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Abstract. We consider the ensemble of curves {y, y: o € (0, 1], N € N} obtained by linearly interpolating the values of the

normalized theta sum N ~1/2 Zflvzlgl exp(ninza), 0 < N’ < N. We prove the existence of limiting finite-dimensional distributions
for such curves as N — 0o, when « is distributed according to any probability measure A, absolutely continuous w.r.t. the Lebesgue
measure on [0, 1]. Our Main Theorem generalizes a result by Marklof [Duke Math. J. 97 (1999) 127-153] and Jurkat and van Horne
[Duke Math. J. 48 (1981) 873-885, Michigan Math. J. 29 (1982) 65-77]. Our proof relies on the analysis of the geometric structure
of such curves, which exhibit spiral-like patterns (curlicues) at different scales. We exploit a renormalization procedure constructed
by means of the continued fraction expansion of & with even partial quotients and a renewal-type limit theorem for the denominators
of such continued fraction expansions.

Résumé. Nous considérons I’ensemble des courbes {y, n: o € (0, 1], N € N} obtenues en interpolant les valeurs des sommes

théta normalisées N~1/2 Z,];/:/BI exp(rrin2a), 0 < N’ < N. Nous démontrons I’existence de la limite des distributions fini-
dimensionnelles de telles courbes quand N — oo, ol « est distribué selon une quelconque mesure de probabilité A, absolument
continue par rapport a la mesure de Lebesgue sur [0, 1]. Notre théoreme principal généralise un resultat de Marklof [Duke Math. J.
97 (1999) 127-153] et de Jurkat et van Horne [Duke Math. J. 48 (1981) 873-885, Michigan Math. J. 29 (1982) 65-77]. Notre
démonstration se base sur ’analyse des structures géometriques de telles courbes, qui présentent des motifs a spirale (curlicues)
a différentes échelles. Nous exploitons une procédure de renormalisation construite par le developpement de « en fractions conti-
nues avec quotients partiels pairs et un théoréme de renouvellement pour les dénominateurs de tels developpements en fractions
continues.
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1. Introduction

Given a € R and N € N consider the theta sum

N-1
S,(N) := Z exp(min’a) € C. (1)
n=0

For arbitrary L > 0 let us define it as
[L]—1

Su(L) := Z exp(min®a) + {L}exp(wilL|%a) € C,
n=0
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where |-] denotes the floor function and {-} the fractional part. One has S;42(N) = S;(N), S—_;(N) = S;(N) and
f_ll |S,(N)|?>da = N. It is convenient to restrict ourselves to a € (—1, 1]\ {0} and consider « = |a| € (0, 1] and to
study S, (L), see Section 2.2.

Our goal is to study the curves generated by theta sums, i.e.

L, Sa(tN)
VN

as N — oo. Such curves are piecewise linear, of length +/N (being made of N segments of length N~1/2). In par-
ticular we are interested in the ensemble of curves {yy n}ae(0,1] a8 N — oo when « is distributed according to some
probability measure on [0, 1].

As illustrated in Fig. 1, these curves exhibit a geometric multi-scale structure, including spiral-like fragments
(curlicues). For a discussion on the geometry of t — Sy (fN) (and more general curves defined using exponential
sums) in connection with uniform distribution modulo 1, see Dekking and Mendes France [7]. For the study of other
geometric and thermodynamical properties of such curves, see Mendes France [18,19] and Moore and van der Poorten
[20].

Denote by B¥ the Borel o -algebra on C¥ and let us fix a probability measure %, absolutely continuous w.r.t. the
Lebesgue measure on [0, 1].

Y =Ya.n [0, 1]—>(C:R2,

Theorem 1.1 (Main theorem). For every k € N, for everyti, ..., tx €[0,1],0 <t <t <--- <ty <1, there exists a

k)

probability measure P;l 4 on C* such that for every open, nice A € B¥,

,,,,,

. k k
Jim A(for e .11 (ran (), € A}) = P (A). )
The measure Pg() 4, is called curlicue measure associated with the moments of time 11, .. ., I.

We shall define later what we mean by “nice” and prove that many interesting sets are indeed nice. For example,
if B.(p) :={w € C: |z — w| < p}, then for every (z1, ..., zx) € CK, the set A = B, (p1) X -+ x By (pr) € Ck is nice
for all (p1,...,pr) € R’;O, except possibly for a countable set.

Our main theorem generalizes a result by Marklof [17] (corresponding to k = 1, #; = 1 and A = the Lebesgue
measure), which in particular implies the following theorem by Jurkat and van Horne [12,13].

Theorem 1.2 (Jurkat and van Horne). There exists a function ¥ (a, b) such that for all (except for countably many)
a,bel,

lim |{a: a< N_1/2|Sa(N)| < b}| =Y (a,b).
N—oo
Let us remark that Marklof’s approach uses the equidistribution of long, closed horocycles in the unit tangent
bundle of a suitably constructed non-compact hyperbolic manifold of finite volume. Moreover, the explicit asymptotics
for the moments of N~1/2|S,(N)| (along with central limit theorems [12—14]) were found by Jurkat and van Horne
and generalized by Marklof [17] in the case of more general theta sums using Eisenstein series. In particular it is
known that the above distribution function ¥ is not Gaussian. In the present paper we only show existence of the
limiting measures Pﬁlk) #.- Itis in principle possible to derive quantitative informations on the decay of their moments
from our method too, but we shall not dwell on this. For a preliminary discussion of the present work, see Sinai [28].

Remark 1.3. Consider the probability space ([0, 1], B, L), where B is the Borel o -algebra on [0, 1] and A is as above.
We look at vy, n as a random function, i.e. as a measurable map

y.v ([0, 11, B, ») — (C([0, 11, C), Be),

where B¢ is the Borel o-algebra on C([0, 1], C) coming from the topology of uniform convergence. Let Py be the
corresponding induced probability measure on C([0, 1], C), Py (A) := )»(y"_]\} (A)), where Ae Be. For0<t <n <

<ty <1, letmy,. 1 :C(0,1],C) — C* be the natural projection defined as Tt V) = (1), - Y ().
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Theorem 1.1 can be rephrased as follows: for every k € N and for every 0 <t} <--- <t <1

1
otk

-

PNT[t;
where “=" denotes weak convergence of probability measures. In other words, we prove weak convergence of finite-
dimensional distributions of Py as N — oo.
Remark 1.4. By construction, the measures Pﬁlk’)ﬂ”tk

hence there exists a probability measure P on the o-algebra generated by finite-dimensional cylinders Bge C Be so

5__—1 _pk
that Pr[flw-,fk —Pn,...,w

automatically satisfy Kolmogorov’s consistency conditions and

Remark 1.5 (Scaling property of the limiting measures). Notice that
Ve n (0) = N7 28 (2tN) = 7' Py on (0).

Thus, the limiting probability measures Pz(lk,)‘..,zk satisfy the following scaling property: for every t € (0, 1]

p®

Tl yeons Tk

(A)=P®  (z7124).

1s--lk

In particular, for example, P;l)(A) = Pgl)(t—l/ZA)'

Remark 1.6. Our results are of probabilistic nature, since we look at the measure of a’s for which some event happens.
Let us stress the fact that the growth of |Sq(N)| for specific or generic a has also been thoroughly studied. For
instance, Hardy and Littlewood [11] proved that if « is of bounded-type, then |Sy(N)| < C~/N for some constant C.
To the best of our knowledge, the most refined result in this direction is due to Flaminio and Forni [10]. A particular
case of their results on equidistribution of nilflows reads as follows. For every increasing function b : (1, o0) — (0, c0)
such that floo t~'b=4(¢) dr < o0, there exists a full measure set Gy such that for every o € Gy, every B € R the following
holds: for every s > %, there exists a constant C = C (s, «) such that for every f € W*, 2-periodic,

N—1 1
S flan ) =N [ fwdx] = CYRBMIFIL,
n=0 -

where W* denotes the Sobolev space and || - ||s is the corresponding Sobolev norm. This generalizes the work of
Fiedler, Jurkat and Korner [9] where f(x) =e™ and 8 =0.

The paper is organized as follows. In Section 2 we discuss the geometric multi-scale structure of the curve ¢ —
Yo, N (t) and we deal with the first step of the renormalization procedure which allows us to move from a scale to the
next one. Moreover, we describe the connection of the renormalization map 7 with the continued fraction expansion of
o with even partial quotients and we consider an “accelerated” version of it, i.e. the associated jump transformation R.
For the corresponding accelerated continued fraction expansions we prove some estimates on the growth of the entries.
In Section 3 we iterate the renormalization procedure and we approximate the curve y, y by a curve ya{  in which
only the J largest scales are present. Furthermore, we write (yq, N(tj))’;:1 € CK as a function of certain random
variables defined in terms of the renewal time 7y := min{n € N: g, > N}, where {,}neN is the subsequence of
denominators of the convergents of « corresponding to the map R. In Section 4 we use a renewal-type limit theorem
(proven in the Appendix) to show the existence of the limit for finite-dimensional distributions for the approximating
curve ya{ y as N — oo. Estimates from Section 3 allow us to take the limit as / — oo and prove the existence of
finite-dimensional distributions for y, v as N — co. We also discuss the notion of nice sets and give a sufficient
condition for a set to be nice.
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2. Renormalization of curlicues

In this section we recall some known facts concerning the geometry of the curves y,, n. In particular we discuss the
presence/absence of spiral-like fragments and at different scales using a renormalization procedure. The renormaliza-
tion map 7 is connected with a particular class of continued fraction expansions. From a metrical point of view, this
classical renormalization is very ineffective, because of the intermittent behavior of the map 7 (which preserves an
infinite, ergodic measure). It is therefore very natural to study an “accelerated version” of T (preserving an ergodic
probability measure) and the corresponding continued fraction expansion.

2.1. Geometric structure at level zero

In order to investigate the presence/absence of spiraling geometric structures at the smallest scale we introduce the
local discrete radius of curvature, following Coutsias and Kazarinoff [5,6]. Set 7y := {%, O0<m<N}andlett, :=
% € Ty \ {0, 1}, so that y (t,) = YN (tn) = N~12S,(n). Define Pa, N (T) as the radius of the circle passing through
the three points y (t,—1), ¥ (tn) and y (7,+1). A simple computation shows that py n(7,) = ﬁ | csc(%ﬂ and
for arbitrary ¢ € [0, 1] we set

o) =pa,n(t) = ZJN'CSCCTO{QZV — 1))’ eR.

The function ¢ > pg n(t) is a—-pel‘lOdlC 1t has vertical asymptotes at T,
(curl) _ rkcuﬂ) (o, N):= 241 4 W’ k € Z, where ,oa’N(rkC“rl)) =

(flat) _ (ﬂaU (a,N) = ]Ev + 2}\, and local

We partition the interval [0, 1] into

minima at T

20N Qf
subintervals as follows:
k*+1
[0.1=| | 1.
k=0
where k* = k% 1= aN — %+l | and
[0, 7,) ifk =0,
10 =10 = [ Y ir <k <k
[, 1] if k= k* + 1.
By construction, the lengths of the above intervals are |1, (0)| = 1 for 1 <k <k*, |1, (O)| = ﬁ and 0 < |[,. © =
11— ﬁ (f;, < ;- The number of 7y -rationals inside each sublnterval is of order = and explicitly given by
[ +3] if k=0,
#0 n ) =1 [ 4] - [%5 44] i1 ks
N+1— 24 4 1] if k= k* + 1.

