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FRACTALS WITH POINT IMPACT IN FUNCTIONAL LINEAR
REGRESSION

BY IAN W. MCKEAGUE1 AND BODHISATTVA SEN2

Columbia University

This paper develops a point impact linear regression model in which the
trajectory of a continuous stochastic process, when evaluated at a sensitive
time point, is associated with a scalar response. The proposed model comple-
ments and is more interpretable than the functional linear regression approach
that has become popular in recent years. The trajectories are assumed to have
fractal (self-similar) properties in common with a fractional Brownian mo-
tion with an unknown Hurst exponent. Bootstrap confidence intervals based
on the least-squares estimator of the sensitive time point are developed. Mis-
specification of the point impact model by a functional linear model is also
investigated. Non-Gaussian limit distributions and rates of convergence de-
termined by the Hurst exponent play an important role.

1. Introduction. This paper investigates a linear regression model involving
a scalar response Y and a predictor given by the value of the trajectory of a con-
tinuous stochastic process X = {X(t), t ∈ [0,1]} at some unknown time point.
Specifically, we consider the point impact linear regression model

Y = α + βX(θ) + ε(1)

and focus on the time point θ ∈ (0,1) as the target parameter of interest. The
intercept α and the slope β are scalars, and the error ε is taken to be independent
of X, having zero mean and finite variance σ 2. The complete trajectory of X is
assumed to be observed (at least on a fine enough grid that it makes no difference
in terms of accuracy), even though the model itself only involves the value of X

at θ , which represents a “sensitive” time point in terms of the relationship to the
response. The main aim of the paper is to show that the precision of estimation of
θ is driven by fractal behavior in X, and to develop valid inferential procedures
that adapt to a broad range of such behavior. Our model could easily be extended
in various ways, for example, to allow multiple sensitive time points or further
covariates, but, for simplicity, we restrict attention to (1).
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FIG. 1. Log gene expression at 518 loci along chromosome 17 in tissue from a breast cancer
patient.

Our motivation for developing this type of model arises from genome-wide ex-
pression studies that measure the activity of numerous genes simultaneously. In
these studies, it is of interest to locate genes showing activity that is associated
with clinical outcomes. Emilsson et al. [10], for example, studied gene expression
levels at over 24,000 loci in samples of adipose tissue to identify genes correlated
with body mass index and other obesity-related outcomes. Gruvberger-Saal et al.
[13] used gene expression profiles from the tumors of breast cancer patients to
predict estrogen receptor protein concentration, an important prognostic marker
for breast tumors; see also [5]. In such studies, the gene expression profile across
a chromosome can be regarded a functional predictor, and a gene associated with
the clinical outcome is identified by its base pair position θ along the chromosome;
see Figure 1. Our aim here is to develop a method of estimating a confidence inter-
val for θ , leading to the identification of chromosomal regions that are potentially
useful for diagnosis and therapy. Although there is extensive statistical literature
on gene expression data, it is almost exclusively concerned with multiple testing
procedures for detecting differentially expressed genes; see, for example, [8, 30].

Gene expression profiles (as in Figure 1) clearly display fractal behavior, that is,
self-similarity over a range of scales. Indeed, fractals often arise when spatiotem-
poral patterns at higher levels emerge from localized interactions and selection
processes acting at lower levels, as with gene expression activity. Moreover, the
recent discovery [19] that chromosomes are folded as “fractal globules,” which
can easily unfold during gene activation, also helps explain the fractal appearance
of gene expression profiles.

A basic stochastic model for fractal phenomena is provided by fractional
Brownian motion (fBm) (see [22]), in which the so-called Hurst exponent H ∈
[0,1] calibrates the scaling of the self-similarity and provides a natural measure
of trajectory roughness. It featured prominently in the pioneering work of Benoît
Mandelbrot, who stated ([23], page 256) that fBm provides “the most manageable
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mathematical environment I can think of (for representing fractals).” For back-
ground on fBm from a statistical modeling point of view, see [11].

The key issue to be considered in this paper is how to construct a confidence
interval for the true sensitive time point θ0 based on its least squares estimator θ̂n,
obtained by fitting model (1) from a sample of size n,

(α̂n, β̂n, θ̂n) = arg min
α,β,θ

n∑
i=1

[Yi − α − βXi(θ)]2.(2)

We show that, when X is fBm, both the rate of convergence rn and limiting distri-
bution of θ̂n depend on H . In addition, we construct bootstrap confidence intervals
for θ0 that do not require knowledge of H . This facilitates applications (e.g., to
gene expression data) in which the type of fractal behavior is not known in ad-
vance; the trajectory in Figure 1 has an estimated Hurst exponent of about 0.1, but
it would be very difficult to estimate precisely using data in a small neighborhood
of θ̂n, so a bootstrap approach becomes crucial. We emphasize that nothing about
the distribution of X is used in the construction of the estimators or the bootstrap
confidence intervals; the fBm assumption will only be utilized to study the large
sample properties of these procedures. Moreover, our main results will make es-
sential use of the fBm assumption only locally, that is, in a small neighborhood
of θ0.

The point impact model (1) can be regarded as a simple working model that
provides interpretable information about the influence of X at a specific location
(e.g., a genetic locus). Such information cannot be extracted using the standard
functional linear regression model [27] given by

Y = α +
∫ 1

0
f (t)X(t) dt + ε,(3)

where f is a continuous function and α is an intercept, because the influence of
X(t) is spread continuously across [0,1] and point-impact effects are excluded.
In the gene expression context, if only a few genes are predictive of Y , then a
model of the form (1) would be more suitable than (3), which does not allow f to
have infinite spikes. In general, however, a continuum of locations is likely to be
involved (as well as point-impacts), so it is of interest to study the behavior of θ̂n

in misspecified settings in which the data arise from combinations of (1) and (3).
Asymptotic results for the least squares estimator (2) in the correctly specified

setting are presented in Section 2. In Section 3 it is shown that the residual boot-
strap is consistent for the distribution of θ̂n, leading to the construction of valid
bootstrap confidence intervals without knowing H . The nonparametric bootstrap
is shown to be inconsistent in the same setting. The effect of misspecification is
discussed in Section 4. A two-sample problem version of the point impact model is
discussed in Section 5. Some numerical examples are presented in Section 6, where
we compare the proposed bootstrap confidence interval with Wald-type confidence
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intervals (in which H is assumed to be known); an application to gene expression
data is also discussed. Concluding remarks appear in Section 7. Proofs are placed
in Section 8.

2. Least squares estimation of the sensitive time point. Throughout we take
X to be a fBm with Hurst exponent H , which, as discussed earlier, controls the
roughness of the trajectories. We shall see in this section that the rate of conver-
gence of θ̂n can be expressed explicitly in terms of H .

First we recall some basic properties of fBm. A (standard) fBm with Hurst ex-
ponent H ∈ (0,1] is a Gaussian process BH = {BH(t), t ∈ R} having continuous
sample paths, mean zero and covariance function

Cov{BH(t),BH (s)} = 1
2(|t |2H + |s|2H − |t − s|2H).(4)

By comparing their mean and covariance functions, BH(at)
d= aH BH(t) as

processes, for all a > 0 (self-similarity). Clearly, B1/2 is a two-sided Brownian mo-
tion, and B1 is a random straight line: B1(t) = tZ where Z ∼ N(0,1). The incre-
ments are negatively correlated if H < 1/2, and positively correlated if H > 1/2.
Increasing H results in smoother sample paths.

Suppose (Xi, Yi), i = 1, . . . , n, are i.i.d. copies of (X,Y ) satisfying the model
(1). The unknown parameter is η = (α,β, θ) ∈ � = R

2 × [0,1], and its true value
is denoted η0 = (α0, β0, θ0). The following conditions are needed:

(A1) X is a fBm with Hurst exponent H ∈ (0,1).
(A2) 0 < θ0 < 1 and β0 �= 0.
(A3) E|ε|2+δ < ∞ for some δ > 0.

The construction of the least squares estimator η̂n = (α̂n, β̂n, θ̂n), defined by (2),
does not involve any assumptions about the distribution of the trajectories, whereas
the asymptotic behavior does. Our first result gives the consistency and asymptotic
distribution of η̂n under the above assumptions.

THEOREM 2.1. If (A1) and (A2) hold, then η̂n is consistent, that is, η̂n
P→ η0.

