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PREDICTING THE ULTIMATE SUPREMUM OF A STABLE LÉVY
PROCESS WITH NO NEGATIVE JUMPS

BY VIOLETTA BERNYK, ROBERT C. DALANG AND GORAN PESKIR

UBS AG, Ecole Polytechnique Fédérale and The University of Manchester

Given a stable Lévy process X = (Xt )0≤t≤T of index α ∈ (1,2) with no
negative jumps, and letting St = sup0≤s≤t Xs denote its running supremum
for t ∈ [0, T ], we consider the optimal prediction problem

V = inf
0≤τ≤T

E(ST − Xτ )p,

where the infimum is taken over all stopping times τ of X, and the er-
ror parameter p ∈ (1, α) is given and fixed. Reducing the optimal predic-
tion problem to a fractional free-boundary problem of Riemann–Liouville
type, and finding an explicit solution to the latter, we show that there exists
α∗ ∈ (1,2) (equal to 1.57 approximately) and a strictly increasing function
p∗ : (α∗,2) → (1,2) satisfying p∗(α∗+) = 1, p∗(2−) = 2 and p∗(α) < α

for α ∈ (α∗,2) such that for every α ∈ (α∗,2) and p ∈ (1,p∗(α)) the follow-
ing stopping time is optimal

τ∗ = inf{t ∈ [0, T ] :St − Xt ≥ z∗(T − t)1/α},
where z∗ ∈ (0,∞) is the unique root to a transcendental equation (with pa-
rameters α and p). Moreover, if either α ∈ (1, α∗) or p ∈ (p∗(α),α) then it
is not optimal to stop at t ∈ [0, T ) when St − Xt is sufficiently large. The
existence of the breakdown points α∗ and p∗(α) stands in sharp contrast with
the Brownian motion case (formally corresponding to α = 2), and the phe-
nomenon itself may be attributed to the interplay between the jump structure
(admitting a transition from lighter to heavier tails) and the individual prefer-
ences (represented by the error parameter p).

1. Introduction. Stopping a stochastic process X = (Xt)0≤t≤T as close as
possible to its ultimate supremum ST = sup0≤s≤T Xs is an objective of both prac-
tical and theoretical interest. Speaking in general terms, the optimal prediction
problem can be formulated as follows

V = inf
0≤τ≤T

d(Xτ , ST ),(1.1)
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where the infimum is taken over all stopping times τ of X, and d is a distance/error
function [e.g., d(Xτ , ST ) = E(ST − Xτ)

p where p > 0 is a parameter quantifying
the error]. Variants of these problems have been studied in the past mostly in dis-
crete time (see, e.g., [4, 9, 12, 14]), and the case of continuous time has been
studied in the recent papers [11] and [17] when X is a standard Brownian mo-
tion. This study was extended in [6] to the case of Brownian motion with drift.
It was observed there that the existence of a nonzero drift leads to optimal stop-
ping boundaries having a complex structure which in some cases appears to be
counter-intuitive. For other optimal prediction problems studied to date, we refer
to [7, 8, 22–24] (see also [18], Chapter VIII). In these problems, it is assumed that
the underlying process has continuous sample paths.

The purpose of the present paper is to initiate a study of the optimal prediction
problems for processes with jumps in continuous time, and to examine the extent
to which the jump structure influences the resulting optimal stopping boundaries.
To stay close to the more familiar case of Brownian motion, we study the case
when X is a stable Lévy process of index α ∈ (1,2), and to focus on one particular
aspect of the jump structure we consider the case when X jumps upward only (i.e.,
when X has no negative jumps). It turns out that already these hypotheses lead
to a complicated optimal prediction problem, which apart from initial similarities
with the case of Brownian motion (through the scaling property and deterministic
time-change arguments) requires novel arguments to be developed in order to find
a solution. These complications are primarily attributed to the underlying jump
structure which leads to the relatively unexplored avenue of integro-differential
equations (fractional calculus) instead of more familiar differential equations. Yet
another difficulty (that the law of ST was not available in the literature prior to the
present study) is now overcome by the accompanying paper [2], and the knowledge
of this law plays a key role in our treatment of the optimal prediction problem
below.

Our main findings (Theorem 11) can be summarized as follows. Given a stable
Lévy process X = (Xt)0≤t≤T of index α ∈ (1,2) with no negative jumps, and
letting St = sup0≤s≤t Xs denote its running supremum for t ∈ [0, T ], we consider
the optimal prediction problem

V = inf
0≤τ≤T

E(ST − Xτ)
p,(1.2)

where the infimum is taken over all stopping times τ of X, and the error param-
eter p ∈ (1, α) is given and fixed (we will see in Section 2 below why the re-
striction to this interval is natural). Reducing the optimal prediction problem to a
fractional free-boundary problem of Riemann–Liouville type, and finding an ex-
plicit solution to the latter, we show that there exists α∗ ∈ (1,2) (equal to 1.57
approximately) and a strictly increasing function p∗ : (α∗,2) → (1,2) satisfying
p∗(α∗+) = 1,p∗(2−) = 2 and p∗(α) < α for α ∈ (α∗,2) such that for every
α ∈ (α∗,2) and p ∈ (1,p∗(α)) the following stopping time is optimal

τ∗ = inf{t ∈ [0, T ] :St − Xt ≥ z∗(T − t)1/α},(1.3)
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where z∗ ∈ (0,∞) is the unique root to a transcendental equation (with parameters
α and p). This extends the analogous results for a standard Brownian motion X

derived in [11] and [17] when p = 2 and p ∈ (1,2), respectively. Moreover, if ei-
ther α ∈ (1, α∗) or p ∈ (p∗(α),α) then it is not optimal to stop at t ∈ [0, T ) when
St − Xt is sufficiently large. The existence of the breakdown points α∗ and p∗(α)

stands in sharp contrast with the Brownian motion case (formally corresponding
to α = 2), and the phenomenon itself may be attributed to the interplay between
the jump structure (admitting a transition from lighter to heavier tails) and the in-
dividual preferences (represented by the error parameter p). In particular, recalling
that the index α quantifies the heaviness of the upward tails of the process X, we
see that the result may be broadly interpreted as follows: the heavier the upward
tails the larger the optimal stopping time. While this conclusion is close to naive
intuition, and the interpretation itself may also be extended to account for the in-
dividual preferences, the fact that the solution method can detect the breakdown
points exactly appears to be of considerable practical and theoretical interest. Other
interesting features of the problem include the remarkable probabilistic represen-
tation of the solution to the Itô/Riemann–Liouville/Caputo free-boundary problem
that is novel in the case of Brownian motion as well.

2. The optimal prediction problem. 1. Let X = (Xt)t≥0 be a stable Lévy
process of index α ∈ (1,2) whose characteristic function is given by

EeiλXt = exp
(
t

∫ ∞
0

(eiλx − 1 − iλx)
c

x1+α
dx

)
= ec�(−α)(−iλ)αt(2.1)

for λ ∈ R and t ≥ 0 with c > 0. Let S = (St )t≥0 denote the supremum process
of X, that is,

St = sup
0≤s≤t

Xs(2.2)

for t ≥ 0. Consider the optimal prediction problem

V = inf
0≤τ≤T

E(ST − Xτ)
p,(2.3)

where the infimum is taken over all stopping times τ of X [i.e., stopping times
with respect to the natural filtration F X

t = σ(Xs : 0 ≤ s ≤ t) generated by X for
t ≥ 0]. It is assumed in (2.3) that the error parameter p ∈ (1, α) and the terminal
time T > 0 are given and fixed (we will see below that there is no restriction in
assuming that T = 1).

2. The following properties of X are readily deduced from (2.1) using stan-
dard means (see, e.g., [3] and [15]): the law of (Xσt )t≥0 is the same as the law
of (σ 1/αXt)t≥0 for each σ > 0 given and fixed (scaling property); X is a martin-
gale with EXt = 0 for all t ≥ 0; X jumps upward (only) and creeps downward
[in the sense that P(Xρx = x) = 1 for x < 0 where ρx = inf{t ≥ 0 :Xt < x} is
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the first entry time of X into (−∞, x)]; X has sample paths of unbounded varia-
tion; X oscillates from −∞ to +∞ (in the sense that lim inft→∞ Xt = −∞ and
lim supt→∞ Xt = +∞ both a.s.); the starting point 0 of X is regular [for both
(−∞,0) and (0,+∞)]. Note also that the Lévy measure ν of X equals

ν(dx) = c

x1+α
dx(2.4)

on the Borel σ -algebra of (0,∞). Setting, for example, c = 1/(2�(−α)) we see
from (2.1) that X = X(α) converges in law to a standard Brownian motion B as
α ↑ 2. We moreover see from (2.4) that when α is closer to 2 then the (upward)
jumps of X have lighter tails, and when α is closer to 1 then the (upward) jumps
of X have heavier tails. Thus, in many ways, the process X resembles a standard
Brownian motion B , however, the existence of (upward) jumps of X represents a
notable exception. Note also that Xt is not equal in law to −Xt for fixed t > 0
unlike in the case of B .

3. The error parameter p in the problem (2.3) is assumed to belong to (1, α)

for two reasons. First, it is well known (see, e.g., [21], page 159) that for a Lévy
process X = (Xt)t≥0 and a number p > 0 given and fixed, the following three
facts are equivalent: (i) EX

p
t < ∞ for some/all t > 0; (ii) E sup0≤s≤t X

p
s < ∞

for some/all t > 0; (iii)
∫ ∞

1 xpν(dx) < ∞. In the case of our process X when ν is
given by (2.4) above, it is easily seen that (iii) holds [and thus both expected values
in (i) and (ii) are finite] if and only if p < α. In particular, the latter condition then
also implies that the value V in (2.3) is finite. Second, if p = 1 then the optimal
prediction problem (2.3) is trivial since EXτ = 0 for every (bounded) stopping
time τ of X due to the martingale property of X. Hence, p ∈ (1, α) represents a
natural assumption on the error parameter.

4. Note that there is no loss of generality if we assume that T = 1 in the problem
(2.3). Indeed, if we set V = V (T ) to indicate dependence on T > 0 in (2.3), then
by the scaling property of X we see that V (T ) = T p/αV (1) and there is a simple
one-to-one correspondence between the stopping times τ in the problem V (T ) and
the stopping times σ in the problem V (1) (obtained by setting σ = τ/T ). For this
reason, we will often assume in the sequel that the horizon T in (2.3) equals 1.