The whole curve yy n ([0, 1]) can be recovered by means of the values of the function p at the rationals in 7.
Suppose we know the values of y (10), ¥ (1), ..., ¥ (ta—1), ¥ () and the radius o (). Then the point y (7, 1) should
be placed at the intersection of the circle of radius N ~!/2 centered at y (,) and one of the two circles of radius (%)
passing through y (1,—1) and y (t,) in order to get a counterclockwise oriented triple (y (t,—1), ¥ (tn), ¥ (th+1)) When
rel k(culﬂ), ,iﬁat)) (resp., clockwise when % € [r(ﬂat) k(cuﬂ))). For arbitrary ¢ € [0, 1] the curve y (¢) is defined by
linear interpolation.

For small values of «, each subinterval / k(()), 1 <k <k*, contains approximately é integer multiples of % and the
curlicue structure is easily understood: those n’s for which p(t,) is large correspond to straight-like parts of y ([0, 1]),
while the points close to the minima of p give the spiraling fragments (curlicues). For a ~ 1 the curlicues disappear.
See Fig. 2. We shall see in Section 2.2 how these curlicues appear at different scales though.
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Fig. 2. Geometric patterns at level zero (left) and the function py y (right).

2.2. Approximate and exact renormalization formulae

Let us introduce the map U: (—1, 1]\ {0} — (—1, 1]\ {0} where U (¢) := —% (mod 2). The graph of U has countably

many smooth branches. Each interval (ﬁ, 2,(%1] is mapped in a one-to-one way onto (—1, 1] via ¢ —% + 2k.
For a € (—1, 1]\ {0} and N € N one has the Approximate Renormalization Formula (ARF)

|Sa(N) — e™Da 7128, (IN1])| < Cilal ™% + Ca, 3)

where a; = U(a), N1 = |a|N and C1, C; > 0 are absolute constants which do not depend on N. This result was
established by Hardy and Littlewood [11], Mordell [21], Wilton [32] and Coutsias and Kazarinoff [6], the constants
C1, C; being always improved.

Let us explain the ARF (3) geometrically. Recall that the curve 7 — y, y(f) contains k*  ,, =~ N intervals of the

lal,N —
form [tk(iulr D r,icuﬂ) ) at level zero. By (3), the curve ¢ > /Ny, (f) can be approximated (up to scaling by |a|~!/? and

rotating by mt/4) by t = /Ny Yay,N; (). In other words, replace each interval of the form / ,EO), 1 <k <k* for y, n(?)
by a Ty, -rational point in y,, n, (t). The renormalization map can be seen as a “coarsening” transformation, which
deletes of the geometric structure at level zero. Beside the above-mentioned references, we also want to mention the
work by Berry and Goldberg [3], in which typical and untypical behaviors of {S, (N’ )}%,:1 are studied with the help
of a renormalization procedure.

Coutsias and Kazarinoff [6] also proved a stronger version of (3):

la|N —n

|Sa(N) — ™ ¥ija| =128, ()] < C3 <Cy4

for some C3, Cq4 > 0, where n € N is arbitrary and N = (n/|al) is a function of n, (-) denoting the nearest-integer
function.
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In our analysis we shall focus on (3), which can be extended to S, (L) for arbitrary L > 0:
|Sa(L) — ™ Pa| 728, (L1)| < Csla| ™/ + Cs, )

where a; = U (a), L1 =|a|L,Cs=C1+2and Cg = C> + 1.

Since the function U is odd w.r.t. the origin and S_,(N) = S,(N), it is natural to consider o = |a| € (0, 1] and
keep track of |U («)| and sgn(U («)) separately. Define n(«) :=sgn(U («)), £(«) := —n(«) and introduce a new map
T:(0,1]— (0,11, T :=|Ul0,11|- More explicitly, let us partition the interval (0, 1] into subintervals B(k,£), k € N,
& =41, where B(k, —1) := (ﬁ, ﬁ] and Bk, +1) := (ﬁ, ﬁ]. The map T can be represented accordingly as

T(a):é-(& —2k>, acBk,§),keN,&e{£l}.

We shall deal with this map, first introduced by Schweiger [24,25], in Section 2.3 in connection with the even contin-
ued fraction expansion of «. Moreover, for every complex-valued function F set

por . | E o ifn=+1
T\F iftg=—1

With this notations we can define the remainder terms of (3) and (4) for @ € (0, 1] as follows:
Aer, N) 1= Sy (N) — e Pig =128 (N ]), N eN, Q)
I(a, L) =8y (L) — eV 128M(L),  LeR, (6)

where oy =T (), n1 =n(a), Ny =aN and L| =«L.

Later, we shall use the fact that I"(«, L) is a continuous function of (&, L) € (0, 1] x R>¢ (one can actually prove
that it has piecewise C* partial derivatives). An explicit formula for A(e, N), N € N, has been provided by Fedotov
and Klopp [8] in terms of a special function F, : C — C as follows. For « € (0, 1] and w € C set

o exp(miz?/a)
Fa(w):= /]"w exp(2Ti(z — w)) — 1 az, ™

where I, is the contour given by

w4t +it if |t| > ¢,

1

RBZ'_)FW(I):{w+8€Xp(Tﬂi(2t_8_Z)) if|t|<5,

and ¢ = ¢(o, w) is smaller than the distance between w and the other poles of the integrand in (7). We have the
following theorem.

Theorem 2.1 (Exact renormalization formula [8]). For every 0 <« <1 and every N € N we have
Ale, N) =~ Dig12[e=miaN* 7 (1N}}) — 7, (0], (8)
where N1 =aN.

In order to write I (e, L) in terms of A(«, |L]), we notice that «L = |«|L|| + H(«, L), where H(a, L) :=
o{L}+ {«| L]} €[0,2). Moreover, if H(«, L) € [0, 1) then |«L| = |a|L]], while if H(«, L) € [1,2) then |aL] =
le|L]] + 1. Now, a simple computation shows that for every « € (0, 1] and every L > 0

I, L) = A(a, |L]) + Gi(a, L) —e™P'a™12Gy(a, L), 9)
where G (a, L) := {L}e™L)*® and

H(a, L)e™ileL P if H(e, L) €0, 1),

L):= . .
Galer. L) !em(WLJ—Uz“l+(H(a,L)—1)emWLJ2“1 if H(e, L) € [1,2).
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Remark 2.2. Applying the stationary phase method to the integrals in (8) and (9) as in [8] one can obtain the approx-
imate renormalization estimates (3) and (4) (possibly with different constants C1, C», Cs, Cg).

We want to describe S, (zN) for N € N and 7 € [0, 1]. In this case (4) and (9) can be rewritten as
Sa(tN) = e™Pig=2SIW (ta N) + I' (o, tN), (10

I(a,tN) = A(a, [tN]) + Gi(a, tN) + D126y (a, tN). (11)
2.3. Continued fractions with even partial quotients

In this section we discuss the relation between the map 7 and expansions in continued fractions with even partial
quotients. Consider the following ECF-expansion for o € (0, 1]:

1
 2ki+&1/(ka+ 82/ (2ks + )
where k; € N and &; € {£1}, j € N. ECF-expansions have been introduced by Schweiger [24,25] and studied by
Kraaikamp-Lopes [16]. Since 1 = [[(1, —1), (1, —1),...]], it is easy to see that every « € (0, 1]\ Q has an infinite

expansion with no (1, —1)-tail.
Using the notations introduced in Section 2.2 we notice that if « € B(k, £), then o =

=:[[k1, &), (k2. &2), (k3. &3), ...]]. (12)

1
m . Therefore,

fora = [[(klv ‘i:l)s (k2» SZ)’ (k37 53)» .. ]] € B(klv él)v
Tn(a) = [[(kn—Ha En+1)s (knt2, 6nt2), - - ]] € B(kn+1,&n+1), (13)

i.e. T acts as a shift on the space 2%, where §2 := N x {£1}. Despite its similarities with the Gauss map in the
context of Euclidean continued fractions, the map T has an indifferent fixed point at « = 1 and we have the following
theorem.

Theorem 2.3 (Schweiger [24]). The map T : (0, 1] — (0, 1] has a o -finite, infinite, ergodic invariant measure Uwr

which is absolutely continuous w.r.t. the Lebesgue measure on (0, 1]. Its density is o1 (o) := d’%a@‘) = L] — —1

One of the consequences of this fact is the anomalous growth of Birkhoff sums for integrable functions. Given
fe Ll((O, 1], ur), f = 0 pwr-almost everywhere, let ur(f) = fol f(a)dur () and denote by S; (f) the ergodic
sum Z f oTY. Since w7 ((0, 1]) = oo, the Birkhoff Ergodic theorem implies that ( f) — 0 almost everywhere
as n — oo. Accordmg to the Hopf’s Ergodic theorem there exists a sequence of measurable functions {a, (@)},eN
such that o (a) S, T(F) @) = ur(f) for almost every a € (0, 1] as n — oo. The question “Can the sequence a,(x)

be chosen independently of a?” is answered negatively by Aaronson’s theorem ([2], Theorem 2.4.2), according to
which for almost every « € (0, 1] and for every sequence of constants {a,},eN either liminf,_, ;—IS,{ (f)(@)=0o0r

1 QT
@Snk (f) (o) — oo along some subsequence {ay, }reN as k — oo. However, for weaker types of convergence such a

sequence of constants can indeed be found. The following theorem establishes a, = @ and provides convergence
in probability:

Theorem 2.4 (Weak law of large numbers for T'). For every probability measure P on (0, 1], absolutely continuous
w.rt. jur, for every f € L' (ur) and for every & > 0,

T
P< S, ()

n/logn
Remark 2.5. The proof of Theorem 2.4 follows from standard techniques in infinite ergodic theory. See Aaronson [1]
and 2], Chapter 4. The same rate lo}én rate for the growth of Birkhoff sums for integrable observables over ergodic
transformations preserving an infinite measure appears in several examples, e.g. the Farey map. A recent interesting
example comes from the study of linear flows over regular n-gons, see Smillie and Ulcigrai [30].

—ur(f)

zs)—>0 as n — oQ.
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Let us come back to ECF-expansions. For o = [[(k1, &1), (k2, &2), . ..]] the convergents have the form

Pn_ 1
an  2k1+&1/Qky+8/Qkz+ -+ En 2/ (kn—1 + Eam1/ (2kn))))

= [[k1, 8D, K2, &), ooy Ky D] (Pavgn) =1,

where “x” denotes any &, = £-1. They satisfy the following recurrent relations:

Dn=2kppp_1+&—1pn—2, qn =2knqn-1 + 11902, (14)

with g_1 = po =0, p_1 =qo =&y = 1. Moreover, we have

n
Prt1Gn = Pagnr1 = (=" [ [ & (15)
j=0

The proof of (15) follows from (14) and can be recovered mutatis mutandis from the proof of the analogous result for
Euclidean continued fractions. See, e.g., [23].