If (A3) also holds, then

ζn ≡ (√
n(α̂n − α0),

√
n(β̂n − β0), n

1/(2H)(θ̂n − θ0)
)

(5)
d→

(
σZ1, |θ0|−HσZ2, arg min

t∈R

{
2

σ

|β0|BH(t) + |t |2H

})
≡ ζ,

where Z1 and Z2 are i.i.d. N(0,1), independent of the fBm BH .

Remarks.

1. It may come as a surprise that the convergence rate of θ̂n increases as H de-
creases, and becomes arbitrarily fast as H → 0. A heuristic explanation is that
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fBm “travels further” with a smaller H , so independent trajectories of X are
likely to “cover different ground,” making it easier to estimate θ0. In a nutshell,
the smaller the Hurst exponent, the better the design.

2. It follows from (a sight extension of) Lemmas 2.5 and 2.6 of Kim and Pollard
[15] that the third component of ζ is well defined.

3. Using the self-similarity of fBm, the asymptotic distribution of θ̂n can be ex-
pressed as the distribution of

� ≡
(

σ

|β0|
)1/H

arg min
t∈R

(
BH(t) + |t |2H/2

)
.(6)

This distribution does not appear to have been studied in the literature except for
H = 1/2 and H = 1 (standard normal). When H = 1/2, X is a standard Brown-
ian motion and the limiting distribution is given in terms of a two-sided Brown-
ian motion with a triangular drift. Bhattacharya and Brockwell [2] showed that
this distribution has a density that can be expressed in terms of the standard nor-
mal distribution function. It arises frequently in change-point problems under
contiguous asymptotics [24, 34, 37].

4. From the proof, it can be seen that the essential assumptions on X are the self-
similarity and stationary increments properties in some neighborhood of θ0,
along with the trajectories of X being Lipschitz of all orders less than H .
Note that any Gaussian self-similar process with stationary increments and zero
mean is a fBm (see, e.g., Theorem 1.3.3 of [9]).

5. The trajectories of fBm are nondifferentiable when H < 1, so the usual tech-
nique of Taylor expanding the criterion function about θ0 does not work and a
more sophisticated approach is required to prove the result.

6. Note that (α̂n, β̂n) has the same limiting behavior as though θ0 is known, and
θ̂n and (α̂n, β̂n) are asymptotically independent.

7. The result is readily extended to allow for additional covariates [cf. (11)], which
is often important in applications. The limiting distribution of θ̂n remains the
same, and the other regression coefficient estimates have the same limiting be-
havior as though θ0 is known.

8. Note that the assumption β0 �= 0 is crucial for the theorem to hold. When
β0 = 0, the fBm does not influence the response at all and θ̂n contains no infor-
mation about θ0.

3. Bootstrap confidence intervals. In general, a valid Wald-type confidence
interval for θ0 would at least need a consistent estimator of the Hurst exponent H ,
which is a nuisance parameter in this problem. Unfortunately, however, accurate
estimation of H is difficult and quite often unstable. Bootstrap methods have been
widely applied to avoid issues of nuisance parameter estimation, and they work
well in problems with

√
n-rates; see [3, 32, 33] and the references therein. In this

section we study the consistency properties of two bootstrap methods that arise
naturally in our setting. One of these methods leads to a valid confidence interval
for θ0 without requiring any knowledge of H .
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3.1. Preliminaries. We start with a brief review of the bootstrap. Given a sam-

ple Zn = {Z1,Z2, . . . ,Zn} i.i.d.∼ L from an unknown distribution L, suppose that the
distribution function, Fn, say, of some random variable Rn ≡ Rn(Zn,L), is of in-
terest; Rn is usually called a root and it can in general be any measurable function
of the data and the distribution L. The bootstrap method can be broken into three
simple steps:

(i) Construct an estimator L̂n of L from Zn.

(ii) Generate Z∗
n = {Z∗

1 , . . . ,Z∗
n} i.i.d.∼ L̂n given Zn.

(iii) Estimate Fn by F ∗
n , the conditional c.d.f. of Rn(Z∗

n, L̂n) given Zn.

Let d denote the Lévy metric or any other metric metrizing weak convergence of

distribution functions. We say that F ∗
n is weakly consistent if d(Fn,F

∗
n )

P→ 0; if Fn

has a weak limit F , this is equivalent to F ∗
n converging weakly to F in probability.

The choice of L̂n mostly considered in the literature is the empirical distribu-
tion. Intuitively, an L̂n that mimics the essential properties (e.g., smoothness) of
the underlying distribution L can be expected to perform well. In most situations,
the empirical distribution of the data is a good estimator of L, but in some nonstan-
dard situations it may fail to capture some of the important aspects of the problem,
and the corresponding bootstrap method can be suspect. The following discussion
illustrates this phenomenon (the inconsistency when bootstrapping from the em-
pirical distribution of the data) when �n ≡ n1/(2H)(θ̂n − θ0) is the random variable
of interest.

3.2. Inconsistency of bootstrapping pairs. In a regression setup there are two
natural ways of bootstrapping: bootstrapping pairs (i.e., the nonparametric boot-
strap) and bootstrapping residuals (while keeping the predictors fixed). We show
that bootstrapping pairs (drawing n data points with replacement from the original
data set) is inconsistent for θ0.

THEOREM 3.1. Under conditions (A1)–(A3), the nonparametric bootstrap
is inconsistent for estimating the distribution of �n, that is, �∗

n ≡ n1/(2H)(θ̂∗
n −

θ̂n), conditional on the data, does not converge in distribution to � in probability,
where � is defined by (6).

3.3. Consistency of bootstrapping residuals. Another bootstrap procedure is
to use the form of the assumed model more explicitly to draw the bootstrap sam-
ples: condition on the predictor Xi and generate its response as

Y ∗
i = α̂n + β̂nXi(θ̂n) + ε∗

i ,(7)

where the ε∗
i are conditionally i.i.d. under the empirical distribution of the cen-

tered residuals ε̂i − ε̄n, with ε̂i = Yi − α̂n − β̂nXi(θ̂n) and ε̄n = ∑n
i=1 ε̂i/n. Let
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α̂∗
n, β̂∗

n and θ̂∗
n be the estimates of the unknown parameters obtained from the boot-

strap sample. We approximate the distribution of ζn [see (5)] by the conditional
distribution of

ζ ∗
n ≡ [√

n(α̂∗
n − α̂n),

√
n(β̂∗

n − β̂n), n
1/(2H)(θ̂∗

n − θ̂n)
]
,

given the data.

THEOREM 3.2. Under conditions (A1)–(A3), the above procedure of boot-
strapping residuals is consistent for estimating the distribution of ζn, that is,

ζ ∗
n

d→ ζ , in probability, conditional on the data.

We now use the above theorem to construct a valid confidence interval (CI)
for θ0 that does not require any knowledge of H . Let q∗

α be the α-quantile of the
conditional distribution of (θ̂∗

n − θ̂n) given the data, which can be readily obtained
via simulation and does not involve the knowledge of any distributional properties
of X. The proposed approximate (1 − 2α)-level bootstrap CI for θ0 is then given
by

Cn = [θ̂n − q∗
1−α, θ̂n − q∗

α].
Under the assumptions of Theorem 3.2, the coverage probability of this CI is

P {θ0 ∈ Cn} = P
{
n1/(2H)q∗

α ≤ �n ≤ n1/(2H)q∗
1−α

}
≈ P ∗{

n1/(2H)q∗
α ≤ �∗

n ≤ n1/(2H)q∗
1−α

}
= P ∗{q∗

α ≤ θ̂∗
n − θ̂n ≤ q∗

1−α}
= 1 − 2α,

where P ∗ denotes the bootstrap distribution given the data, and we have used the
fact that the supremum distance between the relevant distribution functions of �n

and �∗
n is asymptotically negligible. The key point of this argument is that �n and

�∗
n have the same normalization factor n1/(2H) and, thus, it “cancels” out. CIs for

α0 and β0 can be constructed in a similar fashion.