5. Projecting future onto present. One of the key initial difficulties in the optimal
prediction problem (2.3) is that the expression after the expectation sign contains
the random variable ST and as such depends on the (ultimate) future of the pro-
cess X that is unknown at the present (stopping) time τ ∈ [0, T ). In our first step
therefore (similarly to [11] and [17]), we will project the future states of X onto
the present/past states of X by conditioning with respect to F X

τ and exploiting sta-
tionary/independent increments of X. As already mentioned above, we may and
do assume that T = 1 in the sequel.
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To this end, note that we have

E
(
(S1 − Xt)

p|F X
t

)
= E

((
sup

0≤s≤t

(Xs − Xt) ∨ sup
t≤s≤1

(Xs − Xt)
)p∣∣F X

t

)
(2.5)

= (
E(y ∨ S1−t )

p)∣∣
y=St−Xt

since supt≤s≤1(Xs − Xt)
law= S1−t is independent from F X

t and St − Xt is F X
t -

measurable. Moreover, we can write

E(y ∨ S1−t )
p =

∫ ∞
0

P
(
(y ∨ S1−t )

p > z
)
dz

= yp +
∫ ∞
yp

P(S
p
1−t > z) dz

= yp +
∫ ∞
yp

P
(
(1 − t)p/αS

p
1 > z

)
dz

(2.6)

= (1 − t)p/α

[(
y

(1 − t)1/α

)p

+
∫ ∞
(y/(1−t)1/α)p

P(S
p
1 > w)dw

]

=: F(t, y)

upon using that S1−t
law= (1 − t)1/αS1 by the scaling property of X and substituting

w = z/(1 − t)p/α . Combining (2.5) and (2.6), we get

E
(
(S1 − Xt)

p|F X
t

) = F(t, St − Xt)(2.7)

for all t ≥ 0. Using the fact that each stopping time τ of X is the limit of a decreas-
ing sequence of discrete stopping times τn of X as n → ∞, it is easily verified
using Hunt’s lemma (see, e.g., [26], page 236) that (2.7) extends as follows

E
(
(S1 − Xτ)

p|F X
τ

) = F(τ,Sτ − Xτ)(2.8)

for all stopping times τ of X with values in [0,1]. Setting

Yt = St − Xt(2.9)

for t ≥ 0 it is well known (see, e.g., [3]) that Y = (Yt )t≥0 is a time-homogeneous
(strong) Markov process with respect to (F X

t )t≥0 (obtained by reflecting X at its
supremum S). Taking E on both sides in (2.8) and using the notation (2.9), we see
that the optimal prediction problem (2.3) reduces to the optimal stopping problem

V = inf
0≤τ≤1

EF(τ,Yτ ),(2.10)
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where the infimum is taken over all stopping times τ of X. This optimal stop-
ping problem is two-dimensional (see, e.g., [18], Section 6) since the underlying
(strong) Markov process is the time–space process ((t, Yt ))0≤t≤1 and the hori-
zon 1 is finite. We will now show (similarly to [11]) that this problem can further
be reduced to a one-dimensional infinite-horizon optimal stopping problem for
a (killed) Markov process Z = (Zs)s≥0. It should be noted that the time-change
arguments used in [11] when X is a standard Brownian motion are not directly
applicable in the present context (due to the absence of Lévy’s characterization
theorem).

5. Deterministic time change. Motivated by the form of the function F in (2.6),
we now introduce the deterministic time change

t (s) = 1 − e−αs,(2.11)

where t (s) ∈ [0,1) is the “old” time and s ∈ [0,∞) is a “new” time. Note that
τ = t (σ ) is a stopping time with respect to (F X

t )t≥0 if and only if σ = t (−1)(τ )

is a stopping time with respect to (F X
t(s))s≥0. Letting FS1 denote the distribution

function of S1 and setting

G(z) = E(z ∨ S1)
p = zp +

∫ ∞
zp

(
1 − FS1(w

1/p)
)
dw(2.12)

for z ≥ 0, we see from (2.6) and (2.12) that

F(t, St − Xt) = e−psG(Zs)(2.13)

for all t = t (s) ∈ [0,1) and all s ∈ [0,∞) satisfying (2.11), where Z = (Zs)s≥0 is
a new stochastic process defined by

Zs = es(St(s) − Xt(s)

)
(2.14)

for s ≥ 0. It turns out that Z is a time-homogeneous (strong) Markov process.
Moreover, the following proposition reveals that one can enable Z to start at arbi-
trary points and still preserve the (strong) Markov property. This fact will play a
prominent role in the main proof below.

PROPOSITION 1. The stochastic process Z = (Zs)s≥0 defined in (2.14) is a
time-homogenous (strong) Markov process with respect to the filtration (F X

t(s))s≥0.
Moreover, if we set

Zz
s = es(z ∨ St(s) − Xt(s)

)
(2.15)

for s ≥ 0 and z ∈ R+, then Pz := Law((Zz
s )s≥0|P) defines a family of probability

measures on the canonical space of càdlàg functions (D+, B(D+)) under which
the coordinate process C = (Cs)s≥0 is (strong) Markov with Pz(C0 = z) = 1 for
z ∈ R+.
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PROOF. We have

Zz
s+h = es+h(

z ∨ St(s+h) − Xt(s+h)

)
= es+h

([(
z ∨ St(s) − Xt(s)

) ∨
(

sup
t (s)≤r≤t (s+h)

(
Xr − Xt(s)

))]
(2.16)

− (
Xt(s+h) − Xt(s)

))
= eh

([
Zz

s ∨ es
(

sup
t (s)≤r≤t (s+h)

(
Xr − Xt(s)

))]
− es(Xt(s+h) − Xt(s)

))

for s ≥ 0 and h ≥ 0 given and fixed. By stationary independent increments and the
scaling property of X, we see that

sup
t (s)≤r≤t (s+h)

(
Xr − Xt(s)

) = sup
1−e−αs≤r≤1−e−α(s+h)

(Xr − X1−e−αs )

law= sup
0≤r≤e−αs(1−e−αh)

Xr

(2.17)
law= sup

0≤reαs≤1−e−αh

X(reαs)/eαs

law= e−s sup
0≤r≤1−e−αh

Xr = e−sSt (h)

and likewise

Xt(s+h) − Xt(s) = X1−eα(s+h) − X1−e−αs
law= Xe−αs(1−e−αh)

(2.18)
law= e−sX1−e−αh = e−sXt(h)

both being independent from F X
t(s). Combining (2.16)–(2.18), we get

E
(
f (Zz

s+h)|F X
t(s)

) = E
(
f

(
eh(

w ∨ St(h) − Xt(h)

)))∣∣
w=Zz

s
(2.19)

for any (bounded) measurable function f : R+ → R from where all the claims
follow by standard means [observe that the deterministic function on the right-
hand side of (2.19) does not depend on s (implying that Z is a time-homogenous
Markov process) as well as that it defines a continuous and bounded function of w

whenever f is so (Feller property) implying that Z is a strong Markov process].
This completes the proof. �

Note from (2.14) that Z is a transient process (satisfying Zs → ∞ as s → ∞)
having downward jumps only (since X jumps upward). The state space of Z

equals R+.
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3. The optimal stopping problem. 1. From (2.10) and (2.13), we see that the
optimal prediction problem (2.3) reduces to the optimal stopping problem

V = inf
0≤σ<∞ Ee−pσG(Zσ ),(3.1)

where the infimum is taken over all stopping times σ with respect to (F X
t(s))s≥0.

This optimal stopping problem is one-dimensional and the horizon is infinite. The
exponential term (e−ps)s≥0 in (3.1) corresponds to a new (strong) Markov process
Z̃ which may be identified with Z killed at rate p.

2. To tackle the problem (3.1), we need to enable Z to start at any point in the
state space R+. This can be done using the result of Proposition 1 above, and it
leads to the following variational extension of (3.1):

V (z) = inf
0≤σ<∞ Eze

−pσG(Zσ ),(3.2)

where the infimum is taken over all stopping times σ with respect to (F X
t(s))s≥0,

and the process Z starts at z under Pz. Moreover, by the result of Proposition 1
we know that Pz can be realized by (2.15) in terms of Zz = (Zz

s )s≥0 under P, and
this fact will be useful below when analysing properties of the mapping z 
→ V (z)

on R+.
3. Before we turn to a more detailed analysis of the problem (3.2), let us state

some basic properties of G and V that will be useful throughout. Recall that
f (z) ∼ g(z) as z → z0 means that limz→z0 f (z)/g(z) = 1 for z0 ∈ [−∞,∞].

PROPOSITION 2. The gain function G from (2.12) above and the value func-
tion V from (3.2) above satisfy the following properties:

z 
→ G(z) is (strictly) increasing and convex on R+
with G(0) = ES

p
1 > 0;(3.3)

z 
→ V (z) is increasing and continuous on R+;(3.4)

zp ≤ V (z) ≤ G(z) for all z ∈ R+;(3.5)

G(z) ∼ zp and V (z) ∼ zp as z → ∞.(3.6)

PROOF. Equation (3.3): recalling that FS1 denotes the distribution function
of S1, and letting fS1 denote the density function of S1, we find from the fi-
nal expression in (2.12) that G′(z) = pzp−1FS1(z) > 0 and G′′(z) = p(p − 1) ×
zp−2FS1(z) + pzp−1fS1(z) > 0 for all z > 0 implying that z 
→ G(z) is (strictly)
increasing and convex, respectively. Likewise, we also see from the middle expres-
sion in (2.12) that G(0) = ES

p
1 > 0 as claimed.

Equation (3.4): letting σ be a given and fixed stopping time, we see from (2.15)
that z 
→ Zz

σ is increasing so that z 
→ G(Zz
σ ) is increasing, and the fact that z 
→

V (z) is increasing follows directly from the definition (3.2). To show that z 
→
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V (z) is continuous, take z1 < z2 in R+ and note by the mean value theorem and
(2.15) that

0 ≤ G(Zz2
σ ) − G(Zz1

σ ) = G′(ξ)(Zz2
σ − Zz1

σ )

= G′(ξ)eσ (
z2 ∨ St(σ ) − z1 ∨ St(σ )

)
(3.7)

≤ pξp−1FS1(ξ)eσ (z2 − z1),

where ξ ∈ (Zz1
σ ,Zz2

σ ). Since 0 ≤ ξ ≤ eσ (z2 ∨ S1 − I1), where we set I1 =
inf0≤t≤1 Xt , it follows from (3.7) that

0 ≤ Ee−pσG(Zz2
σ ) − Ee−pσG(Zz1

σ ) ≤ pE(z2 ∨ S1 − I1)
p−1(z2 − z1).(3.8)

Taking the infimum over all stopping times σ it follows that

0 ≤ V (z2) − V (z1) ≤ K(z2 − z1),(3.9)

where K = pE(z2 ∨ S1 − I1)
p−1 < ∞. This implies that V is continuous on R+

(as well as Lipschitz continuous on compact sets in R+).
Equation (3.5): the second inequality is obvious so let us derive the first inequal-

ity. For this, fix any z ∈ R+ and note that G(z) ≥ zp and Jensen’s inequality imply
that

V (z) ≥ inf
0≤σ<∞ Ee−pσ (Zz

σ )p ≥
(

inf
0≤σ<∞ Ee−σZz

σ

)p

=
(

inf
0≤σ<∞ E

(
z ∨ St(σ ) − Xt(σ)

))p
(3.10)

=
(

inf
0≤τ≤1

E(z ∨ Sτ − Xτ)
)p = zp

upon using that there is a one-to-one correspondence between σ and τ as stated
following (2.11) above. Note also that for the final equality we use the fact that
EXτ = 0 since X is a martingale. This establishes the first inequality in (3.5) as
claimed.

Equation (3.6): note that (2.12) above implies that G(z)/zp → 1 as z → ∞, so
that V (z)/zp → 1 as z → ∞ follows by (3.5). This completes the proof. �

4. Existence of an optimal stopping time. General theory of optimal stopping
for Markov processes (see, e.g., [18]) can be used to establish the existence of
an optimal stopping time in the problem (3.2). For this, let C = {z ∈ R+ :V (z) <

G(z)} denote the (open) continuation set, let D = {z ∈ R+ :V (z) = G(z)} denote
the (closed) stopping set, and note that

E
(
sup
s≥0

e−psG(Zz
s )

)
< ∞(3.11)

since e−psG(Zz
s ) = e−ps((Zz

s )
p + ∫ ∞

(Zz
s )p

P(S
p
1 > w)dw) ≤ (z ∨ S1 − I1)

p + ES
p
1

for all s ≥ 0, and the latter random variable clearly is integrable for each z ∈ R+.
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Moreover, by (3.3) and (3.4) we know that the gain function z 
→ G(z) is lower
semicontinuous on R+ and the value function z 
→ V (z) is upper semicontinuous
on R+. Hence, by Corollary 2.9 and Remark 2.10 in [18], pages 46–48, we can
conclude that the first entry time of Z into D given by

σD = inf{s ≥ 0 :Zs ∈ D}(3.12)

is an optimal stopping time in (3.2). This stopping time is not necessarily finite
valued [when the set in (3.12) is empty] and the value e−pσDG(Zz

σD
) in (3.2) can

be formally assigned as (z ∨ S1 − X1)
p when σD = ∞ since by (2.12) and (2.15)

we have

e−psG(Zz
s ) → (z ∨ S1 − X1)

p(3.13)

as s → ∞. This is in agreement with the usual hypothesis from general theory
introduced to cover the case of infinite-valued stopping times.