Setag := o and o, := T" (). In Section 3, we shall deal with the product epe; - - - &0, —1. As in the case of Euclidean
continued fractions, this product can be written in terms of the denominators of the convergents; however the formula
involves the &, as well: forn € N,

(g ey )" =qn(1 +snanq"—‘l>- (16)

Notice that, considering f(«) = —loga, Theorem 2.4 reads as follows: for every ¢ > 0 and every probability mea-
sure P on (0, 1], absolutely continuous w.r.t. ur,

p —log(ap - - -otp—1) 72
n/logn

Zs>—>0 as n — oQ.

In other words, the product along the T -orbit of « decays subexponentially in probability.
2.4. The jump transformation R

In order to overcome the issues connected with the infinite invariant measure for 7', it is convenient to introduce an
“accelerated” version of 7', namely its associated jump transformation (see [26]) R: (0, 1] — (0, 1]. Define the first
passage time to the interval (0, 3] as 7:(0, 11— No = NU {0} as 7(a) :=min{j > 0: T/(a) € B(1, —1)° = (0, 51}
and the jump transformation w.r.t. (0, %] as R() := TT@+1 (). Let us remark that this construction is very natural.

For instance, if we consider the jump transformation associated to the Farey map w.r.t. the interval (%, 1] we get
precisely the celebrated Gauss map. Another example is given by the Zorich map, obtained by accelerating the Rauzy
map, in the context of interval exchange transformations.

The map R was extensively studied in [4]. It is a Markov, uniformly expanding map with bounded distortion and
has an invariant probability measure pg which is absolutely continuous w.r.t. the Lebesgue measure on [0, 1]. The
density of wp is given by g (x) := d”cﬁ)f“) = @(ﬁ + HLO!). For a different acceleration of T in connection with
the geometry of theta sums, see Berry and Goldberg [3].

We want to describe a symbolic coding for R. Let us restrict ourselves to & € (0, 1]\ Q and identify (0, 1]\ Q with
the subset 2V < 22N of infinite sequences with no (1, —1)-tail. Let & = (1, —1). Given « = [[w], w2, @3, ...]] € 2N
we have 7 = 7(o) = min{j > 0: w;y1 # 0} and R(a) = [[@wr12, 0r43, W44, ...]] € 0N, Setting 2* := 2 \ {®},
X :=Np x £2* and denoting by 0 = (h, w) € X the £2-word (@, ..., ®, w) of length & + 1 for which w € 2%, we can
identify 2 and XV and the map R acts naturally as a shift over this space.

For brevity, we denote m™ = 0-m* = (0, m, £1)) € £ and h - m* = (h, (m, £1)) € . For & = (hy - mi, s -
mic, ..)e XNdefinevy:=1,v, =vy(a@) =hi+---+h,+n+1andlet g, =g, () := v, () (@) be the denominator
of the nth R-convergent of «. We shall refer to {§, }nen as R-denominators and to (b - mjt) as X' -entries.

In [4] the following estimates were proven:
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Lemma 2.6.

(i) Forevery a € (0,11, g, > 3"/3.
(ii) For Lebesgue-almost every a € (0, 1] and sufficiently large n, g, < e“™", where C7 > 0 is some constant.

In Section 3, we will need the following renewal-type limit theorem.

Theorem 2.7. Let L > 0 and np = np (o) = min{n € N: g, > L}. Fix Ny, N € N. The ratios qﬁfl and qﬁLL and the

entries 04, 1 j, —N1 < j < Nz have a joint limiting probability distribution w.r.t. the measure X as L — 0.
)Nz on the space (0, 1] x (1, 00) x ZN1+N2 gych that

1
forevery0<a <b<1<c<dandevery (N| + Ny)-tuple ¥ = {ﬁj};vi_NlH e INH+N2 e have

In other words, there exists a probability measure Q) = QE\(I)

~

lim A({a: a<qﬁ2—_l<b,c<%<d,aﬁL+J-=ﬁj,—Nl <j§N2})

L—o0
=Q9((a,b) x (c,d) x {9}). (17)

Theorem 2.7 is more general than the one given in [4] (Theorem 1.6 therein) because it also includes the
R-denominator g;, _; preceding the renewal time 71, and the limiting distribution obtained for general absolutely
continuous measure A (instead of simply ug). However, it is a special case of Theorem 4.1 (whose proof is sketched
in the Appendix). Let us just mention that it relies on the mixing property of a suitably defined special flow over the
natural extension R of R. The same strategy was used before by Sinai and Ulcigrai [29] in the proof of the analo-
gous statement for Euclidean continued fractions. Another remarkable result in this direction is due to Ustinov [31]
who provides an explicit expression and an approximation, with an error term of order O(loiL), for their limiting
distribution function.

2.5. Estimates of the growth of X -entries

In this section we prove a number of estimates for the growth of X'-entries. The analogous results for Euclidean
continued fraction expansions are well known, but in our case the proofs are more involved.

Recall that o = (h -m{' ,ho -mgz, ..)e XN Letus fix a sequence 0 = {0} jeN € >N For every n and every
st e X, set

In=Jn@)={a:h;-mY =0;.j=1,....n} and
nsi[s 1] = o1 @[5 - 1] := o € Tp: By mi"jll =51} CJp.
Lemma 2.8. Let J, and J,1[s - t°] be as above. Then

1 <|Jn+1[s't(]|< 6 .
306+ D22~ |J] G+ D42

(18)

Proof. This proof follows closely the one given by Khinchin concerning Euclidean continued fraction (see [15],
Chapter 12). Let us introduce the convergents p;/q;, j=1,...,v, — 1 associated to (o1, ..., 0,). The endpoints of
the interval J,, can be written as

Pv,—1 Pv,—1 — §n1’u,,—2

—— and —/——=,

qv,—1 Gv,—1 — Enqv,—2
Applying the recurrent relations (14) s + 1 times we define the convergents p;/q;, j=1,...,v, +5s =v,41 — 1
corresponding to (o1, ..., 0y, s - t*). The endpoints of the interval J,,;1[s - t5] are

Pvpi—1 and Pvpy1—1 _é‘panrl*z’

QUn+171 qvn+171 - gqanr]fZ
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where gy, 2 = (s + Dqv,—1 +58uqy,—2 and qy, ;1 = 2t (s + 1) — $)qu,—1 + 2ts — s + 1)¢nqy, 2 (the values of

the corresponding numerators are unimportant). Using the formula (15) and setting x = Z:”—j we obtain
|Jn+l[s't§]| _ Q\J,,_I(CIV,I—I +§nQUV,—2)
|Jul Gopp1=1(Gu, -1 +8qu,,,-2)
. 1 (I +&ux)
- 242 ) 2st—s+1 ) 2st—s+1+Ls I3
DT Q- Fy + e T C— it g )
1 A

T s+ D22 BC )

where A, B and C correspond to the terms in parentheses. We distinguish two main cases: (i) {;, = +1 and (ii) &, =
—1:

1) If &, =+1,then 0 <x <1 and we get
1<A<2, 1<B <4, 1<C<5s. (20)
The above estimates for A and B are elementary; the one for C is obtained discussing the cases { =41 (=1 > 1)

and { = —1 (=t > 2) separately and is also elementary.
(i) If & = —1, then m, > 2 and by (14) 0 < x < 1. We get

2 _a<1. Z2<B<2 loc<s @1)
3= =7 3— =7 2= — 7
Now, (19), (20) and (21) give
1 U 2B s fl 26
306+ )22 5+ 1)224-5- [l - G+D222/3-12 (s + )22 O

The next lemma estimates the Lebesgue measure of the set of a for which the X-entries &; - m?

inequalities h; < H; — 1, j =1, ...,n, where {Hj}’]l.:1 is an arbitrary sequence.

satisfy the

Lemma2.9. Let H= (Hy,...,H,) e N" and set Y(H) :={a: h1+1 < Hy,...,h, +1 < H,}. Then

1 n
|Y(ﬂ)|z<1—;1)jl:[2m, (22)

2
where Ag =:1 — 4%.

Proof. For o € X" and H € N", let us define the set

W o by om¥ =0 i=1,.. oy <H—1,1=j+1,...,n}.

j.n
Notice that W,%{ﬁ) = J, (o1, ...,0,) and does not depend on H. Moreover, Y (Hy, ..., H,) = Wé%l’ﬁ). Consider the
following estimate obtained from the second inequality of (18): for S € N

1 472 | T,
Z ‘Jn+l[s t§]| S 12|Jn| Z (S + 1)2[2 E S - : (23)
s>S—1 s>85—1,

tfe2* teN
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Now (23) yields

H
|W,E(T]n) = Z |Jn(01,---,0n—1,hn'mi”) = |Jn—1l — Z |Jn[hn'm,§1"]
hn<Hp—1, hn>H,—1,
mi e+ mé e
472
> |Jn1|(1 — —) = kg, [ WS 24)
H,
where g, = (1 — %). Considering the sum for h,_; < H,—1 — 1, mfl’fll € 2% in (24) we get
o,H) <7 H) (o,.H)
| n2n|— n2n 1|>)”H )\Hnl| n—2,n-21" (25)
Iterating (25) we come to
n
H H
(a )‘ - HAH/ W(o )‘ _ H)‘ijl(hl mi“l)‘
and summing over b1 < H; — 1, m%‘ € £2* we get the desired estimate (22):
1 n
H
ran| =[5z (1= ) TTo
Hijo o
j=
O

Now we provide an estimate which will be useful later. Let us fix a sequence o0 = {0} jen € ¥ N and let J, and
Jnt1ls - 18] be as before. Moreover, set
;’ .

Jy_y=Jno1(0) = {a: h;j «mj]

Lo[s -t =dp@)[s-1¢] :={a € Iy hpps mi’ill =s-t"}CJ,_,.

:O’],J=2,,Vl} and

Lemma 2.10.

|J,1+1[S-l{]| . |Jy/,_1|
[Jn] [J;[s - £4]]

— 1| < Cge "

for some constants Cg, Cg > 0.

