
The Annals of Probability
2011, Vol. 39, No. 6, 2318–2384
DOI: 10.1214/10-AOP595
© Institute of Mathematical Statistics, 2011

UNIFORM BOUNDS FOR NORMS OF SUMS OF INDEPENDENT
RANDOM FUNCTIONS

BY ALEXANDER GOLDENSHLUGER1 AND OLEG LEPSKI2

University of Haifa and Université Aix–Marseille I

In this paper, we develop a general machinery for finding explicit uni-
form probability and moment bounds on sub-additive positive functionals of
random processes. Using the developed general technique, we derive uniform
bounds on the Ls -norms of empirical and regression-type processes. Use-
fulness of the obtained results is illustrated by application to the processes
appearing in kernel density estimation and in nonparametric estimation of
regression functions.

1. Introduction.

1.1. General setting. Let S and H be linear topological spaces, (�,A,P) be
a complete probability space, and let ξθ :� → S, θ ∈ H be a family of random
mappings. In the sequel, ξ•(ω) is assumed linear and continuous on H for any
ω ∈ �. Let � :S → R+ be a given sub-additive functional. Suppose that there
exist functions A :H → R+, B :H → R+ and U :H → R+ such that

P{�(ξθ )−U(θ)≥ z} ≤ g

(
z2

A2(θ)+B(θ)z

)
∀θ ∈ H,(1.1)

where g : R+ → R+ is a monotone decreasing to zero function.
Let � be a fixed subset of H. In this paper, under rather general assumptions

on U,A,B and �, we establish uniform probability and moment bounds of the
following type: for any ε ∈ (0,1), y > 0 and some q ≥ 1

P
{

sup
θ∈�

[
�(ξθ )− uε

(
1 + √

yλA + yλB
)
U(θ)

]≥ 0
}

≤ Pε,g(y),(1.2)

E sup
θ∈�

[
�(ξθ )− uε

(
1 + √

yλA + yλB
)
U(θ)

]q
+ ≤ Eε,g(y).(1.3)

Here λA and λB are the quantities completely determined by U,A,� and U,B,�,
respectively, and the inequalities (1.2) and (1.3) hold if these quantities are finite;
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Pε,g(·) and Eε,g(·) are continuous decreasing to zero functions completely deter-
mined by ε and g; and the factor uε is such that uε → 1, ε → 0. We present explicit
expressions for all quantities appearing in (1.2) and (1.3).

In order to derive (1.2) and (1.3) from (1.1), we assume that the set � is the
image of a totally bounded set in some metric space under a continuous mapping.
Namely, if (Z,d) is a metric space, and Z is a totally bounded subset of (Z,d) then
we assume that there exists a continuous mapping φ from Z to H such that

�= {θ ∈ H : θ = φ[ζ ], ζ ∈ Z}.(1.4)

Let NZ,d(δ), δ > 0 be the minimal number of balls of radius δ in the metric d
needed to cover Z. The inequalities (1.2) and (1.3) are proved under some condi-
tion that relates NZ,d(·) and g(·). It is worth mentioning that in particular examples
the parametrization �= φ[Z] is often natural, while the metric d may have a rather
unusual form.

Inequalities (1.2) and (1.3) can be considered as a refinement of usual bounds on
the tail distribution of suprema of random functions. In particular, probability and
moment bounds for supθ∈��(ξθ ) can be easily derived from (1.2) and (1.3). The
well-known concentration results deal with deviation of the supremum of a random
process from the expectation of this supremum, and estimation of the expectation
is a separate rather difficult problem. In contrast, in this paper we develop explicit
uniform bounds on the whole trajectory {�(ξθ ), θ ∈ �}. The inequality in (1.1)
provides the basic step in the development of such uniform probability bounds.
The usual technique is based on the chaining argument that repeatedly applies in-
equality in (1.1) to increments of the considered random process [see, e.g., Ledoux
and Talagrand (1991) and van der Vaart and Wellner (1996), Section 2.2].

The most interesting phenomena can be observed when a sequence of random
mappings {ξ (n)θ , θ ∈ H}, n ∈ N

∗ is considered. There exists a class of problems
where the quantities λA and λB depend on n, and λA → 0, λB → 0 as n → ∞.
Under these circumstances, one can choose y = yn → ∞ and ε = εn → 0 such
that

Pε,g(yn)→ 0, Eε,g(yn)→ 0, n→ ∞(1.5)

and, at the same time,

uεn
(
1 + √

ynλA + ynλB
)
U(·)→U(·), n→ ∞.(1.6)

The relation in (1.5) means that uεn(1 + √
ynλA + ynλB)U(·) is indeed a uniform

upper bound for �(ξ(n)θ ) on �, while (1.6) indicates that for large n this uniform
bound is nearly as good as a nonuniform bound U(·) given in (1.1). Typically for a
fixed y > 0, we have Pε,g(y)→ ∞ andEε,g(y)→ ∞ as ε → 0; therefore, in order
to get (1.5) and (1.6), εn → 0 and yn → ∞ should be calibrated in an appropriate
way.
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The general setting outlined above includes important specific problems that are
in the focus of the present paper. We consider sequences of random mappings that
are sums of real-valued random functions defined on some measurable space (here
the parameter n ∈ N

∗ is the number of summands). We are interested in uniform
bounds on the norms of such random functions; thus the sub-additive functional of
interest � is the Ls -norm, s ≥ 1. First, the nonuniform bound (1.1) is established,
and then the inequalities of the type (1.2) and (1.3) are derived. It is shown that
(1.5) and (1.6) hold under mild assumptions on the parametric set �. We also
discuss sharpness of the nonuniform inequality in (1.1).

1.2. Norms of sums of independent random functions. Let (T ,T, τ ) and
(X ,X, ν) be σ -finite spaces, and let X be a separable Banach space. Consider an
X -valued random element X defined on the complete probability space (�,A,P)
and having the density f with respect to the measure ν. Let ε be a real random
variable defined on the same probability space, independent of X and having a
symmetric distribution.

For any (T × X)-measurable function w on T × X and for any t ∈ T , n ∈ N
∗,

define the random functions

ξw(t) :=
n∑
i=1

[w(t,Xi)− Ew(t,X)], ηw(t) :=
n∑
i=1

w(t,Xi)εi,(1.7)

where (Xi, εi), i = 1, . . . , n, are independent copies of (X, ε). Put for 1 ≤ s <∞

‖ξw‖s,τ =
[∫

|ξw(t)|sτ (dt)
]1/s

, ‖ηw‖s,τ =
[∫

|ηw(t)|sτ (dt)
]1/s

.

We are interested in uniform bounds of the type (1.2) and (1.3) for ‖ξw‖s,τ and
‖ηw‖s,τ when w ∈ W , where W is a given set of (T × X)-measurable functions.
This setup is a specific case of the general framework with �(·) = ‖ · ‖s,τ , θ =
w and � = W . More precisely, if ψw denotes either ξw or ηw , and if P is the
probability law of X1, . . . ,Xn (when ξw is studied) or of (X1, ε1), . . . , (Xn, εn)

(when ηw is studied) then we want to find a functional U(ψw)= Uψ(w,f ) such
that (1.1) holds and

P

{
sup
w∈W

[‖ψw‖s,τ − uε
(
1 + √

yλA + yλB
)
Uψ(w,f )

]≥ 0
}

≤ Pε,g(y),(1.8)

E sup
w∈W

[‖ψw‖s,τ − uε
(
1 + √

yλA + yλB
)
Uψ(w,f )

]q
+ ≤ Eε,g(y),

(1.9)
q ≥ 1.

Note that {ξw,w ∈ W } is the empirical process. In the sequel, we refer to
{ηw,w ∈ W } as the regression-type process as it naturally appears in nonparamet-
ric estimation of regression functions. In the regression context, Xi are the design
variables, εi are the random noise variables.
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Uniform probability and moment bounds for empirical processes are a subject
of vast literature; see, for example, Alexander (1984), Talagrand (1994), van der
Vaart and Wellner (1996), Massart (2000), Bousquet (2002), Giné and Koltchinskii
(2006) among many others. Such bounds play an important role in establishing the
laws of iterated logarithm and central limit theorems [see, e.g., Alexander (1984)
and Giné and Zinn (1984)]. However, we are not aware of works studying uniform
bounds of the type (1.8) and (1.9) satisfying (1.5) and (1.6) for the Ls -norms of
such processes.

Apart from the pure probabilistic interest, development of uniform bounds on
the Ls-norms of processes {ξw,w ∈ W } and {ηw,w ∈ W } is motivated by prob-
lems of adaptive estimation arising in nonparametric statistics. In particular, the
processes {ξw,w ∈ W } and {ηw,w ∈ W } represent stochastic errors of linear esti-
mators with the weight w in the density estimation and nonparametric regression
models, respectively. Uniform bounds on the error process are key technical tools
in development of virtually all adaptive estimation procedures [see, e.g., Barron,
Birgé and Massart (1999), Devroye and Lugosi (2001) Cavalier and Golubev
(2006), Goldenshluger and Lepski (2008) and Golubev and Spokoiny (2009)].

The kernel density estimator process is a particular case of the empirical pro-
cess {ξw,w ∈ W} that was frequently studied in the probabilistic literature. It is
associated with the weight function w given by

w(t, x)= 1

n
∏d
i=1 hi

K

(
t − x

h

)
, x ∈ X = R

d, t ∈ T = R
d,(1.10)

where K : Rd → R is a kernel, h = (h1, . . . , hd) is the bandwidth vector, and
u/v denotes the coordinate-wise division for u, v ∈ R

d . Limit laws for the Ls -
norms of the kernel density estimators were derived in Beirlant and Mason (1995);
Dümbgen and Fatalov (2002) study exact asymptotics for the large/moderate devi-
ation probabilities. Giné, Mason and Zaitsev (2003) investigate weak convergence
of the L1-norm kernel density estimator process indexed by a class of kernels under
entropy conditions. For other closely related work, see Einmahl and Mason (2000),
Giné, Koltchinskii and Zinn (2004), Giné and Nickl (2008) and references therein.
We remark that the kernel density estimator process is naturally parametrized by
W = K × H, where H is a set of bandwidths and K is a family of kernels. The
convolution kernel density estimator process will be also studied in Section 3.4.

The inequalities (1.8) and (1.9) are useful for constructing statistical procedures
provided that the following requirements are met.

(i) Explicit expression for Uψ(w,f ). Typically, the bound Uψ(w,f ) is directly
involved in the construction of statistical procedures; thus, it should be ex-
plicitly given.

(ii) Minimal assumptions on W . This condition is dictated by a variety of prob-
lems where the inequalities (1.8) and (1.9) can be applied. In particular, the
sets W may have a complicated structure (see, e.g., examples in Section 3.4).
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(iii) Minimal assumptions on f . The probability measure P (and the expecta-
tion E) as well as the right-hand sides of (1.8) and (1.9) are determined by
the density f . Therefore, we want to establish (1.8) and (1.9) under weak as-
sumptions on f . In particular, we would like to emphasize that all our results
are established for the set of all probability densities uniformly bounded by a
given constant. No regularity conditions are supposed.

(iv) Minimal assumptions on the distribution of ε. If the process {ηw,w ∈ W } is
considered, then the probability measure P (and the expectation E) is also
determined by the distribution of ε. Therefore, we would like to have (1.8)
and (1.9) under mild assumptions on this distribution. We will see that the
function g given in (1.1) depends on the distribution tail of ε.

Let us briefly discuss some consequences of requirement (i) for the pro-
cess {ξw,w ∈ W }. Using the Talagrand concentration inequality, we prove
that (1.1) holds with Uξ(w,f ) = E‖ξw‖s,τ , on the space of functions H =
{w : supx∈X ‖w(·, x)‖s,τ < ∞}. However, this bound cannot be used in statistical
problems at least for two reasons.

First, it is implicit and a reasonably sharp explicit upper bound Uξ(w,f ) on
Uξ(w,f ) should be used instead. Sometimes if the class W is not so complex
(e.g., W = K × H) one can find a constant c independent of w, f and n such that

cUξ (w,f )≤Uξ(w,f )≤Uξ(w,f ).

In such cases, Uξ(w,f ) can be regarded as a sharp bound on Uξ(w,f ). We note,
however, that establishing the above inequalities requires additional assumptions
on W and f and nontrivial technical work. It seems that for more complex classes
W the problem of finding an “optimal” upper estimate for Uξ(w,f ) cannot be
solved in the framework of probability theory. Contrary to that, theory of adaptive
nonparametric estimation is equipped with the optimality criterion, and an upper
bound Uξ(w,f ) can be regarded as sharp if it leads to the optimal statistical pro-
cedure. Thus, sharpness of Uξ(w,f ) can be assessed through accuracy analysis of
the resulting statistical procedure.

Second, Uξ(w,f ) [and presumably its sharp upper bound Uξ(w,f )] depends
on f . In the density estimation context where the process {ξw,w ∈ W } appears, f
is the parameter to be estimated. Therefore, bounds depending on f cannot be used
in construction of estimation procedures. A natural idea is to replace Uξ(w,f ) by
its empirical counterpart Ûξ (w) whose construction is based only on the observa-
tionsX1, . . . ,Xn. We adopt this strategy and establish the corresponding inequality

E sup
w∈W

[‖ξw‖s,τ − vε
(
1 + √

yλA + yλB
)
Ûξ (w)

]q
+ ≤ Ẽε,g(y), q ≥ 1,(1.11)

where Ẽε,g(·) differs from Eε,g(·) in (1.9) only by some absolute multiplicative
factor, and, therefore, satisfies (1.5) if (1.6) holds forUξ(w,f ). Here vε is bounded
by some absolute constant and completely determined by ε and W . We provide an
explicit expression for vε .
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Thus, requirement (i) leads to a new type of uniform bounds that are random. A
natural question about sharpness of these bounds arises. In order to give an answer
to this question, we prove that under mild assumptions on the class of weights W
one can choose ε = εn → 0 and yn → ∞ as n→ ∞ so that

lim
n→∞vεn

(
1 + √

ynλA + ynλB
)= 1, lim

n→∞ Ẽεn,g(yn)= 0,

and there exists ε̃n → 0, n→ ∞ such that for any subset W0 ⊆ W and any q ≥ 1

E

[
sup
w∈W0

Ûξ (w)
]q ≤

[
(1 + ε̃n) sup

w∈W0

Uξ(w,f )
]q +Rn(W0),

where the remainder term Rn(W0) is asymptotically negligible in the sense that for
any � > 0 one has lim supn→∞ supf∈F supW0⊆W [n�Rn(W0)] = 0. Here F denotes
the set of all probability densities uniformly bounded by a given constant [see
(3.8)]. These results show that in asymptotic terms the random uniform bound is
almost as good as the nonrandom one, and there is no loss of sharpness due to the
use of the random uniform bound.

1.3. Summary of results and organization of the paper. In this paper, we de-
velop a general machinery for finding uniform upper bounds on sub-additive pos-
itive functionals of sums of independent random functions. We start with the gen-
eral setting as outlined in Section 1.1 above, and establish inequalities of the type
(1.2) and (1.3) (see Proposition 2). Proofs of these results are based on the chain-
ing and slicing/peeling techniques. The distinctive feature of our approach is that
� is assumed to be an image of a subset Z, of a metric space under some contin-
uous mapping φ, that is, �= φ(Z) as in (1.4). Then chaining on � is performed
according to the distance induced on � by the mapping φ.

Section 3 is devoted to a systematical study of the Ls -norm of the empirical pro-
cess {ξw,w ∈ W}. First, we derive an inequality on the tail probability of ‖ξw‖s,τ
for an individual function w ∈ W (see Theorem 1 in Section 3.1). Here we use
the Bernstein inequality for empirical processes proved by Bousquet (2002) and
inequalities for norms of integral operators. Then in Section 3.2 we proceed with
establishing uniform bounds. In Theorem 2 of Section 3.2.1, we derive uniform
nonrandom bounds for ‖ξw‖s,τ , w ∈ W that hold for all s ≥ 1. In the case s > 2,
the nonrandom bound depends on the density f ; therefore, for s > 2 we construct
a random bound and present the corresponding result in Theorem 3. Theorems 2
and 3 hold for classes of weights W satisfying rather general conditions. In Sec-
tion 3.3, we specialize results of Theorems 2 and 3 to the classes W of weights
depending on the difference of their arguments. This allows us to derive explicit
both nonrandom and random uniform bounds on ‖ξw‖s,τ under conditions on the
weights which can be easily interpreted. The corresponding results are given in
Theorems 4 and 5. We also present some asymptotic corollaries which demon-
strate sharpness of the derived uniform bounds. Section 3.4 applies the results of
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Theorems 4 and 5 to special examples of the set W . In particular, we consider the
kernel density estimator process given by (1.10), and the convolution kernel den-
sity estimator processes. It turns out that corresponding results can be formulated
in a unified way, and they are presented in Theorem 7.

In Section 4, we study Ls -norm of the regression-type processes {ηw,w ∈ W }
given in (1.7). First, we derive an inequality on the tail probability of ‖ηw‖s,τ for
an individual function w ∈ W (Theorem 8 in Section 4.1). This theorem is proved
under two different types of conditions on the tail probability of the random vari-
able ε. In Section 4.2, we present a nonrandom uniform bound for ‖ηw‖s,τ for all
s ≥ 1 over the class of weights depending on the difference of their arguments. The
corresponding result is given in Theorem 9, and some asymptotic results that fol-
low from Theorem 9 are formulated in Corollary 7. Sections 5–10 contain proofs
of main results of this paper. Proofs of auxiliary lemmas are given in the Appendix.

2. Uniform bounds in general setting. In this section, we establish uniform
probability bounds for the supremum of a general sub-additive functional of a
random process from the probability inequality for the individual process.

Let S and H be linear topological spaces, (�,A,P) be a complete probability
space, and let ξθ :�→ S, θ ∈ H be a family of random mappings such that:

• ξ•(ω) is linear and continuous on H for any ω ∈�;
• ξθ (·) is A-measurable for any θ ∈ H.

Let � :S → R+ be a given sub-additive functional, and � be a fixed subset of H.

ASSUMPTION 1. There exist functions A :H → R+, B :H → R+, U :H →
R+ and g : R+ → R+ such that:

(i) for any z > 0

P{�(ξθ )−U(θ)≥ z} ≤ g

(
z2

A2(θ)+B(θ)z

)
∀θ ∈ H;

(ii) the function g is monotonically decreasing to 0;
(iii) 0< r := infθ∈�U(θ)≤ supθ∈�U(θ)=:R ≤ ∞.

Condition (i) is a Bernstein-type probability inequality on �(ξθ ) for a fixed
θ ∈ H. In particular, in examples of Sections 3 and 4 we have g(x) = ce−xα and
g(x) = cx−p for some c,α,p > 0. Based on Assumption 1, our goal is to derive
uniform probability and moment bounds of the type (1.2) and (1.3). For this pur-
pose, we suppose that the set � is parametrized in a special way; this assumption
facilitates the use of the standard chaining technique and leads to quite natural
conditions on the functions U,A and B .
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ASSUMPTION 2. Let (Z,d) be a metric space, and let Z be a totally bounded
subset of (Z,d). There exists a continuous mapping φ from Z to H such that

�= {θ ∈ H : θ = φ[ζ ], ζ ∈ Z}.

REMARK 1. In statistical applications the set � is parametrized in a natural
way. For instance, if, as in the introduction section, �(·)= ‖·‖s,τ and ξθ = ξw with
w given by (1.10), then � is parametrized by the kernel and bandwidth (K,h) ∈
K × H. The distance d on K × H may have a rather special form.

Let Z be a subset of Z. Define the following quantities:

κU(Z) := sup
ζ1,ζ2∈Z

U(φ[ζ1] − φ[ζ2])
d(ζ1, ζ2)

∨ sup
ζ∈Z

U(φ[ζ ]),(2.1)

�A(Z) := sup
ζ1,ζ2∈Z

A(φ[ζ1] − φ[ζ2])
d(ζ1, ζ2)

∨ sup
ζ∈Z

A(φ[ζ ]),(2.2)

�B(Z) := sup
ζ1,ζ2∈Z

B(φ[ζ1] − φ[ζ2])
d(ζ1, ζ2)

∨ sup
ζ∈Z

B(φ[ζ ]).(2.3)

Let NZ,d(δ) denote the minimal number of balls of radius δ in the metric d needed
to cover the set Z, and let EZ,d(δ) = ln[NZ,d(δ)] be the δ-entropy of Z. For any
y > 0 and ε > 0, put

L
(ε)
g,Z(y)= g(y)+

∞∑
k=1

[NZ,d(ε2−k)]2g(9y2k−3k−2).

Key propositions. The next two statements are the main results of this section.
Define

C∗(y,Z) := √
y�A(Z)+ y�B(Z), y > 0,(2.4)

where �A and �B are given in (2.2) and (2.3).

PROPOSITION 1. Suppose that Assumptions 1 and 2 hold, and let Z be a
subset of Z such that supζ,ζ ′∈Z d(ζ, ζ ′)≤ ε/4 and κU(Z) <∞. Then for all y > 0
and ε > 0 one has

P
{

sup
ζ∈Z

�
(
ξφ[ζ ]

)≥ (1 + ε)[κU(Z)+C∗(y,Z)]
}

≤ L
(ε)
g,Z(y).

REMARK 2. Inspection of the proof of Proposition 1 shows that continuity
of ξ• on H can be replaced by the assumption that �(ξ•) is continuous P-almost
surely on φ[Z] in the distance d. The latter assumption is often easier to verify in
specific problems.
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Define

�∗
u(y,Z) := sup

ζ∈Z
{
�
(
ξφ[ζ ]

)− uC∗(y)U(φ[ζ ])}, y > 0,(2.5)

where Z ⊆ Z is a subset of Z, u≥ 1 is a constant, and C∗(·) is the function defined
below in (2.9). We derive bounds on the tail probability and qth moment of the
random variable �∗

u(y,Z). Note that �∗
u(y,Z) is A-measurable for given y and u

because the mapping ζ �→ ξφ[ζ ] is P-almost surely continuous, and Z is a totally
bounded set. By the same reason the supremum taken over any subset of Z will be
measurable as well.