5. In addition to these general facts, it may be noted that the optimal stopping
problem (3.2) plays an auxiliary role in tackling the optimal prediction problem
(2.3), and it is clear from our considerations above that we only need to compute
V (z) for z = 0. Thus, if we set z∗ = infD then either z∗ < ∞ when D 
= ∅ (so
that z∗ ∈ D since D is closed) or z∗ = ∞ when D = ∅. In the first case (when
D 
= ∅), the first entry time of Z to z∗ given by

σz∗ = inf{s ≥ 0 :Zs = z∗}(3.14)

is optimal in (3.2) under Pz for z = 0. It should be recalled here that Z jumps
downward only and creeps upward in R+ so that Z will hit any point in (0,∞)

with probability one due to its transience to +∞. Recalling further the time change
(2.11) we see that (3.14) translates into the fact that the stopping time

τ∗ = inf{t ∈ [0,1] :St − Xt ≥ z∗(1 − t)1/α}(3.15)

is optimal in (2.3) with T = 1. In the second case (when D = ∅), we see that the
optimal stopping time σz∗ in (3.2) equals +∞ under Pz for z = 0. In this case, we
have

V (z) = E(z ∨ S1 − X1)
p(3.16)

for all z ∈ R+ and the time change (2.11) implies that τ∗ ≡ 1 is optimal in (2.3)
with

V = E(S1 − X1)
p.(3.17)

A central question therefore becomes to examine when [0, z∗) ⊆ C with z∗ ∈ D

(it will be shown in Section 5 below that z∗ cannot be zero). We will tackle this
question by forming a free-boundary problem on [0, z∗) for V defined in (3.2). For
this, we first need to determine the infinitesimal characteristics of Z.
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4. The free-boundary problem. 1. The following proposition determines the
action of the infinitesimal generator of the process Z defined in (2.14) in terms of
the action of the infinitesimal generator of the reflected process Y = S − X. Be-
low we let C2

b(R+) denote the class of twice continuously differentiable functions
F : R+ → R such that F ′ and F ′′ are bounded on R+.

PROPOSITION 3. The infinitesimal generator LZ of the process Z is given by

LZF(z) = zF ′(z) + αLY F (z)(4.1)

for any F ∈ C2
b(R+) satisfying (4.6) below, where LY denotes the infinitesimal

generator of the process Y .

PROOF. By the mean value theorem, we have

LZF(z) = lim
s↓0

1

s
E
(
F(Zz

s ) − F(z)
)

= lim
s↓0

1

s
E
(
F

(
es(z ∨ St(s) − Xt(s)

)) − F
(
z ∨ St(s) − Xt(s)

)
+ F

(
z ∨ St(s) − Xt(s)

) − F(z)
)

(4.2)

= lim
s↓0

es − 1

s
E
(
F ′(ξs)

(
z ∨ St(s) − Xt(s)

))

+ lim
s↓0

t (s)

s

(
1

t (s)

[
EF

(
z ∨ St(s) − Xt(s)

) − F(z)
])

= zF ′(z) + αLY F (z),

where for the second last limit we use that (es − 1)/s → 1 and F ′(ξs) → F ′(z) as
s ↓ 0 since ξs ∈ (z ∨ St(s) − Xt(s), e

s(z ∨ St(s) − Xt(s))), and for the last limit we
use that t (s)/s → α as s ↓ 0 and the result of Proposition 4 below. This completes
the proof. �

2. The following proposition determines the action of the infinitesimal generator
of the reflected process Y = S − X. We refer to the Appendix for the analogous
result in the case of a general (strictly) stable Lévy process X.

PROPOSITION 4. The infinitesimal generator LY of the reflected process Y =
S − X takes any of the following three forms for y > 0 given and fixed:

Itô’s form

LY F (y) =
∫ y

0

(
F(y − x) − F(y) + F ′(y)x

) c

x1+α
dx(4.3)

+ c(F (0) − F(y))

αyα
+ cF ′(y)

(α − 1)yα−1 ,
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Riemann–Liouville’s form

LY F (y) = c

α(α − 1)

d2

dy2

∫ y

0

F(x)

(y − x)α−1 dx + cF (0)

αyα
,(4.4)

Caputo’s form

LY F (y) = c

α(α − 1)

∫ y

0

F ′′(x)

(y − x)α−1 dx,(4.5)

whenever F ∈ C2
b(R+) satisfies

F ′(0+) = 0 (normal reflection).(4.6)

PROOF. It is enough to establish (4.3) since (4.4) and (4.5) can then be de-
rived by (repeated) integration by parts using (4.6) (note that the equivalence of
(4.3)–(4.5) under (4.6) remain valid for any F ∈ C1[0,∞) ∩ C2(0,∞) satisfying
|F ′′(x)| = O(xα−2) as x ↓ 0 since α − 2 > −1). For this, fix t > 0 and note that
by Itô’s formula we have

F(Yt ) = F(Y0) +
∫ t

0
F ′(Ys−) dYs

(4.7)
+ ∑

0<s≤t

(
F(Ys) − F(Ys−) − F ′(Ys−)
Ys

)

since [Y,Y ]c ≡ 0. Indeed, the latter equality follows by recalling that X is a
quadratic pure jump semimartingale (i.e., [X,X]c = 0) since it is a Lévy process
with no Brownian component (see [19], page 71), the process S is a quadratic pure
jump semimartingale since it is of bounded variation (see Theorem 26 in [19],
page 71), and the sum/difference of two quadratic pure jump semimartingales is a
quadratic pure jump semimartingale (this can be easily verified using Theorem 28
in [19], page 75, e.g.).

Since X jumps upward and creeps downward, it follows that dSs = 
Ss in
terms of a suggestive notation, and hence from (4.7) we get

F(Yt ) = F(Y0) + Mt + ∑
0<s≤t

(
F(Ys− + 
Ys) − F(Ys−) + F ′(Ys−)
Xs

)
,(4.8)

where Mt = − ∫ t
0 F ′(Ys−) dXs is a local martingale for t ≥ 0. By the BDG in-

equality (see, e.g., [18], page 63) combined with the facts that F ′ is bounded on
R+ and E[X,X]qt < ∞ with q = 1/2 since [X,X] is a stable process of index
α/2 > q [with Lévy measure c dx/(2x1+α/2) as is easily verified directly from
definition] it follows that E sup0≤s≤t |Ms | < ∞ and hence M is a martingale. The
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right-hand side of this identity can be further rewritten as follows

F(Yt ) = F(Y0) + Mt

+ ∑
0<s≤t

([F(Ys− − 
Xs)

(4.9)
− F(Ys−) + F ′(Ys−)
Xs]I (
Xs ≤ Ys−)

+ [F(0) − F(Ys−) + F ′(Ys−)
Xs]I (
Xs > Ys−)
)

upon using that 
Xs ≤ Ys− if and only if Xs ≤ Ss− so that 
Ss = 0, and 
Xs >

Ys− if and only if Xs > Ss− so that Ss = Xs , that is, Ys = 0. Taking Ey on both
sides of (4.9), where Py denotes a probability measure under which Y0 = y, and
applying the compensation formula (see, e.g., [20], page 475) we find that

EyF (Yt ) − F(y)

= Ey

[∫ t

0
ds

(∫ Ys

0
[F(Ys − x) − F(Ys) + F ′(Ys)x]ν(dx)(4.10)

+
∫ ∞
Ys

[F(0) − F(Ys) + F ′(Ys)x]ν(dx)

)]

for all y > 0. The applicability of this formula (see, e.g., [15], page 97) follows
from the facts that |F ′(y)| ≤ Cy and |F ′′(y)| ≤ C for all y ≥ 0 with some C > 0
so that the mean value theorem yields the existence of ξs,x ∈ (Ys − x,Ys) and
ηs ∈ (0, Ys) such that

Ey

[∫ t

0
ds

(∫ Ys

0
|F(Ys − x) − F(Ys) + F ′(Ys)x|ν(dx)

+
∫ ∞
Ys

|F(0) − F(Ys) + F ′(Ys)x|ν(dx)

)]

≤ Ey

[∫ t

0
ds

(∫ Ys

0

1

2
|F ′′(ξs,x)|x2 c

x1+α
dx

(4.11)

+
∫ ∞
Ys

(|F ′(ηs)|Ys + |F ′(Ys)|x) c

x1+α
dx

)]

≤ cEy

[∫ t

0
ds

(
C

2(2 − α)
+ C

α
+ C

α − 1

)
Y 2−α

s

]

≤ c

(
C

2(2 − α)
+ C

α
+ C

α − 1

)
α

2
t2/αEy(S1 − I1)

2−α < ∞

since 2−α ∈ (0, α) and where we also use the scaling property of X. Dividing both
sides of (4.10) by t , letting t ↓ 0 and using the dominated convergence theorem,
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we get

LY F (y) =
∫ y

0
[F(y − x) − F(y) + F ′(y)x]ν(dx)

(4.12)
+ [F(0) − F(y)]

∫ ∞
y

ν(dx) + F ′(y)

∫ ∞
y

xν(dx),

which is easily verified to be equal to the right-hand side of (4.3) for all y > 0 upon
using (2.4). This completes the proof. �

3. It will be shown in Section 5 below that the continuation set C in the optimal
stopping problem (3.2) always contains the interval [0, ε) for some ε > 0 suffi-
ciently small, so that the optimal stopping point z∗ from (3.14) is always strictly
larger than zero. Moreover, we now show that the value function V from (3.2) is
smooth from the left at z∗ whenever D 
= ∅.

PROPOSITION 5 (Smooth fit). If the optimal stopping point z∗ from (3.14) is
finite, then the value function V from (3.2) is differentiable from the left at z∗ and
we have

V ′−(z∗) = G′(z∗).(4.13)

PROOF. To simplify the notation, let us write b in place of z∗. Then [0, b) ⊆ C

and b ∈ D so that V (b) = G(b). Hence, (V (b − ε) − V (b))/(−ε) ≥ (G(b − ε) −
G(b))/(−ε) for all ε > 0 sufficiently small, and letting ε ↓ 0 we obtain

lim inf
ε↓0

V (b − ε) − V (b)

−ε
≥ G′(b).(4.14)

To derive a reverse inequality, note that the stopping time

σε = inf{s ≥ 0 :Zb−ε
s ≥ b}(4.15)

is optimal for V (b − ε) under P (recall that Z creeps upward). Hence, by the mean
value theorem we find that

V (b − ε) − V (b)

≥ E(e−pσεG(Zb−ε
σε

)) − E(e−pσεG(Zb
σε

))

= E
(
e−pσεG′(ξε)(Z

b−ε
σε

− Zb
σε

)
)

(4.16)

= E
(
e−pσεG′(ξε)

(
eσε

(
(b − ε) ∨ St(σε) − b ∨ St(σε)

)))
≥ −εE

(
e−pσεG′(ξε)e

σεI
(
St(σε) < b

))
,

where ξε ∈ (Zb−ε
σε

,Zb
σε

) for ε ∈ (0, b).
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We claim that σε → 0 P-a.s. as ε ↓ 0. Indeed, setting

ρε = inf
{
s ≥ 0 : (b − ε) ∨ St(s) − Xt(s) ≥ b

}
,(4.17)

τε = inf{t ≥ 0 : (b − ε) ∨ St − Xt ≥ b}(4.18)

we see that σε ≤ ρε and ρε = t−1(τε) for all ε > 0. Since t−1(0+) = 0 it is there-
fore sufficient to show that τε → 0 P-a.s. as ε ↓ 0. For this, note that

τε ≤ inf{t ≥ 0 : (b − ε) − Xt ≥ b} = inf{t ≥ 0 :Xt ≤ −ε} =: γε(4.19)

and γε ↓ 0 P-a.s. as ε ↓ 0 since the starting point 0 of X is regular for (−∞,0).
Hence, σε → 0 P-a.s. for ε ↓ 0 as claimed.

