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QUANTILE CLOCKS

BY LANCELOT F. JAMES1 AND ZHIYUAN ZHANG

Hong Kong University of Science and Technology

Quantile clocks are defined as convolutions of subordinators L, with
quantile functions of positive random variables. We show that quantile clocks
can be chosen to be strictly increasing and continuous and discuss their practi-
cal modeling advantages as business activity times in models for asset prices.
We show that the marginal distributions of a quantile clock, at each fixed
time, equate with the marginal distribution of a single subordinator. More-
over, we show that there are many quantile clocks where one can specify L,
such that their marginal distributions have a desired law in the class of gen-
eralized s-self decomposable distributions, and in particular the class of self-
decomposable distributions. The development of these results involves ele-
ments of distribution theory for specific classes of infinitely divisible random
variables and also decompositions of a gamma subordinator, that is of inde-
pendent interest. As applications, we construct many price models that have
continuous trajectories, exhibit volatility clustering and have marginal distri-
butions that are equivalent to those of quite general exponential Lévy price
models. In particular, we provide explicit details for continuous processes
whose marginals equate with the popular VG, CGMY and NIG price mod-
els. We also show how to perfectly sample the marginal distributions of more
general classes of convoluted subordinators when L is in a sub-class of gen-
eralized gamma convolutions, which is relevant for pricing of European style
options.

1. Introduction. Let QR(u) = inf{t :FR(t) ≥ u},0 < u< 1 denote the quan-
tile function of a nonnegative continuous random variable R with strictly increas-
ing cumulative distribution function (c.d.f.) FR , and finite first moment E[R]. In
this paper, we introduce and describe detailed distributional properties of a class of
random time changes TR := (TR(t), t ≥ 0), which we call quantile clocks. These
processes are defined as,

TR(t) =
∫ t

0
QR

(
(1 − s/t)+

)
L(ds), t ≥ 0,(1.1)

where L is a subordinator, and (a)+ := max(0, a). While applicable in many set-
tings, we follow the framework in [4] and discuss the modeling advantages of
quantile clocks as business activity times in time changed models for asset prices.
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The quantile clocks, may be written as special cases of convoluted subordina-
tors, which are processes described in Bender and Marquardt [4]. That is to say,
processes defined as T (t) = ∫ t

0 k(t, s)L(ds), t ≥ 0, for k(t, s) a known kernel. The
authors [4], Proposition 1, provide mild conditions on k(t, s) and L such that a pro-
cess T := (T (t), t ≥ 0) has almost surely strictly continuous and increasing sample
paths. In terms of applications, [4] argue that one can use W(T (t)), where W is a
brownian motion with drift, as time changed models for the log price of assets that
possess continuous trajectories, where T (t) is now interpreted as business activ-
ity time. Furthermore, such models can correct deficiencies in Black–Scholes type
price models. In particular, it is known that (i) the log returns of asset prices have
nonnormal distributions, and often exhibit semi-heavy or heavier tail behavior, (ii)
the volatility or variance is dependent on time, (iii) asset prices exhibit volatility
clustering or persistence. Reference [4] also describe a general formula for Euro-
pean style option prices that depend on the marginal distribution of T (τ) for some
fixed time to maturity τ > 0. For other applications of processes representable as
convoluted subordinators, see, for instance, [18, 30, 31, 37] and references therein.

In the literature, exponential Lévy price models, defined as e−χ(t) for a Lévy
process χ on R, have been quite successful in terms of their ability to capture
some of the stylistic features of asset prices (i) and (ii) listed above. In addition,
there are many choices of χ where one can easily calibrate pricing models to the
options market, capturing volatility smiles and skews, via Monte Carlo methods
or perhaps more generally by the fast Fourier transform (FFT) methods outlined
in Carr and Madan [10]. Many Lévy processes χ , can be expressed as W(ζ(t))

for some subordinator ζ . However, the precise ζ that is associated with a χ is not
always known explicitly, and χ is often modeled via its Lévy density. Arguably,
the most popular models of this type include the variance gamma process (VG)
by [28], where ζ is a gamma subordinator, the Carr–Geman–Madan–Yor (CGMY)
process [7], where ζ has only recently been identified by Madan and Yor [29],
and the normal inverse Gaussian (NIG) process [2], where ζ is an inverse Gaus-
sian process. The popularity of these models is due to their relative simplicity and
distributional flexibility.

However, since χ has independent increments, exponential Lévy processes are
unable to capture effects due to volatility clustering. One approach discussed in [8],
which is related to the price models in [3], is to further time change χ by a stochas-
tic volatility process of the form T (t) = ∫ t

0 v(s) ds, where v(s) represents the in-
stantaneous volatility either following a mean reverting Cox–Ingersoll–Ross (CIR)
process or a non-Gaussian Ornstein–Uhlenbeck (BNS–OU) model of Barndorff-
Nielsen and Shephard [3], specified by the dynamics

dv(t) = −λv(t) dt + ϑ(λdt),(1.2)

where ϑ is a subordinator we shall call an OU–BDLP. The BNS–OU model v(t),
possesses jumps, and has a stationary distribution with laws equating to the class
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of laws of self-decomposable random variables that remarkably one can choose
based on a prescribed choice of ϑ . This latter fact is important for our exposition.
In contrast, the integrated volatility T (t) = ∫ t

0 v(s) ds is continuous and has non-
typical marginals laws (obviously depending on t). In the case of the CIR process,
v(t) is a diffusion having a transition density following a noncentral chi-squared
distribution. We will not consider models of this type.