With r and R defined in Assumption 1(iii), for any a ∈ [r,R] consider the fol-
lowing subsets of Z:

Za := {ζ ∈ Z :a/2<U(φ[ζ ])≤ a}.(2.6)

In words, for given a ∈ [r,R], Za is the slice of the parameter values ζ ∈ Z for
which the function U(φ[ζ ]) takes values between a/2 and a.

In what follows, the quantities κU(Za), �A(Za), �B(Za) and L(ε)g,Za
(y) will be

considered as functions of a ∈ [r,R]. That is why, with slight abuse of notation,
we will write

κU(a) := κU(Za), L(ε)g (y, a) := L
(ε)
g,Za

(y).(2.7)

Put also

�A := sup
a∈[r,R]

a−1�A(Za); �B := sup
a∈[r,R]

a−1�B(Za),(2.8)

and let the function C∗(·) in (2.5) be defined as

C∗(y) := 1 + 2
√
y�A + 2y�B, y > 0.(2.9)

PROPOSITION 2. Suppose that Assumptions 1 and 2 hold, and let κU(Z) <

∞. If

κU(a)≤ a ∀a ∈ [r,R],(2.10)

and if uε = 2ε(1 + ε) then for any ε ∈ (0,1], y > 0 and any q ≥ 1 one has

P{�∗
uε
(y,Z)≥ 0} ≤NZ,d(ε/8)

[ε−1 log2(R/r)−1]+∑
j=0

L(ε)g
(
y, r2ε(j+1)),(2.11)

E[�∗
uε
(y,Z)]q+ ≤NZ,d(ε/8)

[
uεC

∗(y)
]q

(2.12)

×
[ε−1 log2(R/r)−1]+∑

j=0

[
r2ε(j+1)]qJ (ε)g

(
y, r2ε(j+1)),

where J (ε)g (z, a) := q
∫∞

1 (x − 1)q−1L
(ε)
g (zx, a) dx.
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REMARK 3.

1. Proposition 1 establishes an upper bound on the tail probability of the supre-
mum of �(ξφ[ζ ]) over an arbitrary subset of Z contained in a ball of radius
ε/8 in the metric d. The proof of Proposition 2 uses this bound for balls Z of
the radius ε/8 that form a covering of Z. Each ball Z is divided on slices on
which the value of U(φ[ζ ]) is roughly the same. Then the supremum over Z is
bounded by the sum of suprema over the slices. This simple technique is often
used in the literature on empirical processes where it is referred to as peeling
or slicing [see, e.g., van de Geer (2000), Section 5.3, and Giné and Koltchinskii
(2006)].

2. Note that Proposition 2 holds for any distance d on Z. Therefore, if κU(a) is
proportional to a, condition (2.10) can be enforced by rescaling the distance d.

We now present a useful bound that can be easily derived from (2.11) and (2.12).
Let

L(ε)g :=
∞∑
k=1

[NZ,d(ε2−k)]2
√
g(9 · 2k−3k−2).(2.13)

Note that for all Z ⊆ Z and y ≥ 1

L
(ε)
g,Z(y)≤ g(y)+L(ε)g

√
g(y),

because infk≥1 2k(k)−2 = 8/9 and g is monotone decreasing. Therefore, we arrive
to the following corollary to Proposition 2.

COROLLARY 1. If the assumptions of Proposition 2 hold, and L(ε)g <∞ then
for all y ≥ 1 and ε ∈ (0,1]

P{�∗
uε
(y,Z)≥ 0} ≤NZ,d(ε/8)[1 ∨ ε−1 log2(R/r)]

[
g(y)+L(ε)g

√
g(y)

]
,

E[�∗
uε
(y,Z)]q+ ≤NZ,d(ε/8)[22εR(1 + ε)C∗(y)]q[2qε − 1]−1J (ε)g (y),

where J (ε)g (z)= q
∫∞

1 (x − 1)q−1[g(zx)+L
(ε)
g

√
g(zx)]dx.

3. Uniform bounds for norms of empirical processes. Based on the results
obtained in Propositions 1 and 2, in this section we develop uniform bounds for
the family {‖ξw‖s,τ ,w ∈ W }, where ξw is defined in (1.7). The first step here is
to check Assumption 1. For this purpose, we establish an exponential inequality
for ‖ξw‖s,τ when the function w ∈ W is fixed. Next, using Corollary 1 we derive
a nonrandom uniform bound and establish corresponding inequalities of the type
(1.8) and (1.9) satisfying requirements (i)–(iv) of the Introduction. We develop also
a random uniform bound based on X1, . . . ,Xn and derive an inequality of the type
(1.11).

To proceed, we need the following assumption.



2328 A. GOLDENSHLUGER AND O. LEPSKI

ASSUMPTION (A1). Let X be a countable dense subset of X . For any ε > 0
and any x ∈ X , there exists x ∈ X such that

‖w(·, x)−w(·, x)‖s,τ ≤ ε.

In the sequel, we consider only the sets W of (T × X)-measurable functions
satisfying Assumption (A1). Let

ν′(dx)= f (x)ν(dx),

and for any s ∈ [1,∞] define

�s(w,f ) :=
[∫

‖w(t, ·)‖s2,ν′τ(dt)
]1/s

=
[∫ (∫

|w(t, x)|2f (x)ν(dx)
)s/2

τ(dt)

]1/s

,

(3.1)
Ms,τ,ν′(w) := sup

x∈X
‖w(·, x)‖s,τ ∨ sup

t∈T
‖w(t, ·)‖s,ν′,

Ms(w) :=Ms,τ,ν(w).

Let c1(s) := 15s/ ln s, s > 2, c2(s) be the constant appearing below in inequal-
ity (6.2) of Lemma 3, and define

c3(s) := c1(s)∨ c2
(
s/(s − 1)

) ∀s > 2,
(3.2)

c∗(s) :=
⎧⎨
⎩

0, 1 ≤ s < 2,
1, s = 2,
c3(s), s > 2.

It is worth mentioning that c1(s) is the best known constant in the Rosenthal in-
equality [see Johnson, Schechtman and Zinn (1985)], and in many particular ex-
amples c2(s)= 1 (see Lemma 3 below). Although c1(s) is defined for s > 2 only,
it will be convenient to set c1(s)= 1 if s ∈ [1,2]. We use this convention in what
follows without further mention.

3.1. Probability bounds for fixed weight function. For any w ∈ W , we define

ρs(w,f ) :=
⎧⎪⎨
⎪⎩
[√

n�s(w,f )
]∧ [4n1/sMs(w)], s < 2,√

nM2(w), s = 2,
c1(s)

[√
n�s(w,f )+ 2n1/sMs(w)

]
, s > 2,

(3.3)

ω2
s (w,f ) :=

{
M2

s (w)[14n+ 96n1/s], s < 2,
6nM2

1,τ,ν′(w)+ 24
√
nM2

2 (w), s = 2,

and if s > 2 then we set

ω2
s (w,f ) := 6c3(s)

[
nM2

2s/(s+2),τ,ν′(w)
(3.4)

+ 4
√
n�s(w,f )Ms(w)+ 8n1/sM2

s (w)
]
.
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THEOREM 1. Let s ∈ [1,∞) be fixed, and suppose that Assumption (A1)
holds. If Ms(w) <∞, then for any z > 0

P{‖ξw‖s,τ ≥ ρs(w,f )+ z}
(3.5)

≤ exp
{
− z2

(1/3)ω2
s (w,f )+ (4/3)c∗(s)Ms(w)z

}
,

where c∗(s) is given in (3.2).

REMARK 4. Because c∗(s) = 0 for s ∈ [1,2), the distribution of the random
variable ‖ξw‖s,τ has a sub-Gaussian tail. In this case, similar bounds can be ob-
tained from the inequalities given in Pinelis (1990), Theorem 2.1, Pinelis (1994),
Theorems 3.3–3.5, and Ledoux and Talagrand (1991), Section 6.3. In particular,
Theorem 1.2 of Pinelis (1990) gives the upper bound exp{−z2/2nM2

s (w)} which
is better by a constant factor than our upper bound in (3.5) whenever s ∈ [1,2).
However, if s ≥ 2 then the cited results are not accurate enough in the sense that
the corresponding bounds do not satisfy relations (1.5) and (1.6) of the Introduc-
tion. It seems that only concentration principle leads to tight upper bounds; that is
why we use this unified method in our derivation.

It is obvious that the upper bound of Theorem 1 remains valid if we replace
ρs(w,f ), ω2

s (w,f ) and Ms(w) by their upper bounds. The next result can be
derived from Theorem 1 in the case s ∈ [1,2).

COROLLARY 2. Let s ∈ [1,2) be fixed, and suppose that Assumption (A1)
holds. If Ms(w) <∞ then for every z > 0 and for all n≥ 1

P{‖ξw‖s,τ ≥ 4n1/sMs(w)+ z} ≤ exp
{
− z2

37nM2
s (w)

}
.

The result of the corollary is valid without any conditions on the density f .
Moreover, neither the bound for ‖ξw‖s,τ , nor the right-hand side of the inequality
depend on f . It is important to realize that the probability inequality of Corollary 2
is sharp in some cases. In particular, it is not too difficult to construct a density f
such that �s(w,f ) = +∞ for any function w satisfying rather general assump-
tions. In this case, the established inequality seems to be sharp. On the other hand,
for any density f satisfying a moment condition

√
n�s(w,f ) can be bounded

from above, up to a numerical constant, by
√
nM2(w) which is typically much

smaller than n1/sMs(w).
Several useful bounds can be derived from Theorem 1. In particular, it is shown

at the end of the proof of Theorem 1 that for all s ≥ 2 and p ≥ 1

�s(w,f )≤M2(w)
∥∥√f ∥∥s,ν, Mp,τ,ν′(w)≤ [1 ∨ ‖f ‖∞]1/pMp(w).(3.6)
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Using these inequalities, we arrive to the following result.

COROLLARY 3. Let s > 2 be fixed, and suppose that Assumption (A1) holds.
If Ms(w) <∞, then for every z > 0 and for all n≥ 1

P{‖ξw‖s,τ ≥ ρ̃s(w,f )+ z}

≤ exp
{
− z2

(1/3)ω̃2
s (w,f )+ (4/3)c3(s)Ms(w)z

}
,

where ρ̃s(w,f ) := c1(s)[√nM2(w)‖√f ‖s,ν + 2n1/sMs(w)] and

ω̃2
s (w,f ) := 6c3(s)

{
n[1 ∨ ‖f ‖∞](s+2)/sM2

2s/(s+2)(w)

+ 4
√
nM2(w)Ms(w)

∥∥√f ∥∥s,ν + 8n1/sM2
s (w)

}
.

3.2. Uniform bounds. Theorem 1 together with Corollaries 2 and 3 ensures
that Assumption 1 is fulfilled for ‖ξw‖s,τ . In this section, we use Proposition 2
together with Theorem 1 in order to derive a uniform over W bounds on ‖ξw‖s,τ .

Following the general setting of Section 2, we assume that W is a parametrized
set of weights, that is,

W = {w :w = φ[ζ ], ζ ∈ Z},(3.7)

where Z is a totally bounded subset of some metric space (Z,d). Thus, any w ∈ W
can be represented as w = φ[ζ ] for some ζ ∈ Z. Recall that NZ,d(δ), δ > 0 stands
for the minimal number of balls of radius δ in the metric d needed to cover the
set Z, and EZ,d(δ)= ln[NZ,d(δ)] is the δ-entropy of Z.

The next assumption requires that the mapping ζ �→ φ[ζ ] =w be continuous in
the supremum norm.

ASSUMPTION (A2). For every ε > 0, there exists γ > 0 such that for all
ζ1, ζ2 ∈ Z satisfying d(ζ1, ζ2)≤ γ one has

sup
t

sup
x

|w1(t, x)−w2(t, x)| ≤ ε,

where w1(t, x)= φ[ζ1](t, x) and w2(t, x)= φ[ζ2](t, x).

Because ξw is linear in w, this assumption along with Assumption (A1) guar-
antees that all the considered objects are measurable.

Let F be the class of all probability densities uniformly bounded by con-
stant f∞,

F :=
{
p : Rd → R :p ≥ 0,

∫
p = 1,‖p‖∞ ≤ f∞ <∞

}
.(3.8)
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It is easily seen that the inequalities of Theorem 1 and Corollary 3 can be made
uniform with respect to the class F . Indeed, the bound of Corollary 3 remains
valid if one replaces ‖f ‖∞ and ‖√f ‖s,ν by f∞ and f1/2−1/s∞ , respectively. From
now on, we suppose without loss of generality that f∞ ≥ 1.

3.2.1. Uniform nonrandom bound. Theorem 1 together with Corollaries 2
and 3 show that Assumption 1 is fulfilled for ‖ξw‖s,τ with g(x)= e−x ,

U(w)= Uξ(w,f )

:=
⎧⎪⎨
⎪⎩

4n1/sMs(w), s ∈ [1,2),√
nM2(w), s = 2,

c1(s)
[√

n�s(w,f )+ 2n1/sMs(w)
]
, s > 2;

(3.9)
A2(w)=A2

ξ (w)

:=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

37nM2
s (w), s < 2,

2f2∞nM2
1 (w)+ 8

√
nM2

2 (w), s = 2,

2c3(s)f2∞
[
nM2

2s/(s+2)(w)+ 4
√
nM2(w)Ms(w)

+8n1/sM2
s (w)

]
, s > 2;

and B(w)= Bξ(w) := 4
3c∗(s)Ms(w), where c∗(s) is defined in (3.2).

Put

rξ := inf
w∈W

Uξ(w,f ), Rξ := sup
w∈W

Uξ(w,f ).(3.10)

Let κUξ (·) be given by (2.7) with U =Uξ , and

C∗
ξ (y)= 1 + 2

√
y�Aξ + 2y�Bξ , y > 0,

where �A and �B are defined in (2.8); see also (2.9).

THEOREM 2. Let s ≥ 1 be fixed, (3.7) hold, and let f ∈ F if s ≥ 2. Let As-
sumption (A2) be fulfilled. If κUξ (a) ≤ a for all a ∈ [rξ ,Rξ ] then for any y ≥ 1
and ε ∈ (0,1] one has

P

{
sup
w∈W

[‖ξw‖s,τ − uεC
∗
ξ (y)Uξ (w,f )] ≥ 0

}

≤ 1

ε
NZ,d(ε/8)[1 ∨ log2(Rξ/rξ )]

[
1 +L(ε)exp

]
e−y/2,

E sup
w∈W

[‖ξw‖s,τ − uεC
∗
ξ (y)Uξ (w,f )]q+

≤ 2q(ε+1)u
q
ε

2qε − 1
�(q + 1)NZ,d(ε/8)[RξC∗

ξ (1)]q
[
1 +L(ε)exp

]
e−y/2,
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where uε = 2ε(1 + ε), �(·) is the gamma-function and

L(ε)exp =
∞∑
k=1

exp{2EZ,d(ε2−k)− (9/16)2kk−2}.(3.11)

The proof follows immediately by application of Corollary 1, and noting that
for g(x)= e−x the quantity L(ε)g is given by the above formula [cf. (2.13)], while

J
(ε)
g (·) for g(x)= e−x is bounded as follows

J (ε)g (z)= q

∫ ∞
1

(x − 1)q−1[e−zx +L(ε)g

√
e−zx

]
dx

≤ �(q + 1)
[
1 +L(ε)exp

]
(2/z)qe−z/2.

REMARK 5. It is instructive to compare the results of Theorem 2 with those of
Theorem 1 (and Corollaries 2 and 3). The uniform bound on ‖ξw‖s,τ in Theorem 2
is determined by the individual bound Uξ(w,f ) for a fixed weight w ∈ W , and by
the function C∗

ξ (·) which, in its turn, is computed on the basis of Aξ(w), Bξ(w)
and Uξ(w,f ). The function C∗

ξ (·) depends on the parametrization (3.7) and on the
distance d on Z via the quantities �A and �B [see (2.8)]. The right-hand sides of
the inequalities in Theorem 2 depend on massiveness of the set of weights W as
measured by the entropy EZ,d(·). Note also that these bounds decrease exponen-
tially in y.

3.2.2. Uniform random bound. The uniform nonrandom bounds on ‖ξw‖s,τ
given in Theorem 2 depend on the density f via Uξ(w,f ). As discussed in the
Introduction, this does not allow one to use this bound in statistical problems. Our
goal is to recover the statement of Theorem 2 (up to some numerical constants)
with the unknown quantity Uξ(w,f ) replaced by its estimator Ûξ (w). Note also
that Uξ(w,f ) of Theorem 2 depends on f only if s > 2; here the quantity depend-
ing on f is �s(w,f ).

Assume that the conditions of Theorem 2 are satisfied, and let s > 2. For any
t ∈ T define

�̂s(w) := ‖Sw‖s,τ , S2
w(t) := 1

n

n∑
i=1

w2(t,Xi),(3.12)

Ûξ (w) := c1(s)
[√

n�̂s(w)+ 2n1/sMs(w)
]
.(3.13)

It is easily seen that Ûξ (w) is a reasonable estimate of Uξ(w,f ) because under
mild assumptions for any fixed t ∈ T by the law of large numbers

S2
w(t)− ‖w(t, ·)‖2

2,ν′ → 0, n→ ∞ in probability.
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Moreover,

|�̂s(w)−�s(w,f )|2 ≤ ∥∥Sw − ‖w(·, ·)‖2,ν′
∥∥2
s,τ

≤ ∥∥√∣∣S2
w − ‖w(·, ·)‖2

2,ν′
∣∣∥∥2
s,τ

= ∥∥S2
w − ‖w(·, ·)‖2

2,ν′
∥∥
s/2,τ

=
∥∥∥∥∥1

n

n∑
i=1

[w2(·,Xi)− Ew2(·,X)]
∥∥∥∥∥
s/2,τ

.

Thus, for any s > 2 we have

|�̂s(w)−�s(w,f )| ≤
√

‖ξw2‖s/2,τ

n
,(3.14)

that is, the difference between �̂s(w) and �s(w,f ) is controlled in terms of
‖ξw2‖s/2,τ . The idea now is to use Theorem 2 in order to find a nonrandom up-
per bound on ‖ξw2‖s/2,τ . One can expect that this bound will be much smaller
than �s(w,f ) provided that the function w is small enough. If this is true then
�̂s(w) approximates well �s(w,f ), and it can be used instead of �s(w,f ) in the
definition of the uniform over W upper bound on ‖ξw‖s,τ .

In order to control uniformly ‖ξw2‖s/2,τ by applying Theorem 1 and Corol-
lary 1, we need the following definitions. Put

Ũ (w2) :=
{

4n2/sMs/2(w
2), s ∈ (2,4),

c1(s/2)
[
f1/2∞

√
nM2(w

2)+ 2n2/sMs/2(w
2)
]
, s ≥ 4;

Ã2(w2) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

37nM2
s/2(w

2), s ∈ (2,4),

2c3(s/2)f2∞
[
nM2

2s/(s+4)(w
2)

+4
√
nM2(w

2)Ms/2(w
2)

+8n2/sM2
s/2(w

2)
]
, s ≥ 4;

and B̃(w2) := 4
3c∗(s/2)Ms/2(w

2), where c∗(·) is given in (3.2).
For any subset Z ⊆ Z, let κ

Ũ
(Z), �

Ã
(Z), and �

B̃
(Z) be given by (2.1)–(2.3)

with U = Ũ , A= Ã and B = B̃ . With rξ and Rξ defined in (3.10), let

Za = {ζ ∈ Z :a/2<Uξ(w,f )≤ a}, a ∈ [rξ ,Rξ ],(3.15)

and we set

κ
Ũ
(a) := κ

Ũ
(Za), λ

Ã
= sup

a∈[rξ ,Rξ ]
a−2�

Ã
(Za),

(3.16)
λ
B̃

= sup
a∈[rξ ,Rξ ]

a−2�
B̃
(Za),
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[cf. (2.7) and (2.8)]. It is important to emphasize here that in the definition of
κ
Ũ

, λ
Ã

and λ
B̃

we use the same set Za as in the definition of κUξ (·), �Aξ (·) and
�Bξ (·).

The next result establishes a random uniform bound on ‖ξw‖s,τ .

THEOREM 3. Let s > 2 be fixed, (3.7) hold, Assumption (A2) be fulfilled, and

κUξ (a)≤ a ∀a ∈ [rξ ,Rξ ].(3.17)

Let ε ∈ (0,1] be fixed, and suppose that there exists a positive number γ <

[4c1(s)(1 + ε)]−1 such that

κ
Ũ
(a)≤ (γ a)2 ∀a ∈ [rξ ,Rξ ].(3.18)

If yγ denotes the root of the equation
√
yλ

Ã
+ yλ

B̃
= γ 2,(3.19)

and if yγ > 1 then:

(i) For every y ∈ [1, yγ ] one has

E sup
w∈W

{‖ξw‖s,τ − uε(γ )C
∗
ξ (y)Ûξ (w)}q+ ≤ T1,ε[C∗

ξ (y)]q exp{−y/2},

where uε(γ ) := uε[1 − 4c1(s)(1 + ε)γ ]−1 and uε = 2ε(1 + ε).
(ii) For any subset W0 ⊆ W , one has

E

[
sup
w∈W0

Ûξ (w)
]q ≤ [1 + 4c1(s)(1 + ε)γ ]q sup

w∈W0

[Uξ(w,f )]q
(3.20)

+ T2,ε

[√
n sup
w∈W0

Ms(w)
]q

exp{−yγ /2}.