Dividing both sides of (4.16) by −ε, letting ε ↓ 0, and using the dominated
convergence theorem [upon noting that ξε ≤ b + (Zb

σε
− Zb−ε

σε
) ≤ b + εeσε ≤ (b +

ε)eσε and recalling that G′(z) = pzp−1FS1(z) ≤ 2zp−1 for all z ≥ 0 so that 0 ≤
e−pσεG′(ξε)e

σεI (St(σε) < b) ≤ 2e(−p+1)σε (b + ε)p−1e(p−1)σε = 2(b + ε)p−1 ≤
2(b + 1)p−1 as ε ↓ 0], we get

lim sup
ε↓0

V (b − ε) − V (b)

−ε
≤ G′(b).(4.20)

Combining (4.14) and (4.20), we see that V is differentiable from the left at b and
that (4.13) holds as claimed. This completes the proof. �

4. Returning to the case when [0, z∗) ⊆ C with z∗ ∈ D, recalling the gen-
eral fact on the killed Dirichlet problem (which suggests that z 
→ V (z) =
Eze

−pσz∗ G(Zσz∗ ) should solve LZV = pV in [0, z∗) due to the strong Markov
property of Z; see, e.g., [18], pages 130–132), and making use of the facts from
Propositions 3–5, we can formulate the following free-boundary problem for the
value function V defined in (3.2) above:

zV ′(z) + αLY V (z) − pV (z) = 0 for z ∈ [0, z∗),(4.21)

V (z∗) = G(z∗) (instantaneous stopping),(4.22)

V ′(z∗) = G′(z∗) (smooth fit),(4.23)

V ′(0) = 0 (normal reflection),(4.24)

where z∗ ∈ (0,∞) is the (unknown) boundary point to be found along with V on
[0, z∗). Whilst the infinitesimal generator LY in (4.21) can take any of the three
forms (4.3)–(4.5) from Proposition 4, it turns out that the Caputo form (4.5) is
most convenient for the analysis of the problem (4.21)–(4.24) to be performed.

For this reason, let us rewrite (4.21) in the Caputo form as

zF ′(z) + c

α − 1

∫ z

0

F ′′(x)

(z − x)α−1 dx − pF(z) = 0(4.25)
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for z ∈ (0, b] and F : [0, b] → R with b ∈ (0,∞) given and fixed. The proof of
Proposition 6 below shows that the natural solution space for this equation is one-
dimensional [once F ′(0) is set to 0]. More precisely, let Sb denote the class of
functions F : [0, b] → R satisfying the following three conditions:

F ∈ C1[0, b] ∩ C2(0, b],(4.26)

|F ′′(z)| = O(zα−2) as z ↓ 0,(4.27)

F ′(0) = 0.(4.28)

Note that F ′′ is assumed to exist (and be continuous) on (0, b] but may be
unbounded (locally at zero). Note also that (4.26)–(4.28) imply that |F ′(z)| =
O(zα−1) as z ↓ 0. For further reference, let us also recall the following well-known
identity (see, e.g., (3.191) in [10], page 333, and (6.2.2) in [1], page 258):∫ z

0
xμ−1(z − x)ν−1 dx = zμ+ν−1 �(μ)�(ν)

�(μ + ν)
(4.29)

for μ > 0 and ν > 0.

PROPOSITION 6. The equation (4.25) has a unique solution F in Sb satisfying

F(0) = a0,(4.30)

whenever a0 ∈ R is given and fixed. Moreover, the following explicit representation
is valid:

F(z) = a0

∞∑
n=0

1

(−c�(−α))n

(
−p

α

)
n

zαn

�(αn + 1)
(4.31)

for z ∈ [0, b] where (q)n = q(q + 1) · · · (q + n − 1) for n ≥ 1 and (q)0 = 1 with
q = −p/α.

PROOF. 1. Uniqueness. We will establish the uniqueness of solution by re-
ducing the integro-differential equation (4.25) to a Volterra integral equation of
the second kind. For this, let us introduce the following substitution in (4.25):

ϕ(z) =
∫ z

0

F ′′(x)

(z − x)α−1 dx(4.32)

for z > 0 upon extending F from [0, b] to a bounded C2 function on (0,∞)

with bounded support in R+. Let L[f ](λ) = ∫ ∞
0 e−λxf (x) dx denote the Laplace

transform of a function f : R+ → R with λ > 0, and let L
−1 denote the inverse

Laplace transform. By (4.27) and (4.29) we see that L[ϕ](λ) is well defined and
finite for all λ > 0. Applying first L and then L

−1 on both sides of (4.32) using
the well-known properties (i) L[∫ x

0 f1(y)f2(x − y)dy](λ) = L[f1](λ)L[f2](λ),
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(ii) L[f ′′](λ) = λ2
L[f ](λ) − λf (0) − f ′(0) and (iii) L[xρ](λ) = �(ρ + 1)/λρ+1

for ρ > −1, one finds using (4.28) that

F(z) = 1

�(α)�(2 − α)

∫ z

0
(z − x)α−1ϕ(x)dx + F(0)(4.33)

for z ∈ (0, b]. Inserting this expression back into (4.25), we obtain∫ z

0
K(z, x)ϕ(x) dx + ϕ(z) = ψ,(4.34)

where K and ψ are given by

K(z, x) = α − 1

c�(α)�(2 − α)

(α − 1 − p)z + px

(z − x)2−α
,(4.35)

ψ = p(α − 1)

c
F (0)(4.36)

for z ∈ (0, b] and x ∈ (0, z). We may now recognise (4.34) as a Volterra integral
equation of the second kind with a weakly singular kernel K [the kernel is said
to be weakly singular since the exponent 2 − α in the singular term (z − x)2−α

belongs to the interval (0,1)]. Moreover, since ψ defines a bounded function on
[0, b], it is well known (see, e.g., [13], Theorem 7, page 35) that the equation (4.34)
can have at most one solution ϕ (in the class of locally integrable functions), and
by means of the identity (4.33) this fact translates directly into the uniqueness of
solution for (4.25) as claimed. This completes the first part of the proof.

2. Existence. Seeking a solution to (4.25) of the form

F(z) =
∞∑

n=0

anz
βn+γ(4.37)

and inserting it into (4.25) upon differentiating and integrating formally term by
term and making use of the identity (4.29), a lengthy but straightforward calcula-
tion shows that β = α, γ = 0 and the series coefficients satisfy

an+1 = 1

c�(−α)

(
p

α
− n

)
�(αn + 1)

�(α(n + 1) + 1)
an(4.38)

for n = 0,1, . . . . This yields the candidate series representation (4.31). More-
over, setting bn = (1/(−c�(−α))n)(−p/α)n(z

αn/�(αn+1)) for n ≥ 1 and using
the well-known fact that �(αn + 1)/�(α(n + 1) + 1) ∼ (αn)−α as n → ∞ (see
(6.1.47) in [1], page 257), it is easily verified that bn+1/bn → 0 as n → ∞. Hence,
by the ratio test we can conclude that the series in (4.31) converges absolutely for
every z ∈ [0, b]. A direct verification also shows that the function F defined by the
series in (4.31) belongs to Sb. These facts justify the formal steps leading to (4.38)
above, and the proof is complete. �
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5. Before we continue our analysis of the free-boundary problem (4.21)–(4.24),
let us make precise the following consequence of Itô’s formula and the op-
tional sampling theorem. Note that G satisfies both (4.39) and (4.40) below since
|G′′(z)| = O(zp+α−3) as z ↓ 0 and |G′′(z)| = O(zp−2) as z ↑ ∞. This is easily
seen upon recalling the expression for G′′ from the proof of (3.3) above and using
the asymptotic relations (5.14), (5.15) and (5.17) below. Recall also that F from
Proposition 6 satisfies (4.39) below.

PROPOSITION 7. Let F : R+ → R be a function from C1[0,∞) ∩ C2(0,∞)

satisfying

|F ′′(z)| = O(zα−2) as z ↓ 0 and F ′(0) = 0.(4.39)

Let σ be a stopping time of Z such that either

|F ′′(z)| = O(zβ) as z ↑ ∞ for some β < α − 2(4.40)

and σ ≤ k for some k ≥ 1, or σ ≤ σm for some m ≥ 1 where σm = inf{s ≥ 0 :Zs =
m}. Then the following identity holds:

Eze
−pσF (Zσ ) = F(z) + Ez

∫ σ

0
e−ps(LZF − pF)(Zs) ds(4.41)

for all z ∈ R+.

PROOF. Under Pz with z ∈ R+ by Itô’s formula, we get

e−psF (Zs) = F(z) − p

∫ s

0
e−prF (Zr) dr

(4.42)
+

∫ s

0
e−prF ′(Zr)Zr dr + Ms + Js,

where Ms = − ∫ s
0 e(−p+1)rF ′(Zr−) dXt(r) is a local martingale and Js =∑

0<r≤s e−pr(F (Zr) − F(Zr−) + erF ′(Zr−)
Xt(r)) for s ≥ 0 [upon noting that
dZr = Zr dr + er dYt(r) from (2.15) above]. Note also that Z is a quadratic pure
jump semimartingale (i.e., [Z,Z]c = 0) for the reasons outlined following (4.7)
above. Note further that similarly to (4.9) we find that

Js = ∑
0<r≤s

e−pr([F (
erYt(r)− − er
Xt(r)

)

− F
(
erYt(r)−

) + erF ′(erYt(r)−
)

Xt(r)

]
× I

(

Xt(r) ≤ Yt(r)−

)
(4.43)

+ [
F(0) − F

(
erYt(r)−

) + erF ′(erYt(r)−
)

Xt(r)

]
× I

(

Xt(r) > Yt(r)−

))
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upon using that 
Xt(r) ≤ Yt(r)− if and only if Xt(r) ≤ St(r)− so that 
St(r) = 0,
and 
Xt(r) > Yt(r)− if and only if Xt(r) > St(r)− so that St(r) = Xt(r), that is,
Yt(r) = 0. Setting v = t (r) this further reads

Js = ∑
0<v≤t (s)

e−pt−1(v)

× ([
F

(
et−1(v)Yv− − et−1(v)
Xv

)
− F

(
et−1(v)Yv−

) + et−1(v)F ′(et−1(v)Yv−
)

Xv

]
(4.44)

× I (
Xv ≤ Yv−)

+ [
F(0) − F

(
et−1(v)Yv−

) + et−1(v)F ′(et−1(v)Yv−
)

Xv

]
× I (
Xv > Yv−)

)
.