3.4. Discussion. In nonparametric regression settings, dichotomies in the be-
havior of different bootstrap methods are well known, for example, when using
the bootstrap to calibrate omnibus goodness-of-fit tests for parametric regression
models; see [14, 25, 36] and references therein. A dichotomy in the behavior of the
two bootstrap methods, however, is surprising in a linear regression model. This
illustrates that in problems with nonstandard asymptotics, the usual nonparamet-
ric bootstrap might fail, whereas a resampling procedure that uses some particular
structure of the model can perform well. The improved performance of bootstrap-
ping residuals will be confirmed by our simulation results in Section 6.
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The difference in the behavior of the two bootstrap methods can be explained
as follows. As in any M-estimation problem, the standard approach is to study
the criterion (objective) function being optimized, in a neighborhood of the tar-
get parameter, by splitting it into an empirical process and a drift term. The drift
term has different behavior for the two bootstrap methods: while bootstrapping
pairs, it does not converge, whereas the bootstrapped residuals are conditionally
independent of the predictors, and the drift term converges. This highlights the
importance of designing the bootstrap to accurately replicate the structure in the
assumed model. A more technical explanation is provided in a remark following
the proof of Theorem 3.2.

Other types of resampling (e.g., the m-out-of-n bootstrap, or subsampling)
could be applicable, but such methods require knowledge of the rate of conver-
gence, which depends on the unknown H . Also, these methods require the choice
of a tuning parameter, which is problematic in practice. However, the residual boot-
strap is consistent, easy to implement, and does not require the knowledge of H

and the estimation of a tuning parameter.
The inconsistency of the nonparametric bootstrap casts some doubt on its va-

lidity for checking the stability of variable selection results in high-dimensional
regression problems (as is common practice). Indeed, it suggests that more care
(in terms of more explicit use of the model) is needed in the choice of a bootstrap
method in such settings.

4. Misspecification by a functional linear model. The point impact model
cannot capture effects that are spread out over the domain of the trajectory, for
example, gene expression profiles for which the effect on a clinical outcome in-
volves complex interactions between numerous genes. Such effects, however, may
be represented by a functional linear model, and we now examine how the limiting
behavior of θ̂n changes when the data arise in this way.

4.1. Complete misspecification. In this case we treat (1) as the working model
(for fitting the data), but view this model as being completely misspecified in the
sense that the data are generated from the functional linear model (3). For sim-
plicity, we set α = 0 and β = 1 in the working model, and set α = 0 in the true
functional linear model. The least squares estimator θ̂n now estimates the mini-
mizer θ0 of

M(θ) ≡ E[Y − X(θ)]2 = σ 2 + E

[∫ 1

0
f (t)X(t) dt − X(θ)

]2

and the following result gives its asymptotic distribution.

THEOREM 4.1. Suppose that (A1) and (A3) hold, and that M(θ) has a unique
minimizer and is twice-differentiable at 0 < θ0 < 1. Then, in the misspecified case,

n1/(4−2H)(θ̂n − θ0)
d→ arg min

t∈R

(
2aBH (t) + bt2)

,
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where a2 = M(θ0) and b = M
′′(θ0)/2.

Remarks.

1. Here the rate of convergence reverses itself from the correctly specified case:
the convergence rate now decreases as H decreases, going from a parametric
rate of n1/2 when H → 1, to as slow as n1/4 as H → 0. A heuristic explanation
is that roughness in X now amounts to measurement error (which results in a
slower rate) as the fluctuations of X are smoothed out in the true model.

2. In the case of Brownian motion trajectories (H = 1/2), note that M(θ) = θ −
2

∫ 1
0 f (t)min(t, θ) dt + const, the normal equation is

M
′(θ) = 1 − 2

∫ 1

θ
f (t) dt = 0(8)

and M
′′(θ) = 2f (θ).

3. Also in the case H = 1/2, the limiting distribution is given in terms of two-
sided Brownian motion with a parabolic drift, and was investigated originally
by Chernoff [6] in connection with the estimation of the mode of a distribution,
and shown to have a density (as the solution of a heat equation). The Chernoff
distribution arises frequently in monotone function estimation settings; Groene-
boom and Wellner [12] introduced various algorithms for computation of its
distribution function and quantiles.

4.2. Partial misspecification. The nonparametric functional linear model (3)
can be combined with (1) to give the semiparametric model

Y = α + βX(θ) +
∫ 1

0
f (t)X(t) dt + ε,(9)

which allows X to have both a point impact and an influence that is spread out
continuously in time. When f = 0, this model reduces to the point impact model;
when β = 0, to the functional linear model. In this section we examine the behavior
of θ̂n when the working model is (1), as before, but the data are now generated
from (9).

For simplicity, suppose that α = 0 and β = 1 in both the working point impact
model and in the true model (9). Denote the true value of θ by θ0 ∈ (0,1). It
can then be shown that θ̂n is robust to small levels of misspecification, that is,
it consistently estimates θ0 with the same rate of convergence as in the correctly
specified case. Indeed, θ̂n targets the minimizer of the criterion function

M(θ) = E[Y −X(θ)]2 = |θ −θ0|2H −
∫ 1

0
f (t)[t2H +θ2H −|θ − t |2H ]dt +const.

Provided
∫ |f | is sufficiently small, the derivative of M will be negative over the

interval (0, θ0) and positive over (θ0,1), so M is minimized at θ0. It is then possible
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to extend Theorem 2.1 to give

n1/(2H)(θ̂n − θ0)
d→ a1/H arg min

t∈R

(
BH(t) + |t |2H/2

)
,(10)

where a ≥ σ is defined in the statement of Theorem 4.1. This shows that the effect
of partial misspecification is a simple inflation of the variance [cf. (6)], without
any change in the form of the limit distribution.

It is also of interest to estimate θ0 in a way that adapts to any function f

(i.e., sufficiently smooth) in this semiparametric setting. This could be done, for
example, by approximating f by a finite B-spline basis expansion of the form
fm(t) = ∑m

j=1 βjφj (t), and fitting the working model

Y = α + βX(θ) +
m∑

j=1

βjZj + ε,(11)

where Zj = ∫ 1
0 φj (t)X(t) dt are additional covariates with regression coeffi-

cients βj ; the resulting least squares estimator θ̃n can then be used as an estimate of
θ0 of θ . For the working model (11), the misspecification is f − fm, which will be
small if m is sufficiently large. Therefore, based on our previous discussion, θ̃n will
satisfy a result of the form (10); in particular, θ̃n will exhibit the fast n1/(2H)-rate
of convergence. Note that for this result to hold, m can be fixed and does not need
to tend to infinity with the sample size.

5. Two-sample problem. In this section we discuss a variation of the point
impact regression model in which the response takes just two values (say ±1).
This is of interest, for example, in case-control studies in which gene-expression
data are available for a sample of cancer patients and a sample of healthy controls,
and the target parameter is the locus of a differentially expressed gene.

Suppose we have two independent samples of trajectories X, with n1 trajec-
tories from class 1, and n2 trajectories from class −1, for a total sample size of
n = n1 + n2. It is assumed that ρ = n1/n2 > 0 remains fixed, and the j th sample
satisfies the model

Xij (t) = μj(t) + εij (t), j = 1,2,

where εij , i = 1, . . . , nj are i.i.d. fBms with Hurst exponent H ∈ (0,1), and μj(t)

is an unknown mean function, assumed to be continuous. The treatment effect
M(t) = μ1(t) − μ2(t) is taken to have a point impact in the sense of having a
unique maximum at θ0 ∈ (0,1); minima can of course be treated in a similar fash-
ion. The least squares estimator of the sensitive time point now becomes

θ̂n = arg max
θ

{X̄1(θ) − X̄2(θ)},(12)

where X̄j (θ) = ∑nj

i=1 Xij (θ)/nj is the sample mean for class j . Although a stu-
dentized version (normalizing the the difference of the sample means by a standard
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error estimate) might be preferable in some cases, with small or unbalanced sam-
ples, say, to keep the discussion simple, we restrict attention to θ̂n. The empirical
criterion function Mn(θ) = X̄1(θ) − X̄2(θ) converges uniformly to M(θ) a.s. (by
the Glivenko–Cantelli theorem), so θ̂n is a consistent estimator of θ0.