The explicit expressions for the constants T1,ε and T2,ε are given in the beginning
of proof of the theorem.

REMARK 6.

1. Theorem 3 requires two sets of conditions: conditions of Theorem 2, and con-
ditions on behavior of the functions κ

Ũ
(·), �

Ã
(·) and �

B̃
(·) on the slices Za

defined through Uξ(w,f ).
2. The parameter γ controls closeness of Ûξ (·) to Uξ(·, f ): the smaller γ , the

closer the random bound Ûξ (·) to the nonrandom one Uξ(·, f ) [see (3.20)]. In
this case, we do not loose much if Uξ(·, f ) is replaced by its empirical coun-
terpart Ûξ (w). Clearly, it is possible to choose γ small and simultaneously to
keep yγ large only if λ

Ã
and λ

B̃
are small enough. Fortunately, this is the case

in many examples.
3. Note also that when γ approaches [4c1(s)(1 + ε)]−1 the parameter uε(γ ) in-

creases to infinity [clearly, we want to keep uε(γ ) as close to one as possible].
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Thus, the assumption γ < [4c1(s)(1 + ε)]−1 is important; this poses a restric-
tion on the parameter set W . We conjecture that the following condition is
necessary: for given s ≥ 2 there exists a universal constant, say, c(s), such that
γ < c(s).

The next corollary to Theorem 3 will be useful in what follows.

COROLLARY 4. The statements of Theorem 3 remain valid if Uξ(w,f ) and
Ûξ (w) are redefined as max{Uξ(w,f ),

√
nM2(w)} and max{Ûξ (w),

√
nM2(w)},

respectively.

3.3. Unifrom bounds for classes of weights depending on the difference of ar-
guments. As we have seen, the results and assumptions in Theorems 2 and 3 are
stated in terms of the quantities (such as λ

Ã
, λ

B̃
, yγ ) that are given implicitly. In

particular, additional computations are still necessary in order to apply Theorems 2
and 3 in specific problems. In this section, we specialize the results of Theorems
2 and 3 for the classes of weights W depending on the difference of arguments.
Under natural and easily interpretable assumptions on the class of such weights,
we derive explicit uniform bounds on the norms of empirical processes.

Throughout this section, X = T = R
d , τ = ν = mes is the Lebesgue measure

and we write ‖ · ‖s instead of ‖ · ‖s,τ . In this section, the class of weights W is a
set of functions from R

d × R
d to R of the following form

W = {w(t − x),w ∈ V},(3.21)

where V is a given set of d-variate functions. For the sake of notational conve-
nience, we will identify the weight w ∈ W with the d-variate function w ∈ V in
the definition of the process ξw and the quantities such as Uξ , Aξ , Bξ etc. Thus,
when we write w ∈ W we mean the weight w(· − ·) while w ∈ V denotes the
corresponding d-variate function; this should not lead to a confusion.

Let (Z,d) be a fixed metric space; as before, we suppose that V is parametrized
by the parameter ζ ∈ Z, that is,

V = {w :w = φ[ζ ], ζ ∈ Z},(3.22)

where Z is a totally bounded subset of the metric space (Z,d). Recall that NZ,d(δ),
δ > 0 is the number of the balls of radius δ in the metric d that form a minimal
covering of the set Z.

We need the following assumptions on the class of weights W (the functional
set V ).

ASSUMPTION (W).

(W1) The Lebesgue measure of support of all functions from V is finite, that is,

μ∗ := sup
w∈V

mes{supp(w)}<∞.(3.23)
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(W2) There exist real numbers α1 ∈ (0,1) and α2 ∈ (0,1) such that

mes{x ∈ R
d : |w(x)| ≥ α1‖w‖∞} ≥ α2 mes{supp(w)} ∀w ∈ V.

(W3) There exists a real number μ≥ 1 such that

nmes{supp(w)} ≥ μ ∀w ∈ V.
(W4) There exists a real number β ∈ (0,1) such that

sup
δ∈(0,1)

{ln[NZ,d(δ)] − δ−β} =: CZ(β) <∞.

REMARK 7. We will show that Assumption (W2) is fulfilled if V is a set
of smooth functions. Assumption (W3) together with (W2) allows one to estab-
lish relations between Lp-norms of functions from V ; this will be extensively
used in what follows. Assumption (W4) is a usual entropy condition. In partic-
ular, (W4) ensures that the quantity L(ε)exp in (3.11) is finite.

In addition to Assumption (W), we will need the following assumption on the
properties of the mapping φ in (3.22). For p ≥ 1, put

0<wp := n1/p inf
w∈V

‖w‖p ≤ n1/p sup
w∈V

‖w‖p =: wp <∞(3.24)

and define

Zp(b) := {ζ ∈ Z :n1/p‖φ[ζ ]‖p ≤ b}, b ∈ [wp,wp].(3.25)

ASSUMPTION (L). The mapping φ in (3.22) satisfies the following condi-
tions:

• if s ∈ [1,2) then

sup
ζ1,ζ2∈Zs (b)

n1/s‖φ[ζ1] − φ[ζ2]‖s
d(ζ1, ζ2)

≤ b ∀b ∈ [ws,ws],

• if s ≥ 2 then

sup
ζ1,ζ2∈Z2(b)

√
n‖φ[ζ1] − φ[ζ2]‖2

d(ζ1, ζ2)
≤ b ∀b ∈ [w2,w2].(3.26)

We note that Assumption (L) guarantees continuity of ‖ξw‖s on φ[Z] for any
s ≤ 2. The same property for s > 2 follows from Lemma 7. This, in view of Re-
mark 2, replaces Assumption (A2).

The next statement presents the uniform moment bound on ‖ξw‖s when s ∈
[1,2], and W is given by (3.21).

THEOREM 4. Let the class of weights W be defined by (3.21), and let (3.22)
and Assumptions (W1), (W4) and (L) hold.
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(i) If s ∈ [1,2) then for all n≥ 1, z≥ [√37/2]n1/2−1/s , and ε ∈ (0,1] one has

E sup
w∈W

[‖ξw‖s − 4uε(1 + z)n1/s‖w‖s]q+ ≤ T3,εn
q/s exp

{
−2z2

37
n(2/s)−1

}
.

(ii) If f ∈ F then for all n≥ 1, z≥
√

8[μ∗f2∞ + 4n−1/2], and ε ∈ (0,1] one has

E sup
w∈W

[‖ξw‖2 − uε(1 + z+ z2/12)
√
n‖w‖2

]q
+

≤ T4,εn
q/2 exp

{
− z2

16[f2∞μ∗ + 4n−1/2]
}
.

The explicit expressions for the constants T3,ε and T4,ε are given in the beginning
of the proof of the theorem.

The bound of Theorem 4 is nonrandom because Uξ(w,f ) does not depend
on f whenever s ∈ [1,2]. The proof of this statement is based on application of
Theorem 2.

Now we proceed with the case s > 2. Here we need some further notation.
Given p ≥ 2, let mp ∈ (0,1] be such that

sup
b∈[w2,w2]

b−1 sup
ζ1,ζ2∈Z2(b)

n1/p‖φ[ζ1] − φ[ζ2]‖p
[d(ζ1, ζ2)]mp

=: Cp <∞.(3.27)

Existence of mp ∈ (0,1] such that (3.27) holds is ensured by Lemma 7 given in
Section 8.2. In particular, it is shown there that if Assumptions (W) and (L) hold
then mp can be taken equal to 2/p. We note also that m2 = 1 and C2 = 1 by
Assumption (L).

Following (3.12), (3.13) and Corollary 4, we set

Ûξ (w)= c1(s)

{√
n

∥∥∥∥∥
[

1

n

n∑
i=1

w2(· −Xi)

]1/2∥∥∥∥∥
s

+ 2n1/s‖w‖s
}
,

Ŭξ (w) := max
{
Ûξ (w),

√
n‖w‖2

}
,(3.28)

Uξ(w) := max
{
Uξ(w,f ),

√
n‖w‖2

}
.

Put also

C∗
ξ (y)= 1 + 2ϑ0

{√
y
[
μ1/s∗ + n−1/(2s)]+ yn−1/s},

(3.29)

m :=
{

1 ∧ms, s ∈ (2,4),
1 ∧ms ∧ms/2, s ≥ 4,

where ϑ0 := 5c1(s)[Cs∨1]f∞α−1
1 α

−1/2
2 , α1 and α2 are given in Assumption (W2),

and mp and Cp are defined in (3.27).
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THEOREM 5. Let Assumptions (W) and (L) hold, and assume that f ∈ F .
Suppose that (W3) is fulfilled with μ> [64c2

1(s)](s∧4)/(s∧4−2), and (W4) is fulfilled
with β <m. Let γ = μ1/(s∧4)−1/2, and

y∗ :=
{
ϑ1n

4/s−1, s ∈ (2,4),
ϑ2μ

−1/2[μ2/s∗ + n−1/s]−2, s ≥ 4,
(3.30)

with constants ϑ1 and ϑ2 specified explicitly in the proof; then for any s > 2 and
y ∈ [1, y∗] one has

E sup
w∈W

{‖ξw‖s − uε(γ )C
∗
ξ (y)Ŭξ (w)}q+ ≤ T5,εn

q/2[C∗
ξ (y)]q exp{−y/2},

where uε(·) is defined in Theorem 3. In addition, if W0 ⊆ W is an arbitrary subset
of W then

E

[
sup
w∈W0

Ŭξ (w)
]q ≤

{[
1 + 4c1(s)(1 + ε)μ1/(s∧4)−1/2] sup

w∈W0

Uξ(w)
}q

+ T6,εn
q(s−2)/(2s) exp{−y∗/2}.

The explicit expressions for the constants T5,ε and T6,ε are given in the proof.

Theorem 5 establishes random uniform bounds on the norms of empirical pro-
cesses in terms of the parameters determining the class W . In particular, the param-
eters μ and μ∗ play an important role. Theorem 5 leads to a number of powerful
asymptotic results that demonstrate sharpness of the proposed random bound.

COROLLARY 5. Let assumptions of Theorem 5 hold, and let s > 2 be fixed.
There exist positive constants ki = ki(s), i = 1,2,3 such that if

μ= μn � [lnn]k1, μ∗ = μ∗,n � [lnn]−k2,

ε = εn � [lnn]−k3, n→ ∞,

then for all � > 0 and q ≥ 1

lim
n→∞ sup

f∈F
n�E sup

w∈W
[‖ξw‖s − (1 + 3εn)Ŭξ (w)]q+ = 0,

E

[
sup
w∈W0

Ŭξ (w)
]q ≤

[
(1 + εn) sup

w∈W0

Uξ(w,f )
]q +Rn(W0),

where lim supn→∞ supf∈F supW0⊆W [n�Rn(W0)] = 0.

The explicit expressions for the constants ki > 0, i = 1,2,3 are easily computed
from Theorem 5.



UNIFORM BOUNDS FOR NORMS 2339

REMARK 8. Corollary 5 shows that if the class of weights W is such that μ=
μn and μ∗ = μ∗,n, and if ε is set to be ε = εn, then (1 + 3εn)Ŭn(w) is a uniform
random bound on ‖ξw‖s which is asymptotically almost as good as the nonrandom
bound Uξ(w,f ) depending on f . Thus, in asymptotic terms, there is no loss in
sharpness of the random uniform bound in comparison with the nonrandom bound
that depends on f .

3.4. Specific problems. In this section, we consider process ξw correspond-
ing to special classes of weights W that arise in kernel density estimation. Using
results of Theorems 4 and 5, we derive uniform bounds on the norms of these pro-
cesses. As in Section 3.3, here X = T = R

d , and ν and τ are both the Lebesgue
measure.

Let K be a given set of real functions defined on R
d and suppose that K is

a totally bounded set with respect to the L∞-norm. Let H := ⊗d
i=1[hmin

i , hmax
i ],

where the vectors hmin = (hmin
1 , . . . , hmin

d ), hmax = (hmax
1 , . . . , hmax

d ), 0 < hmin
i ≤

hmax
i ≤ 1, ∀i = 1, . . . , d are fixed.

For any h ∈ H define Vh := ∏d
i=1 hi , and endow the set H with the following

distance:

�H(h,h
′)= max

i=1,...,d
ln
(
hi ∨ h′

i

hi ∧ h′
i

)
.(3.31)

In order to verify that �H is indeed a distance on H it suffices to note that the func-
tion (x, y) �→ ln(x ∨ y)− ln(x ∧ y), x > 0, y > 0 satisfies all axioms of distance
on R+ \ {0}.

We will be interested in the following classes of weights W and the correspond-
ing processes ξw .

Kernel density estimator process. With any K ∈ K and h ∈ H, we associate
the weight function

w(t − x)= n−1Kh(t − x) := (nVh)
−1K[(t − x)/h].

As before, u/v, u, v ∈ R
d , stands for the coordinate-wise division (u1/v1, . . . ,

ud/vd).
The weight w is naturally parametrized by K and h so that we put

Z
(1) := K × H, ζ = (K,h), w = φ1[ζ ] := n−1Kh.(3.32)

We equip Z
(1) with the family of distances {d(1)ϑ (·, ·),ϑ > 0} defined by

d(1)ϑ (ζ, ζ ′)= ϑ max{‖K −K ′‖∞,�H(h,h
′)},

ζ = (K,h), ζ ′ = (K ′, h′), ϑ > 0.

Obviously, Z
(1) is a totally bounded set with respect to d(1)ϑ for any ϑ > 0.
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The corresponding family of random fields is

ξ (1)w (t) := ξφ1[ζ ](t)= 1

n

n∑
i=1

{Kh(t −Xi)− EKh(t −X)}, ζ ∈ Z
(1),(3.33)

and we are interested in bounds on the Ls -norm of this process uniform over the
class of weights

W(1) := {
w(· − ·)= n−1Kh(· − ·) : (K,h) ∈ Z

(1)}.
We note that ξ (1)w is the stochastic error of the kernel density estimator associated

with the kernel K ∈ K and bandwidth h ∈ H. According to Theorems 4 and 5, for
the process {ξw,w ∈ W(1)}, the uniform bounds on ‖ξw‖s should be based on the
following functionals. Define

U
(1)
ξ (w) :=

{
4(nVh)1/s−1‖K‖s, s ∈ [1,2),
(nVh)

−1/2‖K‖2, s = 2.

For s > 2, we put

U
(1)
ξ (w,f ) := c1(s)

[
n−1/2

(∫ [∫
K2
h(t − x)f (x) dx

]s/2

dt

)1/s

+ 2(nVh)
1/s−1‖K‖s

]
,

Û
(1)
ξ (w) := c1(s)

[
n−1/2

(∫ [
n−1

n∑
i=1

K2
h(t −Xi)

]s/2

dt

)1/s

+ 2(nVh)
1/s−1‖K‖s

]
,

and finally

U
(1)
ξ (w,f ) := max

[
U
(1)
ξ (w,f ), (nVh)

−1/2‖K‖2
]

(3.34)
Ŭ
(1)
ξ (w) := max

[
Û
(1)
ξ (w), (nVh)

−1/2‖K‖2
]
.

Convolution kernel density estimator process. For any (K,h) ∈ Z
(1) and

(Q,h) ∈ Z
(1), we define

w(t − x)= n−1[Kh ∗Qh](t − x),(3.35)

where Z
(1) is defined in (3.32), and ∗ stands for the convolution on R

d . Put

Z
(2) := Z

(1) × Z
(1), z= [(K,h), (Q,h)], w = φ2[z] = n−1(Kh ∗Qh),
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and define the family of distances on Z
(2) as

d(2)ϑ (z, z′)= ϑ max{‖K −K ′‖∞ ∨ ‖Q−Q′‖∞,�H(h,h
′)∨�H(h,h

′)},
ϑ > 0,

where z= [(K,h), (Q,h)], z′ = [(K ′, h′), (Q′,h′)], z, z′ ∈ Z
(2). Obviously, Z

(2) is
a totally bounded set with respect to the distance d(2)ϑ for any ϑ > 0.

The corresponding family of random fields is

ξ (2)w (t) := ξφ2[z](t)

= 1

n

n∑
i=1

{[Kh ∗Qh](t −Xi)− E[Kh ∗Qh](t −X)},(3.36)

ζ ∈ Z
(2),

and we are interested in a uniform bound on ‖ξ (2)w ‖s over

W(2) := {
w(· − ·)= n−1Kh ∗Qh(· − ·), [(K,h), (Q,h)] ∈ Z

(2)}.
The random field ξw with w given by (3.35) appears in the context of multivari-

ate density estimation. In particular, the uniform bounds on ‖ξw‖s are instrumental
in construction of a selection rule for the family of kernel estimators parametrized
by K × H [see Goldenshluger and Lepski (2009)]. Theorems 4 and 5 suggest to
base the uniform bounds on the following quantities. Define

U
(2)
ξ (w) :=

{
4n1/s−1‖Kh ∗Qh‖s, s ∈ [1,2),
n−1/2‖Kh ∗Qh‖2, s = 2.

For s > 2, we put

U
(2)
ξ (w,f ) := c1(s)

[
n−1/2

(∫ [∫
[Kh ∗Qh]2(t − x)f (x) dx

]s/2

dt

)1/s

+ 2n1/s−1‖Kh ∗Qh‖s
]
,

Û
(2)
ξ (w) := c1(s)

[
n−1/2

(∫ [
n−1

n∑
i=1

[Kh ∗Qh]2(t −Xi)

]s/2

dt

)1/s

+ 2n1/s−1‖Kh ∗Qh‖s
]
;

and finally

U
(2)
ξ (w,f ) := max

[
U
(2)
ξ (w,f ), n−1/2‖Kh ∗Qh‖2

]
,

(3.37)
Ŭ
(2)
ξ (w) := max

[
Û
(2)
ξ (w), n−1/2‖Kh ∗Qh‖2

]
.
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Theorems 4 and 5 can be used in order to establish upper bounds on the norms of
the processes ξ (i)w , i = 1,2. For this purpose, Assumptions (W) and (L) should be
verified for the classes of weights W(i), i = 1,2, defined above. To this end, we in-
troduce conditions on the family of kernels K that imply Assumptions (W) and (L).
These conditions are rather natural and easily verifiable; they can be weakened in
several ways, but we do not pursue this issue here and try to minimize cumbersome
calculations to be done.

ASSUMPTION (K).

(K1) The family K is a subset of the isotropic Hölder ball of functions Hd(1,LK)
with the exponent 1 and the Lipschitz constant LK, that is,

|K(x)−K(y)| ≤LK|x − y| ∀x, y ∈ R
d,

where | · | denotes the Euclidean distance. Moreover, any function K from
K is compactly supported and, without loss of generality, supp(K) ⊆
[−1/2,1/2]d for all K ∈ K.

(K2) There exist real numbers k1 > 0 and k∞ <∞ such that

k1 ≤
∣∣∣∣
∫
K(t) dt

∣∣∣∣≤ ‖K‖∞ ≤ k∞ ∀K ∈ K.

Without loss of generality, we will assume that k∞ ≥ 1 and k1 ≤ 1.
(K3) The set K is a totally bounded set with respect to the L∞-norm, and there

exists a real number βK ∈ (0,1) such that the entropy E K(·) of K satisfies

sup
δ∈(0,1)

[E K(δ)− δ−βK ] =: CK <∞.

Several remarks on the above assumptions are in order. First, we note that
Assumptions (K1) and (K3) are not completely independent. In fact, if we sup-
pose that K ⊂ Hd(α,LK) with some α > d then Assumption (K3) is automati-
cally fulfilled with βK = α/d . On the other hand, all our results remain valid if
K ⊂ Hd(α,LK) with some α > 0. Observe also that the condition |∫ K(t) dt | ≥
k1 of Assumption (K2) is not restrictive at all because for kernel estimators∫
K(t) dt = 1. Therefore, the first inequality in (K2) is satisfied with k1 = 1.

REMARK 9. It is easy to check that Assumption (K1) implies Assump-
tion (A2) in Section 3.2 and Assumption 2 in Section 2.

Now we apply Theorems 4 and 5 to the families of random fields given by
(3.33) and (3.36). We present the results for the processes {ξφ1[ζ ], ζ ∈ Z

(1)} and
{ξφ2[z], z ∈ Z

(2)} in a unified way.
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3.4.1. Case s ∈ [1,2]. Uniform nonrandom bounds. In order to derive the uni-
form upper bounds for s ∈ [1,2], we use Theorem 4. Obviously, Assumption (K)
implies Assumptions (W1) and (W4). Thus, in order to apply Theorem 4, we need
to verify Assumption (L). This is done in Lemma 9 given in Section 9. Thus, The-
orem 4 is directly applicable, and nonasymptotic bounds can be straightforwardly
derived from this theorem; one needs only to recalculate the constants appearing
in the statements of the theorem.

We note that the quantity μ∗ defined in (3.23) satisfies μ∗ ≤ Vhmax for the set
of weights W(1) and μ∗ ≤ 2dVhmax for the set of weights W(2). If we assume that
Vhmax → 0 as n→ ∞, then we can establish some asymptotic results, one of which
is given in the next theorem.

THEOREM 6. If Assumption (K) holds, then for all s ∈ [1,2), � > 0 and ε ∈
(0,1)

lim
n→∞n� sup

f∈F
E sup
w∈W(i)

[∥∥ξ (i)w

∥∥
s − (1 + ε)U

(i)
ξ (w)

]q
+ = 0, i = 1,2.

If Assumption (K) holds and Vhmax = o(1/ lnn) as n→ ∞, then for all � > 0 and
ε ∈ (0,1)

lim
n→∞n� sup

f∈F
E sup
w∈W(i)

[∥∥ξ (i)w

∥∥
2 − (1 + ε)U

(i)
ξ (w)

]q
+ = 0, i = 1,2.

Proof of the theorem is omitted; it is a straightforward consequence of Theo-
rem 4 and Lemma 9 given below in Section 9.