Proof. Let us observe that RJ! (o) = J,—1(¢’) and RJ,(0)[s - 1°1= J,(c/)[s - 1*], where ¢’ = {o}}jen and o} =
oj+1. We have

|J,;_1|=/ 1dx=/ PA)(x)dx, |J,;[s-tf]|=/ 1dx=/ PA)(x)dx,
J Ju—1(a”) Jils-18] Ju(a)s-18]

n—1

where P is the Perron—Frobenius operator associated to R. The density P (1) (x) is computed as follows. The cylinders
of rank one are of the form

| + 2mh 1—2m
Ji(h-m*) = ,
1(fm) <1+2m(h+1) +2m(h+1)—h}

- 1—2m 1+2h(m—1)
2mh+1)—h’ 2mh+1) —2h —1

Jl(h -mf) =
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and R, () (x) = F2m £ =D Therefore, (R, hmt)) (v) = Fh — (b + 1)y) 2 and (R}, (hm=) " (x) =

h(x—1)+x
2hm—h+lthx  _.
Thmtam—hEGsDx = Yhm*- We get

POW= Y RO = Y (h—t+Dyne)’

yeR~1(x) h-méeXx

B 1 1
_Z<Z Qhm +2m —h + (h + Dx)? + Z (2hm+2m—h—(h+1)x)2>

h>0 “m>1 m>2
_Z 1 e h+2+ (h+Dx oy 3h4+4—(h+Dx
_h>04(h+1)2 2h+2 2h +2 ’

where ¥ (x) = % 11:,((;;)) is the derivative of the digamma function. Notice that the function P(1) is differentiable and

strictly decreasing on [0, 1]; moreover,

P(1)(0) ~—0.88575>—1 and P(1)'(1)=0. (26)
By the mean value theorem
(oot =P @) - [Ju-1(@)] and [ J[s - 18] = P x2) - [Ju (@) [s - 1°]] 7

for some x| € J,_1(¢c’) and x5 € J,(o/)[s - t°].
Let {pj/q;j}jen a,nd { p} /q}} jeN be the sequences of T-convergents corresponding to o and ¢’ respectively. Set
q, . .. ..
= Z"”—*T and x’ = —2=1=2 The ECF-expansions of x and x’ coincide up to the (n — 1)st R-digit (see [4], Lemma A.1)
n— vy—1—1

and therefore, by Lemma 2.6(i), we have |x — x'| < 3U=m/3 Now, by (27) and (19), we get

X

[nals - 1511 15
[ul 1ls - £4])
_ 1 +a0Q - iy + e Q@ - iy + e SE + HPOE) (28)
(146X Q2 — gy + X BN 2 — iy + G 2 + HP M) ()

Noticing that &, x > —% one can show that

2st—s+1 2st—s+14Ls ¢ _
A+¢x) | |Cmm oS | |@-m t o Tmrne - t D) - 3¢/
; ’ 25t—s+1 ’ : 251—st1+42s =
(14 &ax’) 2= o X TFnr) Q= G T o TG ) 2

Let us now consider the term 77;8;&; To get estimates of it from above and below we can replace x| and x| with

appropriate endpoints of J,_1(c’) and J,,(c')[s - t%]. Since J,,(a")[s - t*]1 C J,—1(c’), those four endpoints can be
ordered in four different ways. Let us discuss only one of those cases, the others being similar. Let the endpoints y; =
M 9
Gy, ;-1 T4y 1, @yt 2= I
Then, since the function P (1) is decreasing, y; <x1 < y» and 71 < x> < 72, we get

PG _ 1+ P)(z2) —P(D)(y1)

PM)(x2) P (1)
Let us use (26), the fact that z» and y; have the same R-expansion up to the (n — 1)st digit, (18) and the fact that
P)(1) ~0.90238:

PG =PMODI _ 2=yl __ Cio3"™7 s
PA)(y1) ~PMOD T s+ DPMO) T

’ ’
p"nfl_1 _ p”nfl_l_;‘”p”nfl_2

, 21 = be arranged as follows: 0 < y; <z1 <z2 <y2 < 1.
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for some constants Cyg, C11 > 0. Thus we get the desired estimate:

/
| Jng1ls - 2611 . |/‘]n—l| — 1] < CgeCon
[Jn] [J;[s - 4]
for some Cg, Cg > 0. U

3. Iterated renormalization of y, v

In Section 2.2 we discussed the renormalization of y, n, i.e. the procedure which “erases” the geometric structure
at smallest scale in the curve y, x. Now we want to iterate the renormalization formula (10). In order to do this,
we consider ap := «, o := T! (o) (as in Section 2.3), Ny := N, N; := a1 Nj_1, no:=1and n :=n(ey—1),l € N.
Define also kg :=0, k; := k() :=14+n1+n1n2+ - - +n11m2 - - - n;—1. With these notations, iterating (10) r times we
get

SaltN) = (@o---ay_p) "/ (exp{Krgi}séi“"‘"”(nv»

T, 1/2
+exp Kr—171 Oérilf(n‘ =1 (a1, tNy—1)
.
+exp Kr—ZZl (ar—Zar—1)1/2F(m nriz)(ar—ZatNr—Z)"‘"'

T, e
+ exp Kr—jzl (Olr—j"'Olr—l)l/zl—'(;71 nr_J)(ar—jvtNr—j)‘i‘"'

T,
+ exp K()Zl}(a() a2 D (@, tNo))

= (g - 'ar—l)_l/z (exp{Kr;i}So(lfr?l'“ﬂr)(tNr)
d T
+ Zexp{Kr— J Zi}(ar_,; ceop ) 20D (@, (N, j)). (29)
j=1

Our next step is to choose r as a function of N and « so that N, =g ---a,—1 N is O(1), thatis («g - - )2 =
O(v/N). We make use of the relation (16) and we define r in terms of the R-denominator corresponding to the
renewal time 7. For a = (h m?—L hy - m2jE )eXN setr=r(a, N):= Viy — 1 =h1 +---+hs, + iy, where
Ay =min{n € N: g, > N} as in Theorem 2.7. Define g - - - (o, N)—1N = Ny(a,n) =: O (N). We have the following
proposition.

Proposition 3.1. ®,(N) has a limiting probability distribution on (0, 0c0) w.r.t. A as N — 00. In other words: there
exists a probability measure Q) on (0, 00) such that for every 0 < a < b we have

lim A({a: a < Ou(N) <b}) =QW((a,b)).

N—o0

Proof. Our goal is to write © (N) as a function of g4, _1/N, ¢;, /N and a finite number of X -entries of « preceding
and/or following the renewal time 7 y. By (16) we have

qv;, —1 qv;, —2 -1
x ! ) . (30)

@a(N):aO"'av;lN—2N=( +$V;,N—l'av;lN—l' N
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In order to write Qv;,, —1 and g,, _»interms of g5, = Qv and gz, 1 = Qv;,,—, We use the recurrent relation (14) for
the ECF-denominators, getting the hj; x hj linear system

_2kvﬁ %‘Vﬁ_l - Q\)ﬁ—l — ‘?ﬁ —_
1 2k, -1 vy -2 0
_ 2 : :
ql);,—j = 0 ’ (31)
-1 -1 ) ;
21 _21 Gvy—(hy—1) N 0
- N = L oqyen, 1 SA-1-

A A TS e " . . .
where n = n . The quantities k" 11 = m::l" € 2* and k,, € N, along with the size & of the linear system, depend only
on the two X-entries (hj - m’{f‘, hjpyq - mi’:’f) € X2, We are interested in the first two entries of the solution of (31).
One can check that

(hy —ky,—1 — (hiy — 2)qs — Ev;—1G5-1

qv,—1 = and
(4hy — Bkyzky,—1 — Chy — Dk, + (n — DEy, 1 )
g (hy — DG + 2kv;Ga—1
=2 = .
2T @hy — Dk k1 — Qhy — Dy, + (0 — Dy,
Therefore (30) and (32) show that ® (N) is a function of g;,_1/N € (0,11, g, /N € (1,00), (hj, mi'zv"’ chin+r
i’;}N_:ll ) € 2 and Uy —1 = RN (). Now, by Theorem 2.7, we obtain the existence of a limiting distribution as
N = 00, w.rt. A. U

3.1. Approximation of yy N

In this section we construct an approximation for the curve y, y. The approximating curve yaj » Will contain only the
J largest geometric scales (corresponding to J iterations of the jump transformation R). Having specified our choice
for r, we can also regroup the v;, terms in (29) involving I"’s into 72y terms as follows:

hy+2

T, —2\1/2 .
Al(t) = A(t; o, N) = ZexP{Kw_;Zl}((a)ﬁj?) o= (g, tN,_;) (33)
j=2
for [ =1,....Ay, where (@)} = ey, -0y, if [y <l and (o) := 1 if Iy > . Also recall that vj_y = v, — h — 1.
Formula (29) becomes now
Su(tN)
N =
Ya,N «/ﬁ
7. 1) il 2 \1/2
— . 1Ny, —1 J—
=0, 1/2(N)<exp{;<uﬁ121}5%1 i (t@a(N))-i-Z((Ol):Zij_l) / Aﬁj(r)), (34)
j=0

where n = ny. The following lemma proves that, on a set of arbitrarily large measure, the product ((a)z’f__z_l)l/ 2%
n—j

Aj_j(t) decays sufficiently fast as j grows. One can assume that 71 is large enough so that 7 — j > 1. This is the case
because later we shall let N — oo and hence ny — oo.

Lemma 3.2. For all sufficiently large J

-2
-1

Al (@) A5 (0)] < Crae™ j= 0. i —1}) 2 1= 81(J), (35)
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where C1a, C13 > 0 are some constants and 51(J) — 0 as J — oo.

Proof. Notice that, by (4), forevery [ =2,...,h;_; +2,

1/2

12
|auﬁ_1_lf(0lvﬁ,j—1, tNu,;,,—l)\ <Cs+ Cﬁavﬁ_j_l < Ci2,

where C13 := Cs 4 Cg. Now, by (33),

h;,_i+2
- U;l,-fz 1/2
25 50O] = D2 (@0 5) P @, -1, 1Ny 1) = Cralhij + D).
=2

A 2 .
" +'1 is less then % Therefore for

n—j—

By construction of the jump transformation R, exactly one of the factors in (a)“j

every j=1,...,n—1

(@3 )2 50| = €2 VP (hyy + 1),

Thus it is enough to show that, for all sufficiently large J € N and 7,
o hyj<eS% j=J, .. a—1}| = 1-8&), (36)

where 0 < Ci4 < % ~(.346574 and §>(J) — O as J — oco. By Lemma 2.9, setting H = (ecl“(ﬁ_l) + 1,eC14(ﬁ_2) +
L,...,e/ 4+ e N7 we get

a hj_<eC j=J ... h—1
J

n—-2

1 4y = i
== (1 B m) Hj(l - m) 2 [J(1 - re) =020
J= J=

The estimate (36) is thus proven, along with our initial statement (35) setting C13 := % — C14. ([

For J € N define the curve associated to the truncated renormalized sum as

J—1
_ . i (1) i—2 172
1y n(0) =052 (N) (e S 7 (100 (N)) + D (@2 )Y Aﬁ_ja)). 37
j=0

The number J corresponds to the number of scales one considers in approximating the curve y, y, starting from the
largest scale. The following lemma shows that y,, y is exponentially well approximated by yaj y foraset of a’s whose
measure tends to 1 as J increases.

Lemma 3.3. For all sufficiently large J and N
A{van® =yl y®| <e 57} = 1-83() (38)

foreveryt € [0, 1], where C15 > 0 is some constant and 53(J) — 0 as J — oo.