As before, our objective is to find a confidence interval for θ0 based on θ̂n un-
der appropriate conditions on the treatment effect. Toward this end, we need an
assumption on the degree of smoothness of the treatment effect at θ0 in terms of
an exponent 0 < S ≤ 1:

M(θ) = M(θ0) − c|θ − θ0|2S + o(|θ − θ0|2S)

as θ → θ0, where c > 0. If M is twice-differentiable at θ0, then this assumption
holds only with S = 1; for it to hold for some S < 1, a cusp is needed. When
the smoothness of the treatment effect and the fBm match, that is, S = H , the
rate of convergence of θ̂n is n1/(2H), as before, and θ̂n has a nondegenerate limit
distribution of the same form as in Theorem 2.1:

n
1/(2H)
1 (θ̂n − θ0)

d→ arg min
t∈R

{(
1 + √

ρ
)
BH(t) + c|t |2H }

.(13)

The key step in the proof (which is simpler than in the regression case) is given at
the end of Section 8.

6. Numerical examples. In this section we report some numerical results
based on trajectories from fBm simulations and from gene expression data.

We first consider a correctly specified example as in Section 2 and study the be-
havior of CIs for the sensitive time-point θ0 using the two bootstrap based methods,
and compare them with the 100(1 − α)% Wald-type CI

θ̂n ±
(

σ̂n

|β̂n|√n

)1/H

zH,α/2(14)

with H assumed to be known. Here σ̂n is the sample standard deviation of the
residuals, and zH,α is the upper α-quantile of arg mint∈R(BH (t) + |t |2H/2). In
practice, H needs to be estimated to apply (14). Numerous estimators of H based
on a single realization of X have been proposed in the literature [1, 7], although
observation at fine time scales is required for such estimators to work well, and it
is not clear that direct plug-in would be satisfactory. The quantiles zH,α/2 needed
to compute the Wald-type CIs were extracted from an extensive simulation of the
limit distribution, as no closed form expression is available.

Table 1 reports the estimated coverage probabilities and average lengths of
nominal 95% confidence intervals for θ0 calculated using 500 independent sam-
ples. The data were generated from the model (1), for α0 = 0, β0 = 1, θ0 = 1/2,
ε ∼ N(0, σ 2) where σ = 0.3 and 0.5, the Hurst exponent H = 0.3,0.5,0.7 and
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TABLE 1
Monte Carlo results for coverage probabilities and average widths of nominal 95% confidence

intervals for θ0; data simulated from the linear model with θ0 = 1/2, α0 = 0 and β0 = 1

Wald-H R bootstrap NP bootstrap

n σ H Cover Width Cover Width Cover Width

20 0.3 0.3 0.874 0.023 0.924 0.044 1.000 0.174
0.5 0.880 0.088 0.946 0.119 0.992 0.220
0.7 0.822 0.170 0.912 0.249 0.970 0.360

0.5 0.3 0.806 0.129 0.912 0.211 0.998 0.410
0.5 0.852 0.256 0.924 0.333 0.988 0.487
0.7 0.834 0.352 0.938 0.510 0.962 0.591

40 0.3 0.3 0.984 0.007 0.986 0.002 1.000 0.022
0.5 0.892 0.048 0.942 0.053 0.992 0.087
0.7 0.898 0.108 0.930 0.138 0.976 0.182

0.5 0.3 0.900 0.039 0.928 0.054 0.998 0.149
0.5 0.908 0.134 0.950 0.165 0.990 0.251
0.7 0.856 0.229 0.946 0.332 0.962 0.386

sample sizes n = 20 and 40. To calculate the least squares estimators (2), we re-
stricted θ to a uniform grid of 101 points in [0,1]; the fBm trajectories were gen-
erated over the same grid. The fBm simulations were carried out in R, using the
function fbmSim from the fArma package, and via the Cholesky method of de-
composing the covariance matrix of X. Histograms and scatterplots of θ̂n and β̂n

for H = 0.3,0.5,0.7 when σ = 0.5 are displayed in Figure 2.
In practice, X can only be observed at discrete time points, so restricting to

a grid is the natural formulation for this example. Indeed, the resolution of the
observation times in the neighborhood of θ0 is a limiting factor for the accuracy
of θ̂n, so the grid resolution needs to be fine enough for the statistical behavior of
θ̂n to be apparent. For large sample sizes, a very fine grid would be needed in the
case of a small Hurst exponent (cf. Theorem 2.1). Indeed, the histogram of θ̂n in
the case H = 0.3 (the first plot in Figure 2) shows that the resolution of the grid
is almost too coarse to see the statistical variation, as the bin centered on θ0 = 1/2
contains almost 80% of the estimates. This phenomenon is also observed in Table 1
when n = 40 and σ = H = 0.3. The average length of the CIs is smaller than the
resolution of the grid and, thus, we observe an over-coverage. The two histograms
of θ̂n for H = 0.5 and H = 0.7, however, show increasing dispersion and become
closer to bell-shaped as H increases.

Recall that, for simplicity, we pretend as if we know H , which should be an ad-
vantage, yet the residual bootstrap has better performance based on the results in
Table 1. We see that usually the Wald-type CIs have coverage less than the nom-
inal 95%, whereas the inconsistent nonparametric bootstrap method over-covers
with observed coverage probability close to 1. Accordingly, the average lengths of



FRACTALS WITH POINT IMPACT 2571

FIG. 2. Histograms and scatterplots of θ̂n and β̂n in the correctly specified case for H = 0.3 (top
row), H = 0.5 (middle row) and H = 0.7 (bottom row), based on 500 samples of size n = 20.

the Wald-type CIs are the smallest, whereas those obtained from the nonparamet-
ric bootstrap method are the widest. The behavior of CIs obtained from the non-
parametric bootstrap method also illustrates the inconsistency of this procedure.
A similar phenomenon was also observed in [20] in connection with estimators
that converge at n1/3-rate.

Despite the asymptotic independence of θ̂n and β̂n, considerable correlation is
apparent in the scatterplots in Figure 2, with increasing negative correlation as H

increases; note, however, that when H = 1 there is a lack of identifiability of θ

and β , so the trend in the correlation as H approaches 1 is to be expected in small
samples.

Next we consider a partially misspecified example, in which the data are now
generated from (9) by setting f (t) = 1/2 and θ = θ∗ = 1/2, but the other ingre-
dients are unchanged from the correctly specified example. The plots in Figure 2
correspond to those in Figure 3. The effect of misspecification on θ̂n is a slight
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FIG. 3. Same as Figure 2 except in the partially misspecified case.

increase in dispersion but no change in mean; the effect on β̂n is a substantial shift
in mean along with a slight increase in dispersion.

6.1. Gene expression example. Next we consider the gene expression data
mentioned in connection with Figure 1, to see how the residual bootstrap per-
forms with such trajectories. The trajectories consist of log gene expression levels
from the breast tissue of n = 40 breast cancer patients, along a sequence of 518
loci from chromosome 17. The complete gene expression data set is described in
Richardson et al. [29]. Although a continuous response is not available for this
particular data set, it is available in numerous other studies of this type; see the
references mentioned in the Introduction.

To construct a scalar response, we generated Yi using the point impact model
(1) with α0 = 0 and β0 = 1, θ0 = 0.5 (corresponding to the position of 259 base
pairs along the chromosome) and ε ∼ N(0, σ 2) for various values of σ . As previ-
ously noted, the trajectories are very rough in this example (with H estimated to
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FIG. 4. Gene expression example: histograms of θ̂∗
n based on 1000 residual bootstrap samples and

simulated responses with σ = 0.01 (left), σ = 0.03 (middle) and σ = 0.1 (right).

be about 0.1), which implies a rapid rate of convergence for θ̂n. We find that an
abrupt transition in the behavior of the residual bootstrap occurs as σ increases:
for small σ , the residual bootstrap estimates become degenerate at θ0 due to the
relatively coarse resolution; for moderately large σ , although a considerable por-
tion of the estimates are concentrated at θ0, they become spread out over the 518
loci; for very large σ , the estimates are more or less uniformly scattered along the
chromosome. Indeed, this is consistent with the behavior of the Wald-type CI (14)
having width proportional to σ 1/H , which blows up dramatically as σ increases
when H is small.