3.4.2. Case s > 2. Uniform random bounds. In the case s > 2, the uniform
bounds are derived from Theorem 5. To state these results, we need the following
notation. Define

ϑ
(1)
0 := 10c1(s)f∞

[
LK

√
d/k1

]d/2
,

(3.38)
ϑ
(2)
0 := 10c1(s)f∞

[
2d+2

√
dLKk∞/k2

1
]d/2

.

The next two quantities, AH and BH, are completely determined by the bandwidth
set H:

AH :=
d∏

j=1

ln(hmax
j /hmin

j ),

(3.39)

BH := log2(Vhmax/Vhmin)=
d∑

j=1

log2(h
max
j /hmin

j ).

For y > 0 put

C∗
ξ,i(y) := 1 + 2ϑ(i)0

{√
y
([

2d(i−1)Vhmax
]1/s + n−1/2s)+ yn−1/s},

(3.40)
i = 1,2.
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Define also

y(i)∗ :=
{
ϑ
(i)
1 n4/s−1, s ∈ (2,4),

ϑ
(i)
2 (nVhmin)−1/2[(2d(i−1)Vhmax

)2/s + n−1/s]−2
, s ≥ 4,

where explicit expressions for the constants ϑ(i)1 , ϑ
(i)
2 , i = 1,2 are given in the

proof of Theorem 7.

THEOREM 7. Let Assumption (K) hold, f ∈ F , and let maxj=1,...,d |hmax
j | ≤ 1.

For i = 1,2 assume that

nVhmin > [64c2
1(s)](s∧4)/(s∧4−2)[2d+2

√
dLKk∞/k2

1
]d(i−1)

.(3.41)

If γ := (nVhmin)1/(s∧4)−1/2, then for any s > 2, y ∈ [1, y(i)∗ ] and for i = 1,2 one
has

E sup
w∈W(i)

{∥∥ξ (i)w

∥∥
s − uε(γ )C

∗
ξ,i(y)Ŭ

(i)
ξ (w)

}q
+

≤ T̃
(i)
1,ε (1 +AH)

2i (1 +BH)n
q/2[C∗

ξ,i(y)]qe−y/2,

where uε(·) is defined in Theorem 3, and Ŭ (i)
ξ (w) are defined in (3.34) and (3.37).

In addition, for any subset W0 ⊆ W(i), any s > 2 and for i = 1,2 one has

E

[
sup
w∈W0

Ŭ
(i)
ξ (w)

]q ≤ [
1 + 4c1(s)(1 + ε)(nVhmin)

1/(s∧4)−1/2]q sup
w∈W0

{
U
(i)
ξ (w)

}q
+ T̃

(i)
2,ε (1 +AH)

2i (1 +BH)n
q(s−2)/(2s) exp

{−y(i)∗ /2
}
.

The explicit expressions for the constants T̃ (i)
1,ε and T̃ (i)

2,ε are given in the proof.

We emphasize that the upper bounds of Theorem 7 are nonasymptotic. The
constants ϑ(i)1 , ϑ(i)2 , T̃ (i)

1,ε and T̃
(i)

2,ε are written down explicitly in the proof of the
theorem; they are completely determined through the quantities LK, k1, k∞, CK
and βK appearing in Assumption (K), and the constant c1(s) in the Rosenthal
inequality.

REMARK 10. Condition (3.41) is not restrictive because the standard assump-
tion on the bandwidth set H in the kernel density estimation is that

nVhmin → ∞, Vhmax → 0, n→ ∞.

The bounds established in Theorem 7 can be used in order to derive asymptotic
(as n→ ∞) results under general assumptions on the set of bandwidths H. One of
such results is given in the next corollary.
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COROLLARY 6. Let s > 2 be fixed, Assumption (K) hold, and f ∈ F . There
exist positive constants k1,i = k1,i (s), k2,i = k2,i (s) and k3,i = k3,i (s), i = 1,2,
such that if

Vhmax � [lnn]−k1,i , nVhmin � [lnn]k2,i ,

ε = εn � [lnn]−k3,i , n→ ∞,

then for all � > 0, q ≥ 1

lim
n→∞ sup

f∈F
n�E sup

w∈W(i)

[∥∥ξ (i)w

∥∥
s − (1 + 3εn)Ŭ

(i)
ξ (w)

]q
+ = 0.

In addition, for any subset W0 ∈ W(i) one has

E

[
sup
w∈W0

Ŭ
(i)
ξ (w)

]q ≤
[
(1 + εn) sup

w∈W0

U
(i)
ξ (w,f )

]q +R(i)
n (W0),

where lim supn→∞ supf∈F supW0⊆W(i)[n�R(i)
n (W0)] = 0, i = 1,2.

We remark that explicit expressions for the constants k1,i and k2,i , i = 1,2, are
easily derived from Theorem 7.

4. Uniform bounds for norms of regression-type processes. In this section,
we use Proposition 2 in order to derive uniform bounds for the family ‖ηw‖s,τ ,
w ∈ W ; we recall that

ηw(t)=
n∑
i=1

w(t,Xi)εi,

see (1.7). First. we verify Assumption 1 by establishing an analogue of Theorem 1
for a fixed weight function w ∈ W [see Theorem 8 below]. It turns out that the
corresponding inequality depends heavily on the tail probability of the random
variable ε. In other words, we prove that Assumption 1 is fulfilled with function
g that is determined by the rate at which the tail probability of ε decreases. Next,
under Assumptions (W) and (L), we derive uniform bounds using Corollary 1; this
leads to an analogue of Theorem 4 for the regression-type processes.

4.1. Probability bounds for fixed weight function. We consider two types of
moment conditions on the distribution of ε.

ASSUMPTION (E). The distribution of ε is symmetric, and one of the follow-
ing two conditions is fulfilled:

(E1) there exist constants α > 0, v > 0 and b > 0 such that

P{|ε| ≥ x} ≤ v exp{−bxα} ∀x > 0,
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(E2) there exist constants p ≥ [s ∨ 2] and P > 0 such that

E|ε|p ≤ P.

Let σ 2
ε := Eε2 and es := (E|ε|s)1/s . For any w ∈ W define

�s(w,f ) :=
⎧⎪⎨
⎪⎩
σε
{√

n�s(w,f )∧ 4n1/sMs(w)
}
, s < 2,

σε
√
nM2(w), s = 2,

c1(s)
[
σε

√
n�s(w,f )+ 2n1/sesMs(w)

]
, s > 2,

� 2
s (w,f ) :=

{
M2

s (w)[(6σ 2
ε + 8)n+ 96σεn1/s], s < 2,

6σ 2
ε nM

2
1,τ,ν′(w)+ 24σε

√
nM2

2 (w), s = 2,

and if s > 2 then we set

� 2
s (w,f ) := 6c3(s)

[
σ 2
ε nM

2
2s/(s+2),τ,ν′(w)

+ 4σε
√
n�s(w,f )Ms(w)+ 8esn

1/sM2
s (w)

]
.

In the above formulas, we use notation introduced in the beginning of Section 3;
the formulas should be compared with (3.3) and (3.4).

The next theorem is the analogue of Theorem 1 for the regression-type pro-
cesses.

THEOREM 8.

(i) Suppose that Assumption (E1) holds, and for x > 0 define the function

G1(x) := (1 + nv)gα,b(x),
(4.1)

gα,b(x) :=
{

exp
{−|x| ∧ |b1/αx|α/(2+α)}, s < 2,

exp
{−|x| ∧ |b1/αx|α/(1+α)}, s ≥ 2.

Then for all s ∈ [1,∞) and z > 0 one has

P{‖ηw‖s,τ ≥ �s(w,f )+ z} ≤G1

(
z2

(1/3)� 2
s (w,f )+ (4/3)c∗(s)Ms(w)z

)
,

where c∗(·) is given in (3.2).
(ii) Suppose that Assumption (E2) holds and for x > 0 define the function

G2(x) := (1 + nP )×
{
(x−1p ln[1 + p−1x])p/2, s < 2,
(x−1p ln[1 + p−1x])p, s ≥ 2.

Then for all s ∈ [1,∞) and z > 0 one has

P{‖ηw‖s,τ ≥ �s(w)+ z} ≤G2

(
z2

(1/3)� 2
s (w,f )+ (4/3)c∗(s)Ms(w)z

)
.
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4.2. Uniform bound. Theorem 8 guarantees that Assumption 1 holds with
function g being either G1 or G2. This result is the basis for derivation of uni-
form bounds, and the general machinery presented in the previous sections can be
fully applied here. In this section, we restrict ourselves only with uniform bounds
over the classes of weights depending on the difference of arguments. In other
words, under Assumptions (W), (L) and (E1) we prove an analogue of Theorem 4
for the regression-type processes.

A natural assumption in the regression model where the process {ηw,w ∈ W}
appears is that the design variable X is distributed on a bounded interval of R

d ,
that is, the density f is compactly supported. This will be assumed throughout this
section.

Let I ∈ R
d be a bounded interval, T = X = I , and let τ = ν = mes be the

Lebesgue measure. For the sake of brevity, we write α∗ = α−1
1 α

−1/2
2 where α1 and

α2 appear in Assumption (W2). Define

a := max
(
σε
√

mes(I), c1(s)[σεf1/2∞ + 2esα∗]),
cn := 4

3c∗(s)α∗n−1/s;

b2
n :=

⎧⎪⎪⎨
⎪⎪⎩
[
2σ 2

ε + 8
3 + 32σεn1/s−1]μ2/s−1∗ , s < 2,

2f2∞μ∗ + 8n−1/2, s = 2,

2c3(s)f2∞[σ 2
ε μ

2/s∗ + (4σεα∗ + 8esα2∗)n−1/s], s > 2.

THEOREM 9. Let Assumptions (W) and (E1) hold. Suppose f ∈ F , and as-
sume that (3.26) is valid for all s ≥ 1. Let Assumption (W4) be fulfilled with
β < α/(2 + α), if s < 2, and with β < α/(1 + α) if s ≥ 2. Then for all s ≥ 1,
q ≥ 1 and y > 1 one has

E sup
w∈W

[‖ηw‖s − auε
(
1 + 2

√
ybn + 2ycn

)√
n‖w‖2

]q
+

≤ Tn,ε
[
1 + 2

√
ybn + 2ycn

]q[gα,b(y)]1/4,

where uε = 2ε(1 + ε), gα,b(·) is defined in (4.1), and the explicit expression of the
constant Tn,ε is given in the beginning of the proof of the theorem.

The following asymptotic result is an immediate consequence of Theorem 9.

COROLLARY 7. Let the assumptions of Theorem 9 hold. For any α > 0 there
exist a universal constant c = c(α) > 0 such that if μ∗ � [lnn]−c then for all s ≥ 1,
ε ∈ (0,1) and for all � > 0

lim
n→∞n� sup

f∈F
E sup
w∈W

[‖ηw‖s − (1 + ε)a
√
n‖w‖2

]q
+ = 0.

The explicit expression for c(α) is easily derived from Theorem 9.
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5. Proofs of Propositions 1 and 2.

5.1. Proof of Proposition 1. Let Zk , k ∈ N be an ε2−k−3-net of Z, and let
zk(ζ ), ζ ∈ Z denote the element of Zk closest to ζ in the metric d.

The continuity of the mapping ζ �→ ξφ[ζ ] guarantees that P-almost surely the
following relation holds for any ζ ∈ Z:

ξφ[ζ ] = ξφ[ζ (0)] +
∞∑
k=0

[
ξφ[zk+1(ζ )] − ξφ[zk(ζ )]

]
,(5.1)

where ζ (0) is an arbitrary fixed element of Z and z0(ζ )= ζ (0), ∀ζ ∈ Z.
Note also that independently of ζ for all k ≥ 0

d(zk+1(ζ ), zk(ζ ))≤ ε2−k−2.(5.2)

We get from sub-additivity of � , (5.1) and (5.2) that for any ζ ∈ Z

�
(
ξφ[ζ ]

)≤�
(
ξφ[ζ (0)]

)+ π2

6

∞∑
k=0

pk�
(
ξφ[zk+1(φ)] − ξφ[zk(φ)]

)
(k + 1)2

(5.3)

≤�
(
ξφ[ζ (0)]

)+ π2

6
sup
k≥0

sup
(z,z′)∈Zk+1×Zk :
d(z,z′)≤ε2−k−2

(k + 1)2�
(
ξφ[z] − ξφ[z′]

)
,

where pk := 6/(π2(k + 1)2) and
∑∞

k=0pk = 1. Since ξ• is linear, ξφ[z] − ξφ[z′] =
ξφ[z]−φ[z′] for all z, z′ ∈ Z, and we obtain from (5.3) and the triangle inequality for
probabilities that

P
{

sup
ζ∈Z

�
(
ξφ[ζ ]

)≥ (1 + ε)[κU(Z)+C∗(y,Z)]
}

≤ P
{
�
(
ξφ[ζ (0)]

)≥ κU(Z)+C∗(y,Z)
}

(5.4)

+
∞∑
k=0

∑
(z,z′)∈Zk+1×Zk :
d(z,z′)≤ε2−k−2

P
{
�
(
ξφ[z]−φ[z′]

)≥ 6ε[κU(Z)+C∗(y,Z)]
π2(k + 1)2

}

=: I1 + I2.

In view of (2.1) and because ζ (0) ∈ Z, we have that U(φ[ζ (0)])≤ κU(Z). There-
fore, we get from Assumption 1(i) and monotonicity of the function g that for any
y > 0

I1 ≤ P
{
�
(
ξφ[ζ (0)]

)−U
(
φ
[
ζ (0)

])≥ C∗(y,Z)
}

≤ g

( [C∗(y,Z)]2

A2(φ[ζ (0)])+B(φ[ζ (0)])C∗(y,Z)

)
(5.5)

≤ g

( [C∗(y,Z)]2

�2
A(Z)+�B(Z)C∗(y,Z)

)
≤ g(y).
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To order to get the last inequality, we have used monotonicity of g and that for any
y > 0

[C∗(y,Z)]2

�2
A(Z)+�B(Z)C∗(y,Z)

= [√y�A(Z)+ y�B(Z)]2

�2
A(Z)+�B(Z)[√y�A(Z)+ y�B(Z)] ≥ y.

By (2.1), if z, z′ ∈ Z and d(z, z′)≤ ε2−k−2 then

U(φ[z] − φ[z′])≤ ε2−k−2
κU(Z),

and, therefore, for any y ≥ 0

P
{
�
(
ξφ[z]−φ[z′]

)≥ 6ε[κU(Z)+C∗(y,Z)]
π2(k + 1)2

}

≤ P
{
�
(
ξφ[z]−φ[z′]

)−U(φ[z] − φ[z′])

≥ 6ε[κU(Z)+C∗(y,Z)]
π2(k + 1)2

− κU(Z)ε2−k−2
}

≤ P
{
�
(
ξφ[z]−φ[z′]

)−U(φ[z] − φ[z′])≥ 9εC∗(y,Z)
16(k + 1)2

}
.

Here we took into account that mink≥0[6π−2(k + 1)−2 − 2−k−2]> 0 and 9/16 <
(6/π2). Putting Ck = 9εC∗(y,Z)

16(k+1)2
and applying Assumption 1(i), we obtain for any

z, z′ ∈Zk+1 ×Zk satisfying d(z, z′)≤ ε2−k−2:

P
{
�
(
ξφ[z]−φ[z′]

)≥ 6ε[κU(Z)+C∗(y,Z)]
π2(k + 1)2

}

≤ g

(
C2
k

A2(φ[z] − φ[z′])+B(φ[z] − φ[z′])Ck
)

≤ g

(
C2
k

[�A(Z)ε2−k−2]2 + [�B(Z)ε2−k−2]Ck
)

≤ g

(
C̃2
k

�2
A(Z)+�B(Z)C̃k

)
,

where we denoted C̃k = Ck2k+2. Taking into account that 9(k + 1)−22k−2 ≥ 1 for
any k ≥ 0, and by definition of C∗(y,Z), we obtain for any y > 0 that

C̃2
k

�2
A(Z)+�B(Z)C̃k

≥ 9y(k + 1)−22k−2.
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Hence, for any z, z′ ∈ Zk+1 ×Zk satisfying d(z, z′)≤ ε2−k−2 one has

P
{
�
(
ξφ[z]−φ[z′]

)≥ 6ε[κU(Z)+C∗(y,Z)]
π2(k + 1)2

}
≤ g

(
9y2k−2(k + 1)−2).(5.6)

Noting that the right-hand side of (5.6) does not depend on z, z′ we get

I2 ≤
∞∑
k=0

{NZ,d(ε2−k−1)}2g
(
9y2k−2(k + 1)−2).(5.7)

The theorem statement follows now from (5.4), (5.5) and (5.7).

5.2. Proof of Proposition 2. Let Zl , l = 1, . . . ,NZ,d(ε/8) be d-balls of radius
ε/8 forming a minimal covering of the set Z. For any 0 ≤ j ≤ [ε−1 log2(R/r)−
1]+ [without loss of generality, we assume that ε−1 log2(R/r) is integer], let δj =
r2εj , and put

Z̃δj+1 = {ζ ∈ Z : δj < U(φ[ζ ])≤ δj+1}.
Note that Z̃δj ⊆ Zδj for all j because ε ∈ (0,1]; recall that Za is defined in (2.6).

We have Zl = ⋃[ε−1 log2(R/r)−1]+
j=0 {Zl ∩ Z̃δj+1} for any l = 1, . . . ,NZ,d(ε/8).

Therefore, for any y > 0,

�∗
uε
(y,Zl)≤ sup

j=0,...,[ε−1 log2(R/r)−1]+

[
sup

ζ∈Zl∩Z̃δj+1

�
(
ξφ[ζ ]

)− uεC
∗(y)δj

]
.(5.8)

Let 0 ≤ j ≤ [ε−1 log2(R/r)− 1]+ be fixed; then using the definition of �A and
�B [see (2.2) and (2.3)] and the fact that Z̃δj+1 ⊆ Zδj+1 we have that

C∗(y)≥ 1 + δ−1
j+1

[
2
√
y�A(Zδj+1)+ 2y�B(Zδj+1)

]
≥ 1 + δ−1

j

[√
y�A(Zδj+1)+ y�B(Zδj+1)

]
≥ 1 + δ−1

j

[√
y�A(Z̃δj+1)+ y�B(Z̃δj+1)

]
.

Therefore

C∗(y)δj ≥ δj + [√
y�A(Z̃δj+1)+ y�B(Z̃δj+1)

]
≥ 2−ε

κU(Z̃δj+1)+C∗(y, Z̃δj+1),

since by the premise of the proposition δj = 2−εδj+1 ≥ 2−ε
κU(Zδj+1) ≥ 2−ε ×

κU(Z̃δj+1). Note also that the definition of C∗(·, ·) implies that C∗(·,Z1) ≤
C∗(·,Z2)wheneverZ1 ⊆Z2. Thus, we have for any 0 ≤ j ≤ [ε−1 log2(R/r)−1]+
and any l = 1, . . . ,NZ,d(ε/8)

uεC
∗(y)δj ≥ (1 + ε)[κU(Zl ∩ Z̃δj+1)+C∗(y,Zl ∩ Z̃δj+1)].(5.9)
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Taking into account (5.8), we obtain

P{�∗
uε
(y,Zl)≥ 0}

≤
[ε−1 log2(R/r)−1]+∑

j=0

P
{

sup
ζ∈Zl∩Z̃δj+1

�
(
ξφ[ζ ]

)≥ (1 + ε)[κU(Zl ∩ Z̃δj+1)

+C∗(y,Zl ∩ Z̃δj+1)]
}
.

Applying Proposition 1 for the sets Zl ∩ Z̃δj+1 , we get for any y > 0

P{�∗
uε
(y,Zl)≥ 0} ≤

[ε−1 log2(R/r)−1]+∑
j=0

L
(ε)
g,Zδj+1

(y)

=
[ε−1 log2(R/r)−1]+∑

j=0

L(ε)g
(
y, r2ε(j+1)).

It remains to note that the right-hand side of the last inequality does not depend
on l; thus, we come to the first assertion of the proposition.

Now we derive the bound for the moments of �∗
uε
(y,Z). We have from (5.8)

with y > 0 that for any q ≥ 1

E
(

sup
ζ∈Z

{
�
(
ξφ[ζ ]

)− uεC
∗(y)U(φ[ζ ])})q+

≤
NZ,d(ε/8)∑

l=1

[ε−1 log2(R/r)−1]+∑
j=0

E
(

sup
ζ∈Zl∩Z̃δj+1

{
�
(
ξφ[ζ ]

)− uεC
∗(y)δj

})q
+(5.10)

=:
NZ,d(ε/8)∑

l=1

[ε−1 log2(R/r)−1]+∑
j=0

Ej(l).

For l = 1, . . . ,NZ,d(ε/8) and 0 ≤ j ≤ [ε−1 log2(R/r)− 1]+ we have

Ej(l)= q

∫ ∞
uεC∗(y)δj

[x − uεC
∗(y)δj ]q−1

× P
{

sup
ζ∈Zl∩Z̃δj+1

�
(
ξφ[ζ ]

)≥ x
}
dx

= [uεC∗(y)]qδqj q

×
∫ ∞

1
(z− 1)q−1P

{
sup

ζ∈Zl∩Z̃δj+1

�
(
ξφ[ζ ]

)≥ zuεC
∗(y)δj

}
dz(5.11)



2352 A. GOLDENSHLUGER AND O. LEPSKI

≤ [uεC∗(y)]qδqj q

×
∫ ∞

1
(z− 1)q−1P

{
sup

ζ∈Zl∩Z̃δj+1

�
(
ξφ[ζ ]

)≥ uεC
∗(yz)δj

}
dz

≤ [uεC∗(y)]qδqj q
∫ ∞

1
(z− 1)q−1L(ε)g

(
yz, r2ε(j+1))dz.