The compensator K of J is given by

Ks =
∫ t (s)

0
e−pt−1(v) dv

×
(∫ Yv

0

[
F

(
et−1(v)Yv − et−1(v)x

)
(4.45)

− F
(
et−1(v)Yv

) + et−1(v)F ′(et−1(v)Yv

)
x
]
ν(dx)

+
∫ ∞
Yv

[
F(0) − F

(
et−1(v)Yv

) + et−1(v)F ′(et−1(v)Yv

)
x
]
ν(dx)

)
.

Setting r = t−1(v) and y = erx we see that dv = αe−αr dr and dx = e−r dy

so that ν(dx) = c dx/x1+α = (e(1+α)rc dx)/y1+α = (eαrc dy)/y1+α = eαrν(dy).
This shows that

Ks = α

∫ s

0
e−pr dr

(∫ Zr

0
[F(Zr − y) − F(Zr) + F ′(Zr)y]ν(dy)

+
∫ ∞
Zr

[F(0) − F(Zr) + F ′(Zr)y]ν(dy)

)
(4.46)

= α

∫ s

0
e−pr

LY F (Zr) dr

upon recalling the argument following (4.12) above to obtain the final equality
[where LY F denotes the action of LY on F given by the right-hand side of (4.3)–
(4.5)].

If m ≥ 1 is given and fixed then (4.39) implies the existence of C > 0 such that
|F ′(z)| ≤ Czα−1 and |F ′′(z)| ≤ Czα−2 for all z ∈ (0,m]. This combined with the
mean value theorem yields the existence of ξr,y ∈ (Zr − y,Zr) and ηr ∈ (0,Zr)
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such that

Ez

[∫ s∧σm

0
e−pr dr

(∫ Zr

0
|F(Zr − y) − F(Zr) + F ′(Zr)y|ν(dy)

+
∫ ∞
Zr

|F(0) − F(Zr) + F ′(Zr)y|ν(dy)

)]

≤ Ez

[∫ s∧σm

0
e−pr dr

(∫ Zr

0

1

2
|F ′′(ξr,y)|y2 c

y1+α
dy

+
∫ ∞
Zr

(|F ′(ηr)|Zr + |F ′(Zr)|y) c

y1+α
dy

)]
(4.47)

≤ cEz

[∫ s∧σm

0
e−pr dr

(
C

2

∫ Zr

0
(Zr − y)α−2y1−α dy

+ CZα
r

∫ ∞
Zr

y−1−α dy + CZα−1
r

∫ ∞
Zr

y−α dy

)]

= c

(
C

2
�(2 − α)�(α − 1) + C

α
+ C

α − 1

)
Ez

[∫ s∧σm

0
e−pr dr

]
< ∞

upon using (4.29) in the final equality. It follows that Ns∧σm := Js∧σm − Ks∧σm is
a martingale under Pz for s ≥ 0 (see, e.g., [15], page 97). This shows that N :=
J − K is a local martingale [with (σm)m≥1 as a localization sequence of stopping
times].

Let σ be a stopping time of Z such that σ ≤ σm for some m ≥ 1. Choose a
localization sequence of stopping times (ρn)n≥1 for the local martingale M . Sub-
tracting and adding Ks on the right-hand side of (4.42), replacing s by σ ∧ ρn,
taking Ez on both sides and applying the optional sampling theorem, we obtain

Eze
−p(σ∧ρn)F (Zσ∧ρn) = F(z) + Ez

∫ σ∧ρn

0
e−pr(LZF − pF)(Zr) dr(4.48)

for all z ∈ R+ and all n ≥ 1 [upon recalling (4.46) and the action of LZ in (4.1)
above]. Moreover, it is easily seen from (4.5) using (4.39) and (4.29) that z 
→
LY F (z) is bounded on [0,m] (and so are F and F ′ by continuity). Letting n → ∞
in (4.48) and using the dominated convergence theorem we see that (4.41) holds
as claimed in this case.

Let us now assume that (4.40) holds with σ ≤ k for some k ≥ 1. Choose again
a localization sequence of stopping times (ρn)n≥1, however, this time for both the
local martingale M and and the local martingale N . Subtracting and adding Ks on
the right-hand side of (4.42), replacing s by σ ∧ ρn, taking Ez on both sides and
applying the optional sampling theorem, we again obtain (4.48) for all z ∈ R+ and
all n ≥ 1. Moreover, it is easily seen from (4.5) using (4.39)+(4.40) and (4.29)
that |LY F (z)| ≤ C3(1 + zβ+2−α) for all z ∈ R+ with some C3 > 0. Likewise,
it is easily verified that (4.39) and (4.40) imply that |F(z)| ≤ C4(1 + zβ+2) and
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|F ′(z)| ≤ C5(1 + zβ+1) for all z ∈ R+ with some C4 > 0 and C5 > 0. Hence, we
see that there exists C6 > 0 such that

|F(Zz
s )| + |(LZF − pF)(Zz

s )|
≤ C6

(
1 + (Zz

s )
β+2)

(4.49)

≤ C6
(
1 + ek(β+2)(z + S1 − I1)

β+2)
for all s ∈ [0, k] where the right-hand side defines an integrable random variable
since β + 2 ∈ (0, α). (Note that without loss of generality, we can assume that β is
close enough to α − 2 so that β + 2 > 0.) Letting n → ∞ in (4.48) and using the
dominated convergence theorem (twice) we see that (4.41) holds as claimed. This
completes the proof. �

6. We now establish a remarkable probabilistic representation of the global so-
lution (4.31) to the equation (4.25). For this, let us set

V1(z) = E(z ∨ S1 − X1)
p(4.50)

for all z ∈ R+. From (3.13), we see formally that V1(z) = Eze
−pσ∞G(Zσ∞) for all

z ∈ R+ where σ∞ = inf{s ≥ 0 :Zs = ∞}, and this suggests that z 
→ V1(z) should
solve the equation (4.25) on R+. This can be derived rigourously as follows.

PROPOSITION 8. Let F1 denote the global solution (4.31) to (4.25) on R+
with F1(0) = 1. Then the following identity holds:

V1(z) = a1F1(z)(4.51)

for all z ∈ R+ where the constant a1 is given explicitly by

a1 = α(c�(−α))p/α �(p)

�(p/α)
.(4.52)

PROOF. 1. We first show that the identity (4.51) holds with some constant
a1 > 0. For this, fix an arbitrary z1 > 0, set F(z) = aF1(z) for z ∈ R+ where
a = V1(z1)/F1(z1), and consider σz1 = inf{s ≥ 0 :Zs = z1}. Then by (4.41) and
(4.25), we find that

F(z) = Eze
−pσz1 F(Zσz1

) = F(z1)Eze
−pσz1 = V1(z1)Eze

−pσz1(4.53)

for all z ∈ [0, z1]. In addition, consider σn = inf{s ≥ 0 :Zs = n} and set

V n(z) = Eze
−pσnG(Zσn)(4.54)

for n > z1 and z ∈ [0, z1]. Note that (3.13) implies that V n(z) → V1(z) as n → ∞
for all z ∈ [0, z1]. Fixing n > z1 and applying the strong Markov property of Z at
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σz1 we find that

V n(Zσz1
) = EZσz1

e−pσnG(Zσn)

= Ez

(
e
−pσn◦θσz1

−pσz1+pσz1 G(Zσn) ◦ θσz1
|Ft (σz1 )

)
(4.55)

= epσz1 Ez

(
e−pσnG(Zσn)|Ft (σz1 )

)
for all z ∈ [0, z1]. Multiplying both sides by e−pσz1 and then taking Ez, we get

V n(z1)Eze
−pσz1 = V n(z)(4.56)

for all z ∈ [0, z1] and n > z1. Letting n → ∞ we obtain

V1(z1)Eze
−pσz1 = V1(z)(4.57)

for all z ∈ [0, z1]. Comparing (4.57) with (4.53), we see that V1(z) = F(z) for all
z ∈ [0, z1]. Since z1 > 0 was arbitrary this establishes (4.51) with some constant
a1 > 0.

2. To derive (4.52), we may apply the Laplace transform L on both sides
of (4.25) where F(z) = V1(z) = a1F1(z) for z ∈ R+ so that a1 = V1(0). Us-
ing the well-known properties (i)–(iii) recalled following (4.32) above and (iv)
L[zF ′(z)](λ) = −λL[F ]′(λ) − L[F ](λ) for λ > 0, it can be verified using (4.28)
that this leads to

L[F ]′(λ) +
(

1 + p

λ
− c�(2 − α)

α − 1
λα−1

)
L[F ](λ)

(4.58)

= −F(0)
c�(2 − α)

α − 1
λα−2

for λ > 0. Solving this equation under L[F ](λ) → 0 as λ → ∞ [this condition is
satisfied since F(z) = V1(z) ∼ zp as z → ∞ by (4.50) above] we find that

L[F ](λ) = F(0)

(c�(−α))p/α

ec�(−α)λα

λ1+p
�

(
1 + p/α, c�(−α)λα)

(4.59)

for λ > 0, where �(a, x) = ∫ ∞
x ya−1e−y dy denotes the incomplete gamma func-

tion for a > 0 and x ≥ 0. Since z 
→ F(z) is increasing [by (4.50) above], we
can use the Tauberian monotone density theorem (see, e.g., [15], Theorem 5.14,
page 127) which states that (i) L[F ](λ) ∼ �λ−ρ as λ ↓ 0 if and only if (ii)
F(z) ∼ (�/�(ρ))zρ−1 as z ↑ ∞ where ρ > 0 and � > 0. From (4.59), we see that
(i) is satisfied with ρ = 1+p and � = (F (0)/(c�(−α))p/α)�(1+p/α) so that (ii)
yields (4.52) since F(z) = V1(z) ∼ zp as z → ∞. This completes the proof. �
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5. Predicting the ultimate supremum. 1. We will begin by connecting our
findings on the free-boundary problem from the previous section to the value func-
tion from (3.2).

PROPOSITION 9. If the optimal stopping point z∗ from (3.14) is finite, then the
value function V from (3.2) coincides on [0, z∗] with F from (4.31) where a0 is set
to V (0). In terms of the function V1 from (4.50), this reads as follows:

V (z) = aV1(z)(5.1)

for all z ∈ [0, z∗] where a = V (0)/a1 ∈ (0,1) and a1 is given by (4.52) above.
If the optimal stopping point z∗ is not finite (i.e., the optimal stopping set D is
empty), then

V (z) = V1(z)(5.2)

for all z ∈ R+.

PROOF. If z∗ < ∞ then

V (z) = Eze
−pσz∗ G(Zσz∗ ) = V (z∗)Eze

−pσz∗(5.3)

for all z ∈ [0, z∗]. Moreover, if we set F(z) = a0F1(z) for all z ∈ R+ with a0 =
V (z∗)/F1(z∗) then by (4.41) and (4.25), we have

F(z) = Eze
−pσz∗ F(Zσz∗ ) = F(z∗)Eze

−pσz∗
(5.4)

= V (z∗)Eze
−pσz∗

for all z ∈ [0, z∗]. Comparing (5.3) and (5.4), we see that V (z) = F(z) for all
z ∈ [0, z∗]. Hence a0 = V (0) and this establishes (5.1) upon recalling (4.51). If
z∗ = ∞ then (5.2) follows from (3.13) above. This completes the proof. �

From (5.1) and (5.2), we see that the value function V is a constant multiple
of the function V1 from (4.50) up to the first contact point with G (when starting
from 0 and moving toward ∞ in the state space). The unknown constant needs to
be chosen so that the contact with G occurs smoothly. Since V ≤ V1 this leads the
following criterion for D to be nonempty:

z∗ < ∞ if and only if ∃z1 ∈ R+ such that V1(z1) ≥ G(z1)(5.5)

or equivalently, the following criterion for D to be empty:

z∗ = ∞ if and only if V1(z) < G(z) for all z ∈ R+.(5.6)

We will continue our analysis by examining when (5.5) holds.
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2. Consider the function H : [0,∞) → R defined by

H(z) = (LZG − pG)(z)(5.7)

for z ≥ 0 where H(0) := H(0+) exists by (5.11) below. Recall that (4.41) reads

Eze
−pσG(Zσ ) = G(z) + Ez

∫ σ

0
e−psH(Zs) ds(5.8)

for z ∈ R+ where σ is any stopping time of Z like in Proposition 7. Set

N = {z ∈ [0,∞) :H(z) < 0} and P = {z ∈ [0,∞) :H(z) ≥ 0}.(5.9)

Then the following two inclusions are valid:

N ⊆ C and D ⊆ P.(5.10)

Indeed, to show the first inclusion (the second one then being obvious) take any
z ∈ N and choose ε > 0 small enough such that (z− ε, z+ ε)∩R+ ⊂ N (note that
N is open in R+). Inserting the stopping time σε = inf{s ≥ 0 :Zs /∈ (z − ε, z + ε)}
into (5.8), we see that Eze

−pσεG(Zσε) < G(z) since H(Zs) < 0 for s ∈ [0, σε).
Hence, z belongs to C as claimed.

