∑
j<ν

�n−k,j (ε), |ε| ≤ ε0,(4.29)
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yielding max|ε|≤ε0 |Tn,ν(ε)| = o(rn
ν ). Now for s �= n, by (4.28), it is not hard to get∣∣�(ν)

s,a − �(ν)
n,a

∣∣≤ �s,ν + |Ts,ν | + �n,ν + |Tn,ν |
(4.30)

+
∣∣∣∣
(

Ls,ab

Ls,ıb

)(ν)

−
(

Ln,ab

Ln,ıb

)(ν)∣∣∣∣.
Then by Lemma 4.9 and Corollary 4.10,

sup
|ε|≤ε0

∣∣�(ν)
s,a(ε) − �(ν)

n,a(ε)
∣∣= o(rs∧n

ν (ε0)), a ∈ H.

Since #H < ∞, almost surely, the rate holds simultaneously for all a ∈ H. �

4.5. Proof of Theorem 2.4. Since the parameter κ in Assumption 2 equals 1,
Pn−1,n(a, b) ∈ [φ∗,1−φ∗] for a, b ∈ H and n ∈ Z, with 0 < φ∗ < 1 as in Assump-
tion 2. Consequently,

γ = 1 − inf
n

minc,d,e((Pn−1,n(e, d))/(Pn−1,n(e, c)))

maxc,d,e((Pn−1,n(e, d))/(Pn−1,n(e, c)))
∈
[
0,1 − φ∗

1 − φ∗

]
.(4.31)

For a, e ∈ H, by (4.3), L1,ae(ε) = P01(a, e)ψ1(ε, e), giving

L1,be(ε)

L1,ae(ε)
≡ P01(b, e)

P01(a, e)
≤ 1 − φ∗

φ∗
∀ε.(4.32)

Then by Lemma 4.5,

φ∗

1 − φ∗ ≤ �n,a(ε) ≤ 1 − φ∗

φ∗ .(4.33)

This together with dominated convergence shows part 1 of Theorem 2.4. To prove
part 2, we need several lemmas.

LEMMA 4.11. Fix ε0 > 0. Let γ and φ∗ be as in (4.31) and α = φ−1∗ − 1.
There is a constant C > 0, such that if 1 ≤ |ν| = l ≤ q , |ε| ≤ ε0 and n ≥ 1, then∣∣�(ν)

n,a(ε) − �
(ν)
n−1,a(ε)

∣∣
(4.34)

≤ Cαγ (n−l−1)∨1nl(l+2)
n∑

t=1

[q + Mq(Zt , ε0)]ql(l+1)/2.

PROOF. First, by (4.32) and the definitions of �n and �n,ν in (4.7) and (4.19),

�1(ε) ≡ max
a,b,c,d

∣∣∣∣P01(b, c)

P01(a, c)
− P01(b, d)

P01(a, d)

∣∣∣∣≤ γ (1 − φ∗)
φ∗

,

(4.35)
�1,ν(ε) ≡ 0, ν > 0.
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By (4.6), I
(1)
n,ec = Pn−1,n(e, c), so (4.9) gives �n(ε) ≤ γ�n−1(ε). Thus,

�n(ε) ≤ αγ n ∀n ≥ 1, ε > 0.(4.36)

Let Rn,ν,c(ε) be as in (4.20) and

�̄n,l(ε) = max|ν|=l
�n,ν(ε).

Recall the definition of Vn(ε0) in (4.16). For brevity, write vn = Vn(ε0). By (4.25),
there are constants cl > 1, such that

max|ν|=l,c
|Rn,ν,c(ε)| ≤ 1

2
clv

l
n−1

l−1∑
i=0

�̄n−1,i (ε),(4.37)

for l = 1, . . . , q , n ≥ 1, ε0 > 0 and |ε| ≤ ε0. Then by (4.21), for n ≥ 0,

�̄n+1,l(ε) ≤ γ �̄n,l(ε) + clv
l
n

l−1∑
i=0

�̄n,i(ε).(4.38)

We show by induction that for l ≥ 1 and n ≥ 0,

�̄n+1,l(ε) ≤ αγ (n+1−l)∨1nclv
l
n

l−1∏
i=1

(1 + nciv
i
n),(4.39)

where �̄n+1,0(ε) = �n+1(ε).
By (4.35), (4.39) holds for n = 0 and l ≥ 1. Let n ≥ 1 next. If l = 1, then by

(4.36) and (4.38),

�̄n+1,1(ε) ≤ γ �̄n,1(ε) + c1vn�n(ε) ≤ γ �̄n,1(ε) + αγ nc1vn,

and by induction on n and (4.35),

�̄n+1,1(ε) ≤ γ n�̄1,1(ε) + αγ nc1

n∑
s=1

vs = αγ nc1

n∑
s=1

vs ≤ αγ nc1nvn.