Here the third line follows from zC∗(y)≥ C∗(yz) for any z ≥ 1, and the last line
is a consequence of (5.9) and the probability bound established above.

The second statement of the theorem follows now from (5.10) and (5.11) since
the right-hand side in (5.11) does not depend on l.

6. Proof of Theorem 1.

6.1. Preliminaries. For convenience in this section, we present some well-
known results that will be repeatedly used in the proofs.

Empirical processes. Let F be a countable set of functions f : X → R. Sup-
pose that Ef (X)= 0, ‖f ‖∞ ≤ b, ∀f ∈ F and put

Y = sup
f∈F

n∑
i=1

f (Xi), σ 2 = sup
f∈F

E[f (X)]2.

LEMMA 1. For any x ≥ 0

P{Y − EY ≥ x} ≤ exp
{
− x2

2nσ 2 + 4bEY + (2/3)bx

}
.

The statement of the lemma is an immediate consequence of the the Bennett in-
equality for empirical processes [see Bousquet (2002)] and the standard arguments
allowing to derive the Bernstein inequality from the Bennett inequality.

Inequalities for sums of independent random variables. We recall the well-
known Rosenthal and Bahr–Esseen [see von Bahr and Esseen (1965)] bounds on
the moments of sums of independent random variables.

LEMMA 2. Let Y1, . . . , Yn be independent random variables, EYi = 0, i =
1, . . . , n. Then

E

∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
p

≤ [c1(p)]p
{

n∑
i=1

E|Yi |p +
(

n∑
i=1

EY 2
i

)p/2}
, p > 2;

E

∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
p

≤ 2
n∑
i=1

E|Yi |p, p ∈ [1,2),

where c1(p)= 15p/ lnp.
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The constant c1(p)= 15p/ lnp in the Rosenthal inequality is obtained by sym-
metrization of the inequality of Theorem 4.1 in Johnson, Schechtman and Zinn
(1985).

Norms of integral operators. The next statement presents inequalities for
norms of integral operators.

LEMMA 3. Let (T ,T, τ ) and (X ,X, χ) be σ -finite spaces, w be a (T × X)-
measurable function on T × X , and let

Mp,τ,χ (w) := sup
x∈X

‖w(·, x)‖p,τ ∨ sup
t∈T

‖w(t, ·)‖p,χ .

If R ∈ Lp(X , χ) and IR(t) := ∫
w(t, x)R(x)χ(dx) then the following statements

hold:

(a) For any p ∈ [1,∞]
‖IR‖p,τ ≤M1,τ,χ (w)‖R‖p,χ .(6.1)

(b) For any 1<p < r <∞
‖IR‖r,τ ≤ c2(p)Mq,τ,χ (w)‖R‖p,χ ,(6.2)

where 1
q

= 1 + 1
r

− 1
p

, and c2(p) is a numerical constant independent of w.

The statements of the lemma can be found in Folland (1999), Theorems 6.18
and 6.36.

Note that if χ = ν′ := f ν then Mp,τ,χ (w) = Mp(w), ∀w [see (3.1)]. If T =
X = R

d , τ and χ are the Lebesgue measures, and if w(t, x) depends on the differ-
ence t − x only, then c2(p)= 1, and (6.2) is the well-known Young inequality.

6.2. Proof of Theorem 1. We begin with two technical lemmas; their proofs
are given in the Appendix.

LEMMA 4. Let Bs/(s−1) be the unit ball in Ls/(s−1)(T , τ ), and suppose that
Assumption (A1) hold. Then, there exists a countable set L ⊂ Bs/(s−1) such that

‖ξw‖s,τ = sup
l∈L

∫
l(t)ξw(t)τ (dt).

LEMMA 5. Let w(t, x)=w(t, x)− Ew(t,X); then for all p ≥ 1 one has:

(a) ‖w(·, x)‖p,τ ≤ 2 supx∈X ‖w(·, x)‖p,τ .
(b) Mp(w)≤ 2Mp(w).

We break the proof of Theorem 1 into several steps.
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Step 1: Reduction to empirical process. We obtain from Lemma 4

‖ξw‖s,τ = sup
l∈L

∫
l(t)ξw(t)τ (dt)

= sup
l∈L

n∑
i=1

∫
l(t)w(t,Xi)τ (dt)

= sup
λ∈�

n∑
i=1

λ(Xi),

where

�=
{
λ : X → R :λ(x)=

∫
l(t)w(t, x)τ (dt), l ∈ L

}
.

Thus,

‖ξw‖s,τ = sup
λ∈�

n∑
i=1

λ(Xi)=: Y(6.3)

and, obviously, Eλ(X) = 0. The idea now is to apply Lemma 1 to the random
variable Y .

Step 2: Some upper bounds. In order to apply Lemma 1, we need to bound
from above the following quantities: (i) EY ; (ii) b := supλ∈� ‖λ‖∞; and (iii) σ 2 :=
supλ∈�Eλ2(X).

(i) Upper bound for EY . Applying the Hölder inequality, we get from (6.3)

E

[
sup
λ∈�

n∑
i=1

λ(Xi)

]
= E‖ξw‖s,τ ≤ [E‖ξw‖ss,τ ]1/s =

[∫
E|ξw(t)|sτ (dt)

]1/s

.

If s ∈ [1,2], then for all t ∈ T

E|ξw(t)|s ≤ [E|ξw(t)|2]s/2 ≤ [nEw2(t,X)]s/2 =
[
n

∫
w2(t, x)f (x)ν(dx)

]s/2

.

Thus, we have for all s ∈ [1,2]

EY = E

[
sup
λ∈�

n∑
i=1

λ(Xi)

]
≤ √

n�s(w,f ).(6.4)

Note that the same quantity can be bounded from above in a different way. In-
deed, in view of the Barh–Esseen inequality (the second statement of Lemma 6.8)

E|ξw(t)|s ≤ 2nE|w(t,X)|s = 21+snE|w(t,X)|s
and we obtain for all s ∈ [1,2]

EY = E

[
sup
λ∈�

n∑
i=1

λ(Xi)

]
≤ 21+1/sn1/sMs(w).(6.5)
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We get finally from (6.4) and (6.5)

EY ≤ {√
n�s(w,f )

}∧ {4n1/sMs(w)}.(6.6)

If s = 2, we obtain a bound independent of f : indeed, in this case

EY = E

[
sup
λ∈�

n∑
i=1

λ(Xi)

]
≤ √

n

[∫ ∫
w2(t, x)f (x)ν(dx)τ (dt)

]1/2

(6.7)
≤ √

nM2(w).

If s > 2, then applying the Rosenthal inequality (the first assertion of Lem-
ma 6.8) to ξw(t), which is a sum of i.i.d. random variables for any t ∈ T , we get

[E(|ξw(t)|s)]1/s ≤ c1(s)[(nEw2(t,X))s/2 + nE|w(t,X)|s]1/s

and, therefore,

E

[
sup
λ∈�

n∑
i=1

λ(Xi)

]

≤ c1(s)

{√
n

[∫ (∫
w2(t, x)f (x)ν(dx)

)s/2

τ(dt)

]1/s

(6.8)

+ 2n1/s
[∫ ∫

|w(t, x)|sf (x)ν(dx)τ (dt)
]1/s}

.

To get the last inequality we have used that E|w(t,X)|s ≤ 2sE|w(t,X)|s , for all
s ≥ 1.

It is evident that the second integral on the right-hand side of (6.8) does not
exceed Ms(w). Moreover, since (Ew2(t,X))s/2 ≤ E|w(t,X)|s , s ≥ 2, the fol-
lowing bound is true �s(w,f ) ≤ Ms(w). We conclude that EY < ∞ whenever
Ms(w) <∞, and

EY = E

[
sup
λ∈�

n∑
i=1

λ(Xi)

]
≤ c1(s)

{√
n�s(w,f )+ 2n1/sMs(w)

}
.(6.9)

(ii) Upper bound for b = supλ∈� ‖λ‖∞. Taking into account that l ∈ L ⊂
Bs/(s−1) (Lemma 4) and applying the Hölder inequality, we get for any x ∈ X

|λ(x)| ≤
[∫

|w(t, x)− Ew(t,X)|sτ (dt)
]1/s

= ‖w(·, x)‖s,τ .

Therefore, in view of Lemma 5(a)

b= ‖λ‖∞ ≤ 2 sup
x∈X

‖w(·, x)‖s,τ ≤ 2Ms(w).(6.10)
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(iii) Upper bound on the “dual” variance σ 2. Since Eλ(X)= 0, we have

σ 2 = sup
λ∈�

∫
λ2(x)f (x)ν(dx)

= sup
l∈L

∫ [∫
w(t, x)l(t)τ (dt)

]2

f (x)ν(dx)

≤ sup
l∈Bs/(s−1)

∫ [∫
w(t, x)l(t)τ (dt)

]2

f (x)ν(dx)

≤ sup
l∈Bs/(s−1)

∫ [∫
w(t, x)l(t)τ (dt)

]2

f (x)ν(dx).

The expression on the right-hand side is bounded differently depending on the
value of s.

If s ∈ [1,2), then applying the Hölder inequality to the inner integral in the
previous expression we obtain

σ 2 ≤
∫ [∫

|w(t, x)|sτ (dt)
]2/s

f (x)ν(dx)

(6.11)
≤ sup

x∈X
‖w(·, x)‖2

s,τ ≤M2
s (w).

We remark also that the bound given by (6.11) remains true for all s ≥ 1. This
shows, in particular, that σ is always bounded whenever Ms(w) <∞.

If s = 2, then we apply inequality (6.1) of Lemma 3 with p = 2 and χ(dx) =
ν′(dx) = f (x)ν(dx) to the integral operator Il(x) = ∫

w(t, x)l(t)τ (dt). This
leads to the following bound

σ 2 ≤M2
1,τ,ν′(w).(6.12)

If s > 2, then we apply inequality (6.2) of Lemma 3 with r = 2, p = s
s−1 ,

q = 2s
s+2 and χ = ν′ to the integral operator Il(x)= ∫

w(t, x)l(t)τ (dt). This yields

σ 2 ≤ c2
(
s/(s − 1)

)
M2

q,τ,ν′(w)= c2
(
s/(s − 1)

)
M2

2s/(s+2),τ,ν′(w).(6.13)

Step 3: Application of Lemma 1. 1. Case s ∈ [1,2). Here we have from (6.6),
(6.10) and (6.11)

EY ≤ {√
n�s(w,f )

}∧ {4n1/sMs(w)} =: ρs(w,f ),
b ≤ 2Ms(w), σ 2 ≤M2

s (w).

Therefore applying Lemma 1, we have for all z > 0

P{‖ξw‖s,τ ≥ ρs(w,f )+ z}
(6.14)

≤ exp
{
− z2

2M2
s (w)[n+ 16n1/s] + [4Ms(w)z/3]

}
,
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where we have used (6.5) in the denominator of the expression inside of the expo-
nent.

To get the result of the theorem, we note that the following trivial upper bound
follows from the triangle inequality and the statement (a) of Lemma 5:

‖ξw‖s,τ ≤ 2nMs(w) ∀s ≥ 1.

Thus, the probability in (6.14) is equal to zero if z > 2nMs(w); hence, we can
replace z by 2nMs(w) in the denominator of the expression on the right-hand side.
This leads to the statement of the theorem for s ∈ [1,2).

2. Case s = 2. We have from (6.7), (6.10) and (6.12)

EY ≤ √
nM2(w), b ≤ 2M2(w), σ 2 ≤M2

1,τ,ν′(w).

Thus, for all z > 0

P
{‖ξw‖2,τ ≥ √

nM2(w)+ z
}

≤ exp
{
− z2

2[nM2
1,τ,ν′(w)+ 4

√
nM2

2 (w)+ (2/3)M2(w)z]
}
,

and the statement of Theorem 1 is established for s = 2.
3. Case s > 2. We have from (6.9), (6.10) and (6.13)

EY ≤ c1(s)
[√

n�s(w,f )+ 2n1/sMs(w)
]
,

b ≤ 2Ms(w); σ 2 ≤ c2
(
s/(s − 1)

)
M2

2s/(s+2),τ,ν′(w).

Thus, for any z > 0 we get

P
{‖ξw‖s,τ ≥ c1(s)

[√
n�s(w,f )+ 2n1/sMs(w)

]+ z
}

≤ exp
{−z2(2c3(s)

[
nM2

2s/(s+2),τ,ν′(w)+ 4
√
n�s(w,f )Ms(w)

+ 8n1/sM2
s (w)+ 2

3Ms(w)z
])−1}

,

where c3(s) is given in (3.2). This completes the proof of the theorem for the case
of s > 2.

We conclude by establishing the inequalities in (3.6). In order to derive the first
inequality, we apply (6.1) of Lemma 3 with p = s/2 > 1, χ = ν to the integral
operator If (t) := ∫

w2(t, x)f (x)ν(dx). This yields

[∫ (∫
w2(t, x)f (x)ν(dx)

)s/2

τ(dt)

]1/s

≤M2(w)
∥∥√f ∥∥s,ν,

as claimed. The second inequality in (3.6) follows straightforwardly from the def-
inition of Mp,τ,ν′ and Mp .



2358 A. GOLDENSHLUGER AND O. LEPSKI

7. Proofs of Theorem 3 and Corollary 4.

7.1. Proof of Theorem 3. First, we specify the constants appearing in the state-
ment of the theorem:

T1,ε :=
(

2q(ε+1)

2qε − 1
�(q + 1)+ 1

)
NZ,d(ε/8)(2uεRξ )

q[1 ∨ log2(Rξ/rξ )]
[
1 +L(ε)exp

]
,

T2,ε := [c1(s)+ 2]qNZ,d(ε/8)[1 ∨ log2(Rξ/rξ )]
[
1 +L(ε)exp

]
.

Recall that in view of (3.7), any w ∈ W is represented as w = φ[ζ ] for some
ζ ∈ Z. For every 0 ≤ j ≤ [log2(Rξ/rξ )− 1]+ [without loss of generality, we as-
sume that log2(Rξ/rξ ) is an integer number], put δj = r2j+1, and define the ran-
dom events

A :=
[log2(Rξ /rξ )−1]+⋂

j=0

Aj , Aj :=
{

sup
ζ∈Zδj

∥∥ξφ2[ζ ]
∥∥
s/2,τ ≤ [2(1 + ε)γ δj ]2

}
.

(i) The following trivial inequality holds:

sup
ζ∈Z

{∥∥ξφ[ζ ]
∥∥
s,τ − uε(γ )C

∗
ξ (y)Ûξ (φ[ζ ])}+

≤ sup
ζ∈Z

{∥∥ξφ[ζ ]
∥∥
s,τ − uεC

∗
ξ (y)Uξ (φ[ζ ], f )}+

+ uεC
∗
ξ (y) sup

ζ∈Z

Uξ(φ[ζ ], f ).

Therefore,

E sup
ζ∈Z

{∥∥ξφ[ζ ]
∥∥
s,τ − uε(γ )C

∗
ξ (y)Ûξ (φ[ζ ])}q+

≤ E

[
sup
ζ∈Z

{∥∥ξφ[ζ ]
∥∥
s,τ − uε(γ )C

∗
ξ (y)Ûξ (φ[ζ ])}q+1(A)

]
(7.1)

+ 2q−1
E sup
ζ∈Z

{∥∥ξφ[ζ ]
∥∥
s,τ − uεC

∗
ξ (y)Uξ (φ[ζ ], f )}q+

+ 2q−1[uεC∗
ξ (y)Rξ ]q

[log2(Rξ /rξ )−1]+∑
j=0

P{Aj },

where Aj denotes the event complementary to Aj , and 1(A) is the indicator of the
event A. The second term on the right-hand side is bounded using Theorem 2; our
current goal is to bound the first and the third terms.

Note that, if the event A occurs then for every ζ ∈ Z

Uξ(φ[ζ ], f )[1 + 4c1(s)(1 + ε)γ ]
(7.2)

≥ Ûξ (φ[ζ ])≥Uξ(φ[ζ ], f )[1 − 4c1(s)(1 + ε)γ ].
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Indeed, in view of (3.9), (3.13) and (3.14) we get

Ûξ (φ[ζ ]) ≥ Uξ(φ[ζ ], f )− |Ûξ (φ[ζ ])−Uξ(φ[ζ ], f )|
= Uξ(φ[ζ ], f )− c1(s)

√
n|�̂s(φ[ζ ])−�s(φ[ζ ], f )|(7.3)

≥ Uξ(φ[ζ ], f )− c1(s)
√∥∥ξφ2[ζ ]

∥∥
s/2,τ .

Let ζ ∈ Z be fixed. Since Zδj , j = 0, . . . , [log2(Rξ/rξ )− 1]+, defined in (3.15),
form the partition of Z, there exists j∗ such that ζ ∈ Zδj∗ . Because ζ ∈ Zδj∗ implies
Uξ(φ[ζ ], f )≥ δj∗/2 = δj∗−1, we obtain from (7.3) on the event A that

Ûξ (φ[ζ ])≥ Uξ(φ[ζ ], f )− 2c1(s)(1 + ε)γ δj∗
(7.4)

≥ Uξ(φ[ζ ], f )[1 − 4c1(s)(1 + ε)γ ].
Thus, the right-hand side inequality in (7.2) is proved. Similarly, we have from
(7.3) and (7.4) that

Ûξ (φ[ζ ])≤ Uξ(φ[ζ ], f )+ |Ûξ (φ[ζ ])−Uξ(φ[ζ ], f )|
≤ U(φ[ζ ])+ c1(s)

√∥∥ξφ2[ζ ]
∥∥
s/2,τ

≤ Uξ(φ[ζ ], f )[1 + 4c1(s)(1 + ε)γ ].
Thus, (7.2) is proved.

Using the right-hand side inequality in (7.2) and applying Theorem 2, we obtain

E

[
sup
ζ∈Z

{∥∥ξφ[ζ ]
∥∥
s,τ − uε(γ )C

∗
ξ (y)Ûξ (φ[ζ ])}q+1(A)

]

≤ E sup
ζ∈Z

{∥∥ξφ[ζ ]
∥∥
s,τ − uεC

∗
ξ (y)Uξ (φ[ζ ], f )}q+(7.5)

≤ 2q(ε+1)u
q
ε

2qε − 1
�(q + 1)NZ,d(ε/8)[RξC∗

ξ (1)]q
[
1 +L(ε)exp

]
exp{−y/2}.

Now we bound the probability P{Aj }. Let Zl , l = 1, . . . ,NZ,d(ε/8) be a mini-
mal covering of Z by balls of radius ε/8 in the metric d. By definition of Aj , we
have

P{Aj } ≤
NZ,d(ε/8)∑

l=1

P

{
sup

ζ∈Zl∩Zδj

∥∥ξφ2[ζ ]
∥∥
s/2,τ ≥ [2(1 + ε)γ δj ]2

}
.(7.6)

Note that

[2γ δj ]2 ≥ κ
Ũ
(Zδj )+ δ2

j

[√
yγ λÃ + yγ λB̃

]≥ κ
Ũ
(Zl ∩ Zδj )+ δ2

j

[√
yλ

Ã
+ yλ

B̃

];
here the first inequality follows from the condition κ

Ũ
(Za) = κ

Ũ
(a) ≤ (γ a)2,

∀a ∈ [rξ ,Rξ ] and from definition of yγ ; the second inequality holds by the inclu-
sion Zl ∩ Zδj ⊆ Zδj and because y ≤ yγ . Furthermore, by (3.16) and by the above
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inclusion

λ
Ã

≥ δ−2
j �

Ã
(Zδj )≥ δ−2

j �
Ã
(Zδj ∩Zl),

λ
B̃

≥ δ−2
j �

B̃
(Zδj )≥ δ−2

j �
B̃
(Zδj ∩Zl),

which leads to

[2γ δj ]2 ≥ κ
Ũ
(Zl ∩ Zδj )+ √

y�
Ã
(Zδj ∩Zl)+ y�

B̃
(Zδj ∩Zl)

= κ
Ũ
(Zl ∩ Zδj )+ C̃∗(y,Zl ∩ Zδj ),

where C̃∗(y, ·) := √
y�

Ã
(·)+ y�

B̃
(·) [cf. (2.4)].

Hence, applying Proposition 1, we obtain from (7.6) that

P{Aj } ≤
NZ,d(ε/8)∑

l=1

P

{
sup

ζ∈Zl∩Zδj

∥∥ξφ2[ζ ]
∥∥
s/2,τ

≥ (1 + ε)[κ
Ũ
(Zl ∩ Zδj )+ C̃∗(y,Zl ∩ Zδj )]

}
(7.7)

≤NZ,d(ε/8)

[
exp{−y} +

∞∑
k=0

exp{2EZ,d(ε2−k)− 9y2k−3k−2}
]

≤NZ,d(ε/8)
[
1 +L(ε)exp

]
exp{−y/2},

where we have used that y ≥ 1.
Finally, combining (7.1), (7.5), the bound of Theorem 2, and (7.7) we come to

the first assertion of the theorem. Here we also used that C∗
ξ (1) ≤ Cξ(y) because

y ≥ 1.
(ii) In order to prove the second statement, we note first the following nonran-

dom bound: since �̂s(w)≤Ms(w) for all w ∈ W and s > 2,

Ûs(w)≤Ms(w)
[
c1(s)

√
n+ 2n1/s]≤ [c1(s)+ 2]√nMs(w) ∀w ∈ W .

Next, the left-hand side inequality in (7.2) implies that for any subset W0 ⊆ W

A ⊆
{

sup
w∈W0

Ûξ (w) < [1 + 4c1(s)(1 + ε)γ ] sup
w∈W0

Uξ(w,f )
}

=: A0.

Therefore P(A0)≤ P(A) and

E{[Û (w)]q1(A0)} ≤ [c1(s)+ 2]q[√nMs(w)
]q

P(A).