3. Motivated by the important role that the function H plays in the optimal stop-
ping problem (3.2), we now determine its asymptotic behavior at zero and infinity.
Note that (5.11) below and (5.10) above imply (since H is continuous) that the
continuation set C always contains the interval [0, ε) for some ε > 0 sufficiently
small so that the optimal stopping point z∗ from (3.14) is always strictly larger
than zero.

PROPOSITION 10. The following relations are valid:

lim
z↓0

H(z) = −pG(0) = −pES
p
1 < 0,(5.11)

lim
z↑∞ zα−pH(z) = cp

�(p − α + 1)

(
�(p − α) − �(p)�(1 − α)

)
.(5.12)

PROOF. Since G′(z) = pzp−1FS1(z) and G′′(z) = p(p − 1)zp−2FS1(z) +
pzp−1fS1(z) we see by (4.1) and (4.5) that

H(z) = zG′(z) + c

α − 1

∫ z

0

G′′(x)

(z − x)α−1 dx − pG(z)

= pzpFS1(z)
(5.13)

+ c

α − 1

∫ z

0

p(p − 1)xp−2FS1(x) + pxp−1fS1(x)

(z − x)α−1 dx

− pG(z)
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for z > 0. Recall that the following asymptotic relations are valid (see [2], Corol-
lary 3):

fS1(z) ∼ zα−2

(c�(−α))1−1/α�(α − 1)�(1/α)
as z ↓ 0,(5.14)

FS1(z) ∼ zα−1

(c�(−α))1−1/α�(α)�(1/α)
as z ↓ 0.(5.15)

Using (5.14) and (5.15) together with (4.29) it is readily verified that the integral
in (5.13) tends to 0 as z ↓ 0. This easily yields the first equality in (5.11) and the
second equality follows from (3.3).

Moreover, using (2.12) above we can further rewrite (5.13) as follows:

H(z) = −pzp(
1 − FS1(z)

)
+ cp(p − 1)

α − 1

∫ z

0

xp−2

(z − x)α−1 dx

− p

∫ ∞
zp

(
1 − FS1(x

1/p)
)
dx(5.16)

− cp(p − 1)

α − 1

∫ z

0

xp−2(1 − FS1(x))

(z − x)α−1 dx

+ cp

α − 1

∫ z

0

xp−1fS1(x)

(z − x)α−1 dx

for z > 0. Recall that the following asymptotic relations are valid (cf. [2, 5, 16]):

fS1(z) ∼ c

z1+α
as z ↑ ∞,(5.17)

1 − FS1(z) ∼ c

αzα
as z ↑ ∞.(5.18)

Using (5.17) and (5.18) together with (4.29) it is somewhat lengthy but still
straightforward to verify that the final two integrals in (5.16) are o(zp−α) as
z → ∞, whilst the first three terms in (5.16) multiplied by zα−p converge to the
constant on the right-hand side of (5.12) as z → ∞. This completes the proof. �

4. Motivated by the identity (5.12) let us consider the function � defined by

�(α,p) = cp

�(p − α + 1)

(
�(p − α) − �(p)�(1 − α)

)
(5.19)

for α ∈ (1,2) and p ∈ (1, α). A direct examination of the right-hand side in (5.19)
shows that there exist α∗ ∈ (1,2) (equal to 1.57 approximately) and a strictly
increasing function p∗ : (α∗,2) → (1,2) satisfying p∗(α∗+) = 1, p∗(2−) = 2
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and p∗(α) < α for α ∈ (α∗,2) such that (i) �(α,p) > 0 if α ∈ (α∗,2) and
p ∈ (1,p∗(α)); (ii) �(α,p) < 0 if either α ∈ (1, α∗) and p ∈ (1, α) or α ∈ [α∗,2)

and p ∈ (p∗(α),α); and (iii) �(α,p∗(α)) = 0 for α ∈ (α∗,2). Note that the proper-
ties (i)–(iii) do not depend on the value of the constant c in (2.4). Recall also from
(5.12) above that

�(α,p) = lim
z↑∞ zα−pH(z)(5.20)

for all α ∈ (1,2) and p ∈ (1, α). In view of (5.10) this suggests that the sign of �

plays an important role in the problem (3.2).
Building on the facts presented in the previous sections, and extending these

arguments further in the proof below, we can now present the main result of the
paper. It should be recalled in the statement below that the function V1 can be
expressed probabilistically by (4.50) and analytically by (4.51)+(4.52) [where F1

is given by (4.31) with a0 = 1], and the probabilistic and analytic representations
of the function G are given in (2.12) above (upon recalling that FS1 admits an
explicit series representation as shown in [2], Theorem 1).

THEOREM 11. I. If α ∈ (α∗,2) and p ∈ (1,p∗(α)) then there exists z∗ ∈
(0,∞) such that the stopping time (3.14) is optimal in the problem (3.2) under
Pz for z ∈ [0, z∗]. The optimal stopping point z∗ can be characterized as the mini-
mal z ∈ (0,∞) for which

β∗V1(z)|z=z∗ = G(z)|z=z∗,(5.21)

where β∗ ∈ (0,1) is the minimal β ∈ (0,1) for which (5.21) has at least one root
z ∈ (0,∞). The optimal z∗ and β∗ satisfy the smooth fit condition

β∗V ′
1(z)|z=z∗ = G′(z)|z=z∗ .(5.22)

The value function from (3.2) is given by V (z) = β∗V1(z) = β∗E(z ∨ S1 − X1)
p

for z ∈ [0, z∗].
II. The stopping time (1.3) is optimal in the problem (2.3) and the value

from (2.3) is given by V = T p/αβ∗V1(0) = T p/αβ∗E(S1 − X1)
p = T p/αβ∗α(c ×

�(−α))p/α�(p)/�(p/α).

PROOF. Since part II follows from part I as discussed in Sections 2 and 3
above, it is enough to prove part I. For this, we will first show that the assumptions
α ∈ (α∗,2) and p ∈ (1,p∗(α)) imply the existence of z1 > 0 (large enough) such
that

V1(z) > G(z)(5.23)
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for all z ≥ z1. We will then show how the knowledge of (5.23) combined with
the properties and facts about V1 and G derived in the previous sections yield the
existence of β∗ and z∗ satisfying the remaining statements of part I.

1. To prove (5.23), recall that the identity (4.41) is applicable to G in place of F

with σ ≡ n for n ≥ 1. Letting n → ∞ in this identity, using (3.13) combined with
the fact that each e−pnG(Zz

n) is dominated by (z ∨ S1 − I1)
p + ES

p
1 which clearly

has finite expectation, as well as the fact that the function H is bounded (by the
result of Proposition 10), it follows by the dominated convergence theorem that

E(z ∨ S1 − X1)
p = G(z) + E

∫ ∞
0

e−psH(Zz
s ) ds(5.24)

for all z ≥ 0. Recognizing the left-hand side of (5.24) as V1(z), we see that (5.23)
will be established if we show the existence of z1 > 0 (large enough) such that

I (z) := E
∫ ∞

0
e−psH(Zz

s ) ds > 0(5.25)

for all z ≥ z1.
To show (5.25) recall from (i) following (5.19) above that � := �(α,p) in (5.20)

is strictly positive when α ∈ (α∗,2) and p ∈ (1,p∗(α)) are given and fixed. Hence
for any given and fixed ε > 0 (small) there exists zε > 0 (large) such that

zα−pH(z) ≥ � − ε(5.26)

for all z ≥ zε . Consider

J (z) := E
∫ ∞

0
e−psH(Zz

s )I (Zz
s < zε) ds,(5.27)

K(z) := E
∫ ∞

0
e−psH(Zz

s )I (Zz
s ≥ zε) ds(5.28)

and note that I (z) = J (z) + K(z) for all z ≥ 0.
Let M > 0 be large enough so that |H(z)| ≤ M for all z ≥ 0. Then we have

|J (z)| ≤ M

∫ ∞
0

e−psP(Zz
s < zε) ds(5.29)

for all z ≥ 0. Moreover, by (5.18) we see that

P(Zz
s < zε) = P

(
es(z ∨ St(s) − Xt(s)

)
< zε

)
≤ P

(
z ∨ St(s) − St(s) < zε

)
≤ P

(
z − St(s) < zε

)
(5.30)

≤ P(S1 > z − zε)

≤ N
c

α
(z − zε)

−α
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for all z > zε with some N > 0 large enough. Combining (5.29) and (5.30) we find
that

|J (z)| ≤ MNc

pα
(z − zε)

−α(5.31)

for all z > zε .
On the other hand, by (5.26) we see that

K(z) = E
∫ ∞

0
e−psH(Zz

s )I (Zz
s ≥ zε) ds

≥ (� − ε)

∫ ∞
0

e−psE[(Zz
s )

p−αI (Zz
s ≥ zε)]ds

= (� − ε)

∫ ∞
0

e−αsE
[(

z ∨ St(s) − Xt(s)

)p−α
I (Zz

s ≥ zε)
]
ds

(5.32)

= (� − ε)zp−α
∫ ∞

0
e−αsE

[(
1 ∨ St(s)

z
− Xt(s)

z

)p−α

I (Zz
s ≥ zε)

]
ds

≥ (� − ε)zp−α
∫ ∞

0
e−αsE[(1 ∨ S1 − I1)

p−αI (Zz
s ≥ zε)]ds

≥ (� − ε)

α

(
E(1 ∨ S1 − I1)

p−α − δ
)
zp−α

for all z ≥ 1 ∨ zδ , where in the second last inequality we use that

1 ∨ St(s)

z
− Xt(s)

z
≤ 1 ∨ S1

z
− I1

z
≤ 1 ∨ S1 − I1(5.33)

for all s ≥ 0 and z ≥ 1, and in the last inequality we use that

lim
z→∞

∫ ∞
0

e−αsE[(1 ∨ S1 − I1)
p−αI (Zz

s ≥ zε)]ds

(5.34)

= 1

α
E(1 ∨ S1 − I1)

p−α < ∞
by the dominated convergence theorem since Zz

s → ∞ as z → ∞ [from (5.34) we
see that for given δ ∈ (0,E(1 ∨ S1 − I1)

p−α) there exists zδ > 0 such that the final
inequality in (5.32) holds for all z ≥ zδ]. Since the right-hand side in (5.31) tends
faster to zero than the right-hand side in (5.32) as z ↑ ∞, we see that (5.23) holds
with some z1 > 0 large enough as claimed.