Proof. Since by Proposition 3.1 @, (N) has a limiting distribution on (0, co) as N — 00, so O, 1/ 2(N ) does. Then,
for sufficiently large N, we have

A{a: ©FV2(N) < T)) = 1= 84(0),
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where 64(J) — 0 as J — oo. On the other hand, by Lemma 3.2, for sufficiently large J and N,

n—1

n—1
— ;1—2 1/2 —_ — 7
ran @) = vy O] = €5 2| D (@y 7)) 2 ai (0] < €O AN) Y e O
j=J+1 j=J
—Ci3(J-1) _ o—Cp3(n—-1) C,eC13
_ o—1/2 € € 2€ 12 —Ci3J
=C120, "“(N) T T e, "“(N)e

holds for every ¢ € [0, 1] on a set of wr-measure bigger than 1 — §1(J). Therefore

Ci3
Cize Je—cng < Cis/

J
‘Va,N(I) - Va,N(t)‘ = CC13 —1

for some constant C15 > 0 on a set of ug-measure bigger than 1 — §;(J) — 84(J). The lemma is thus proven setting
83(J) :=681(J) 4+ 84(J). O

3.2. Rewriting of )/aj N in terms of renewal variables

Now we can study the curve yaj N (@). Our goal is to rewrite it in terms of Gy (N), oy, —1 and a finite number of

X -entries preceding the renewal time. We will also need two additional functions, K g (N) and E4(N) to take into
account phase terms and conjugations coming from the renormalization procedure.

For o = (h; -m?,hz -mgz, ...) € ZN we have an explicit expression for n;, [ =1,...,v; — 1:
n=-=nn =17’7U171 =_§]»
Nvy =" =MNvy+hy = 19 Nyy—1 = _§2,
771),;,1 == nl)ﬁ,l-‘rhﬁ = 17 nv;l—l = _é—fl
Thus
I
oy =] [(~¢) and (39)
s=1
ey =1+ (hy —&1) + (=8 (ha — &) + (¢ (=) (hs — &3) + - -
! j—1
(=0 (oD =) =1+ (hj—ep ][ (40)
j=1 s=1

The following lemma gives an explicit formula for the partial products along the T -orbit of & which appear in (37).

Lemma 34. Leta = (hy -m{' hy-m5,..) € SN Set B :=a, 3. Then
Vi_i—2 /3
B.j =By j():= (o), ' _ = : : 41
5, j 5, j (o) (a)vn_‘j—s G—1)—(s— Z)ﬂj 41
j-1 B
Di=Di() =" > = S 42
=== @
Proof. Both identities follow, after telescopic cancellations, from
(s =2)— (s =3)B;
Wy s = ! (43)

=D —(s=2)p;"
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Notice that 8; is a function of RN (o) and j (j < J) X-entries preceding the renewal time 7. With the above
notation (37) becomes

(110, —
Yan(® = Ou(N)~ 1/2<exp{xu i }8 Y 10, (V))
J—1 hﬁ*]"'z
1/2 2 Vi i—s
+2Dj/ Z exp{KUﬁj—SZI}Bl/ F(m K )(Olv;,j—satNVﬁj—s)>~ (44)
j=0 s=2

We want to collect a phase term of the form exp{k,, ,—17i} and the corresponding “conjugation” index (1 -- -
Nv;_,—1)- To do this, using (39) and (40), we introduce the quantities ¥, ¥y, £; and &’ depending only on a fi-
nite number of X -entries of « preceding the renewal time 7y :

(kv —1 = Koy, =M1+ Moy —1)

= (KU;, Ky, =M Nyy—1 +n--- ’7v,;,,—1)(’71 to 771);,,]—1)
n u—1 n
= Y - [] - J] w+1
u=n—J+1 v=n—J+1 v=n—J+1

=Wy =y (h-m] I =h—J+1,...,4),

(v —s — Kvy_ =)L My, —1)

n—j

= (v + Ramj = s+ D@10, 1) = ey, 1My —0)) 010wy, —1)

A—j—1 u—1 i—j—1
= Y - [] Cot+mi—s+) [] o)+l
=n—J+1 v=n—J+1 v=n—J+1

g =Yes(h-mi =R —J+1,... 74— j),

i n—j—1

&)= Nuj_y = NMop—1= 1_[ (=%v)» g; =iy My j—s = l_[ (=&v)-

=A—J+1 v=n—J+1

Now (44) becomes

J T -1/2 €N
yayN(t)zexp{KUﬁ]111}@0,(N) / <exp{wj }SR,/( | (16a(N)

J-1 hﬁ7j+2 (m Mvs_y )]
1/2 1 2 J
+ZD/ > eXP{ le} Pré ’(av,;__,-—s,tNuﬁ_,_s)) : (45)
j=0 s=2

On the other hand, we also introduce the functions E, (N) and K, (N), depending on the entire trajectory of o under
the jump transformation R until the renewal time 71y (exactly as @, (N) does):

n n u—1
Eo(N):i=m1-ny1=[](=200).  KaW) =k, =D (hy — 2) [ [(~=20).
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Using (39) and (41)—(43), let us recall that Oy, j—s is a function of B; and s; moreover, notice that

NN, ,—1 =&y Eq(N) and
OuN) BN
(O{)Wl_j_% ) (a)u,;—2 By - D;j

Uf,__/‘—l

—s—1'N=

n—j

Nv,;,j—s =gy,

Vil—j_‘

are functions of @y (N), E4(N), RN () and a finite number of X -entries of « preceding the renewal time 7. Fur-
thermore, by (30) and (32), @ (N) is a function of §;_1 /N, §;/N, R"® and the two X -entries (hiy mi';VN i
i+l
iy+l1 ).

In addition to this, since «,, ,—1 appears in the phase term of (45) as multiplier of 7i it is also natural to consider

its values modulo 8. Defining KS (N) := Ky(N) (mod 8), we have

m

n

k-1 =K§(N) = Ea(N) D~ (hy = G)Ei—ugt (M0d8).

u=n—J+1
Therefore, we can rewrite (45) as
; din—1 i . .
Va v (@) =Fi (r, R™ (@), ==, =X, K8(N), Eo(N), () -mj iy — T <1 < nN}>, (46)

where F is a complex-valued, measurable function of its arguments. Notice that the formulae (8) and (11) enter into
the definition of Fy, but we shall not use them directly.

Let us recall that Theorem 2.7 (which is a special case of Theorem 4.1 and generalizes Theorem 1.6 in [4]) already
establishes the existence of a limiting probability distribution for g4, _; /N and g;, /N, jointly with any finite number
of X -entries preceding (and/or following) the renewal time as N — 0o, w.r.t. the measure X.

In the next section we study the quantities Kg (N)e{0,1,...,7}and E,(N) € {1} in (46) and our Main Renewal-
Type Limit Theorem 4.1 will allow us to include them in the statement about the existence of a joint liming probability
distribution. This fact is non-trivial since Kosl (N) and E,(N) depend on the entire trajectory of o under R until the
renewal time 7.

3.3. Limiting distribution for phase and conjugation terms

Letxp :=n1 -+ ny,—1 = [ L= (&) and y, :==ky, — 1 =D "(_ (hy — &) ]—[;;]1(—;“”) (mod 8). We want to prove that
(xn, yn) € {£1} x {0, 1,...,7} =: E have a joint limiting distribution as n — co. We will follow the strategy used by
Sinai [27], Chapter 12, to see how the dynamics creates conditional probability distributions and these distributions
define uniquely a limiting probability measure.

Let us consider the natural extension R: XZ — YZ of R. For o € EZ, denote by 60~ = (...,0-2,0_1,00) and
0T = (01,02, ...) and identify the pair (¢, ™) with a point in the rectangle (0, 1] x (—1/3, 1]\ Q? as discussed
in [4]. One should notice that the “past” is identified with the y-axis and the “future” with the x-axis. Let us consider
cylinders in X Z of the form Jéﬁ"nt}n),_“,g_n_l .o_,»1 > 0,1e. depending only on the past. Such cylinders J are identified
with rectangles (0, 1] x I, where [ is an interval in the y-direction, and by |J| we mean the 1-dimensional Lebesgue
measure of /.

Lemma 3.5. For everyo™ € SN the limit

(n+1)
. . |J ,,,,...,J_],ao|
u(oglo_1,0.2,...) = nlggo )
|J —;19~~7(771|
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exists and satisfies the following conditions:

n(oplo—1,...) = Cie,

Y uloolo-r,..) =1,

opeX
’ ’
oolo—1,...,0-5,0" 0 . ...
‘M( ol s s—1 ) )_1 §C17C_C'8‘Y 7
u(oglo—1,...,0_5,0_5_1,0_5-2,...)

for some constants C1¢, C17, C13 > 0.

Proof. Letl, = [J\"T0 o o 1/17& 4 |- By Lemma 2.10 we have

(n+2) (n)
ln+1 1l = |Jai,_1,...,a_1,60| ) |erfn,...,a_1| _1l<c e,cgn
I 70D J@FD =8 :
n | 1y O—] | J_n,‘..,a,1,00|
This implies the existence of the limit lim,_, o, /,, and also the desired properties. (]

Since we are working with the natural extension of R, setting z, := h,, — {, (mod 8), the quantities (¢, z,) € &
are defined for every n € Z. Now we want to define conditional probability distributions 1o (($o, z0)1(¢—1,z2—1), ({=2,
z-2),...) over 8%, Letus fix a sequence o© = {O';O)} € 72 and for every n € N consider

ME)O) ((;0» ZO)'(C—] 5 Z—l)» (§—27 Z—Z)v ey (;—n, Z—n))
10 () (51 21). (G0, 20))
ME)O)((g—ns Z—n)v R (é‘—ls Z—l))

200,071,...,07,1 w(o_p,...,0-1,00)
2071,_“,0_,1 pu(o—p,...,0-1)

0 0
Zao,a,l,.“,zr_n [Ti—om(o—slo—s—1,...,0-n, "En)q , afn)fz, ) )
- 0 0 ’
Zo‘il’“.’g_” H?:l ulo—slo_s_1,...,0_y, Uin),] s 0{,,),2, .Y
where the sums are taken over all possible og,0_1,...,0_, € ¥ which are compatible with the values of
(é‘—ns Z—n)v sy (;—17 Z—l)s (;Ov ZO)'
Lemma 3.6. The limit
— i (0)
10( (20, 201(C=1,2-1), ((=2,2-2), ...) := Jim g (20, 20)1(C=1,2-1), (€=2,2-2) -+, (E-n2 2-n))
exists and does not depend on o ©.
Proof. The Markov process {...,0_,,...,0_1,00} has a countable state-space but, by (18), it satisfies a Doeblin
condition. Therefore, it can be exponentially well approximated by a process with finite (but sufficiently large) state-
(0) -j

space. To this end, let us introduce also Mo,p as in (48), with the additional constraint that o_; =h_; - m__ i
satisfy the inequalities 2, m < L for 0 < j < n. The sums in the corresponding numerator and denominator are
thereby finite and contain at most (2L> — L — 1)"*! and (2L? — L — 1)" terms respectively. In order to prove that
M(()(,))L((EO’ zo)1(¢=1,2-1), (€=2,2-2), - - -+ ({—n, z—pn)) has a limit as n — oo we shall perform a second approximation
of the process {0} by a finite Markov chain with memory of order /.
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We partition the integers 1, ..., n into fragments with | /n| elements. Notice that 0 < n — |/n]? <2|/n] and
define

[Va] =1 if0<n—[Vn]’ <[ va].

s =1 [va] it [Va] <n—[va]” <2| Vi,
| V] +1 ifn—|yn]?=2[va).