So (4.39) holds for l = 1. Suppose (4.39) holds for 1 ≤ l < k. By γ ∈ (0,1),

k−1∑
i=0

�̄n,i(ε0) = �n(ε0) +
k−1∑
i=1

�̄n,i(ε0)

≤ α

{
γ n +

k−1∑
i=1

γ (n−i)∨1ci(n − 1)vi
n−1

i−1∏
h=1

[1 + ch(n − 1)vh
n−1]

}

(4.40)

≤ αγ (n+1−k)∨1

{
1 +

k−1∑
i=1

cinvi
n

i−1∏
h=1

(1 + chnvh
n)

}

= αγ (n+1−k)∨1
k−1∏
i=1

(1 + cinvi
n),
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so by (4.38),

�̄n+1,k(ε) ≤ γ �̄n,k(ε) + αγ (n+1−k)∨1ckv
k
n

k−1∏
i=1

(1 + cinvi
n).

By induction on n, it is seen that �̄n,k(ε) satisfies (4.39). As a by-product, by
(4.37) and (4.40),

max|ν|=l,c
|Rn,ν,c(ε)| ≤ 1

2
αγ (n−l)∨1clv

l
n−1

l−1∏
i=1

(1 + cinvi
n−1).(4.41)

Combining (4.26), (4.39) and (4.41), for any |ν| = l,

∣∣∣∣
(

Ln,bc

Ln,ac

)(ν)

(ε) −
(

Ln−1,bc

Ln−1,ac

)(ν)

(ε)

∣∣∣∣
≤ �n−1,l(ε) + 2|Rn,ν,c(ε)|

≤ αγ (n−l−1)∨1nclv
l
n−1

l−1∏
i=1

(1 + cinvi
n−1).

Let Tn,ν be as in (4.27). With (4.39) being established now, by (4.29), we get
the following bounds similar to (4.41):

max|ν|=l
|Tn,ν(ε)| ≤ 1

2
αγ (n−l)∨1clv

l
n

l−1∏
i=1

(1 + nciv
i
n−1).(4.42)

Combine (4.26), (4.30) and the above inequalities. It is seen that for some con-
stants Cl > 1, ∣∣�(ν)

n,a − �
(ν)
n−1,a

∣∣≤ Clαγ (n−l−1)∨1nlvl(l+1)/2
n .

Then applying Lemma 4.7 to vn = Vn(ε0), the lemma is proved. �

Now for n ≥ 1, |�(ν)
n,a(ε)| ≤ |�(ν)

1,a(ε)| +∑n
k=2 |�(ν)

n,a(ε) − �
(ν)
n−1,a(ε)|. Letting

k = 1 in (4.28) and (4.29) and combining them with (4.32) and (4.35), it is seen that
|�(ν)

1,a(ε)| ≤ C|V1(ε)||ν|, where C is a constant. Together with (4.34), this implies
there is a constant Cl = Cl(γ,φ∗), such that for ν with 1 ≤ |ν| = l ≤ q ,

∣∣�(ν)
n,a(ε)

∣∣≤ Cl

∞∑
t=1

βl,t [q + Mq(Zt , ε0)]ql(l+1)/2, |ε| ≤ ε0,(4.43)

where βl,t =∑∞
k=t+1 γ kkl(l+1) = o((cγ )t ) for any 0 < c < 1/γ .

Part 2 of Theorem 2.4 is an immediate consequence of the next result.
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LEMMA 4.12. Let ε0 > 0. Almost surely, the following statements hold for all
|ε| ≤ ε0, n ≥ 1 and ν with 1 ≤ |ν| ≤ q .

1. E[(ln�n,a)
(ν)(ε) | η] and E[(ln�n,a)(ε) | η](ν) both exist and are equal.

2. As n → ∞, E[(ln�n,a)
(ν)(ε) | η] → E[(ln La)

(ν)(ε) | η].
3. As n → ∞, (E[ln�n,a(ε) | η])(ν) → (E[ln La(ε) | η])(ν).