2. We now establish the existence of β∗ and z∗ satisfying the remaining state-
ments of part I. For this, recall that (5.23) holds for z = z1 so that for some β1 ∈
(0,1) sufficiently close to 1 we have β1V1(z1) > G(z1). Since β1V1(z) ∼ β1z

p <

zp ∼ G(z) as z → ∞ we also see that there exists z2 > z1 such that β1V1(z) <

G(z) for all z ≥ z2. This shows that for some β0 ∈ (0,1) sufficiently close to 0 we
have β0V1(z) < G(z) for all z ≥ 0 [recall that V1(0) = E(S1 − X1)

p > 0 and that
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V1 is increasing]. It follows therefore by continuity that there exists the smallest
β∗ ∈ (β0, β1) ⊂ (0,1) such that the set A = {z ∈ R+|β∗V1(z) = G(z)} is nonempty
so that βV1(z) < G(z) for all z ∈ R+ if β ∈ (0, β∗). Setting w∗ = infA we see that
w∗ belongs to A by continuity so that (5.21) holds for z = w∗. Moreover, since
V1(z1) > G(z1) we know by (5.5) that z∗ = infD < ∞ so that by (5.1) we have
V (z) = a∗V1(z) for all z ∈ [0, z∗] with some a∗ ∈ (0,1). By the construction of β∗
and w∗ it follows therefore that β∗ ≤ a∗ and w∗ ≥ z∗. If either β∗ < a∗ or equiv-
alently w∗ > z∗, then since β∗V1(z) = Ee−pσw∗ (β∗V1)(Z

z
σw∗ ) for all z ∈ [0,w∗]

by the result of Proposition 7, and this further equals Ee−pσw∗ G(Zz
σw∗ ) for all

z ∈ [0,w∗] by definition of σw∗ , we see that β∗V1(0) ≥ V (0) while at the same time
β∗V1(0) < a∗V1(0) = V (0) which is a contradiction. Thus β∗ = a∗ and w∗ = z∗ so
that V (z) = β∗V1(z) for all z ∈ [0, z∗] as claimed. The smooth fit condition (5.22)
then follows by the result of Proposition 5. This completes the proof of part I
whence part II follows as discussed above. �

5. In the final part of this section, we briefly consider the case when the hy-
potheses of Theorem 11 are not satisfied.

PROPOSITION 12. If either α ∈ (1, α∗) or p ∈ (p∗(α),α), then there exists
z1 > 0 large enough such that V1(z) < G(z) for all z ≥ z1.

PROOF. This can be proved in exactly the same way as (5.23) above upon
noting that � := �(α,p) in (5.20) is strictly negative when either α ∈ (1, α∗) or p ∈
(p∗(α),α) and replacing (5.26) with zα−pH(z) ≤ � + ε for all z ≥ zε . This leads
to (5.31) without changes and (5.32) holds with the inequalities reversed since
� + ε < 0 in this case. Different rates of convergence in the resulting inequalities
then complete the proof just as above. �

It follows from the result of Proposition 12 that the continuation set C con-
tains the interval [z1,∞) for some z1 > 0 large enough when either α ∈ (1, α∗)
or p ∈ (p∗(α),α). It shows that the stopping time (1.3) can no longer be optimal
in this case (in the sense that it is not optimal to stop at t ∈ [0, T ) when St − Xt

is sufficiently large). This stands in sharp contrast with the Brownian motion case
(formally corresponding to α = 2) where it is optimal to stop in such a case. Recall
also that the continuation set C always contains the interval [0, ε) for some ε > 0
sufficiently small so that the stopping set D must be contained in [ε, z1 − δ] for
some δ > 0. We do not know whether V1(z) < G(z) holds for all z ∈ R+ in this
case, or equivalently, whether the stopping set D is empty [recall (5.6) above]. This
is an interesting open question. We refer to [6], Figure 1, for a related phenomenon
in the presence of strictly positive drifts and the absence of jumps.

APPENDIX

In this section, we determine the action of the infinitesimal generator of the
reflected process Y = S − X when X is a general (strictly) stable Lévy process
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(see [25]). Set

να(dx) = c+
x1+α

I (x > 0) dx + c−
(−x)1+α

I (x < 0) dx,(A.1)

where c+ and c− are nonnegative constants (not both zero) and α ∈ (0,2). For
α = 1, the two constants need to be identical (see, e.g., [21], pages 86 and 87), so
that

ν1(dx) = c

x2 I (x 
= 0) dx(A.2)

with c > 0. Recall that C2
b(R+) denotes the class of twice continuously differen-

tiable functions F : R+ → R such that F ′ and F ′′ are bounded on R+.

PROPOSITION 13. Let X = (Xt)t≥0 be a stable Lévy process of index α ∈
(1,2) whose characteristic function is given by

EeiλXt = exp
(
t

∫ ∞
−∞

(eiλx − 1 − iλx)να(dx)

)
(A.3)

= e(c+(−iλ)α+c−(iλ)α)�(−α)t

for λ ∈ R and t ≥ 0. Then the infinitesimal generator LY of the reflected process
Y = S − X takes any of the following three forms for y > 0 given and fixed:

Itô’s form

LY F (y) =
∫ y

0

(
F(y − x) − F(y) + F ′(y)x

) c+
x1+α

dx

+ c+(F (0) − F(y))

αyα
+ c+F ′(y)

(α − 1)yα−1(A.4)

+
∫ ∞

0

(
F(y + x) − F(y) − F ′(y)x

) c−
x1+α

dx,

Riemann–Liouville’s form

LY F (y) = c+
α(α − 1)

d2

dy2

∫ y

0

F(x)

(y − x)α−1 dx + c+F(0)

αyα

(A.5)

+ c−
α(α − 1)

d2

dy2

∫ ∞
y

F (x)

(x − y)α−1 dx,

Caputo’s form

LY F (y) = c+
α(α − 1)

∫ y

0

F ′′(x)

(y − x)α−1 dx

(A.6)

+ c−
α(α − 1)

∫ ∞
y

F ′′(x)

(x − y)α−1 dx,
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whenever F ∈ C2
b(R+) satisfies

F ′(0+) = 0 (normal reflection)(A.7)

with |F ′′(y)| = O(yγ ) as y → ∞ for some γ < α − 2 [as well as |F(y)| = O(yδ)

as y → ∞ for some δ < α − 2 in (A.5) above].

PROOF. As in the proof of Proposition 4, it is enough to derive (A.4). For this,
fix t > 0 and note that by Itô’s formula we have

F(Yt ) = F(Y0) +
∫ t

0
F ′(Ys−)(dSs − dXs)

(A.8)
+ ∑

0<s≤t

(
F(Ys) − F(Ys−) − F ′(Ys−)(
Ss − 
Xs)

)

since [Y,Y ]c ≡ 0 for the same reasons as in (4.7). Letting Ss = Sc
s + Sd

s be the
decomposition of s 
→ Ss into continuous and discontinuous parts, and noting that
dSd

s = 
Ss , we see that (A.8) simplifies to

F(Yt ) = F(Y0) + Mt +
∫ t

0
F ′(Ys−) dSc

s

(A.9)
+ ∑

0<s≤t

(
F(Ys− + 
Ys) − F(Ys−) + F ′(Ys−)
Xs

)
,

where Mt = − ∫ t
0 F ′(Ys−) dXs . Since F ′ is bounded the same argument as follow-

ing (4.8) above shows that M is a martingale. If s belongs to the support of dSc
s in

[0, t], then either Sc
s−ε < Sc

s and therefore Ss−ε < Ss for ε > 0 implying Ys− = 0,
or Sc

s < Sc
s+ε and therefore Ss < Ss+ε for ε > 0 implying Ys = 0. Since there could

be at most countably many s in [0, t] for which Ys 
= Ys−, it follows using (A.7)
that the integral with respect to dSc

s in (A.9) is zero. Moreover, the right-hand side
of (A.9) can further be rewritten as follows:

F(Yt ) = F(Y0) + Mt

+ ∑
0<s≤t

([F(Ys− − 
Xs) − F(Ys−)

(A.10)
+ F ′(Ys−)
Xs]I (
Xs ≤ Ys−)

+ [F(0) − F(Ys−) + F ′(Ys−)
Xs]I (
Xs > Ys−)
)

using the same arguments as in (4.9) above. Taking Ey on both sides of (A.10),
where Py denotes a probability measure under which Y0 = y, and applying the
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compensation formula (see, e.g., [20], page 475) we find that

EyF (Yt ) − F(y)

= Ey

[∫ t

0
ds

(∫ Ys

−∞
[F(Ys − x) − F(Ys) + F ′(Ys)x]να(dx)(A.11)

+
∫ ∞
Ys

[F(0) − F(Ys) + F ′(Ys)x]να(dx)

)]

for all y > 0. The applicability of this formula (see, e.g., [15], page 97) follows
from the facts that |F ′(y)| ≤ C and |F ′′(y)| ≤ C for all y ≥ 0 with some C > 0
so that the mean value theorem yields the existence of ξs,x ∈ (Ys, Ys + x) and
ηs,x ∈ (Ys, Ys + x) such that

Ey

[∫ t

0
ds

(∫ 0

−∞
|F(Ys − x) − F(Ys) + F ′(Ys)x|να(dx)

)]

= Ey

[∫ t

0
ds

(∫ ∞
0

|F(Ys + x) − F(Ys) − F ′(Ys)x| c

x1+α
dx

)]

≤ Ey

[∫ t

0
ds

(∫ 1

0

1

2
|F ′′(ξs,x)|x2 c

x1+α
dx(A.12)

+
∫ ∞

1

(|F ′(ηs,x)|x + |F ′(Ys)|x) c

x1+α
dx

)]

≤ cEy

[∫ t

0
ds

(
C

2(2 − α)
+ 2C

α − 1

)]
= c(7 − 3α)C

2(2 − α)(α − 1)
t < ∞,

where the remaining two integrals (from 0 to Ys and from Ys to ∞) can be con-
trolled (bound from above) in exactly the same way as in (4.11) above. Dividing
both sides of (A.11) by t , letting t ↓ 0 and using the dominated convergence theo-
rem, we get

LY F (y) =
∫ y

−∞
[F(y − x) − F(y) + F ′(y)x]να(dx)

(A.13)
+ [F(0) − F(y)]

∫ ∞
y

να(dx) + F ′(y)

∫ ∞
y

xνα(dx),

which is easily verified to be equal to the right-hand side of (A.4) for all y > 0
upon using (A.1). This completes the proof. �

PROPOSITION 14. Let X = (Xt)t≥0 be a stable Lévy process of index α ∈
(0,1) whose characteristic function is given by

EeiλXt = exp
(
t

∫ ∞
−∞

(eiλx − 1)να(dx)

)
(A.14)

= e(c+(−iλ)α+c−(iλ)α)�(−α)t
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for λ ∈ R and t ≥ 0. Then the infinitesimal generator LY of the reflected process
Y = S − X takes any of the following three forms for y > 0 given and fixed:

Itô’s form

LY F (y) =
∫ y

0

(
F(y − x) − F(y)

) c+
x1+α

dx + c+(F (0) − F(y))

αyα

(A.15)
+

∫ ∞
0

(
F(y + x) − F(y)

) c−
x1+α

dx,

Riemann–Liouville’s form

LY F (y) = −c+
α

d

dy

∫ y

0

F(x)

(y − x)α
dx + c+F(0)

αyα

(A.16)

+ c−
α

d

dy

∫ ∞
y

F (x)

(x − y)α
dx,

Caputo’s form

LY F (y) = −c+
α

∫ y

0

F ′(x)

(y − x)α
dx + c−

α

∫ ∞
y

F ′(x)

(x − y)α
dx,(A.17)

whenever F ∈ C2
b(R+) satisfies |F ′(y)| = O(yγ ) as y → ∞ for some γ < α − 1

[as well as |F(y)| = O(yδ) as y → ∞ for some δ < α − 1 in (A.16) above].