The product in the denominator of u(()O)L becomes

0 0
HM(U—S|U—S—17"‘9U—ns (n) lso'in)_zv"')
sq(n)
:1_[ (0- o_; lo_; o_(; o_p, 09 )
HAO— (=D Lym]=12 -2 O—j Lm0 j Ll =15 -+ O—(j+ D)Ll - O=ns Oy g5 - - -

©
(0 sqm) Ly —17 -+ O (a4 1) Ly 1T (sqmt D L) 15 - T2 Oy ) 49)

© O
WO squ DLl =1+ O=nl0y 1505, 1) (50)

sq(n)
= (H u(6_j|a_,-_1>5,»> A,
j=1

where

G = O (oppyigto O € VY, .

M(&fﬂarfjfl,U_(j+1)b/m_1, o))
u(G—jl6—j-1)

’

5=

and 1V, 1© correspond the factors in (49) and (50), respectively. Notice that for n — [ /n|*> =k|/n], k=0, 1,2,

the factor 1% disappears and (D = MO _gqn) ) =15 -+ 07n|0£(2_1, ...). We claim that
18j — 1] < Cro/ne 20V, (52)
In fact, the correction factor §; can be written as
jl/nl A
5. — l_[ M(U,S|U,s,1,...,U_jL\/m,O,j,l,a_(j_H)L\/m_l,...) (53)
] - pas .
s=(j—1) /)41 M(G—S|U—S—ls"'7G_jLﬁJsG—]—l)

and, by (47), each factor in (53), is (C17e_C18ﬁ)-close to 1. Therefore, for some constants C;1, C22 > 0, |logd;| <
Coia/n - e=C2v1 and we get (52) for some Cj9, Cop > 0. The factors 2© and iV can be approximated in the same

way, by truncating the length of the condition after | /7| digits. Denoting by §() = £ Z,i ,1 =0, 1, the correction terms
asin (51), one gets |8(l) — 1| < Cypa/ne~ Coavn for | = 0, 1 and for some Cp,, Cp3 > O
Therefore ,u ((g“o, z0)1(¢=1,2-1), (§=2,2-2), ..., (L=n, 2—n)) is exponentially well approximated by

Y oot 00l DT 106 j16-5-1) - OO
Zg_l,“ l_[gq(")u«(a i6—j—1) - aMAO

which can be understood as the expectation of u(og|lo—1) with respect to the measure for the finite Markov chain
{...6_n,...,6_1}. Recall that the phase-space of such Markov chain is {h - m¢ € X: h,m < L}v"), which has
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(2L% — L — 1)V elements. This Markov chain is ergodic because, by the symbolic coding of the map R, every
sequence of elements of X' is allowed. By the ergodic theorem for Markov chains and the Doeblin condition we get
the existence of the limit

1 (20, 201, 2-1), (£-2,2-2), - ")

= lim lim ) (€0, 20)1(6=1.21), (E=2.2-2). - (G=n. 2—n)).

n—o0 L—o00

Moreover, by (47), the conditional probability distributions M(()O) ((¢0,2z0)1(¢=1,2=1), ...) do not depend on the se-
quence o © and will be denoted simply by wo((%o, z0)1(¢=1,2-1), - -)- O

Now, let us fix an arbitrary sequence {({}0), 15-0))} jez €8 Z_ For each s € Z consider the measure )»50) defined on

EZ

using Lemma 3.6 as follows:
0 _(© 0 _©
201,29, (9,22 =1 foreveryneN,

AgO){(gs’ Zs)s (Cs41s Zs41)s « -+ s (Cstts Zs+t)}
s+t

= HMO((;lv Zl)l(;l—la Zl—l)s R ] ({Ss ZS)’ (gs(g)]v Z_g(?])f (gs(g)Zs Z‘E()_)2)3 .. )

I=s

for every ¢ > 0. Since Z% is compact, the space of all probability measures on it is weakly compact and therefore

there exists a subsequence {—s;}jen such that lim;_, o s; = 0o and A(_qu = 2 as j — oco. One can show (see
[27], Chapter 12, Theorem 2 and Lemma 2) that '

nlin;ok(O) ((é‘sa zZ)(Gs—1,25=1), s (Ls—n, Zs—n)) = I’LO((;SV 2)|(Gs—1, 25-1), (§s—2, 25-2), - - )

and such 1) is shift-invariant and unique.
Let us now prove the existence of the limiting probability distribution for the sequence {(x,, y,)}nen. Observe that

X1 =—C1, Xp=Xp—1-(=&n),

y1=121, Yn =Yn—1+2n " Xn—1-

Lemma 3.7. For every (X,Y) € E the limit

lim 2@ (=X
n— 00 Yn = Y
exists.

Proof. Using the above relations we get

n—1
A© (x" - X) = > [ <X./+1 = Xj+1
Yn = Y
X

Xj=Xi\ 0 <x1 =X,
yi=Y;j ="

nelsen X1 j=1 yiv1=Yjqu
Y1, Y1
n—1
= Y 1G240 = 21z = Z) - 20 (@1, 20 = 24), (54)
Xn—1,...X1 j=1
Y1, Y

where (X, Y,) = (X, Y), (Xp—1,Yy-1),..., (X1, Y1) € £ and Z; € E are defined as

Zi=(=X1,YD), Zj=(-X;j_1X;,X;-1(Y; —Y;—1) (modB)), j=>2. (55)
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Notice that, by (55), the sum over all Xy, ..., X,,_1, Y1, ..., Y,—1 in (54) can be replaced by the sum over all possible
Zi,.... 21 E€EE.

Let us denote by pz w := A(O)((Cjﬂ,zjur]) = WI|(¢;,z;) = Z), the transition probabilities for Z, W € &, by
IT:= (pz.w)z.wes the corresponding 2* x 2* stochastic matrix and by 7 := (A9 ((¢1,21) = Z))zes the initial
probability distribution. Thus, we can write (54) as

where Z = (—X;_1X;,X;_1(Y; — Y;_1) (mod8)). The stochastic matrix I has positive entries and therefore
2 © (x"_X> has a limit for every (X, Y) € E as n — oo. O

Let J be as in the previous section. It represents a finite number of X-entries preceding the renewal time 7y
defining the approximating curve ¢ yaj N (). We can rewrite Ey(N) and K E(N ) as follows:

Eoq(N)=x4y-5- &1,
AN

Kg(N)=|:1+)’ﬁNJ+xﬁNJ' > <hu—;u)€ﬁN”}, (57)

u=ny—J+1 8
(Ea(N). K§(N)) = Fo (g —g» Yig—a): {lu -mj' iy — T <1 <iin}),

where Fp: & x X7 — 5.

4. Existence of limiting finite-dimensional distributions

In this section we prove the existence of limiting finite-dimensional distribution for ya{ n 88 N — 00, w.r.t. A. There-
after, we extend the result to y, . We also discuss the notion of nice set and we give a sufficient condition for a set
A C C* to be nice.

For every t € [0, 1], by (46) and (57), we can write

q}’lN 1 q;lN

yD‘t’,N(t): ( RnN( ) ’ N 1(xﬁN—Ja YﬁN—J)v{al};ZﬁNJ),

where F=FU : [0, 1] x (O 11x (0,17 % (1, oo) x & x ¥’ — C is a measurable function of its arguments. Similarly,
forevery 0 <t <t <--- <ty <1, setting Za N(tl, o) = (ya,N(tl), ""ya,N(tk))’ we have

qu 1 QﬁN
N N

N(tl,...,tk)=F<">(<n,.. 101 R (o), ,(xﬁN_J,yﬁN_J),{oz}?:NﬁN,>,

where F® - [0, 17 x (0, 1] x (0, 1] x (1, 00) x & x ¥’ — Ck.
The following Renewal-Type Limit theorem is the core of the proof of the existence of finite-dimensional distribu-
tions for y, O[J n 8 N — oo. Itis a generalization of Theorem 1.6 in [4] and its proof will be sketched in the Appendix.

Let us just mention that it relies on the mixing property of the special flow built over the natural extension of R, under
the a suitably chosen roof function.

-1 day

Theorem 4.1 (Main Renewal-Type Limit theorem). Fix Ny, N> € N. The quantities q"“[(, ~-s {04 N+I}IN:2_ Ny+1°

(X3 —N,» Yay—N,) have a joint limiting probability distribution w.r.t. the measure A as N — o0.
In other words: there exists a probability measure Q = Qp, n, on the space (0, 1] x (1, 00) x NN o B such

that for every ay,b1,a2,b2 € R, 0 <aj < by <1 < ay < by, for every c = (cl);v:z_Nl_|r1 e YNtV and for every
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(x,y) € E, we have

A

éﬁN—l qu N> Xinv—N X
Ao ar < —— <br,ax < < by, (Gt =c,< N 1):( )})
<{ N N INHI==NFT TS y

— Q((a1,b1) x (a2, b2) x {c} x {(x,y)})  asN— . (58)

Remark 4.2. Let us also mention that the proof of Theorem 4.1 provides an explicit formula for Q((ay, b1) X (az, by) X
{c} x {(x, y)}), based on a geometrical construction. Moreover, if we fix c € XN+N2 and (x, y) € B, then the measure
on (0, 1] x (1, 00) defined as Qn,, Ny:c,(x,y) (E) == Qny N, (E X {c} X {(x, y)}) is equivalent to the Lebesgue measure
on (0,1] x (1, 00).

Notice that the limiting probability distribution of R (a) = (0 N1 Ohay42s-00) € X N'can be obtained by
providing a limiting probability distribution for any fixed number of X-entries after the renewal time ny, i.e.
Ofin+1s - -+ Ofy+N,» V2 € N. We immediately get the following corollary.

N
bility distribution on (0, 1] x (0, 1] x (1, 00) x & X STt as N — oo, with respect to the measure A on [0, 1].

Corollary 4.3. Fix J € N. The quantities Riv, Tin=l Siy (Xany—a> Yay—J)» {ol}?i’ﬁ[v_] have a joint limiting proba-

Let us denote the limiting probability measure by Q). For every (x,y) € & and ¢ € ¥/*! the measure on
(0, 117 x (1, 00) defined as Q(J) (E) := QY)(E x {(x, y)} x {¢}) is equivalent to the Lebesgue measure on (0, 1] x
(x,y),0
(1, 00). This fact is a consequence of Remark 4.2.