PROOF. 1. It is not hard to see that (ln�n,a)
(ν)(ε) is a linear combination of

products of the form

hn,ν1,...,νs (ε) := �
(ν1)
n,a (ε) · · ·�(νs)

n,a (ε)

�n,a(ε)s
, νk > 0, ν1 + · · · + νs = ν.

By (4.33) and (4.43),

|hn,ν1,...,νs (ε)| ≤ ζ := C

s∏
k=1

∞∑
t=1

βl,t [q + Mq(Zt , ε0)]q|νk |(|νk |+1)/2, |ε| ≤ ε0,

with C = C(γ,φ∗) a constant. As
∑

k |νk|(|νk| + 1) ≤ |ν|(|ν| + 1), by Assump-
tion 5 and the independence of Zt , Eζ < ∞. Note that ζ is independent of η. It
follows that (ln�n,a)

(ν)(ε) for all n and |ε| ≤ ε0 are bounded by a single ran-
dom variable that has a finite expectation and is independent of η. This implies
E[(ln�n,a)

(ν)(ε) | η] exists, and together with ln�n,a ∈ C(q), implies the rest of
part 1 through dominated convergence.

2. By Theorems 2.1 and 2.2, �
(ν)
n,a(ε) converges as n → ∞ for all ε. By Lem-

ma 4.11 and (4.33), (ln�n,a)
(ν)(ε) converges. Then the claim follows from domi-

nated convergence.
3. Consider hn,ν1,...,νs (ε) again. By Lemma 4.11 and (4.33), it can be seen that

for ν1, . . . , νs > 0 with ν1 +· · ·+ νs = ν, |hn+1,ν1,...,νs (ε)−hn,ν1,...,νs (ε)| ≤ Cγ n
1 ζ

holds for |ε| ≤ ε0, where C > 0 γ1 ∈ (γ,1) are constants and ζ > 0 is a ran-
dom variable independent of η with Eζ < ∞. As a result, E[(ln�n,a)

(ν)(ε) | η]
converges uniformly on each compact set of ε. Together with part 1, this implies
part 3. �

4.6. Proof for the binary case. The following simple identity will be repeat-
edly used. For any function F on {0,1}, denote dF = F(1) − F(0). Then for s,
t ∈ Z,

Eσ [F(σt ) | σs = 1] − Eσ [F(σt ) | σs = 0] = Dst dF,(4.44)

F(0) − Eσ [F(σt ) | σs = 0] = −Pst (0,1) dF.(4.45)

Define for t ∈ Z and n ≥ 1,

t (ε, a) = lnψt(ε, a), Sn(ε) =
n∑

t=1

t (ε, σt ).
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Then λn(ε) = ln Eσ [eSn(ε) | σ0 = 1] − ln Eσ [eSn(ε) | σ0 = 0] in (3.3).

PROOF OF THEOREM 3.1. For n ≥ 1, by (4.44),

λ′
n(0) = Eσ [S′

n(0) | σ0 = 1] − Eσ [S′
n(0) | σ0 = 0]

=
n∑

t=1

{Eσ [′
t (0, σt ) | σ0 = 1] − Eσ [′

t (0, σt ) | σ0 = 0]}

=
n∑

t=1

D0t d
′
t (0).

By Theorems 2.2 and 2.3, letting n → ∞, (3.7) follows. To get r′′(0), for n ≥ 1,

λ′′
n(0) = Eσ [S′′

n(0) | σ0 = 1] − Eσ [S′′
n(0) | σ0 = 0] + Varσ [S′

n(0) | σ0 = 1]
− Varσ [S′

n(0) | σ0 = 0].
Similar to the calculation of r′(0),

lim
n→∞{Eσ [S′′

n(0) | σ0 = 1] − Eσ [S′′
n(0) | σ0 = 0]} =

∞∑
t=1

D0t d
′′
t (0).

On the other hand, denoting by δt the random variable ′
t (0, σt ),

Varσ [S′
n(0) | σ0] =

n∑
t=1

Varσ (δt | σ0) + 2
∑

1≤s<t≤n

Covσ (δs, δt | σ0).

Given 1 ≤ s ≤ t ≤ n, let F(σs) = δsEσ [δt | σs]. By Eσ [δsδt | σ0] = Eσ [F(σs) | σ0]
and (4.44),

Eσ [δsδt | σ0 = 1] − Eσ [δsδt | σ0 = 0] = D0s dF.