In Figure 4 we plot the bootstrap distribution of θ̂n (obtained from 1000 residual
bootstrap samples in each case) for σ = 0.01, 0.03 and 0.1. When σ = 0.01, the
bootstrap distribution is degenerate at θ0; the resolution of the grid is too course
to see any statistical fluctuation in this case. When σ is moderate, namely, 0.03,
although the bootstrap distribution has a peak at θ0, the mass is widely scattered
and the resulting CI now covers almost the entire chromosome. Further increasing
the noise level causes the bootstrap distribution to become even more dispersed
and its mode moves away from θ0; the sample size of 40 is now too small for the
method to locate the neighborhood of θ0.

7. Concluding remarks. In this paper we have developed a point impact
functional linear regression model for use with trajectories as predictors of a con-
tinuous scalar response. It is expected that the proposed approach will be useful
when there are sensitive time points at which the trajectory has an effect on the
response. We have derived the rates of convergence and the explicit limiting dis-
tributions of the least squares estimator of such a parameter in terms of the Hurst
exponent for fBm trajectories. We also established the validity of the residual boot-
strap method for obtaining CIs for sensitive time points, avoiding the need to es-
timate the Hurst exponent. In addition, we have developed some results in the
misspecified case in which the data are generated partially or completely from a
standard functional linear model, and in the two-sample setting.
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Although for simplicity of presentation we have assumed that the trajectories
are fBm, it is clear from the proofs that it is only local properties of the trajectories
in the neighborhood of the sensitive time point that drive the theory, and thus the
validity of the confidence intervals. The consistency of the least squares estimator
is of course needed, but this could be established under much weaker assumptions
(namely, uniform convergence of the empirical criterion function and the existence
of a well-separated minimum of the limiting criterion function; cf. [35], page 287).

Exploiting the fractal behavior of the trajectories plays a crucial role in develop-
ing confidence intervals based on the least squares estimator of the sensitive time
point, in contrast to standard functional linear regression where it is customary to
smooth the predictor trajectories prior to fitting the model ([27], Chapter 15). Our
approach does not require any preprocessing of the trajectories involving a choice
of smoothing parameters, nor any estimation of nuisance parameters (namely, the
Hurst exponent). On the other hand, functional linear regression is designed with
prediction in mind, rather than interpretability, so in a sense the two approaches
are complimentary. The tendency of functional linear regression to over-smooth a
point impact (see [21] for detailed discussion) is also due to the use of a roughness
penalty on the regression function; the smoothing parameter is usually chosen by
cross-validation, a criterion that optimizes for predictive performance.

Our model naturally extends to allow multiple sensitive time points, and any
model selection procedure having the oracle property (such as the adaptive lasso)
could be used to estimate the number of those sensitive time points. The boot-
strap procedure for the (unregularized) least squares estimator can then be adapted
to provide individual CIs around each time point, although developing theoretical
justification would be challenging. Other challenging problems would be to de-
velop bootstrap procedures that are suitable for the two-sample problem and for
the misspecified model settings.

It should be feasible to carry through much of our program for certain types of
diffusion processes driven by fBm, and also for processes having jumps. In the case
of piecewise constant trajectories that have a single jump, the theory specializes to
an existing type of change-point analysis [18]. Other possibilities include Lévy
processes (which have stationary independent increments) and multi-parameter
fBm. It should also be possible to develop versions of our results in the setting
of censored survival data (e.g., Cox regression). Lindquist and McKeague [21] re-
cently studied point impact generalized linear regression models in the case that X

is standard Brownian motion and we expect that our approach can be extended to
such models as well.

8. Proofs. To avoid measurability problems and for simplicity of notation, we
will always use outer expectation/probability, and denote them by E and P ; E∗
and P ∗ will denote bootstrap conditional expectation/probability given the data.

We begin with the proof of Theorem 2.1. The strategy is to establish (a) consis-
tency, (b) the rate of convergence, (c) the weak convergence of a suitably localized
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version of the criterion function, and (d) apply the argmax (or argmin) continuous
mapping theorem.

8.1. Consistency. We start with some notation. Let mη(Y,X) ≡ [Y − α −
βX(θ)]2 and let Mn(η) ≡ Pnmη = 1

n

∑n
i=1[Yi − α − βXi(θ)]2, where Pn denotes

the expectation with respect to the empirical measure of the data. Let

M(η) ≡ Pmη = (α0 − α)2 + P [{β0X(θ0) − βX(θ)}2] + σ 2

= (α0 − α)2 + σ 2 + (β0 − β)2P [X2(θ0)] + β2P [X(θ0) − X(θ)]2(15)

+ 2β(β0 − β)P [X(θ0){X(θ0) − X(θ)}].
First observe that M(η) has a unique minimizer at η0 as P [βX(θ) �= β0X(θ0)] > 0,
for all (β, θ) ∈ R × (0,1) with (β, θ) �= (β0, θ0).

Using the fBm covariance formula (4),

M(η) − M(η0) = (α0 − α)2 + (β0 − β)2|θ0|2H + β2|θ0 − θ |2H

+ β(β0 − β){|θ0|2H + |θ0 − θ |2H − |θ |2H }
(16)

= (α0 − α)2 + (β0 − β)2|θ0|2H + ββ0|θ0 − θ |2H

+ β(β0 − β){|θ0|2H − |θ |2H }.
To show that η̂n is a consistent estimator of η0, first note that η̂n is uniformly

tight. Also notice that M(η) is continuous and has a unique minimum at η0,

and, thus, by Theorem 3.2.3(i) of [35], it is enough to show that Mn
P→ M uni-

formly on each compact subset K of � = R
2 × [0,1], and that M has a well-

separated minimum in the sense that M(η0) < infη/∈G M(η) for every open set
G that contains η0. That M has a well-separated minimum can be seen from
the form of the expression in (16). For the uniform convergence, we need to
show that the class F = {mη :η ∈ K} is P -Glivenko Cantelli (P -GC). Using GC
preservation properties (see Corollary 9.27 of [17]), it is enough to show that
G = {BH(h) ≡ X(θ0 + h) − X(θ0) :h ∈ [−1,1]} is P -GC. Note that almost all
trajectories of X are Lipschitz of any order strictly less than H , in the sense of
(22) in Lemma 8.1 below. Thus, the bracketing number N[·](ε, G,L1(Q)) < ∞
and G is P -GC, by Theorems 2.7.11 and 2.4.1 of [35].

8.2. Rate of convergence. We will apply a result of van der Vaart and Wellner
([35], Theorem 3.2.5) to obtain a lower bound on the rate of convergence of the
M-estimator η̂n. Setting d̃(η, η0) = max{|α − α0|, |β − β0|, |θ − θ0|H }, the first
step is to show that

M(η) − M(η0) � d̃2(η, η0)(17)
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in a neighborhood of η0. Here � means that the right-hand side is bounded above
by a (positive) constant times the left-hand side. Note that |θ0|2H − |θ |2H has a
bounded derivative in θ ∈ [δ,1], where δ > 0 is fixed, so for such θ we have

β(β − β0){|θ0|2H − |θ |2H }
≥ −|β||β0 − β|C|θ0 − θ |

(18)
= −[|β|C|θ0 − θ |1−H ]|β0 − β||θ0 − θ |H
≥ −c(θ,β){(β0 − β)2 + |θ0 − θ |2H },

where C is the bound on the derivative, c(θ,β) = |β|C|θ0 −θ |1−H/2, and we used
the inequality |ab| ≤ (a2 + b2)/2. As β0 �= 0 and 0 < θ0 < 1, by combining (16)
and (18), suitably grouping terms, and noting that c(θ,β) can be made arbitrarily
small by restricting η to a sufficiently small neighborhood of η0, there exist c1 > 0
and c2 > 0 such that

M(η) − M(η0) ≥ (α0 − α)2 + c1(β0 − β)2 + c2|θ0 − θ |2H ,

which shows that (17) holds.
Let Mδ ≡ {mη − mη0 : d̃(η, η0) < δ}, where δ ∈ (0,1]. Note that

mη − mη0 = (α2 − α2
0) + β2[X2(θ) − X2(θ0)] + (β2 − β2

0 )X2(θ0)

− 2Y(α − α0) − 2βY [X(θ) − X(θ0)] − 2(β − β0)YX(θ0)
(19)

+ 2αβ[X(θ) − X(θ0)] + 2αX(θ0)(β − β0)

+ 2β0X(θ0)(α − α0).