Remark 4.4. Fix (11,...,1) €0, 15, J €N, (x, y) € & and o € 7. Denoting (u, v, w) = (R (ar), Za=L Gin
we can rewrite the functions in Lemma 3.4 as

(1)+b(1) (2) b(2) (3)+b(3)

Bi=Biu)=—-5—"7— B j=Bs,ju) = —5—05— Di=Djuw)=||-5—75—
J — FJ 51)+d;1)u S, J S, (2)+d(2) J J [l:([) 1(3)+ [ u

for some constants aﬁl) b(]) ;l),d](-]), fzj),bfzj), A(zj),dfzj), [(3) b(3), (3),d1(3) (determined by o). Notice that the

functions B, By j and D take values in (0, 1] and, despite their rational structure, they are C* functions of u € (0, 1].

L=, () = STt € (0, 1], by (30) and (32),

Moreover, ;- @ rd®y

Ou(N) =:0(u, v, w) = (a(s)v +bOw+ c(s)otvﬁ[rl (d(s)v + e(s)w))_1

. @ +dWy
= @O0 0w (e® +d@u) + D@ + by dO v+ e w)

€ (0, 00)

is also a C* function of (u, v, w), where a(4), b(4), C(4), d(4), a(s), b(S), c(5), d(5), e® are some constants (determined
by o). Fort = (t1,...,t), set

7 =FR (@, 10,) (0,17 x (1,00) x & x £+ - k.

a® 45O

Finally, oy, ;=1 Aj(u) = W € (0, 1] for some constants a(6) b(G) (6), d'® and

0 e =FO(, ) 3, 0) = £7 (4 (), 0) 10, 17 x (1, 00) — CF
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reads as

fz({; W, o UV, w) = (C(I)G(u, v, w)"1/? |:C(2)S,£C(3))(t19(u, v, w))

W42 o ) )
LY D2 Y cOp, 1/2F<A ,&) ,
,2;) (@) 2% @) Wt @ _

where CV, C(z) CS(S) eC,Cc?,Cc® e {£1} and C](4) € N are constants determined by (x,y) € & and o € X7+

Notice that ft
(u,v, w).

)0 (0,11 x (1,00) — CK a continuous function (with piecewise C*® partial derivatives) of

4.1. Nice sets

We say that A € BX is (11, ..., t)-nice (or simply nice) if for every J € N, for every (x, y) € Z and every o € £/+1,
8((]2(8 e o) )~1(A)) has zero Lebesgue measure in (0, 112 x (0, 00).
Notice that if A = A| x --- x Ay, where A; € B and A; is f7-nice for [ = 1, ..., k, than A is (t1,...,t;)-nice. The

following lemma gives a sufficient condition for A € B! to be #-nice, analogous to Lemma 5.1 in [17].

Lemma 4.5. Let A € B! be an open convex set, 0 € A, with smooth boundary. Let A(w, p) := {pz + w: z € A}. Fix
t € [0, 1] and w € C. Then, except for countably many p, A(w, p) is t-nice.

Proof. Let r € [0, 1] be fixed. For every J € N, every (x,y) € & and every o € 7+ the set (0, 112 x (1, 00) has

finite QE){)y) ,-measure, say q((xj)‘) o> 0. Since f,. (; No is measurable, the measure of the set X' (p) = {(u, v, w) €

(0, 112 x (1, 00): ft({i Mo -, v, w) € A(w, p)} tends to q(x V). A8 p = 00. Since A(w, p) is convex for every p, the

sets Z(p) = {(u, v, w) € (0, 11* x (1, 00): f,(J) € dA(w, p)} are disjoint for different values of p. Therefore, there

)

can be only countably many p for which Z(p) has positive Q(x Vo (and thus Lebesgue) measure. Since f;. -

continuous, the boundary of X’(p) is contained in Z(p), concluding thus the proof.
4.2. Limiting finite-dimensional distributions for ya{ N and Ya N
The main consequence of our Main Renewal-Type Limit Theorem 4.1 is the following proposition.

Proposition 4.6 (Limiting finite-dimensional distributions for yaJ, N)- For every k € N and every 0 <1 <1t <

- <ty <1 there exists a probability measure P(J k) , on Ck such that for every open, (11, . .., ty)-nice set A € BX, we
have
lim A(f{ee©15: y! @ n) e A})=PY, () (59)
N—o0 P LaN Lreees i T ek ’
Moreover, if{A(j)}]eN A(j) € Bk, is a decreasing sequence of open, (t1, ..., ty)-nice sets such that Leb(AY)) — 0,

,,,,,

Proof. Since A € B¥ is open and (1, ..., fx)-nice, the set {« € (0, 1]: Zi N(tl, ..., 1) € A} can be written as

{“1 (R;’N,—qﬁ]’vv‘l,q]’ﬁ,”xxfw_hym_»,{o—z}f:”ﬁN,) () (A)} )
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and
) -1 A — B — R(l)
(£ W= ] Bamex{nlxtal= || R, x{6»}xial
(x,y)E&, (x,y)EE,
ceXx/+l oceX/+1l [eN,
B, y).e#9
where B(x y) o0 = B(x,y),0 (A) := (ft({i e o) )~1(A) are open (possibly empty) subsets of (0, 11% x (1, oo0) with bound-

aries of measure zero and R&)y) . R&)y) J(A) C (0,11% x (1, 00) are parallelepipeds of the form (ag, bg) x
(a1, b1) x (az, by) (the endpoints in each coordinate can be either included or not for different values of (x, y) and o)

and ag, by, ay, b1, az, by, depend on (x, y), o and /. Thus the set in (60) is a disjoint union of sets of the form!

Giy
L<by, a2<7<b2 Xy —1s Yiy—1) = (x,¥), {Ul}; T 0}

N qi
{Ol: ag < R™ < by, a1 <

whose A-measures converge to Q) (R
of Proposition 4.6 setting

PN A= Y QU(RY ().

,,,,,

o) X {(x,y)} x{og}) as N — oo by Corollary 4.3. This concludes the proof

(x,y)e&,
oeX/+1 [eN,
B,y),o 79 O
Now, for fixed k and ¢, ..., fx we want to consider the limit of Pt(ljk),k (A) as J — oo. We have the following

lemma.
Lemma 4.7. Foreveryk e N, every 0 <t; <tr <--- <ty <1 and every open, (t1, ..., t)-nice set A € BK, the limit
limj_ o P( k) o (A) exists. It will be denoted by P(k.)”_,,k (A).
Proof. For simplicity, write X/{, (@) = Zi N(tl, o), Xn(a) = Y, N(tl, ..., ) and PY = P(J k) . Moreover, for
2=(z1,...,2x) € CF set |z| :=|z1| + - - - + |zx|. Assume, by contradiction, that the sequence {P/ }]GN does not have

alimit as J — oo. In this case there exist ¢ > 0 and a subsequence J = {J;};en such that |PJ/(A) —p/” (A)| > & for
every J', J” € J. By definition of P/ (A) and P’" (A) we have that for every 85 > 0 and for sufficiently large N,

IMx§ e A} =[x eA}|=1-6s 61)
On the other hand, by Lemma 3.3, we know that

MIXy = X3 ke €57} > 1-85(0) (62)
and 83(J) — 0 as J — co. Now (62) implies that

MIXE — X4 k(@O +e0 ) 21— 05(0) — 15(0")
and thus

IM{Xx{ € A} - A[{x] €Al

< M{x¥

L= X4 | <k(e s 467 =1 {XY € A} +55(0) +83(J")

<|Mx% €A} —rx{ e A +85(J) +83(7), (63)

IStrict inequalities are replaced by “<” when the endpoints are included.
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where A’ = {z € Ck: |z —w| < k(e €157 +eC157") w € A}. Now, by taking sufficiently large J', J” € J and using
the last part of Proposition 4.6, (63) gives

IMXF e A} —A[x} e A} <a{X} e A\ A} +85(J) +8(J) <e/3,
contradicting thus (61) if we choose §5 = ¢/2. O
Now we can prove our Main theorem.

Proof of Theorem 1.1. So far, by Lemma 4.7, we know that

lim lim Ala: y? (t1,....1) € A}l =p®
JLH;ONl—Enoo {a Z“»N(l W)€ } n

,,,,,,

Roughly speaking, we want to interchange the order of the two limits. Let us use the same notations of the proof of
Lemma 4.7 and, in addition, set Yjé (o) == Xn(a) — XJ{, (¢) and P := Pflk,)w,k. By (62) we have

MXy € A} < A{X{ + Y5 €A,

Yi| <ke €57} +83(0) <A{X} e A} +835(0), (64)

where A’ = {z € CF: |z —w| <ke €5/ w e A} and 83(J) — 0 as J — 0o. Now, by Proposition 4.6 and Lemma 4.7,
(64) becomes

MXn € A} < PY(A) +86(N) 4 83(J) = P(A) + 87(J) + 86(N) + 83(J), (65)
where 86(N) — 0 as N — oo and §7(J) — 0 as J — 00. On the other hand, in a similar way we get
MXy € A} = MX3 + Y5 e A Y] <keCs'} = a{x} e A"} = PY(A”) + 85(N)
= P(A) +689(J) + 83(N), (66)

where A” = {z € A: |z —w| <ke™©5/ w e A°}, 83(N) = 0 as N — oo and 89(J) — 0 as J — oo. Now, taking
limpy_ o0 limy_s o, in (64) and (66), we obtain limy oo AM{Xy € A} = P(A), i.e. (2) as desired. U

Remark 4.8. Considering, as in Remark 1.3, our reference probability space ([0, 1], B, 1),
yn. vy 1 (00,11, B, &) — (C([0, 11,C), Be)

are two random function. Let Py and PIJv the corresponding induced probability measures on C([0, 1], C). Now Propo-
sition 4.6, Lemma 4.7 and Theorem 1.1 read as follows: for every k € N and for every 0 <t) <--- <ty <1,

_ N pun T e Voo
yeeny 174 151

Lem. 4.7

J_—1
Pymy,

Appendix: Proof of Theorem 4.1

This appendix is devoted to the explanation of the proof of Theorem 4.1. This theorem is a generalization of Theo-
rem 1.6 in [4] and therefore we shall indicate how to modify its proof. Let us first recall some notation from [4].

Let R: X2 — XZ the natural extension of R as in Section 3.3 and let W be the natural invariant measure induced
by ug. Set D(R) := XZ. For € L'(D(R)) set Dy = {(6,2): 6 € D(R),0<z < (5)}, let {@,},cr be the special
flow on D¢ and let gy = up X Leb, where Leb is the Lebesgue measure in the z-direction. This flow is mixing,2
ie. limy oo o (AN P_;(B)) = n(A)(B) for every Borel subsets A, B C D¢ (see Proposition 3.4 in [4]). We shall

2The flow {®;}; is actually proven to be a K -flow.
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use the following relation between the special flow @; and the (non-normalized) Birkhoff sum of ¢ under R. Setting
Sf(l/f)(&) = Z:;b w(ﬁf(&)) and r (o, t) ;= min{r € N: Sf(w)((%) >t} we get fort e R

®,(6,0) = (R"CD716), 1 = SK; 1 (1)(©6)).