Using (7.7) with y = yγ , and definition of the event A, we complete the proof.
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7.2. Proof of Corollary 4. First, as in (7.2), we need to bound Ŭξ (w) :=
max{Ûξ (w),

√
nM2(w)} from above and from below in terms of Uξ(w,f ) :=

max{Uξ(w,f ),
√
nM2(w)}. Such bounds are easily derived from the following

trivial fact: for any positive A,B , C and any δ ∈ (0,1)

A(1 + δ)≥ B ≥A(1 − δ) ⇒ [A∨C](1 + δ)≥ [B ∨C] ≥ [A∨C](1 − δ).

Next, (7.5) remains valid because, by construction, Uξ(w,f ) ≤ Uξ(w,f ) and
the assumptions, allowing to apply Theorem 2 are imposed now on Uξ(w,f )

instead of Uξ(w,f ). The computations leading to (7.7) remain also unchanged
if Uξ(w,f ) is replaced by Uξ(w,f ). Note that now λ

Ã
and λ

B̃
are defined via

Uξ(w,f ).

8. Proofs of Theorems 4, 5.

8.1. Proof of Theorem 4. The proof is based on an application of Theorem 2.
Put

T3,ε := 2q(ε+1)u
q
ε

2qε − 1
�(q + 1)NZ,d(ε/8)

[
1 +L(ε)exp

][4ws(1 + 4n1/2−1/s)]q;

T4,ε := 2q(ε+1)u
q
ε

2qε − 1
�(q + 1)NZ,d(ε/8)

[
1 +L(ε)exp

]
× wq

2

{
1 + 2

√
2μ∗f2∞ + 8n−1/2 + (8/3)n−1/2}q .

We have Mp(w)= ‖w‖p for all w ∈ V and p ≥ 1, and (3.9) yields

Uξ(w,f )=
{

4n1/s‖w‖s, s ∈ [1,2),√
n‖w‖2, s = 2.

(8.1)

Therefore, in view of (3.10)

rξ =
{

4n1/sws, s ∈ [1,2),√
nw2, s = 2,

Rξ =
{

4n1/sws, s ∈ [1,2),√
nw2, s = 2.

(8.2)

It follows from (3.23), the Hölder inequality and the formulas for A2
ξ (w) and

Bξ(w) immediately after (3.9) that

A2
ξ (w) ≤

{
37n‖w‖2

s , s ∈ [1,2),[
2f2∞nμ∗ + 8

√
n
]‖w‖2

2, s = 2,
(8.3)

Bξ(w)=
{

0, s ∈ [1,2),
4
3‖w‖2, s = 2.

In order to apply Theorem 2, we need to check that κUξ (a)≤ a for all a ∈ [rξ ,Rξ ].
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Let s ∈ [1,2); here Za = {ζ :a/2 < 4n1/s‖φ[ζ ]‖s = 4n1/2‖w‖s ≤ a}; see
(3.15). By (8.1), Assumption (L) and because Za ⊆ Zs(a/4) we have

sup
ζ1,ζ2∈Za

Uξ (φ[ζ1] − φ[ζ2], f )
d(ζ1, ζ2)

≤ sup
ζ1,ζ2∈Zs (a/4)

4n1/s‖φ[ζ1] − φ[ζ2]‖s
d(ζ1, ζ2)

≤ a.

If s = 2, then Za = {ζ :a/2 <
√
n‖φ[ζ ]‖2 = √

n‖w‖2 ≤ a}, and again by Assump-
tion (L) supζ1,ζ2∈Za

[√n‖φ[ζ1] − φ[ζ2]‖2/d(ζ1, ζ2)] ≤ a. Thus, κUξ (a)≤ a for all
a ∈ [rξ ,Rξ ], and Theorem 2 can be applied. To this end, we should compute the
quantities �Aξ and �Bξ [see (2.2), (2.3) and (2.8)].

For s ∈ [1,2), we have by (8.3), definition of Za and Assumption (L) that

sup
ζ∈Za

Aξ (φ[ζ ])= sup
ζ∈Za

√
37n‖φ[ζ ]‖s =

√
37

4
an1/2−1/s,

sup
ζ1,ζ2∈Za

Aξ (φ[ζ1] − φ[ζ2])
d(ζ1, ζ2)

≤ sup
ζ1,ζ2∈Zs (a/4)

√
37n1/2‖φ[ζ1] − φ[ζ2]‖s

d(ζ1, ζ2)

≤
√

37

4
an1/2−1/s .

Similarly, if s = 2 then supζ∈Za
Aξ (φ[ζ ])≤ a(2f2∞μ∗ + 8n−1/2)1/2 and

sup
ζ1,ζ2∈Za

Aξ (φ[ζ1] − φ[ζ2])
d(ζ1, ζ2)

≤ sup
ζ1,ζ2∈Z2(a)

[
2f2∞nμ∗ + 8

√
n
]1/2 ‖φ[ζ1] − φ[ζ2]‖2

d(ζ1, ζ2)

≤ a

(
2f2∞μ∗ + 8√

n

)1/2

.

These computations and similar computations for �Bξ yield

�Aξ ≤
{ √

37
4 n1/2−1/s, s ∈ [1,2),

[2f2∞μ∗ + 8n−1/2]1/2, s = 2,

�Bξ =
{

0, s ∈ [1,2),
4
3n

−1/2, s = 2.

Recall that C∗
ξ (y)= 1 + 2

√
y�Aξ + 2y�Bξ [see (2.9)]. Therefore if for arbitrary

z > 0, we set

y =

⎧⎪⎪⎨
⎪⎪⎩

4

37
n(2/s)−1z2, s ∈ [1,2),

z2

8
[f2∞μ∗ + 4n−1/2]−1, s = 2,

then we get C∗
ξ (y)= 1 + z if s ∈ [1,2) and

C∗
ξ (y)= 1 + z+ z2

3
√
n[f2∞μ∗ + 4n−1/2] ≤ 1 + z+ z2

12
,
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if s = 2. Then the statements (i) and (ii) follow by application of the moment

bound of Theorem 2. Observe that Cξ(1) = 1 +
√

37
2 n−1/2−1/s for s ∈ [1,2), and

Cξ(1)= 1+2[2f2∞μ∗ +8n−1/2]1/2 + 4
3n

−1/2 for s = 2; Rξ is given in (8.2). These
expressions along with the moment bound of Theorem 2 lead to the formulas for
T1,ε and T2,ε given in the beginning of the proof.

8.2. Proof of Theorem 5. First, we specify the constants appearing in the state-
ment of the theorem. Put α∗ := α−1

1 α
−1/2
2 where α1 and α2 appear in Assump-

tion (W2); then

ϑ1 := [148α4∗]−1, ϑ2 := 5
√

2c1(s/2)f∞α2∗Cs/2.(8.4)

Define also

k∗ := 8α2∗c1(s)[Cs ∨Cs/2 ∨ 1],
(8.5)

L(ε)∗ (β) :=
∞∑
k=1

exp{21+kβ/m(k−1∗ ε)−β/m − (9/16)2kk−2},

and note that L(ε)∗ (β) < ∞ because β < m. If we set Iε(q) := 2q(ε+1)[2qε −
1]−1�(q + 1) + 1, then the constants T5,ε and T6,ε appearing in the statement
of the theorem are given by

T5,ε := Iε(q)(2uεk∗w2)
qNZ,d([k−1∗ ε/8]1/m)

(8.6)

× log2

(
k∗w2

w2

)[
1 +L(ε)∗ (β) exp{2CZ(β)}],

T6,ε := [c1(s)+ 2]q(α∗w2)
qNZ,d([k−1∗ ε/8]1/m)

(8.7)

× log2

(
k∗w2

w2

)[
1 +L(ε)∗ (β) exp{2CZ(β)}].

The proof is based on application of Theorem 3 and Corollary 4. These results
will be utilized with a distance d∗ on Z which is related to the original distance d,
and specified below. In order to apply Theorem 3, we need to verify its conditions
and to compute the quantities �Aξ , �Bξ , λ

Ã
, λ

B̃
and yγ . These computations are

routine and tedious.
We break the proof into steps.
00. Auxiliary results. We begin with preliminary results that will be used in the

subsequent proof.

LEMMA 6. Let (3.21) hold and Assumptions (W2) and (W3) be satisfied; then
for all w ∈ W and 1 ≤ p < q ≤ ∞ one has

[n1/qMq(w)] ≤ α−1
1 α

−1/p
2 μ1/q−1/p[n1/pMp(w)].



2364 A. GOLDENSHLUGER AND O. LEPSKI

PROOF. Recall that under (3.21), Mp(w) = ‖w‖p for all p ≥ 1. In view of
Assumption (W2) for any w ∈ V , we have

α1α
1/p
2 ‖w‖∞[mes{supp(w)}]1/p ≤ ‖w‖p ≤ ‖w‖∞[mes{supp(w)}]1/p.

This inequality, together with Assumption (W3), yields

n1/q‖w‖q ≤ n1/q‖w‖∞[mes{supp(w)}]1/q

= n1/p‖w‖∞[mes{supp(w)}]1/p

[nmes{supp(w)}]1/p−1/q

≤ α−1
1 α

−1/p
2 μ1/q−1/p[n1/p‖w‖p]. �

Our next lemma demonstrates that there exists a real number mp ∈ (0,1] such
that (3.27) holds.

LEMMA 7. Let Assumptions (W) and (L) hold; then for any p ≥ 2, the in-
equality (3.27) is valid with mp = 2/p and Cp = (2α∗)1−2/pμ1/p−1/2, that is,

sup
b∈[w2,w2]

b−1 sup
ζ1,ζ2∈Z2(b)

n1/p‖φ[ζ1] − φ[ζ2]‖p
[d(ζ1, ζ2)]2/p ≤ (2α∗)1−2/pμ1/p−1/2.

PROOF. We obviously have for any p > 2

‖φ[ζ1] − φ[ζ2]‖p ≤ (‖φ[ζ1]‖∞ + ‖φ[ζ2]‖∞)1−2/p(‖φ[ζ1] − φ[ζ2]‖2)
2/p.

Applying Lemma 6 with q = ∞ and p = 2, we have that supζ∈Z2(b)
‖φ[ζ ]‖∞ ≤

bα∗μ−1/2 for all b ∈ [w2,w2]. Then in view of Assumption (L)

sup
ζ1,ζ1∈Z2(b)

n1/p‖φ[ζ1] − φ[ζ2]‖p
[d(ζ1, ζ2)]2/p ≤ b(2α∗)1−2/pμ1/m−1/2 ∀b ∈ [w2,w2],

as claimed. �

LEMMA 8. Let Assumptions (W) and (L) hold; then for any ζ ∈ Za√
n‖φ[ζ ]‖p ≤ μ1/p−1/2∗ a ∀p ∈ [1,2),(8.8)

n1/p‖φ[ζ ]‖p ≤ α∗μ1/p−1/2a ∀p > 2,(8.9)
√
n‖φ2[ζ ]‖p ≤ α∗μ−1/2μ1/p−1/2∗ a2 ∀p ∈ [1,2).(8.10)

PROOF. By the Hölder inequality ‖φ[ζ ]‖p ≤ μ
1/p−1/2∗ ‖φ[ζ ]‖2; then (8.8)

holds by definition of Za . Inequality (8.9) follows Lemma 6. In order to prove
(8.10), we write ‖φ2[ζ ]‖p ≤ ‖φ[ζ ]‖∞‖φ[ζ ]‖p , note that by Lemma 6 ‖φ[ζ ]‖∞ ≤
α∗μ−1/2√n‖φ[ζ ]‖2 and use (8.9). �
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10. Notation. Now we establish some notation. Recall that Uξ(w,f ) =
c1(s)[√n�s(w,f ) + 2n1/sMs(w)] and Uξ(w,f ) is given by (3.28). It follows
from the definition of Uξ(·, f ), (3.9) and (3.6) that Uξ(w,f )≥ √

n‖w‖2 and

Uξ(w,f )≤ c1(s)
[
f1/2−1/s∞

√
n‖w‖2 + 2n1/s‖w‖s]≤ c1(s)α∗[f1/2∞ + 2]√n‖w‖2,

where the last inequality is a consequence of Lemma 6. Therefore, we put

rξ = √
nw2, Rξ = c1(s)α∗[f1/2∞ + 2]√nw2,

where wp and wp are defined in (3.24). Recall also that Za = {ζ :a/2 <

Uξ(φ[ζ ], f )≤ a}. By definition of Uξ(w,f ) and by the fact that Mp(w)= ‖w‖p
for all p ≥ 1, we have that Za ⊆ Z2(a) for all a ∈ [rξ ,Rξ ]; see (3.25). Define the
distance

d∗(ζ1, ζ2)= k∗ ×
⎧⎨
⎩

d(ζ1, ζ2)∨ [d(ζ1, ζ2)]ms , s ∈ [1,4),
d(ζ1, ζ2)∨ [d(ζ1, ζ2)]ms

∨[d(ζ1, ζ2)]ms/2, s > 4,
(8.11)

where k∗ is given in (8.5). Note that d∗(·, ·) is indeed a distance because by defini-
tion mp ≤ 1 for all p ≥ 2.

20. Verification of condition (3.17). It follows from definition of Uξ(·, f ), (3.9)
and (3.6) that

√
n‖φ[ζ ]‖2 ≤ Uξ(φ[ζ ], f )

(8.12)
≤ c1(s)

[
f1/2−1/s∞

√
n‖φ[ζ ]‖2 + 2n1/s‖φ[ζ ]‖s].

Therefore, by (8.12), Assumption (L) and (3.27) for any ζ1, ζ2 ∈ Za

Uξ (φ[ζ1] − φ[ζ2], f )
≤ c1(s)

[
f1/2−1/s∞

√
n‖φ[ζ1] − φ[ζ2]‖2 + 2n1/s‖φ[ζ1] − φ[ζ2]‖s]

≤ c1(s)[f1/2∞ + 2Cs]a{d(ζ1, ζ2)∨ [d(ζ1, ζ2)]ms }.
Thus

sup
ζ1,ζ2

Uξ(φ[ζ1] − φ[ζ2], f )
d∗(ζ1, ζ2)

≤ a ∀a ∈ [rξ ,Rξ ],

and (3.17) is valid, because k∗ ≥ c1(s)[f1/2∞ + 2Cs]; see (8.5) and (8.11).
30. Computation of κ

Ũ
and verification of (3.18).

We start with bounds on supζ∈Za
Ũ (φ2[ζ ]). Recall that

Ũ (φ2[ζ ])=
⎧⎪⎨
⎪⎩

4n2/sMs/2(φ
2[ζ ]), s ∈ (2,4),

c1(s/2)
[
f1/2∞

√
nM2(φ

2[ζ ])
+2n2/sMs/2(φ

2[ζ ])], s ≥ 4.
(8.13)
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By (8.9), for any ζ ∈ Za ,

n2/s‖φ2[ζ ]‖s/2 = (n1/s‖φ[ζ ]‖s)2 ≤ α2∗μ(2/s)−1n‖φ[ζ ]‖2
2

(8.14)
≤ α2∗μ(2/s)−1a2 ∀s > 2,

√
n‖φ2[ζ ]‖2 = (n1/4‖φ[ζ ]‖4)

2 ≤ α2∗μ−1/2n‖φ[ζ ]‖2
2 ≤ α2∗μ−1/2a2.(8.15)

Substituting these bounds in the expression for Ũ (φ2[ζ ]) and taking into account
that μ≥ 1 in view of (W3) we obtain for all s > 2

sup
ζ∈Za

Ũ (φ2[ζ ])≤ k1μ
2/(s∧4)−1a2, k1 := 4α2∗c1(s/2)[f1/2∞ + 2].(8.16)

Now we establish bounds on Ũ (φ2[ζ1] − φ2[ζ2]), ζ1, ζ2 ∈ Za .
(a) First, we consider the case s ∈ (2,4). By the Hölder and triangle inequalities,

we have

n2/s‖φ2[ζ1] − φ2[ζ2]‖s/2

≤ n2/s−1/2[‖φ[ζ1]‖2s/(4−s) + ‖φ[ζ2]‖2s/(4−s)
]√

n‖φ[ζ1] − φ[ζ2]‖2.

Noting that 2s/(4 − s) > 2 and applying (8.9), we have

n2/s−1/2‖φ[ζ ]‖2s/(4−s) ≤ α∗μ2/s−1√n‖φ[ζ ]‖2 ≤ α∗μ2/s−1a ∀ζ ∈ Za.

Then using Assumption (L) we get

n2/s‖φ2[ζ1] − φ2[ζ2]‖s/2 ≤ 2α∗μ2/s−1a2d(ζ1, ζ2) ∀ζ1, ζ2 ∈ Za.(8.17)

This along with (8.13) implies that for s ∈ (2,4)

Ũ (φ2[ζ1] − φ2[ζ2])≤ 8α∗μ2/s−1a2d(ζ1, ζ2) ∀ζ1, ζ2 ∈ Za.(8.18)

(b) Now assume that s ≥ 4. We have for ζ1, ζ2 ∈ Za√
n‖φ2[ζ1] − φ2[ζ2]‖2 ≤ [‖φ[ζ1]‖∞ + ‖φ[ζ2]‖∞

]√
n‖φ[ζ1] − φ[ζ2]‖2

(8.19)
≤ 2α∗μ−1/2a2d(ζ1, ζ2),

where we used Assumption (L), and (8.9) with p = ∞. Furthermore, we have for
all ζ1, ζ2 ∈ Z

n2/s‖φ2[ζ1] − φ2[ζ2]‖s/2

≤ [‖φ[ζ1]‖∞ + ‖φ[ζ2]‖∞
]
n2/s‖φ[ζ1] − φ[ζ2]‖s/2(8.20)

≤ 2Cs/2α∗μ−1/2a2{d(ζ1, ζ2)}ms/2,

where we have used (8.9) with p = ∞ and the definition of mp [see (3.27)]. These
inequalities lead to the following bound: for all s > 4

Ũ (φ2[ζ1] − φ2[ζ2])≤ 2α∗c1(s/2)[f1/2∞ + 2Cs/2]
×μ−1/2a2{d(ζ1, ζ2)∨ [d(ζ1, ζ2)]ms/2}.
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Combining this with (8.18), we obtain that for all s > 2

Ũ (φ2[ζ1] − φ2[ζ2])≤ k2μ
2/(s∧4)−1a2{d(ζ1, ζ2)∨ dms/2(ζ1, ζ2)},(8.21)

where k2 := 8α∗c1(s/2)[f1/2∞ + 2Cs/2]. Now using (8.16) and (8.21), we obtain

κ
Ũ
(a)= sup

ζ∈Za

Ũ (φ2[ζ1] − φ2[ζ2])
d∗(ζ1, ζ2)

∨ sup
ζ∈Za

Ũ (φ2[ζ ])≤ μ2/(s∧4)−1a2,

and the last bound holds because k∗ ≥ k1 ∨ k2 [see (8.5)]. Thus, the condition
(3.18) is valid with

γ = μ1/(s∧4)−1/2.(8.22)

Note that condition of the theorem μ > [64c2
1(s)]s∧4/(s∧4−2) ensures that γ <

[4c1(1 + ε)]−1 for any ε ∈ (0,1) as required in Theorem 3.
40. Bounding �Aξ and �Bξ . By the formula for A2

ξ (w) given immediately after
(3.9), and by (8.8) and (8.9), we have for ζ ∈ Za

A2
ξ (φ[ζ ])≤ 2c1(s)f

2∞
[
n‖φ[ζ ]‖2

2s/(s+2) + 4
√
n‖φ[ζ ]‖2‖φ[ζ ]‖s + 8n1/s‖φ[ζ ]‖2

s

]
≤ 2c1(s)f

2∞a2[μ2/s∗ + 12α2∗n−1/s] ≤ 24α2∗c1(s)f
2∞a2[μ2/s∗ + n−1/s].

Here we have used that μ ≥ 1, α∗ ≥ 1 and we write c1(s) instead of c3(s) in
the definition of A2(·) because for functions w(t, x) depending on t − x only the
constant c2(s) equals one [see (3.2) and remark after Lemma 3 in Section 6]. Thus,

sup
ζ∈Za

Aξ (φ[ζ ])≤ 5
√
c1(s)α∗f∞a

[
μ1/s∗ + n−1/(2s)].

In order to bound A2
ξ (φ[ζ1] − φ[ζ2]), we note that for all ζ1, ζ2 ∈ Za :

• by the Hölder inequality and by Assumption (L),
√
n‖φ[ζ1] − φ[ζ2]‖2s/(s+2) ≤

aμ
1/s∗ d(ζ1, ζ2);

• by Assumption (L),
√
n‖φ[ζ1] − φ[ζ2]‖2 ≤ ad(ζ1, ζ2);

• by (3.27), n1/s‖φ[ζ1] − φ[ζ2]‖s ≤ Csa[d(ζ1, ζ2)]ms .

Therefore,

sup
ζ1,ζ2∈Za

Aξ (φ[ζ1] − φ[ζ2])
d∗(ζ1, ζ2)

≤ 5
√
c1(s)f∞(Cs ∨ 1)a

[
μ1/s∗ + n−1/(2s)]

and �Aξ ≤ 5
√
c1(s)α∗f∞(Cs ∨ 1)[μ1/s∗ + n−1/(2s)]. Similarly, since Bξ(φ[ζ ]) =

4
3c1(s)‖φ[ζ ]‖s , we have by (8.9) that �Bξ ≤ 4

3c1(s)(Cs ∨ 1)α∗n−1/s . Thus, we
have shown that

�Aξ ≤ k3
[
μ1/s∗ + n−1/(2s)], �Bξ ≤ k3n

−1/s, k3 := 5c1(s)α∗f∞(Cs ∨ 1).