PROOF. As in the proof of Proposition 4 it is enough to derive (A.15). For
this, fix t > 0 and note that since X is a pure jump semimartingale with bounded
variation, we have dXs = 
Xs and dSs = 
Ss for 0 < s ≤ t , so that Itô’s formula
yields

F(Yt ) = F(Y0) + ∑
0<s≤t

(
F(Ys) − F(Ys−)

)
.(A.18)

Proceeding as in (A.10), taking Ey on both sides of the resulting identity and ap-
plying the compensation formula (see, e.g., [20], page 475), we find that

EyF (Yt ) − F(y)

= Ey

[∫ t

0
ds

(∫ Ys

−∞
[F(Ys − x) − F(Ys)]να(dx)(A.19)

+
∫ ∞
Ys

[F(0) − F(Ys)]να(dx)

)]

for all y > 0. The applicability of this formula (see, e.g., [15], page 97) follows
from the facts that |F(y)| ≤ C and |F ′(y)| ≤ C for all y ≥ 0 with some C > 0
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so that the mean value theorem yields the existence of ξ1
s,x ∈ (Ys, Ys + x), ξ2

s,x ∈
(Ys − x,Ys) and ηs ∈ (0, Ys) such that

Ey

[∫ t

0
ds

(∫ Ys

−∞
|F(Ys − x) − F(Ys)|να(dx)

+
∫ ∞
Ys

|F(0) − F(Ys)|να(dx)

)]

≤ Ey

[∫ t

0
ds

(∫ ∞
0

|F(Ys + x) − F(Ys)| c

x1+α
dx

+
∫ Ys

0
|F(Ys − x) − F(Ys)| c

x1+α
dx

+
∫ ∞
Ys

|F(0) − F(Ys)| c

x1+α
dx

)]

≤ Ey

[∫ t

0
ds

(∫ 1

0
|F ′(ξ1

s,x)|x
c

x1+α
dx

+
∫ ∞

1
|F(Ys + x) − F(Ys)| c

x1+α
dx(A.20)

+
∫ 1

0
|F ′(ξ2

s,x)|x
c

x1+α
dx

+
∫ ∞

1
|F(Ys − x) − F(Ys)| c

x1+α
dx

+
∫ 1

Ys

|F ′(ηs)|Ys

c

x1+α
dx I (Ys ≤ 1)

+
∫ ∞

1
|F(0) − F(Ys)| c

x1+α
dx

)]

≤ cEy

[∫ t

0
ds

(
2C

1 − α
+ 6C

α
+ C

α
(Y 1−α

s − Ys)I (Ys ≤ 1)

)]

≤ c

(
2C

1 − α
+ 7C

α

)
t < ∞

upon using that 1 −α ∈ (0,1) in the final inequality. Dividing both sides of (A.19)
by t , letting t ↓ 0 and using the dominated convergence theorem, we get

LY F (y) =
∫ y

−∞
[F(y − x) − F(y)]να(dx)

(A.21)
+ [F(0) − F(y)]

∫ ∞
y

να(dx),

which is easily verified to be equal to the right-hand side of (A.15) for all y > 0
upon using (A.1). This completes the proof. �
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PROPOSITION 15. Let X = (Xt)t≥0 be a stable Lévy process of index 1 whose
characteristic function is given by

EeiλXt = exp
(
t

∫ ∞
−∞

(
eiλx − 1 − iλxI (|x| ≤ 1)

)
ν1(dx)

)
= e−c|λ|πt(A.22)

for λ ∈ R and t ≥ 0. Then the infinitesimal generator LY of the reflected process
Y = S − X takes any of the following three forms for y > 0 given and fixed:

Itô’s form

LY F (y) =
∫ y

0

(
F(y − x) − F(y) + F ′(y)x

) c

x2 dx

+ c(F (0) − F(y))

y
(A.23)

+
∫ y

0

(
F(y + x) − F(y) − F ′(y)x

) c

x2 dx

+
∫ ∞
y

(
F(y + x) − F(y)

) c

x2 dx,

Riemann–Liouville’s form

LY F (y) = c
d2

dy2

∫ ∞
0

F(x) log
(

1

|y − x|
)

dx + cF (0)

y
,(A.24)

Caputo’s form

LY F (y) = c

∫ ∞
0

F ′′(x) log
(

1

|y − x|
)

dx,(A.25)

whenever F ∈ C2
b(R+) satisfies

F ′(0+) = 0 (normal reflection)(A.26)

with |F ′′(y)| = O(yγ ) as y → ∞ for some γ < −1 [as well as |F(y)| = O(yδ) as
y → ∞ for some δ < −1 in (A.24) above].

PROOF. As in the proof of Proposition 4 it is enough to derive (A.23). Using
the same arguments as in (A.8) and (A.9), we find that

F(Yt ) = F(Y0) −
∫ t

0
F ′(Ys−) dXs

(A.27)
+ ∑

0<s≤t

(
F(Ys− + 
Ys) − F(Ys−) + F ′(Ys−)
Xs

)
,

where (
∫ t

0 F ′(Ys−) dXs)t≥0 is a local martingale. We can no longer claim that this
process is a martingale, however, we note from (A.22) that Xt = Mt + At with

EeiλMt = exp
(
t

∫
|x|≤1

(eiλx − 1 − iλx)ν1(dx)

)
,(A.28)
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EeiλAt = exp
(
t

∫
|x|>1

(eiλx − 1)ν1(dx)

)
(A.29)

from where we see that the (Lévy) process M = (Mt)t≥0 is a martingale (whose
Lévy measure has bounded support) and the bounded variation (Lévy) process
A = (At )t≥0 is given by

At = ∑
0<s≤t


XsI (|
Xs | > 1)(A.30)

for t ≥ 0. From (A.27)–(A.30), we see that

F(Yt ) = F(Y0) −
∫ t

0
F ′(Ys−) dMs

+ ∑
0<s≤t

(
F(Ys− + 
Ys) − F(Ys−)

+ F ′(Ys−)
XsI (|
Xs | ≤ 1)
)

= F(Y0) −
∫ t

0
F ′(Ys−) dMs

(A.31)
+ ∑

0<s≤t

([F(Ys− − 
Xs) − F(Ys−)

+ F ′(Ys−)
XsI (|
Xs | ≤ 1)]I (
Xs ≤ Ys−)

+ [F(0) − F(Ys−)

+ F ′(Ys−)
XsI (|
Xs | ≤ 1)]I (
Xs > Ys−)
)

using the same arguments as in (4.9) above. Since F ′ is bounded and the Lévy
measure of M has bounded support (implying E sup0≤s≤t |Ms |q < ∞ and hence
E[M,M]q/2 < ∞ for all q > 0 by the BDG inequality) it also follows by the BDG
inequality (with q = 1) that (

∫ t
0 F ′(Ys−) dXs)t≥0 is a martingale. Taking Ey on

both sides of (A.31), where Py denotes a probability measure under which Y0 = y,
and applying the compensation formula (see, e.g., [20], page 475) we find that

EyF (Yt ) − F(y)

= Ey

[∫ t

0
ds

(∫ Ys

−∞
[F(Ys − x) − F(Ys) + F ′(Ys)xI (|x| ≤ 1)]ν1(dx)(A.32)

+
∫ ∞
Ys

[F(0) − F(Ys) + F ′(Ys)xI (|x| ≤ 1)]ν1(dx)

)]

for all y > 0. The applicability of this formula (see, e.g., [15], page 97) fol-
lows from the facts that |F(y)| ≤ C(1 + yγ+2), |F ′(y)| ≤ C(y ∧ yγ+1) and
|F ′′(y)| ≤ C(1 ∧ yγ ) for all y ≥ 0 with some C > 0 so that the mean value theo-
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rem yields the existence of ξ1
s,x ∈ (Ys, Ys +x), ξ2

s,x ∈ (Ys −x,Ys)) and ηs ∈ (0, Ys)

such that

Ey

[∫ t

0
ds

(∫ Ys

−∞
∣∣F(Ys − x) − F(Ys) + F ′(Ys)xI (|x| ≤ 1)

∣∣ν1(dx)

+
∫ ∞
Ys

∣∣F(0) − F(Ys) + F ′(Ys)xI (|x| ≤ 1)
∣∣ν1(dx)

)]

≤ Ey

[∫ t

0
ds

(∫ ∞
1

|F(Ys + x) − F(Ys)|ν1(dx)

+
∫ 1

0
|F(Ys + x) − F(Ys) − F ′(Ys)x|ν1(dx)

+
∫ Ys

0
|F(Ys − x) − F(Ys) + F ′(Ys)x|ν1(dx)I (Ys < 1)

+
∫ 1

0
|F(Ys − x) − F(Ys) + F ′(Ys)x|ν1(dx)I (Ys ≥ 1)

+
∫ Ys

1
|F(Ys − x) − F(Ys)|ν1(dx)I (Ys ≥ 1)

+
∫ 1

Ys

|F(0) − F(Ys) + F ′(Ys)x|ν1(dx)I (Ys < 1)

+
∫ ∞

1
|F(0) − F(Ys)|ν1(dx)

)]

≤ Ey

[∫ t

0
ds

(
2C

∫ ∞
1

(
1 + (Ys + x)γ+2) c

x2 dx

+
∫ 1

0

1

2
|F ′′(ξ1

s,x)|x2 c

x2 dx + 2
∫ 1

0

1

2
|F ′′(ξ2

s,x)|x2 c

x2 dx

+ 2C(1 + Yγ+2
s )

∫ Ys

1

1

x2 dx I (Ys ≥ 1)

+
∫ 1

Ys

(|F ′(ηs)|Ys + |F ′(Ys)|x) c

x2 dx I (Ys < 1)

+
∫ ∞

1

(|F(0)| + C(1 + Yγ+2
s )

) c

x2 dx

)]

≤ cEy

[∫ t

0
ds

(
4C(1 + Yγ+2

s )

∫ ∞
1

1

x2 dx + 2C

∫ ∞
1

xγ dx + 3

2
C

+ 2C(1 − Ys)I (Ys < 1) + |F(0)| + C(1 + Yγ+2
s )

)]
(A.33)
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≤ cEy

[∫ t

0
ds

(
17

2
C + 5CYγ+2

s − 2C

γ + 1
+ |F(0)|

)]

≤ c

[(
17

2
C − 2C

γ + 1
+ |F(0)|

)
t

+ 5C

γ + 3
tγ+3Ey(S1 − I1)

γ+2
]

< ∞
since γ + 2 ∈ (0,1) and where we also use the scaling property of X. (Note that
without loss of generality we can assume that γ is close enough to −1 so that
γ + 2 > 0.) Dividing both sides of (A.32) by t , letting t ↓ 0 and using the domi-
nated convergence theorem, we get

LY F (y) =
∫ y

−∞
[F(y − x) − F(y) + F ′(y)xI (|x| ≤ 1)]ν1(dx)

+ [F(0) − F(y)]
∫ ∞
y

ν1(dx)(A.34)

+ F ′(y)

∫ ∞
y

xI (|x| ≤ 1)ν1(dx)

for all y > 0. Splitting the integral over (−∞, y] into integrals over (−∞,−y] and
[−y, y], noting that the third term of the resulting integral over (−∞,−y] cancels
with the final term in (A.34), it is easily seen using (A.2) that the expression on
the right-hand side of (A.34) coincides with the expression on the right-hand side
of (A.23). This completes the proof. �
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