Similarly, by (4.44), Eσ [δt | σs = 1] = Eσ [δt | σs = 0] + Dstd
′
t (0). Then, as

′
s(0,1) = ′

s(0,0) + d ′
s(0),

dF = F(1) − F(0) = ′
s(0,1)Eσ (δt | σs = 1) − ′

s(0,0)Eσ (δt | σs = 0)

= Eσ (δt | σs = 0)d ′
s(0) + Dst

′
s(0,0)d ′

t (0) + Dstd
′
s(0)d ′

t (0)

and likewise,

Eσ (δs | σ0 = 1)Eσ (δt | σ0 = 1) − Eσ (δs | σ0 = 0)Eσ (δt | σ0 = 0)

= D0sEσ (δt | σ0 = 0)d ′
s(0) + D0tEσ (δs | σ0 = 0)d ′

t (0) + D0sD0t d
′
s(0)d ′

t (0).

Combining the above identities,

Covσ (δs, δt | σ0 = 1) − Covσ (δs, δt | σ0 = 0) = I1 + I2 + I3,
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with ⎧⎨
⎩

I1 = D0s[Eσ (δt | σs = 0) − Eσ (δt | σ0 = 0)]d ′
s(0),

I2 = [D0sDst
′
s(0,0) − D0tEσ (δs | σ0 = 0)]d ′

t (0),

I3 = D0s(Dst − D0t )d
′
s(0)d ′

t (0).

By conditioning on σs ,

Eσ (δt | σs = 0) − Eσ (δt | σ0 = 0)

= Eσ (δt | σs = 0) − Eσ [Eσ (δt | σs) | σ0 = 0]
(a)= −P0s(0,1)[Eσ (δt | σs = 1) − Eσ (δt | σs = 0)]
(b)= −DstP0s(0,1)d ′

t (0),

where (a) is due to (4.45), and (b) due to (4.44). By (3.6), D0sDst = D0t . There-
fore, I1 = −D0tP0s(0,1)d ′

s(0)d ′
t (0). Likewise,

I2 = D0t [′
s(0,0) − Eσ (δs | σ0 = 0)]d ′

t (0) = −D0tP0s(0,1)d ′
s(0)d ′

t (0)

and I3 = D0t (1 − D0s)d
′
s(0)d ′

t (0). Then (3.8) follows from

Covσ (δs, δt | σ0 = 1) − Covσ (δs, δt | σ0 = 0)

= D0t [P0s(1,0) − P0s(0,1)]d ′
s(0)d ′

t (0)

and Theorems 2.2 and 2.3. �

To prove the rest of the results, recall λ(x,ϑ) = lnf (x,ϑ).

PROOF OF PROPOSITION 3.2. Given t , Z and η, t (ε, a) is a composite of
functions λ(x,ϑ), ϕ(Zt , v), θa(ε) and θηt (ε), such that

t (ε, a) = λ(ϕ(Zt , θηt (ε)), θa(ε)),

so by the chain rule for differentiation,

′
t (ε, a) = ∂λ(x,ϑ)

∂x

∂ϕ(Zt , v)

∂v
θ ′
ηt

(ε) + ∂λ(x,ϑ)

∂ϑ
θ ′
a(ε),

where the right-hand side is evaluated at x = ϕ(Zt , v), v = θηt (ε), and ϑ = θa(ε).
Since θ1(0) = θ0(0) = 0, the first summand on the right-hand side takes the same
value for a = 0, 1. Therefore, (3.9) holds.

Likewise,

′′
t (ε, a) = ∂2λ

∂x2

[
∂ϕ

∂v

]2

θ ′
ηt

(ε)2 + 2
∂2λ

∂x ∂ϑ

∂ϕ

∂v
θ ′
ηt

(ε)θ ′
a(ε) + ∂2λ

∂ϑ2 θ ′
a(ε)

2

+ ∂λ

∂x

∂2ϕ

∂v2 θ ′
ηt

(ε)2 + ∂λ

∂x

∂ϕ

∂v
θ ′′
ηt

(ε) + ∂λ

∂ϑ
θ ′′
a (ε),
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where again the right-hand side is evaluated at x = ϕ(Zt , v), v = θηt (ε), and ϑ =
θa(ε). Then (3.10) follows. �

PROOF OF PROPOSITION 3.3. We shall first show for any t ,

E[d ′
t (0) | η] = 0,(4.46)

Var[d ′
t (0) | η] = [θ ′

1(0) − θ ′
0(0)]2J (0),(4.47)

E[d ′′
t (0) | η] = [θ ′

1(0) − θ ′
0(0)][2θ ′

ηt
(0) − θ ′

0(0) − θ ′
1(0)]J (0).(4.48)

Denote ξt = ϕ(Zt ,0). Then ξt has density f (x,0) and log-density λ(x,0). Take
expectation conditional on η on both sides of (3.9) to get

E[d ′
t (0) | η] = [θ ′

1(0) − θ ′
0(0)]E

[
∂λ(ξt ,0)

∂ϑ

]
.