This shows that Mδ has envelope

Mδ(Y,X) ≡ (2|α0| + δ)δ + (|β0| + δ)2 sup
|θ−θ0|H <δ

|X2(θ) − X2(θ0)|

+ X2(θ0)δ(2|β0| + δ) + 2|Y |δ
+ 2|Y |(|β0| + δ) sup

|θ−θ0|H <δ

|X(θ) − X(θ0)|(20)

+ 2|X(θ0)||Y |δ + 2(|α0| + δ)(|β0| + δ) sup
|θ−θ0|H <δ

|X(θ) − X(θ0)|

+ 2(|α0| + δ)|X(θ0)|δ + 2|β0||X(θ0)|δ.
Using a maximal inequality for fBm (Theorem 1.1 of [26]), we have

E
[

sup
|θ−θ0|H <δ

|X(θ) − X(θ0)|q
]
� δq(21)

for any q > 0. Then, using (A3) in conjunction with Hölder’s inequality (cf. the
proof of Lemma 8.1), all nine terms in (20) can be shown to have second moments
bounded by δ2 (up to a constant) and, thus, EM2

δ � δ2.
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The following lemma shows that mη is “Lipschitz in parameter” and, con-
sequently, that the bracketing entropy integral J[·](1, Mδ,L

2(P )) is uniformly
bounded as a function of δ ∈ (0,1]; see [35], page 294. Without loss of gener-
ality, to simplify notation, we assume that α = 0 and β = 1, and state the lemma
with θ as the only parameter.

LEMMA 8.1. If (A1) and (A3) hold and 0 < α < H , there is a random vari-
able L with finite second moment such that

|mθ1 − mθ2 | ≤ L|θ1 − θ2|α(22)

for all θ1, θ2 ∈ [0,1] almost surely.

PROOF. The trajectories of fBm are Lipschitz of any order α < H in the sense
that

|X(t) − X(s)| ≤ ξ |t − s|α ∀t, s ∈ [0,1](23)

almost surely, where ξ has moments of all orders; this is a consequence of the proof
of Kolmogorov’s continuity theorem; see Theorem 2.2 of Revuz and Yor [28].
Noting that mθ(X,Y ) = (Y − X(θ))2, we then have

|mθ1 − mθ2 | ≤ C|X(θ1) − X(θ2)| ≤ L|θ1 − θ2|α,

where C = 2(supθ |X(θ)| + |Y |) and L = Cξ . Here L has a finite second moment:

EL2 ≤ {EC2p}1/p{Eξ2q}1/q < ∞
by Hölder’s inequality for 1/p + 1/q = 1 with p = 1 + δ/2 and δ > 0 comes from
the moment condition (A3). �

Using a maximal inequality from [35] (see page 291), we then have

EP ‖Gn‖Mδ � J[·](1, Mδ,L2(P ))(EM2
δ )1/2 � δ

for all δ ∈ (0,1], where Gn = √
n(Pn − P), and it follows that d̃(η̂n, η0) =

OP (1/
√

n) by Theorem 3.2.5 of [35].

8.3. Localizing the criterion function. To simplify notation, let r−1
n h ≡ (h1/√

n,h2/
√

n,n−1/(2H)h3), for h = (h1, h2, h3) ∈ R
3. Then

ζn = arg min
h

[Mn(η0 + r−1
n h) − Mn(η0)](24)

and we can write the expression in the square brackets after multiplication by n as
the sum of an empirical process and a drift term:

Gn

[√
n(m

η0+r−1
n h − mη0)

] + n[M(η0 + r−1
n h) − M(η0)].(25)
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First consider the empirical process term, and note that

m
η0+r−1

n h = [
Y − (α0 + n−1/2h1) − (β0 + n−1/2h2)X

(
θ0 + n−1/(2H)h3

)]2

=
[
ε −

{
h1√
n

+
(
β0 + h2√

n

)
X

(
θ0 + n−1/(2H)h3

) − β0X(θ0)

}]2

,

so we obtain

√
n[m

η0+r−1
n h − mη0] = √

n

[
h1√
n

+
(
β0 + h2√

n

)
B(h3)√

n
+ h2√

n
X(θ0)

]2

(26)

− 2ε

[
h1 +

(
β0 + h2√

n

)
B(h3) + h2X(θ0)

]
,

where B(h3) ≡ √
n[X(θ0 + n−1/(2H)h3) − X(θ0)] d= BH(h3) (as a process in h3).

The result of applying Gn to the first term on the right-hand side of the above
display gives a term of order oP (1) uniformly in h ∈ [−K,K]3, for each K > 0.
This is seen by applying the maximal inequality from [35], page 291, as used
above; here the class of functions Fn in question is bounded by the envelope func-
tion

Fn = 3
√

n

{
K2

n
+

(
β0 + K√

n

)2

sup
|h3|≤K

B
2(h3)

n
+ K2

n
X2(θ0)

}
,

for which PF 2
n = o(1) and J[·](1, Fn,L2(P )) < ∞; cf. the proof of Lemma 8.1.

Hence, we just need to consider the second term. To determine the limit distribu-
tion of the empirical process term in (25), it thus suffices to show that

Gn[(ε, εB(h3), εX(θ0))] d→ (σZ1, σBH (h3), σZ2)(27)

in R × C[−K,K] × R, where Z1,Z2 are i.i.d. N(0,1) and independent of the
fBm BH . For the second component above, notice that since ε is independent of B,

Gn[εB(h3)] d= BH(h3)

(
1

n

n∑
i=1

ε2
i

)1/2
d→ σBH(h3)(28)

in C[−K,K]. The asymptotic independence of the three components of (27) is a
consequence of

Cov(ε, εB(h3)) = σ 2E[B(h3)] = 0,

Cov(ε, εX(θ0)) = σ 2E[X(θ0)] = 0,

Cov(εB(h3), εX(θ0)) = σ 2
[√

n

2
(|θ0 + n−1/2Hh3|2H − |θ0|2H) − h3

2
√

n

]
,

which tends to zero uniformly in h3 ∈ [−K,K], using the assumption H < 1.
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It just remains to find the limit of the drift term in (25). Using (16), it is given
by

h2
1 + h2

2|θ0|2H + (β0 + n−1/2h2)β0|h3|2H

+ h2(β0 + n−1/2h2)
[√

n{|θ0|2H − |θ0 + n−1/2Hh3|2H }]
→ h2

1 + h2
2|θ0|2H + β2

0 |h3|2H

uniformly in h ∈ [−K,K]3. Combining this with the limit distribution of the first
term in (25), we get from (24) and the argmin continuous mapping theorem that

ζn
d→ arg min

h

[−2σ
(
Z1h1 + β0BH(h3) + h2|θ0|HZ2

)
+ (h2

1 + h2
2|θ0|2H + β2

0 |h3|2H)
]

d=
[
σZ1, |θ0|−HσZ2, arg min

h3

{
2

σ

|β0|BH(h3) + |h3|2H

}]
.

This completes the proof of Theorem 2.1.

8.4. Proof of Theorem 3.1. We prove the result by the method of contradiction.
Before giving the proof, we state a general lemma that can be useful in studying
bootstrap validity. The lemma can be proved easily using characteristic functions;
see also Sethuraman [31] and Theorem 2.2 of Kosorok [16].

LEMMA 8.2. Let Wn and W ∗
n be random vectors in R

l and R
k , respectively;

let Q and Q∗ be distributions on the Borel sets of R
l and R

k , and let Fn be σ -
fields for which Wn is Fn-measurable. If Wn converges in distribution to Q and the
conditional distribution of W ∗

n given Fn converges (in distribution) in probability
to Q∗, then (Wn,W

∗
n ) converges in distribution to Q × Q∗.

The basic idea of the proof of the theorem now is to assume that �∗
n

d→ �∗ in

probability, where �∗ has the same distribution as �. Therefore, �∗
n

d→ �∗ uncon-

ditionally also. We already know that �n
d→ � from Theorem 2.1. By Lemma 8.2

applied with Wn = �n, W ∗
n = �∗

n and Fn = σ((Y1,X1), (Y2,X2), . . . , (Yn,Xn)),
we can show that (�n,�

∗
n) converges unconditionally to a product measure and,

thus, �n + �∗
n

d→ � + �∗. Thus, n1/(2H)(θ̂∗
n − θ0) ≡ �n + �∗

n converges uncon-
ditionally to a tight limiting distribution which has twice the variance of �.