These bounds on �Aξ and �Bξ lead to the definition of C∗
ξ (y) in (3.29) [see also

(2.9)]. Note that ϑ0 in (3.29) satisfies ϑ0 = k3.
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50. Computation of λ
Ã

, λ
B̃

and yγ .
(i) First, consider the case s ∈ (2,4). Recall that in this case Ã2(φ2[ζ ]) =

37n‖φ2[ζ ]‖2
s/2 = 37n‖φ[ζ ]‖4

s and B̃(φ2[ζ ])= 0. Hence, by (8.9)

sup
ζ∈Za

Ã(φ2[ζ ])= sup
ζ∈Za

√
37n‖φ[ζ ]‖2

s ≤ √
37α2∗μ2/s−1n1/2−2/sa2.

It follows from (8.17) that for any ζ1, ζ2 ∈ Za√
37n‖φ2[ζ1] − φ2[ζ2]‖s/2 ≤ 2

√
37α∗μ2/s−1n1/2−2/sa2d(ζ1, ζ2).

Combining these results, we obtain that λ
Ã

≤ 2
√

37α2∗μ2/s−1n1/2−2/s and λ
B̃

= 0
which, in turn, by (3.19) and (8.22) implies that

yγ = γ 4λ−2
Ã

≥ (
2
√

37α2∗
)−2

n4/s−1 =: y∗.

This explains the definition of the constant ϑ1 in (8.4).
(ii) Now let s ≥ 4; here recall that

Ã2(φ2[ζ ])= 2c1(s/2)f2∞
[
n‖φ2[ζ ]‖2

2s/(s+4) + 4
√
n‖φ2[ζ ]‖2‖φ2[ζ ]‖s/2

+ 8n2/s‖φ2[ζ ]‖2
s/2

]
.

Observing that for ζ ∈ Za :

(a)
√
n‖φ2[ζ ]‖2s/(s+4) ≤ α∗μ2/s∗ a2 by (8.10) and μ≥ 1;

(b) n1/s‖φ2[ζ ]‖s/2 ≤ α2∗n−1/sa2 by (8.14);
(c)

√
n‖φ2[ζ ]‖2‖φ2[ζ ]‖s/2 ≤ α2∗μ−1/2n−2/sa4 by (8.15) and (b),

we obtain

sup
ζ∈Za

Ã(φ[ζ ])≤ 5
√
c1(s/2)f∞α∗a[μ2/s∗ + n−1/s].(8.23)

Similarly, for ζ1, ζ2 ∈ Za we have√
n‖φ2[ζ1] − φ2[ζ2]‖2s/(s+4) ≤ μ2/s∗

√
n‖φ2[ζ1] − φ2[ζ2]‖2

≤ 2α∗μ2/s∗ a2d(ζ1, ζ2),

n1/s‖φ2[ζ1] − φ2[ζ2]‖s/2 ≤ 2Cs/2α∗n−1/sa2{d(ζ1, ζ2)}ms/2,

[√
n‖φ2[ζ1] − φ2[ζ2]‖2‖φ2[ζ1] − φ2[ζ2]‖s/2

]1/2

≤ 2
√
Cs/2α∗n−1/sa2{d(ζ1, ζ2)∨ [d(ζ1, ζ2)]ms/2},

where the first line follows from the Hölder inequality and (8.19); the second one
follows from (8.20); and the third line follows from the two previous inequalities.
This yields

sup
ζ1,ζ2∈Za

Ã(φ2[ζ1] − φ2[ζ2])
d∗(ζ1, ζ2)

≤ 5f∞
√

2c1(s/2)α∗Cs/2a
2[μ2/s∗ + n−1/s].
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Combining the last inequality with (8.23), we obtain

λ
Ã

≤ k4[μ2/s∗ + n−1/s], k4 := 5f∞
√

2c1(s/2)α∗Cs/2.

Now in order to bound λ
B̃

we recall that B̃(φ2[ζ ])= 4
3c1(s/2)‖φ2[ζ ]‖s/2. Then

(8.14) gives supζ∈Za
B̃(φ2[ζ ])≤ 4

3c1(s/2)α2∗n−2/sa2. This along with (8.20) leads
to

λ
B̃

≤ k5n
−2/s, k5 := 8

3c1(s/2)α2∗Cs/2.

Combining these results with (3.19) and taking into account that, by (8.22), γ =
μ−1/4 ≤ 1 for s ≥ 4, we have

μ−1/4 = √
yγ λÃ + yγ λB̃ ≤ [√

yγ + yγ
]
(k4 ∨ k5)[μ2/s∗ + n−1/s],

and an elementary calculation shows that

yγ ≥ μ−1/2(k4 ∨ k5)
−2[μ2/s∗ + n−1/s]−2 =: y∗.

This inequality yields the constant ϑ2 appearing in (8.4).
60. Application of Theorem 3. In order to apply Theorem 3 with the distance

d∗(·, ·) given in (8.11), we need to compute the quantity

L(ε)exp =
∞∑
k=1

exp{2EZ,d∗(ε2−k)− (9/16)2kk−2}.

Note that the entropy number EZ,d∗(·)= ln{NZ,d∗(·)} is computed with respect to
the distance d∗. Therefore, we first express the entropy EZ,d∗(·) in terms of the
original distance d and then, using Assumption (W4), we derive a bound for L(ε)exp.

By the definition of the distance d∗, for all δ ∈ (0,1) and ζ1, ζ2 ∈ Z,

d(ζ1, ζ2)≤ [k−1∗ δ]1/m ⇒ d∗(ζ1, ζ2)≤ δ,

where m := 1 ∧ ms if s ∈ (2,4) and m := 1 ∧ ms ∧ ms/2 if s ≥ 4. Therefore,
NZ,d∗(δ)≤NZ,d([k−1∗ δ]1/m). In view of Assumption (W4), this yields

sup
δ∈(0,1)

{EZ,d∗(δ)− [k−1∗ δ]−β/m} ≤ sup
δ∈(0,1)

{EZ,d([k−1∗ δ]1/m)− [k−1∗ δ]−β/m}

≤ sup
x∈(0,1)

{EZ,d(x)− x−β} = CZ(β).

Thus, we obtain that

L(ε)exp ≤ exp{2CZ(β)}
∞∑
k=1

exp{21+kβ/m(k−1∗ ε)−β/m − (9/16)2kk−2}

= exp{2CZ(β)}L(ε)∗ (β).

Now the result of the theorem follows from the bounds of Theorem 3. The
constants T5,ε and T6,ε given in the beginning of the proof are obtained from the
expressions for T1,ε and T2,ε and bounds of Theorem 3. In particular, we used that
in view of Lemma 6

√
n supw∈V0

‖w‖s ≤ n(s−2)/(2s)α∗μ1/s−1/2w2.
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9. Proof of Theorem 7. The proof is based on verification of conditions and
application of Theorem 5. First, we establish auxiliary results that provide the basis
for verification of Assumptions (L) and (W). Then, based on these results, we show
that all conditions of Theorem 5 are fulfilled. This will yield the required result.

Let K and K ′ be any functions satisfying Assumptions (K1) and (K2), and let
h,h′ be given vectors from H. Let ζ = (K,h), ζ ′ = (K ′, h′), and recall that φ1[ζ ]
is the mapping (K,h) �→ n−1Kh.

Similarly, if K,Q,K ′,Q′ are any functions satisfying Assumptions (K1) and
(K2), and if h,h′,h,h′ are vectors from H then z = [(K,h), (Q,h)], z′ =
[(K ′, h′), (Q′,h′)], and φ2[z] is the mapping [(K,h), (Q,h)] �→ n−1(Kh ∗Qh).

10. Auxiliary results. We begin with auxiliary results about properties of the
mappings φ1[ζ ] and φ2[z]. The proofs of these results are given in the Appendix.

Define the function

D(x) := edx
[
x + 1

2LK
√
d(ex − 1)+ k∞(edx − 1)

]
, x ≥ 0,(9.1)

and put

θ1 := [k∞/k1]D′(2), θ2 := 22d+2k4∞k−2
1 D′(4),(9.2)

where D′ is the first derivative of the function D.
The next lemma states that Assumption (L) is fulfilled for the mappings ζ �→

φ1[ζ ] and z �→ φ2[z].

LEMMA 9. Let Assumption (K) hold, and s ≥ 1. If the sets Z
(i), i = 1,2, are

equipped with the distances d(i)θi (·, ·) then Assumption (L) is valid for the mappings
ζ �→ φ1[ζ ] and z �→ φ2[z].

The next three statements provide a basis for verification of Assumption (W).
For any h,h′ ∈ H, let h ∨ h′ = (h1 ∨ h′

1, . . . , hd ∨ h′
d) and h ∧ h′ = (h1 ∧

h′
1, . . . , hd ∧ h′

d).

LEMMA 10. Let Assumptions (K1) and (K2) hold; then for any p ∈ [1,∞]
‖φ1[ζ ]‖p = n−1V

−1+1/p
h ‖K‖p ∀ζ ∈ Z

(1),(9.3)

‖φ1[ζ ] − φ1[ζ ′]‖p ≤ n−1(Vh∨h′)−1+1/pD
(
d(1)1 (ζ, ζ ′)

) ∀ζ, ζ ′ ∈ Z
(1),(9.4)

‖φ2[z] − φ2[z′]‖p ≤ 2n−1k∞[(Vh∨h′)∨ (Vh∨h′)]−1+1/p

(9.5)
×D

(
2d(2)1 (z, z′)

) ∀z, z′ ∈ Z
(2).

Observe that Lemma 10 implies that Assumption (A2) of Section 3.2 is fulfilled
for the mappings ζ �→ φ1[ζ ] and z �→ φ2[z].
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LEMMA 11. Let w ∈ Hd(1,P ) with some P > 0, and let x̃ ∈ R
d be a point

such that w(x̃)= ‖w‖∞ > 0; then{
x ∈ R

d : |w(x)| ≥ 1

2
‖w‖∞

}
⊇

d⊗
i=1

[
x̃i − ‖w‖∞

2P
√
d
, x̃i + ‖w‖∞

2P
√
d

]
.

LEMMA 12. Under Assumption (K) for any p ≥ 1:

(i) ‖φ2[z]‖p ≤ 2d/pk2∞n−1(Vh∨h)
−1+1/p,

(ii) ‖φ2[z]‖p ≥ 2d(1−p)/pk2
1n

−1(Vh∨h)
−1+1/p,

(iii) mes{supp(φ2[z])} ≥ (Vh∨h)

[
k2

1

2d+1
√
dLKk∞

]d
,

(iv) mes
{
t :φ2[z](t)≥ 1

2
‖φ2[z]‖∞

}
≥
[

k2
1

2d+2
√
dLKk∞

]d
mes{supp(φ2[z])}.

20. Verification of conditions of Theorem 5. We check Assumption (W) for the
classes of weights W(1) and W(2) given by the parametrization φ1[ζ ] and φ2[z].

First, we note that (W1) is fulfilled both for φ1[ζ ] and φ2[z] in view of As-
sumption (K1). Furthermore, Assumptions (K1) and (K2) together with Lemma 11
imply (W2) for φ1[ζ ] with

α1 = 1

2
, α2 = α2,1 :=

[
k1

LK
√
d

]d
,(9.6)

while the statement (iv) of Lemma 12 yield (W2) for φ2[z] with the constants

α1 = 1

2
, α2 = α2,2 :=

[
k2

1

2d+2
√
dLKk∞

]d
.(9.7)

Clearly, mes{supp(φ1[ζ ])} ≥ Vhmin ; hence the condition

nVhmin > [64c2
1(s)](s∧4)/(s∧4−2)

implies (W3) for φ1[ζ ] with μ = nVhmin . It follows from the statement (iii) of
Lemma 12 that Assumption (W3) holds for φ2[z] with μ= nVhmin if

nVhmin > α−1
2,2[64c2

1(s)](s∧4)/(s∧4−2).

Finally, a standard calculation shows that if E H(·) is the entropy number of the
set H measured in the distance �H [see (3.31)] then for any δ ∈ (0,1]

E H(δ)≤ d ln(3/δ)+
d∑
i=1

(ln ln[hmax
i /hmin

i ])+.(9.8)

This result together with (K3) guarantees that Assumption (W4) is fulfilled for the
both parametrizations.
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Now we compute the quantities mp and Cp appearing in (3.27). Although
Lemma 7 shows that we always can set mp = 2/p, it turns out that under As-
sumption (K) we can put mp = 1 for all p ≥ 2 both for φ1[ζ ] and for φ2[z]. This
leads to weaker conditions on the entropy E K(·) (see formulation of Theorem 5).

First, consider the mapping φ1[ζ ]; here following (3.25), we set

Z
(1)
2 (b) := {ζ = (K,h) :n1/2‖φ1[ζ ]‖2 ≤ b} = {ζ = (K,h) : (nVh)

−1/2‖K‖2 ≤ b}
for b ∈ [w(1)

2 ,w(1)
2 ] where by (3.24)

w(1)
2 ≥ k1(nVhmax)−1/2, w(1)

2 ≤ k∞(nVhmin)
−1/2.(9.9)

By (9.4) of Lemma 10, we have for any p ≥ 2 and ζ1 = (K,h), ζ2 = (K ′, h′)

n1/p‖φ1[ζ1] − φ1[ζ2]‖p ≤ (nVh∨h′)−1+1/pD
(
d(1)1 (ζ1, ζ2)

)
,

and if ζ1, ζ2 ∈ Z
(1)
2 (b) are such that d(1)1 (ζ1, ζ2)≤ 2 then by definition of Z

(1)
2 (b)

n1/p‖φ1[ζ1] − φ1[ζ2]‖p ≤ [b/k1]2−2/pD′(2)d(1)1 (ζ1, ζ2),

where we have used that ‖K‖2 ≥ ‖K‖1 ≥ k1 for all K ∈ K, D(0) = 0, and D is
monotone increasing. If ζ1, ζ2 ∈ Z

(1)
2 (b) and d(1)1 (ζ1, ζ2) > 2, then by the triangle

inequality, and (9.3) of Lemma 10

n1/p‖φ1[ζ1] − φ1[ζ2]‖p ≤ n1/p‖φ1[ζ1]‖p + n1/p‖φ1[ζ2]‖p
≤ 2k∞(nVh)

−1+1/p ≤ k∞[b/k1]2−2/pd(1)1 (ζ1, ζ2).

These inequalities show that if Z
(1) is equipped with the distance d(1)θ1

(·, ·) [see
(9.2) for definition of θ1] then (3.27) holds with

mp = 1, Cp = θ−1
1 [k∞/k1]2−2/pD′(2)≤ 1,(9.10)

because nVhmin ≥ 1 (which implies b ≤ k∞).
Now consider the mapping φ2[z]; following (3.25) we have here

Z
(2)
2 (b) := {z= [(K,h), (Q,h)] :n1/2‖φ2[z]‖2 ≤ b}, b ∈ [

w(2)
2 ,w(2)

2

]
,

where by the statements (i) and (ii) of Lemma 12

2−d/2k2
1(nVhmax)−1/2 ≤ w(2)

2 , w(2)
2 ≤ 2d/2k2∞(nVhmin)

−1/2.(9.11)

Note that if z= [(K,h), (Q,h)] ∈ Z
(2)
2 (b) then by the statement (ii) of Lemma 12

we have (nVh∨h)
−1 ≤ 2dk−4

1 b2. By this fact and by (9.5) of Lemma 10, we have

for z1 = [(K,h), (Q,h)], z2 = [(K ′, h′), (Q′,h′)] ∈ Z
(2)
2 such that d(2)1 (z1, z2)≤ 2

n1/p‖φ2[z1] − φ2[z2]‖p ≤ 2k∞[(nVh∨h′)∨ (nVh∨h′)]−1+1/pD
(
2d(2)1 (z1, z2)

)
≤ 2d+2−d/pk∞[b/k2

1]2−2/pD′(4)d(2)1 (z1, z2).
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If d(2)1 (z1, z2) > 2, then using the triangle inequality and Lemma 12(i) we have

n1/p‖φ2[z1] − φ2[z2]‖p ≤ 2d+1k2∞[b/k2
1]2−2/p ≤ 2dk2∞[b/k2

1]2−2/pd(2)1 (z1, z2).

Combining these inequalities, we observe that if Z
(2) is equipped with the distance

d(2)θ2
(·, ·) [see (9.2)] then (3.27) holds with

mp = 1, Cp = θ−1
2 22d+2−3d/pk2∞[k2∞/k1]2−2/pD′(4)≤ 1.(9.12)

We have used that b ≤ 2d/2k2∞ because nVhmin ≥ 1. Thus (9.10) and (9.12) show
that m = 1 and the condition β < m of Theorem 5 holds if in Assumption (K3)
βK < 1.

30. Application of Theorem 5. First, note that ϑ(i)0 , i = 1,2, defined in (3.38)
satisfy

ϑ
(i)
0 := 5c1(s)f∞α∗,i , α∗,i := 2/

√
α2,i , i = 1,2,

where α2,i , i = 1,2, are given in (9.6) and (9.7). This is in accordance with the
definition of the constant ϑ0 in (3.29) for the parametrizations φ1[ζ ] and φ2[z].
Then the definition of C∗

ξ,i(y) in (3.40) corresponds to (3.29). Following (8.4), we
put

ϑ
(i)
1 := α−4

∗,i /148, ϑ
(i)
2 := 5

√
2c1(s/2)f∞α2∗,i , i = 1,2.

Then the formula for y(i)∗ appearing in the statement of the theorem is a version of
(3.30).

Now we need to specify the constants T5,ε and T6,ε ; see (8.6), (8.7).
Following (8.5), we set for i = 1,2

k∗,i := 8c1(s)α
2∗,i , L

(ε)
∗,i (β) :=

∞∑
k=1

exp{21+kβ(k−1
∗,i ε)

−β − (9/16)2kk−2}.

In view of (9.8) and Assumption (K3), we obtain for any β ∈ (βK,1) that

CZ(1) (β)= sup
δ∈(0,1)

{
E

Z(1),d(1)θ1
(δ)− δ−β}

≤ CK +Cβ,d +
d∑
i=1

(ln ln[hmax
i /hmin

i ])+,

CZ(2) (β)= sup
δ∈(0,1)

{
E

Z(2),d(2)θ2
(δ)− δ−β}

≤ 2CK + 2Cβ,d + 2
d∑
i=1

(ln ln[hmax
i /hmin

i ])+,

where we have taken into account that θ1 ≥ 1, θ2 ≥ 1 and denoted

Cβ,d := sup
δ∈(0,1]

[d ln(3/δ)+ δ−βK − δ−β], β ∈ (βK,1).
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Therefore for i = 1,2

L
(ε)
∗,i (β) exp{2CZ(i) (β)} ≤ [1 +AH]i exp{2iCK} inf

β∈(βK,1)

[
L
(ε)
∗,i (β) exp{2iCβ,d}],

and, by Assumption (K3), (9.8) and (3.39)

N
Z(i),d(i)θi

(k−1
∗,i ε/8)≤ [1 +AH]i[24k∗,iθi/ε]di exp

{
i

(
8k∗,iθi
ε

)βK}
exp{iCK}.

Finally, substituting these bounds in (8.6) and using (9.9), (9.11) and (3.39) we
have that

T
(i)
5,ε ≤ (1 +AH)

2i (1 +BH)T̃
(i)
1 ,

where

T̃
(i)
1,ε := Iε(q)(2

1+d/2uεk∗,ik2∞)q[24k∗,iθiε−1]di exp
{
i

(
8k∗,iθi
ε

)βK}
exp{3iCK}

× log2

(
2dk2∞k∗,i

k2
1

){
1 + inf

β∈(βK,1)

[
L
(ε)
∗,i (β) exp{2iCβ,d}]}, i = 1,2.

This leads to the first statement of the theorem. The second statement of the
theorem follows substitution of the above bounds in (8.7) which gives T

(i)
6,ε ≤

(1 +AH)2i (1 +BH)T̃
(i)

2 , where

T̃
(i)

2,ε := [c1(s)+ 2]q(2d/2α∗,ik2∞)q[24k∗,iθiε−1]di exp
{
i

(
8k∗,iθi
ε

)βK}
exp{3iCK}

× log2

(
2dk2∞k∗,i

k2
1

){
1 + inf

β∈(βK,1)

[
L
(ε)
∗,i (β) exp{2iCβ,d}]}, i = 1,2.

10. Proofs of Theorems 8 and 9.

10.1. Proof of Theorem 8. Let X′ = (X, ε), and let X′
i , i = 1, . . . , n be inde-

pendent copies of X′. For any l > 0, x′ = (x, u) ∈ X × R and t ∈ T define the
function

w(l)(t, x′)=w(t, x)u1[−l,l](u).

With this notation, we note that on the event {maxi=1,...,n|εi | ≤ l}

ηw(t)=
n∑
i=1

w(t,Xi)εi =
n∑
i=1

w(l)(t,X′
i)= ξw(l)(t),

and the last equality holds because Ew(l)(t,X′) = 0, for all t ∈ T and l > 0 be-
cause the distribution of ε is symmetric. Therefore for any z > 0,

P{‖ηw‖s,τ ≥ z} ≤ P
{∥∥ξw(l)

∥∥
s,τ ≥ z

}+ nP{|ε|> l}.



UNIFORM BOUNDS FOR NORMS 2375

If Assumption (E1) is fulfilled, then for any z > 0

P{‖ηw‖s,τ ≥ z} ≤ P
{∥∥ξw(l)

∥∥
s,τ ≥ z

}+ nv exp{−blα}.(10.1)

If Assumption (E2) is fulfilled, then for any z > 0

P{‖ηw‖s,τ ≥ z} ≤ P
{∥∥ξw(l)

∥∥
s,τ ≥ z

}+ nP l−p.(10.2)

In order to bound the first term on the right-hand side of (10.1) and (10.2), we
repeat the steps in the proof of Theorem 1 with w replaced by w(l) and optimize
with respect to the truncation level l.