Then (4.46) follows from the property of score function.
For the same reason, (4.47) follows as well and, taking expectation conditional

on η on both sides of (3.10),

E[d ′′
t (0) | η] = 2[θ ′

1(0) − θ ′
0(0)]θ ′

ηt
(0)E

[
∂2λ(ξt ,0)

∂x ∂ϑ

∂ϕ(Zt ,0)

∂v

]

− [θ ′
1(0)2 − θ ′

0(0)2]J (0).

Therefore, to prove (4.48), it suffices to show

E
[
∂2λ(ξt ,0)

∂x ∂ϑ

∂ϕ(Zt ,0)

∂v

]
= J (0).(4.49)

Define

g(v,Zt) = ∂λ(ϕ(Zt , v),ϑ)

∂ϑ

∣∣∣∣
ϑ=0

= 1

f (ϕ(Zt , v),0)

∂f (ϕ(Zt , v),0)

∂ϑ
.

Observe that

∂g(v,Zt )

∂v

∣∣∣∣
v=0

= ∂2λ(ξt ,0)

∂x ∂ϑ

∂ϕ(Zt ,0)

∂v
.

Therefore, the left-hand side of (4.49) is equal to

E
[
∂g(v,Zt )

∂v

∣∣∣∣
v=0

]
= ∂E[g(v,Zt)]

∂v

∣∣∣∣
v=0

.

By assumption 1, ϕ(Zt , v) has density f (x, v). Therefore, the right-hand side
of the above identity is equal to

∂

∂v

[∫ 1

f (x,0)

∂f (x,0)

∂ϑ
f (x, v) dx

]
v=0

=
∫ 1

f (x,0)

[
∂f (x,0)

∂ϑ

]2

dx = J (0),

which gives (4.49).
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From Theorem 2.4, (3.7) and (4.46),

E[r′(0) | η] =
∞∑
t=1

D0tE[d ′
t (0) | η] = 0

showing (3.11). On the other hand, given η, since Zt are independent, d ′
s(0) are

independent of d ′
t (0) for s < t . Then by E[d ′

t (0) | η] = 0 and (3.8),

E[r′′(0) | η] =
∞∑
t=1

D0t {E[d ′′
t (0) | η] + [P0t (1,0) − P0t (0,1)]Var[d ′

t (0) | η]}

= [θ ′
1(0) − θ ′

0(0)]J (0)

∞∑
t=1

D0t ft ,

where

ft = 2θ ′
ηt

(0) − θ ′
0(0) − θ ′

1(0) + [P0t (1,0) − P0t (0,1)][θ ′
1(0) − θ ′

0(0)]
= [θ ′

1(0) − θ ′
0(0)][2ηt − P0t (1,1) − P0t (0,1)].

Therefore, (3.12) holds. �

APPENDIX

In this Appendix, we make a general statement on the conditional likelihood
under the FDR criterion. Let H1, . . . ,Hn be a set of hypotheses being tested and
let X be the available data. Let pk = Pr{Hk is false | X}. For any testing procedure
based on X, let R be the total number of rejected Hk and V that of rejected true Hk .
Then the number of rejected false nulls is R − V .

PROPOSITION A.1. Given α ∈ (0,1), among all testing procedures whose re-
jection decisions are uniquely determined by X and which satisfy the FDR control
criterion

FDR = E
[

V

R ∨ 1

∣∣∣X]≤ α,

the following Benjamini–Hochberg procedure [4] has the largest E[R − V | X]:
1. sort qi = 1 − pi into q(1) ≤ q(2) ≤ · · · ≤ q(n);
2. let r = max{j :q(1) + · · · + q(j) ≤ αj} and reject Hk if qk ≤ q(r).

PROOF. Given a procedure with R > 0, let Hik , k = 1, . . . ,R be the rejected
nulls. Then, as in [6], FDR =∑R

j=1 qij /R ≥∑R
j=1 q(j)/R, while E[R − V | X] =

R−∑R
j=1 qij ≤ R−∑R

j=1 q(j). It is then not hard to see that under the FDR control
criterion, the procedure in the proposition attains the largest value of E[R−V | X].

�
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