Using arguments along the lines of those used in the proof of Theorem 2.1, we
can show that

n1/(2H)(θ̂∗
n − θ0)

d→ arg min
t∈R

{
2σβ0

(
BH(t) + B∗

H(t)
) + β2

0 |t |2H } ≡ �∗∗,
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where B∗
H is another independent fBm with Hurst exponent H . Using properties

of fBm, we see that

�∗∗ d=
(√

2
σ

|β0|
)1/H

arg min
t∈R

{BH(t) + |t |2H/2} d= 21/(2H)�.

Thus, the variance of the limiting distribution of n1/(2H)(θ̂∗
n −θ0) is 21/H > 2 times

the variance of �, which is a contradiction.

8.5. Proof of Theorem 3.2. The bootstrap sample is {(Y ∗
i ,Xi), i = 1, . . . , n},

where the Y ∗
i are defined in (7). Letting M

∗
n(η) ≡ P

∗
nmη = 1

n

∑n
i=1[Y ∗

i − α −
βXi(θ)]2, the bootstrap estimates are

η̂∗
n = (α̂∗

n, β̂∗
n, θ̂∗

n ) ≡ arg min
η∈�

M
∗
n(η).(29)

We omit the rate of convergence part of the proof, and concentrate on establishing
the limit distribution. Also, to keep the argument simple, we will assume that η̂n →
η0 a.s., but a subsequence argument can be used to bypass this assumption. Note
that

ζ ∗
n = arg min

h∈R3
{n(P∗

n − Pn)[mη̂n+r−1
n h − mη̂n

] + nPn[mη̂n+r−1
n h − mη̂n

]},(30)

where Pn is the probability measure generating the bootstrap sample. Consider the
first term within the curly brackets. Using a similar calculation as in (26),

√
n(m

η̂n+r−1
n h − mη̂n

) = −2ε∗[h1 + β̂nB̂(θ̂n, h3) + h2X(θ̂n)] + An,(31)

where B̂(θ, t) ≡ √
n[X(θ + n−1/(2H)t) − X(θ)], with the dependence on n sup-

pressed for notational convenience, and an ≡ √
n(P∗

n − Pn)An = oP (1) uniformly
in h ∈ [−K,K]3. Then, using (31),√

n(P∗
n − Pn)

[√
n(m

η̂n+r−1
n h − mη̂n

)
]

= −√
n(P∗

n − Pn)[ε∗{h1 + β̂nB̂(θ̂n, h3) + h2X(θ̂n)}] + an(32)

d→ −2σ
(
Z1h1 + β0BH(h3) + h2|θ0|HZ2

)
in C[−K,K], a.s., where Z1,Z2 are i.i.d. N(0,1) that are independent of BH .

To prove (32), first note that Pn[ε∗{h1 + β̂nB̂(θ̂n, h3) + h2X(θ̂n)}] = 0, as the
Xi are fixed and the ε∗

i have mean zero under Pn. We will need the following
properties of B̂(θ̂n, t), proved at the end:

1

n

n∑
i=1

B̂i (θ̂n, t)
P→ 0,

1

n

n∑
i=1

B̂i(θ̂n, t)Xi(θ̂n)
P→ 0,

(33)
1

n

n∑
i=1

B̂i(θ̂n, s)B̂i(θ̂n, t)
P→ CH(s, t),
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uniformly for |s|, |t | < K , where CH(s, t) is the covariance function (4) of fBm.
Now considering (32), by simple application of the Lindeberg–Feller theorem, it
follows that

√
nP

∗
n[ε∗h1] d→ h1N(0, σ 2),

√
nP

∗
n[ε∗h2X(θ̂n)] d→ h2N(0, |θ0|2Hσ 2),

a.s. in C[−K,K]. Next consider
√

nP
∗
n[ε∗

B̂(θ̂n, t)]. The finite-dimensional con-
vergence and tightness of this process follow from Theorems 1.5.4 and 1.5.7 in
[35] using the properties of B̂(θ̂n, t) stated in (33). The asymptotic independence
of the terms under consideration also follows using (33) via a similar calculation
as in (29).

To study the drift term in (30), note that

Pnmη = 1

n

n∑
i=1

Pn[Y ∗
i − α − βXi(θ)]2

= 1

n

n∑
i=1

1

n

n∑
j=1

[α̂n + β̂nXi(θ̂n) + (ε̂j − ε̄n) − α − βXi(θ)]2

(34)

= 1

n

n∑
i=1

[(α̂n − α) + (β̂n − β)Xi(θ̂n) + β{Xi(θ̂n) − Xi(θ)}]2

+ 1

n

n∑
j=1

(ε̂j − ε̄n)
2.

Simple algebra then simplifies the drift term to
n∑

i=1

{
h1√
n

+ h2√
n
Xi(θ̂n) + B̂i (θ̂n, h3)√

n

(
β̂n + h2√

n

)}2

= h2
1 + h2

2

n

n∑
i=1

X2
i (θ̂n) +

(
β̂n + h2√

n

)2 1

n

n∑
i=1

B̂i (θ̂n, h3)
2

+ 2
h1h2

n

n∑
i=1

Xi(θ̂n) + 2h1

(
β̂n + h2√

n

)
1

n

n∑
i=1

B̂i(θ̂n, h3)(35)

+ 2h2

(
β̂n + h2√

n

)
1

n

n∑
i=1

B̂i (θ̂n, h3)Xi(θ̂n)

P→ h2
1 + h2

2|θ0|2H + β2
0 |h3|2H

uniformly on [−K,K], where we have used the properties of B̂(θ̂n, h3) in (33) and∣∣∣∣∣1

n

n∑
i=1

Xi(θ̂n)

∣∣∣∣∣ ≤ sup
θ

|(Pn − P)X(θ)| P→ 0.
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Thus, combining (30), (32) and (35), we get ζ ∗
n

d→ ζ in probability.
It remains to prove (33). We only prove the last part, the other parts being simi-

lar. For fixed K > 0, consider the function class

Fn = {B̂(θ, s)B̂(θ, t) : θ ∈ [0,1], |s| < K, |t | < K},
which has a uniformly bounded bracketing entropy integral, and envelope

Fn = sup
θ,|s|<K,|t |<K

|B̂(θ, s)B̂(θ, t)| ≤ nα′/HK2(H−α′)ξ2

from the Lipschitz property (23) of order α = H − α′, where 0 < α′ < H/2 and ξ

has finite moments of all orders. Then

P

{
sup

|s|,|t |<K

∣∣∣∣∣1

n

n∑
i=1

B̂i (θ̂n, t)B̂i(θ̂n, s) − CH(s, t)

∣∣∣∣∣ > ε

}

≤ P
{

sup
f ∈Fn

|(Pn − P)f | > ε
}

≤ 1

ε
E

[
sup

f ∈Fn

|(Pn − P)f |
]

� 1

ε
√

n
J[·](1, Fn,L2(P ))(EF 2

n )1/2 � nα′/H−1/2 → 0,

where we use a maximal inequality in Theorem 2.14.2 of [35].

Remark. The failure of the nonparametric bootstrap can be explained from
the behavior of the drift term in (30). In the nonparametric bootstrap, we need to
find the conditional limit of nPn[mη̂n+r−1

n h − mη̂n
] given the data, but observe that√

nPn applied to the second term of (26) fails to converge in probability. However,
when bootstrapping residuals, the drift term in (30) becomes nPn[mη̂n+rnh −mη̂n

],
and

√
nPn applied to the second term in (26) vanishes, so the drift term now con-

verges in probability, as seen in (35).