For any z > 0, we define

ϒs(w,f, z)= z2

(1/3)� 2
s (w,f )+ (4/3)c∗(s)Ms(w)z

,

where c∗(s) is given in (3.2).
First, consider the case s ≥ 2. Using the same reasoning as in the proof of The-

orem 1, we have the following upper bound: for all z > 0

P
{∥∥ξw(l)

∥∥
s,τ ≥ �s(w,f )+ z

}≤ exp{−[1 ∨ l]−1ϒs(w,f, z)}.(10.3)

Under Assumption (E1), if we set

l =
{ [b−1ϒs(w,f, z)]1/α, b−1ϒs(w,f, z) < 1,

[b−1ϒs(w,f, z)]1/(1+α), b−1ϒs(w,f, z)≥ 1,
then it follows from (10.1) and (10.3) that

P{‖ηw‖s,τ ≥ �s(w,f )+ z} ≤G(1)(ϒs(w,f, z)).

Thus, the first statement of the theorem is proved if s ≥ 2.
If Assumption (E2) is fulfilled then we choose

l = ϒs(w,f, z)

p ln(1 + p−1ϒs(w,f, z))

and note that l ≥ 1 for any value of ϒs(w,f, z). Then (10.2) and (10.3) imply that

P{‖ηw‖s,τ ≥ �s(w,f )+ z} ≤
[

1

(1 + p−1ϒs(w,f, z))

]p

+ nP

[
p ln(1 + p−1ϒs(w,f, z))

ϒs(w,f, z)

]p
.

Using the trivial inequality (1 + u)−1 ≤ u−1 ln(1 + u),u≥ 0 we get

P{‖ηw‖s,τ ≥ �s(w,f )+ z} ≤ [1 + nP ]
[
p ln(1 + p−1ϒs(w,f, z))

ϒs(w,f, z)

]p
and, therefore, the second statement of the theorem is proved for the case s ≥ 2.

If s < 2, then we have similarly to (10.3) that for all z > 0

P
{∥∥ξw(l)

∥∥
s,τ ≥ �s(w,f )+ z

}≤ exp{−[1 ∨ l]−2ϒs(w,f, z)}.
The same computations as in the case s ≥ 2 lead to the statement of the theorem
when s < 2.
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10.2. Proof of Theorem 9. Put

L
(ε)
α,b :=

∞∑
k=1

exp{ε−β2βk+1}
√
gα,b(9 · 2k−3k−2),

J
(ε)
α,b := q

∫ ∞
1

(x − 1)q−1[gα,b(x)]1/4 dx,

Tn,ε := (1 + nv)[22ε(1 + ε)aw2]q[2qε − 1]−1 exp{CZ(β)+ (8/ε)β}
× (

1 + exp{2CZ(β)}L(ε)α,b
)
J
(ε)
α,b.

We note that L(ε)α,b <∞ since β < α/(2 + α) if s < 2, and β < α/(1 + α) if s ≥ 2.

Note also that the quantity J
(ε)
g (·) in the second inequality of Corollary 1 admits

the following bound if g =G1:

J (ε)g (z)≤ (1 + nv)[gα,b(z)]1/4(1 +L
(ε)
α,b

)
J
(ε)
α,b, z > 0.

If for any ζ ∈ Z, we let

Uη(φ[ζ ])= a
√
n‖φ[ζ ]‖2, Aη(φ[ζ ])= bn

√
n‖φ[ζ ]‖2,

Bη(φ[ζ ])= cn
√
n‖φ[ζ ]‖2,

then we have for f ∈ F
�s(φ[ζ ], f )≤ Uη(φ[ζ ]), 1

3�
2
s (φ[ζ ], f )≤A2

η(φ[ζ ]),
4
3c∗(s)Ms(φ[ζ ])≤ Bη(φ[ζ ]).

Thus, in view of Theorem 8, Assumption 1 holds with U = Uη, A= Aη, B = Bη

and g = G(1). Then standard computations show that �Aη = bn and �Bη = cn.
The assertion of the theorem follows now from Corollary 1.

APPENDIX

Proof of Lemma 4. Let

X (n) = X × · · · × X︸ ︷︷ ︸
n-times

, X (n) = X × · · · × X︸ ︷︷ ︸
n-times

.

Obviously, X (n) is a countable dense subset of X (n). For any x(n) ∈ X (n) and
t ∈ T , put

ξ
(
t, x(n)

)=
n∑
i=1

[w(t, xi)− Ew(t,X)],

and let

L =
{
lx(n) : T → R : lx(n)(t)= |ξ(t, x(n))|s−1 sign [ξ(t, x(n))]

‖ξ(·, x(n))‖s−1
s,τ

, x(n) ∈ X (n)

}
.
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Note that L is countable and L ⊂ Bs/(s−1) since, obviously

‖lx(n)‖s/(s−1),τ = 1 ∀x(n) ∈ X (n).

Note that ξw(·)= ξ(·,X(n)),X(n) = (X1, . . . ,Xn), and therefore, in order to prove
the assertion of the lemma it is sufficient to show that∥∥ξ (·, x(n))∥∥s,τ = sup

l∈L

∫
l(t)ξ

(
t, x(n)

)
τ(dt) ∀x(n) ∈ X (n).(A.1)

First, let us note that Assumption (A1) implies that for every ε > 0 and every
x(n) ∈ X (n) there exists x(n) ∈ X (n) such that∥∥ξ (·, x(n))− ξ

(·, x(n))∥∥s,τ ≤ ε.(A.2)

Taking into account that L ⊂ Bs/(s−1) and using the Hölder inequality, we obtain
from (A.2) that∣∣∣∣sup

l∈L

∫
l(t)ξ

(
t, x(n)

)
τ(dt)− sup

l∈L

∫
l(t)ξ

(
t, x(n)

)
τ(dt)

∣∣∣∣≤ ε.(A.3)

Obviously ∥∥ξ (·, x(n))∥∥s,τ =
∫
lx(n)(t)ξ

(
t, x(n)

)
τ(dt).

It implies in view of the duality argument that∥∥ξ (·, x(n))∥∥s,τ = sup
l∈L

∫
l(t)ξ

(
t, x(n)

)
τ(dt).(A.4)

Using the triangle inequality, we obtain from (A.2), (A.3) and (A.4) that for every
ε > 0 and every x(n) ∈ X (n)∣∣∣∣∥∥ξ (·, x(n))∥∥s,τ − sup

l∈L

∫
l(t)ξ

(
t, x(n)

)
τ(dt)

∣∣∣∣≤ 2ε,

which completes the proof of (A.1) because ε > 0 can be chosen arbitrary small.

Proof of Lemma 5. First, note that for any p ≥ 1 and x ∈ X

‖w(·, x)‖p,τ ≤ 21−1/p
[∫

|w(t, x)|pτ(dt)+
∫

E|w(t,X)|pτ(dt)
]1/p

≤ 2 sup
x∈X

‖w(·, x)‖p,τ .
Here, we have used the triangle inequality. Next, for any p ≥ 1 and t ∈ T ,[∫

|w(t, x)|pf (x)ν(dx)
]1/p

:= [E|w(t,X)|p]1/p ≤ 2[E|w(t,X)|p]1/p

=: 2
[∫

|w(t, x)|pf (x)ν(dx)
]1/p

.
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Here, we used that E|η− Eη|p ≤ 2pE|η|p . Combining both inequalities, we have

Mp(w)≤ 2Mp(w),

and the second statement of the lemma is proved.

Proof of Lemma 9. 10. First, we establish statement of the lemma for the
mapping ζ �→ φ1[ζ ]. For any s ≥ 1 let s := s ∧ 2. Following (3.24) and (3.25) and
in view of (9.3), we have

w(1)
s ≥ k1(nVhmax)1/s−1, w(1)

s ≤ k∞(nVhmin)
1/s−1,

Z
(1)
s (b) := {

ζ = (K,h) ∈ Z
(1) : (nVh)

1/s−1‖K‖s ≤ b
}
, b ∈ [

w(1)
s ,w(1)

s

]
.

We note that if ζ = (K,h) ∈ Z
(1)
s (b) then

(nVh)
1/s−1 ≤ k−1

1 b.(A.5)

Let ζ1, ζ2 ∈ Z
(1)
s (b) be such that d(1)1 (ζ1, ζ2)≤ 2. Applying (9.4) with p = s and

using (A.5), we get

n1/s‖φ1[ζ1] − φ1[ζ2]‖s ≤ k−1
1 bD′(2)d(1)1 (ζ1, ζ2)= bd(1)θ1

(ζ1, ζ2).(A.6)

Here we have taken into account that D′(2) = supx∈[0,2]|D′(x)|, where the func-

tion D(·) is given in (9.1). If ζ1, ζ2 ∈ Z
(1)
s (b) are such that d(1)1 (ζ1, ζ2) > 2, then by

the triangle inequality

n1/s‖φ1[ζ1] − φ1[ζ2]‖s ≤ 2b ≤ bd(1)1 (ζ1, ζ2)≤ bd(1)θ1
(ζ1, ζ2).(A.7)

Thus, (A.6) and (A.7) imply that that Assumption (L) holds if Z
(1) is equipped

with the distance d(1)θ1
, where we recall that θ1 = k∞k−1

1 D′(2)≥ 1 [see (9.2)].
20. Now we prove the statement of the lemma for the mapping z �→ φ2[z]. By

the statements (i) and (ii) of Lemma 12 applied with p = s we have

2d(1−s)/sk2
1(nVhmax)1/s−1 ≤ w(2)

s , w(2)
s ≤ 2d/sk2∞(nVhmin)

1/s−1.

Recall that

Z
(2)
s (b) := {

z= [(K,h), (Q,h)] ∈ Z
(2) :n1/s‖φ2[z]‖s ≤ b

}
, b ∈ [

w(2)
s ,w(2)

s

]
.

If z= [(K,h), (Q,h)] ∈ Z
(2)
s (b) then by the statement (ii) of Lemma 12

(nVh∨h)
1/s−1 ≤ 2d(s−1)/sk−2

1 b ≤ 2d/2k−2
1 b.(A.8)

Let z1, z2 ∈ Z
(2)
s (b) be such that d(2)1 (z1, z2)≤ 2. Applying (9.5) with p = s and

using (A.8), we obtain

n1/s‖φ2[z1] − φ2[z2]‖s ≤ b22+d/2k∞k−2
1 D′(4)d(2)1 (z1, z2).(A.9)
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If z1, z2 ∈ Z
(2)
s (b) are such that d(2)1 (z1, z2) > 2, then we have by the triangle in-

equality

n1/s‖φ2[z1] − φ2[z2]‖s ≤ 2b ≤ bd(2)1 (z1, z2).(A.10)

Thus, (A.9) and (A.10) imply that Assumption (L) is valid provided that Z
(2) is

equipped with the distance d(2)θ2
(·, ·), where θ2 = 22d+2k4∞k−2

1 D′(4) ≥ 2(d+4)/2 ×
k∞k−2

1 D′(4)≥ 1 [see (9.2)].

Proof of Lemma 10. 10. Inequality (9.3) is immediate. We start with the proof
of (9.4).

Since the required bound is symmetric in h and h′, without loss of generality we
will assume that Vh ≥ Vh′ . By the triangle inequality in view of Assumption (K1),
we get

‖Kh −K ′
h′‖p ≤ ‖Kh −K ′

h‖p + ‖K ′
h −K ′

h′‖p
≤ V

−1+1/p
h ‖K −K ′‖p + ‖K ′

h −K ′
h′‖p

≤ V
−1+1/p
h

[
‖K −K ′‖∞ + k∞

(
Vh

Vh′
− 1

)]

+ V −1
h′ ‖K ′(·/h)−K ′(·/h′)‖p(A.11)

≤ (Vh∨h′)−1+1/p
[
Vh∨h′

Vh∧h′

][
‖K −K ′‖∞ + k∞

(
Vh∨h′

Vh∧h′
− 1

)]

+ (Vh∨h′)−1+1/p
[
Vh∨h′

Vh∧h′

]
× ‖K ′(·[h∨ h′]/h)−K ′(·[h∨ h′]/h′)‖p,

where h ∧ h′ = (h1 ∧ h′
1, . . . , hd ∧ h′

d). The second term of the last inequality
is obtained using the evident change-of-variables t �→ t/[h ∨ h′] (the division is
understood in the coordinate-wise sense).

Note that all coordinates of the vectors [h ∨ h′]/h and [h ∨ h′]/h′ are greater
or equal to 1. Therefore, in view of Assumption (K1) the integration (or supre-
mum if p = ∞) over the whole R

d in ‖K ′(·[h∨ h′]/h)−K ′(·[h∨ h′]/h′)‖p can
be replaced by the integration (supremum) over the support of K ′. Together with
Assumption (K1), this yields

‖K ′(·[h∨ h′]/h)−K ′(·[h∨ h′]/h′)‖p
(A.12)

≤ LK

√√√√√1

4

d∑
j=1

[hj ∨ h′
j

hj ∧ h′
j

− 1
]2

≤ 2−1LK
√
d
(
exp{�H(h,h

′)} − 1
)
.
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Noting that Vh∨h′/Vh∧h′ ≤ exp{d�H(h,h′)} we obtain from (A.11) and (A.12)
that

‖Kh −K ′
h′‖p

≤ (Vh∨h′)(1−p)/ped�H(h,h′)
[
‖K −K ′‖∞ + k∞

(
ed�H(h,h′) − 1

)
(A.13)

+ LK
√
d

2

(
e�H(h,h′) − 1

)]
.

Then (9.4) follows from the last inequality and the monotonicity of the function
D(·).

20. Now we turn to the proof of (9.5). Recall that z= [(K,h), (Q,h)] and z′ =
[(K ′, h′), (Q′,h′)]. For brevity, we also write ζK = (K,h) and ζQ = (Q,h) with
evident changes in notation for ζ ′

K and ζ ′
Q.

By the triangle inequality, we have

‖Kh ∗Qh −K ′
h′ ∗Q′

h′‖p ≤ ‖Kh ∗Qh −Kh ∗Q′
h′‖p

(A.14)
+ ‖Kh ∗Q′

h′ −K ′
h′ ∗Q′

h′‖p.
Using the Young inequality (the first statement of Lemma 3), Assumption (K1)
and (A.13) we obtain

‖Kh ∗Qh −Kh ∗Q′
h′‖p ≤ ‖Kh‖1‖Qh −Q′

h′‖p
≤ k∞(Vh∨h′)−1+1/pD

(
d(1)1 (ζQ, ζ

′
Q)
)
.

On the other hand, applying the Young inequality and (A.13) with p = 1, we have

‖Kh ∗Qh −Kh ∗Q′
h′‖p ≤ ‖Kh‖p‖Qh −Q′

h′‖1 ≤ k∞V
−1+1/p
h D

(
d(1)1 (ζQ, ζ

′
Q)
)

≤ k∞(Vh∨h′)−1+1/p exp{d�H(h,h
′)}D(d(1)1 (ζQ, ζ

′
Q)
)

≤ k∞(Vh∨h′)−1+1/pD
(
2d(2)1 (z, z′)

)
,

where we have used the definition of �H(·, ·) and monotonicity of the function
D(·). Combining the last two inequalities, we have

‖Kh ∗Qh −Kh ∗Q′
h′‖p ≤ k∞[(Vh∨h′)∨ (Vh∨h′)]−1+1/pD

(
2d(2)1 (z, z′)

)
.

Repeating the previous computations, we obtain the same bound for the second
term on the right-hand side of (A.14), namely,

‖Kh ∗Q′
h′ −K ′

h′ ∗Q′
h′‖p ≤ k∞[(Vh∨h′)∨ (Vh∨h′)]−1+1/pD

(
2d(2)1 (z, z′)

)
.

Thus, we finally get

‖Kh ∗Qh −K ′
h′ ∗Q′

h′‖p ≤ 2k∞[(Vh∨h′)∨ (Vh∨h′)]−1+1/pD
(
2d(2)1 (z, z′)

)
,

as claimed.
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Proof of Lemma 11. If w ∈ Hd(1,P ), then for any

x ∈
d⊗
i=1

[
x̃i − ‖w‖∞

2P
√
d
, x̃i + ‖w‖∞

2P
√
d

]

we have by the triangle inequality

|w(x)| ≥ |w(x̃)| − |w(x)−w(x̃)| ≥ ‖w‖∞ − P |x − x̃| ≥ 1
2‖w‖∞.

This completes the proof.

Proof of Lemma 12. Recall that

φ2[z](t)= (Kh ∗Qh)(t)=
∫
Kh(t − y)Qh(y) dy, t ∈ R

d .

10. Let J denote the set of indexes j ∈ {1, . . . , d} such that hj ≤ hj :

J := {j ∈ (1, . . . , d) :hj ≤ hj }.
Given two arbitrary vectors u, v ∈ R

d , let �[u, v] and δ[u, v] denote the vectors in
R
d with the coordinates

�j [u, v] =
{
uj , j ∈ J ,
vj , j /∈ J , δj [u, v] =

{
uj , j /∈ J ,
vj , j ∈ J .

With this notation, we can write

(Kh ∗Qh)(t)= 1

VhVh

∫
K

(
�

[
t − v

h
,
v

h

])
Q

(
δ

[
t − v

h
,
v

h

])
dv, t ∈ R

d .

Then changing the variables v �→ u = (t − v)/(h ∧ h′) and setting for brevity
η= (h∧ h)/(h∨ h) (as usual, all operations are understood in the coordinate-wise
sense), we come to the formula

(Kh ∗Qh)(t)

= Vh∧h

VhVh

∫
K
(
�[u, t/(h∨ h)− ηu])Q(

δ[t/(h∨ h)− ηu,u])du(A.15)

= 1

Vh∨h

F

(
t

h∨ h

)
,

where we have denoted

F(t) :=
∫
K(�[u, t − ηu])Q(δ[t − ηu,u]) du, t ∈ R

d .(A.16)

Now we note some properties of the function F that will be useful in the se-
quel. First, Assumption (K1) implies that the integration over R

d in (A.16) can be
replaced by the integration over [−1/2,1/2]d . Indeed, if at least one of the co-
ordinates of u lies outside the interval [−1/2,1/2] then, in view of (K1), one of
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the functions K or Q vanishes. This fact along with Assumption (K2) and (A.16)
imply that ‖F‖∞ ≤ k2∞; in addition,

supp(F )⊆ [−1,1]d .(A.17)

Taking into account these facts and using (A.15), we obtain

‖Kh ∗Qh‖p ≤ (Vh∨h)
−1+1/p‖F‖p ≤ 2d/pk2∞(Vh∨h)

−1+1/p,

and the statement (i) of the lemma is proved.
To get the assertion (ii) of the lemma, we note that∣∣∣∣

∫
F(t) dt

∣∣∣∣=
∣∣∣∣
∫ ∫

K(�[u, t − ηu])Q(δ[t − ηu,u]) dudt
∣∣∣∣

=
∣∣∣∣
∫
K(x)dx

∣∣∣∣
∣∣∣∣
∫
Q(x)dx

∣∣∣∣≥ k2
1.

The second equality follows from the fact that functions K and Q are integrated
over t and over u over disjoint sets of components; and the last inequality is a
consequence of (K2). Therefore, invoking (A.17) we have

‖G‖p = (Vh∨h)
−1+1/p‖F‖p ≥ (2dVh∨h)

−1+1/p‖F‖1

≥ 2d(1−p)/pk2
1(Vh∨h)

−1+1/p,

as claimed in the statement (ii) of the lemma.
20. Now we turn to the proof of the statements (iii) and (iv) of the lemma.

The idea in the proof of these statements is to show that F satisfies the Lipschitz
condition and then to apply Lemma 11.

By (A.16) for any x, y ∈ R
d , we have

|F(x)− F(y)| ≤ k∞ sup
u∈[−1/2,1/2]d

|K(�[u,x − ηu])−K(�[u,y − ηu])|

+ k∞ sup
u∈[−1/2,1/2]d

|Q(δ[x − ηu,u])−Q(δ[y − ηu,u])|
(A.18)

≤ LKk∞
{√∑

j /∈J
(xj − yj )2 +

√∑
j∈J

(xj − yj )2

}

≤ 2LKk∞|x − y|.
The obtained inequality means that F ∈ Hd(1,P ) with P = 2LKk∞; moreover,
(A.17) implies that

‖F‖∞ ≥ 2−dk2
1.(A.19)

Applying Lemma 11 and using (A.18), we obtain{
x ∈ R

d :F(x)≥ 1

2
‖F‖∞

}
⊇

d⊗
i=1

[
x̃i − ‖F‖∞

2P
√
d
, x̃i + ‖F‖∞

2P
√
d

]
,
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where, recall, F(x̃)= ‖F‖∞. Using (A.19), we obviously deduce from (A.15) that{
x : (Kh ∗Qh)(x)≥ 1

2
‖Kh ∗Qh‖∞

}

⊇
d⊗
i=1

[
x̃i(h∨ h)i − k2

1(h∨ h)i

2d+1P
√
d
, x̃i(h∨ h)i + k2

1(h∨ h)i

2d+1P
√
d

]
,

which implies that

mes
{
x : (Kh ∗Qh)(x)≥ 1

2
‖Kh ∗Qh‖∞

}
≥ Vh∨h

[
k2

1

2d+1
√
dLKk∞

]d
.(A.20)

Then the statement (iii) of the lemma follows because

mes{supp(Kh ∗Qh)} ≥ mes
{
x : (Kh ∗Qh)(x)≥ 1

2‖Kh ∗Qh‖∞
}
.

It remains to note that (A.17) implies that mes{supp(Kh ∗ Qh)} ≤ 2dVh∨h.
Therefore by (A.20),

mes
{
x : (Kh ∗Qh)(x)≥ 1

2
‖Kh ∗Qh‖∞

}

≥
[

k2
1

2d+2
√
dLKk∞

]d
mes{supp(Kh ∗Qh)}.

This completes the proof of the lemma.
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