Fix a cylinder C and set g¢ :=sups ¢ g(6), where g: D(R) — R™ is a function defined so that

0ga() = SRW)(©6) +8(6) +2a(6), sup [ (8)] < 237" (67)
6eD(R)

for some constant Cp3 > 0. If |g(6) — gc| < &/2 on C (this is always possible, by considering a sufficiently small

cylinder C), then one can choose a time T = T(N,C) =log N — g¢ so that ay(6) =r(6, T) holds on C \ U, where
U=U(Q) CC, pupU) <Tepy(C). Given two functions Fi, F2: D(R) — R we define

Do (Fi, F2):={(6,2) € Do: ¥(6) — F2(8) <z < ¥(8) — F1(6)}.

Notice that for some values of F}(6), F2(6) (e.g., when they are negative) the corresponding sets of z’s can be empty.

Sketch of proof of Theorem 4.1. The condition (07, 1)) Ny+1 = € in (58) can be rewritten as RW@=1(5) e
Cl(\f])’ Ny» where Cz(\%]), Ny is a cylinder determined by N, N, and c¢. We claim that

. Gin—1 Giy Ay (6)—1 A © Xiy—N x
1 A e (0,1]: b, — < by, R"N eC , NTL ) =
N <{a (O ar < N CUhERETy T (@) €, Yin—Ni y

=px,y,£'M¢(D¢(alvblva2’b2’£))’ (68)

where py y . is areal number between 0 and 1 (we shall define it later in this proof), D¢ (a1, b1,az,b2) := Dg(loga; +

Yy oR™ 1 loghi+¥oR™)NDg(logay, loghs) ﬂp’lcl(\?])’Nz (see Fig. 3) and p: Dy — D(R) is the vertical projection
onto the base. Set

. Giin—1 Giy Sy (6)—1 /A © Xin—N x
ACI:{UECZCI]< <bi,ap < —= < by, R™W (o)eC , NN ) = }
N N NEN2 A Y-y y

Consider ¢ > 0. One can find a finite collection of cylinders €, for which (58) can be 10g-approximated
by ZCecg up(Ac\u), where U = U (C) is as above.

Let i be an absolutely continuous measure on the X% = (0, 1] x (—1/3, 1]\ Q? that projects onto A on TN =
(0, 17\ Q, i.e. for every interval I C (0, 1] we have )AL(I x (—1/3,1]) = x(I). If, for instance, A = ug, then we can
take A = Hpe

In order to show (68), noticing that A¢ depends on N, it is enough to prove that, for sufficiently large N,

< Cpue

MAcw) -
‘7\ — Px,y,c* Mo (D(P (a1,b1,a2, b2, Q))

AC\U)

for some Cp4 > 0. Since A is absolutely continuous w.r.t. i p, it is enough to show, for sufficiently large N and
sufficiently small cylinders C, that

< Cyye. (69)

G N) -
‘u - px,y,g . M@(D‘P(alvblvavaZs Q))

pnp(C\U)
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'@ &

Fig. 3. The region Dg(aj,by,ap,by,c) described in the proof of Theorem 4.1 is the intersection of the three shaded regions:

Dy (logay +v o R™1,logh; + v o R1), Dg (logay, logby) and p—lc]%l) Ny

If N is sufficiently large we get

qﬁN—l qﬁN
<bi,ap < —<b
1,42 N 2}

{&EC\U: ap <

={6€C\U: loga) < sﬁﬂ)_l(w)(a) ~T+eyc(6) <logh}
N{6 eC\U: logas < sﬁ&,T)(w)(&) —T+e)y o(6) <logha},
where ey ¢(6) = iy 5)-1(0) — 8¢ + 8(®), &y (6) = &y(5)(6) — 8¢ + 8(®) and &;,5)-1, €iy(s) are de-

fined in (67). One can show that sups e\ ¢/ len.c(6)| + SUPsec\U lely ¢ ()] < Case for some Cas > 0. Notice that
V= Sﬁ& T)(w)(&) — T is the vertical distance from @7(4,0) and the roof function Iﬂ(ﬁﬁN (&)_1(6)) and there-

fore Sﬁ& T)_l(w)(c}) —T=v— 1//(1%’%”(6)_2(6")). Using the vertical projection p:Dg — D(R) we write the
condition RN@)~1(5) ¢ Cl(\i),Nz as p(P7(s,0)) € Cl(\i),Nz and setting By (x,y) :={6 € D(R): Xiyn6)—n, (6) =
X, Yay(6)-n, (6) =y} we get

Acvu x {0} S ((C\U) x {0}) N (By(x, ) x {0})
N@_7(Dg(logar + ¥ o R~ — Case, loghy + ¥ o R™' + Case)
N Do (logas — Case. logby + Cas) N p'C )
and
Acvu x {0} 2 ((C\U) x {0}) N (By (x, y) x {0})
N&_7 (Do (logar + v o R™' + Case,logh +y o R — Cas¢)
N Do (logas + Case. loghy — Cas) N pICy ).
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For sufficiently small §, 0 < § < ¢, one can show that
Ac\w X [0,8) € @1 ((Do(logar + ¥ o R™' — Case — 8, loghi + ¥ o R™' + Case)
N Do (logas — Case — 8, logby + Case) N p~ICy ) U DY),

where Dg) = D(Ié) x [0, §). Thus, recalling that T = T(N) = log N — g¢ and setting W]Jvr(e, §) = dLT(DZ)’Jr(al, by,

az, by, ©) U DY), where D% (a1, by, a2, b2, ¢) := (Do(logar + ¥ o R™' — Cage,loghy + ¢ o R™! + Case) N

(9]

Dg (logar — Cage, logby + Crse) N p_ICI(VI’Nz) and Cy¢ = C25 + 1, we obtain

8- np(Acvw) < no (((C\U) x [0,8)) N (By(x,y) x [0,8)) N Wy (e,8)). (70)

Our goal is to show that, for sufficiently large N, one can Cy;¢-approximate (for some constant Cy7 > 0) the left-
hand side of (70) with the product of the wg-measures of the three sets (C \ U) x [0,38), By(x,y) x [0,5) and
W;,'(s, 8). First, we can replace By (x, y) x [0,8) in (70) by B) (x,y) :== By(x,y) x {(6,2) € Dg: 0 <z < ¥(5)}
and write Dy = Dy(x,y,a1,bi,a2,b2,¢,8,8) := By N Wy (e,8) = @_1(v)(En), where Ey := &ry)(Bjy) N
D™ (a1, by, a2, b2, 0).

Let us recall the following classical result by Rényi [22]: let (§2, ‘B, P) be a probability space and let G, Hy € ‘B,
N €N, then

Nlim P(GNHy)— P(A)-B iff Nlim P(H,NHy)=P(Hy)-B foreachke Ny, 71
—00 —>0

where Hy = 2. Inour case 2 = D¢, P =ugp, A=(C\U) x[0,8) and Hy = Dy. We can compute P(H; N Hy)
for fixed k as follows

pae (D N DN) = o (Pt (Ex N P—rv)—Tk) (EN))) = o (Ex N @ 1(n)—T(k)) (EN)). (72)
For every k € N we can write Ey as a disjoint union of
—N

Eiiﬁ@ :={(G.,y)€Dgp: 6 = RM@)=M (6'), (") =17, (&;)j=1 =6}n D;’“L(al, bi,a2,b2,0),

wheren € Nand 6 € XN i5 such that x7—n,(0) = x and yz_n,(8) = y and we can write (72) as

7.0
pa (Ex N P_rvy—ten (En)) = Z 12 (E,E” Dn D_ v vk (EN))- (73)
n,0

Each term in the series above is now written as a product
1o (D1 (BY)ES Y N @_xny—rtao) (D5 (a1, bi, az, b2, ©))) (74)
o (B 0 @_rvy—1i0y (Dt (@101, a2, b2, 0))). (75)
We apply the mixing property of the special flow {®;} to the factor (75), getting
Mo (E,Ew N ®_rw)—toy (D" (a1, b1, a2, b2, 0))) — 1o (EIEE'Q))M (Dg™ (a1, b1, a2, b2, 0)).

as N — o0o. We claim that the factor (74) also has a limit:

. 7,0 _
Nll_r)nooﬂcp (@1 (By (x, y))IE,E" Dn D_ vty (DT (@1, b1, a2, b2, ©))) =: pr.y.c- (76)

In order to see this one can analyze geometrically the action of the special flow as follows. The set E ,EE’Q) is fixed and

involves a finite number of entries of & ~ in the base D( R ) and some region in the z-direction. In the D (Ié) component,
aN—n+N;

the set tIJ_(T(N)_T(k))(DgJF(al, by, az, by, ¢)) corresponds to setting to ¢ the coordinates at from (& j)jZﬁN*ﬁ* N1
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i.e. in a neighborhood (of fixed size) of the renewal time 71y . In the z-direction it gives a region which, by mixing,
spreads according to the invariant measure /1 as N — oo. Since the set @) (B), (x, y)) gives no restrictions in the

z-direction, it is enough to establish the existence of the limit (76) for the projection of the sets onto the base D(R).
In the base, however, the limit follows from the Markov-like property of the process {(x;, yn)}neN € gN (namely
extending (56) to conditional probability distributions). Now taking the limit in (73) we get

Jim 1o (Ex 0 @—an) 1) (EN)) = Py o (DG (@1, b1, a2, b, ©)) Z;M (E?)
n77

= Pryec - ho(Dg T (a1,b1,a2.02,0)) - 1o (E),
i.e. the rightmost part of (71) with 8 = py y ¢ - Uo (D;’Jr(al ,b1,a2, b2, ¢)). Thus we proved that
lim 1 ((€\U) x [0.8)) N (By(x,y) x [0.8)) N Wy (6. 8))
= 1o (C\U) x[0.9)) - pryc - ho(Dg " (ai,br.az, b2, 0))
=8 up(C\U) - pryc o (DgF (@i, bi.az. by, 0)). (a7
Now (70) and (77) imply that, for sufficiently large N,
8- mp(Ac\y) <8 upC\U) - (pr.y.e - o (Dg (a1, bi,az, b2, 0)) + Cre) (78)
for some Co7 > 0. Proceeding as in [4] (Lemma 3.8 therein) one can show that, for sufficiently small §,
(€\U) x[0,8)) N @_1(Dg (a1, b1, a2,b2,0) \ D) S Ac\w x [0, 9),

where D5~ = Dg(loga; + ¥ o R™' + Cage,loghy + ¥ o R~ — Caoe) N D (logas + Casge, loghy — Cage) N
p*‘c,(;—‘l), Nyo for some C»g, Ca9 > 0. Using the mixing property of the flow {®;}; as above we get, for sufficiently
large N,

8- pup(Ac\y) = 8- up(C\U) - (pr.y.c - mo (DG (a1, b1, a2, b2, ©)) — C30¢) (79)

for some C3p > 0. Moreover, by Fubini’s theorem, for some C31 > 0,

1o (D;’i(al,bl,az, b2.0)) = Px.y.c - o (Do (ar, bi,az, by, 0))| < C3pe. (30)
Finally, by (78)-(80) we get (69) for some C»4 > 0 and this completes the proof of Theorem 4.1. O
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