8.6. Proof of Theorem 4.1. The consistency of θ̂n follows using a Glivenko–
Cantelli argument for the function class F ≡ {mθ(X,Y ) = [Y −X(θ)]2 : θ ∈ [0,1]}
and the existence of a well-separated minimum for M; cf. the proof of Theo-
rem 2.1. Note that θ0 is the unique solution of the normal equation M

′(θ) = 0
and M

′′(θ0) > 0, so

M(θ) − M(θ0) � d2(θ, θ0)(36)

for all θ in a neighborhood of θ0, where d is the usual Euclidean distance. The en-
velope function Mδ = sup|θ−θ0|<δ|mθ −mθ0 | for Mδ ≡ {mθ −mθ0 : θ ∈ [0,1]} has
L2-norm of order δH , from (21), so Theorem 3.2.5 of [35] applied with φn(δ) = δH

gives rate rn = n1/(4−2H) with respect to Euclidean distance.
Now write ĥn ≡ rn(θ̂n − θ0) = arg minh∈R M̃n(h), where

M̃n(h) = r2
n[Mn(θ0 + h/rn) − Mn(θ0)], h ∈ R.(37)
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This gives

M̃n(h) = n−H/(4−2H)
Gn[Zn(h)2] − 2Gn[WZn(h)] + 1

2M
′′(θ0)h

2 + An,(38)

where An = o(1) uniformly in h ∈ [−K,K], for any K > 0, and

W ≡
∫ 1

0
f (t)X(t) dt − X(θ0) + ε,

Zn(h) ≡ nH/(4−2H)[X(θ0 + h/rn) − X(θ0)].
Note that Zn(h) =d BH (h) as processes, so, by Donsker’s theorem, the first term
in (38) converges to zero in probability uniformly over [−K,K]. For the second
term, we claim that

Gn[WZn(h)] d→ aBH (h)(39)

as processes in C[−K,K], where a2 = E(W 2). Application of the argmin contin-
uous mapping theorem will then complete the proof.

To prove (39), for simplicity, we just give the detailed argument in the Brownian
motion case, with B = B1/2 denoting two-sided Brownian motion. Consider the
decomposition

Gn[WZn(h)] = Gn[(W − Wη)Zn(h)] + Gn[WηZn(h)],(40)

where

Wη =
∫ θ0+η

θ0−η
f (t)X(t) dt + (

X(θ0 + η) − X(θ0)
)(

F(1) − F(θ0 + η)
)
,(41)

F(θ) = ∫ θ
0 f (t) dt , and η > 0 is sufficiently small so that |θ0 ± η| < 1. Splitting

the range of integration for the first term in W into three intervals, and using the
integration by parts formula (for semimartingales) over the intervals [0, θ0 − η]
and [θ0 + η,1], we get

W − Wη =
∫ θ0−η

0

(
F(θ0 − η) − F(t)

)
dX(t) +

∫ 1

θ0+η

(
F(1) − F(θ0 + η)

)
dX(t)

+ ε + X(θ0)
(
F(1) − F(θ0 + η) − 1

)
,

which implies, by the independent increments property, that W − Wη is indepen-
dent of Zn(h) for |h| < ηn1/3. Using the same argument as in proving (28), it
follows that

Gn[(W − Wη)Zn(h)] d→ aηB(h)

as processes in C[−K,K], for each fixed η > 0, where

a2
η = E(W − Wη)

2 → E(W 2) = E

[∫ 1

0
f (t)X(t) dt − X(θ0)

]2

+ σ 2 ≡ a2
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as η → 0. Clearly, aηB(h)
d→ aB(h) in C[−K,K] as η → 0. If we show that the

last term in (40) is asymptotically negligible in the sense that, for every M > 0 and
δ > 0,

lim
η→0

lim sup
n→∞

P
(

sup
|h|<M

|Gn[WηZn(h)]| > δ
)

= 0,(42)

this will complete the proof in view of Theorem 4.2 in [4]. Theorem 2.14.2 in [35]
gives

E
[

sup
|h|<M

|Gn[WηZn(h)]|
]
� J[·](1, F ,L2(P ))(EF 2)1/2,

where J[·](1, F ,L2(P )) is the bracketing entropy integral of the class of functions
F = Fn,η = {WηZn(h) : |h| < M}, and F = Fn,η is an envelope function for F .
We can take F = |Wη|sup|h|<M |Zn(h)|. By the Cauchy–Schwarz inequality,

E(F 2) ≤ (EW 4
η )1/2

(
E sup

|h|<M

|B(h)|4
)1/2

� ηM,

where we have used (21). The bracketing entropy integral can be shown to be
uniformly bounded (over all η > 0 and n) using the Lipschitz property (23). The
previous two displays and Markov’s inequality then lead to

lim sup
n→∞

P
(

sup
|h|<M

|Gn[WηZn(h)]| > δ
)

�
√

ηM/δ,

which implies (42) and establishes (39).
To establish (39) for general fBm, we apply Theorem 2.11.23 of [35] to the

class of measurable functions Fn = {fn,h : |h| < M}, where fn,h(X, ε) = WZn(h)

and M > 0 is fixed. Direct computation using the covariance of fBm shows that
the sequence of covariance functions of fn,h converges pointwise to the covariance
function of aBH (h), and the various other conditions can be shown to be satisfied
using similar arguments to what we have seen already.

8.7. Proof of (13). The key step involving the localization of the criterion
function again relies on the self-similarity of fBm BH :

n
1/(2H)
1 (θ̂n − θ0) = arg max

h

(P1
n − P

2
n)

[
X

(
θ0 + n

−1/(2H)
1 h

) − X(θ0)
]

d= arg max
h

{(
G

1
n − √

ρG
2
n

)[BH(h)]

+ n1
(
M

(
θ0 + n

−1/(2H)
1 h

) − M(θ0)
)}

d→ arg max
h

{(
1 + √

ρ
)
BH(h) − c|h|2H }

,

where G
j
n = √

nj (P
j
n − Pj ) is the empirical process for the j th sample.
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386. MR0139190

[32] SHAO, J. and TU, D. (1995). The Jackknife and Bootstrap. Springer, New York. MR1351010
[33] SINGH, K. (1981). On asymptotic accuracy of Efron’s bootstrap. Ann. Statist. 9 1187–1195.

MR0630102
[34] STRYHN, H. (1996). The location of the maximum of asymmetric two-sided Brownian motion

with triangular drift. Statist. Probab. Lett. 29 279–284. MR1411427
[35] VAN DER VAART, A. and WELLNER, J. A. (1996). Weak Convergence and Empirical

Processes. Springer, New York. MR1385671
[36] VAN KEILEGOM, I., GONZÁLEZ-MANTEIGA, W. and SÁNCHEZ SELLERO, C. (2008).

Goodness-of-fit tests in parametric regression based on the estimation of the error dis-
tribution. Test 17 401–415. MR2434335

[37] YAO, Y.-C. (1987). Approximating the distribution of the maximum likelihood estimate of the
change-point in a sequence of independent random variables. Ann. Statist. 15 1321–1328.
MR0902262

DEPARTMENT OF BIOSTATISTICS

COLUMBIA UNIVERSITY

722 WEST 168TH STREET, 6TH FLOOR

NEW YORK, NEW YORK 10032
USA
E-MAIL: im2131@columbia.edu

DEPARTMENT OF STATISTICS

COLUMBIA UNIVERSITY

1255 AMSTERDAM AVENUE, 10TH FLOOR

NEW YORK, NEW YORK 10027
USA
E-MAIL: bs2528@columbia.edu

http://www.ams.org/mathscinet-getitem?mr=0242239
http://www.ams.org/mathscinet-getitem?mr=0665254
http://www.ams.org/mathscinet-getitem?mr=1467437
http://www.ams.org/mathscinet-getitem?mr=2528982
http://www.ams.org/mathscinet-getitem?mr=1706311
http://www.ams.org/mathscinet-getitem?mr=2168993
http://www.ams.org/mathscinet-getitem?mr=2504963
http://www.ams.org/mathscinet-getitem?mr=0139190
http://www.ams.org/mathscinet-getitem?mr=1351010
http://www.ams.org/mathscinet-getitem?mr=0630102
http://www.ams.org/mathscinet-getitem?mr=1411427
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=2434335
http://www.ams.org/mathscinet-getitem?mr=0902262
mailto:im2131@columbia.edu
mailto:bs2528@columbia.edu

	Introduction
	Least squares estimation of the sensitive time point
	Remarks

	Bootstrap confidence intervals
	Preliminaries
	Inconsistency of bootstrapping pairs
	Consistency of bootstrapping residuals
	Discussion

	Misspecification by a functional linear model
	Complete misspecification
	Remarks
	Partial misspecification

	Two-sample problem
	Numerical examples
	Gene expression example

	Concluding remarks
	Proofs
	Consistency
	Rate of convergence
	Localizing the criterion function
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Remark
	Proof of Theorem 4.1
	Proof of (13)

	Acknowledgments
	References
	Author's Addresses