The authors [4] demonstrate that their approach, involving convoluted subor-
dinators, can be viewed as viable variations of the idea in [8]. Furthermore, their
work essentially contains the popular model of [3]. However, as noted by the au-
thors, there are practical issues arising for instance in the pricing of options that
relate to the marginal distributions of T (τ) at maturity times τ . While T (τ) are
infinitely divisible, their marginal distributions and also characteristic functions
depend on k(τ, s) and τ , in a nontrivial way. Hence, leading in general to nonfa-
miliar distributions for T (τ). Related to this point, is a classical problem where in
general it is not clear how to exactly sample infinitely divisible random variables,
even in the case of a subordinators ζ(τ ) for each fixed τ . Some notable exceptions
for ζ are gamma, positive stable and inverse Gaussian processes whose marginals
for each fixed time point are gamma, positive stable and inverse Gaussian ran-
dom variables, and hence are easily sampled. More generally, one can resort to
sampling methods based on truncation of infinite series representations, but these
do not yield exact samples and it is not always clear how to control the level of
accuracy. Reference [4] do point out that if T (τ) has an analytically tractable char-
acteristic function then one can apply the popular fast Fourier transform (FFT)
techniques in Carr and Madan [10] to obtain explicit option prices. They also pro-
vide supporting results for some choices of k and L. However, due to the generality
of k(t, s), it appears difficult to apply the (FFT) for option price formula depend-
ing on general T (τ). These points do not reflect a deficiency in the approach of [4]
but rather that the class of convoluted subordinators is quite general. The task then
becomes how to choose kernels k and subordinators L that are convenient in terms
of implementation as well as having general modeling flexibility.

1.1. Contributions and outline. In Section 3, we show that quantile clocks,
which arise by setting k(t, s) = QR((1− s/t)+), can be chosen to have continuous
trajectories and in general have marginal distributions that, for each fixed time t ,

equate to a single subordinator ζ . That is TR(t)
d= ζ(t) for fixed t . We also highlight

a very tractable example related to [20, 22]. Of course, in general, the law ζ , that is,
the marginal laws of TR , depends on (R,L), and hence the deterministic quantile
function QR . However, in Section 4, we show that there are many quantile clocks
whose marginal distributions can be chosen such that they do not obviously depend
on QR . In fact for these given QR , we show that one can choose L, and a random
variable Y , such that the marginals of TR have specific laws in the Jurek’s [17,
23–25] Uδ class of generalized s-selfdecomposbale laws, for δ > 0. These classes
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contain the important class L of self-decomposable distributions on R+. See [9]
for the relevance of self-decomposable Lévy processes in financial modeling.

This ability to choose specific (familiar) marginal laws for price processes,
while allowing for quite varied path properties induced by different quantiles QR ,
gives modelers a great deal of flexibility. It is also reminiscent of how one might
choose a BNS–OU model v to have a specific stationary distribution, that is,
v(0) d= v(t) for all fixed t , in L based on the OU–BDLP ϑ appearing in (1.2).
However, recall that v has jumps and the law of TR obviously must depend on t .
The precise methods we use to establish these results, and identify QR , Y and L,
are given in Sections 4, 5 and 6, and should also be of general interest to experts
in Lévy processes. In Section 7, we exploit the fact that TR(t)

d= ζ(t) for each t ,
and we show that compositions (or time changes) involving quantiles clocks be-
have marginally like subordinators. In Section 8, we show that as consequences of
our results, that we are able to identify price processes whose marginal behavior
coincides with those of exponential Lévy price processes. In particular, we iden-
tify explicitly many processes whose marginal distributions are equivalent to VG,
CGMY and NIG price processes, but whose trajectories are continuous and oth-
erwise quite varied, and additionally exhibit volatility clustering. We also identify
models possessing jumps that otherwise have the properties mentioned above. In
Section 9, we show how one can use our results for quantile clocks to specify laws
for the convoluted subordinator referred as a short memory kernel in [4].

While quantile clocks are our main focus, in Section 2, we also describe results
that apply to the practical implementation of log price models W(T (t)), considered
in [4], where T (t) is based on a general kernel k(t, s). In particlar, if L is chosen
to have laws in the class of generalized gamma convolutions with finite Thorin
measure, see [6, 19, 22], call this class G+, then the random variable T (τ) can be
exactly sampled in many instances. This is based on a very recent work of Devroye
and James [15] where a double coupling from the past (Double CFTP) perfect
sampling routine is devised, and also results described in James [19]. Furthermore,
for this choice of L, by using a deterministic time-change we obtain a simplified
version of the option price formulae given in [4].

1.2. Preliminaries. We now present some concepts and notation we shall use
throughout. First, for fixed positive numbers (a, b), let γa denote a gamma(a) ran-
dom variable with shape parameter a and scale 1, let β(a, b) denote a beta (a, b)

random variable. Furthermore, U will always denote a Uniform[0,1] variable, and
recall that for any δ > 0, U1/δ d= βδ,1. ξp is a Bernoulli random variable with suc-
cess probability p. In addition for a generic random variable Y , Y ′ will denote
a variable equivalent in distribution but otherwise independent. (N(s) : s > 0) will
denote a homogeneous Poisson process with intensity E[N(s)] = s. For a (nonran-
dom) function g(x), g′(x) and g′′(x) with denote its first and second derivatives.
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Formally, recall that a subordinator ζ = (ζ(t); t > 0), is an increasing process
with right continuous paths and stationary independent increments, whose law is
specified by its Laplace transform for some ω > 0

E
[
e−ωζ(t)] = e−tψζ (ω),(1.3)

where for some c ≥ 0, ω > 0

ψζ (ω) = cω +
∫ ∞

0
(1 − e−ωs)ζ (ds)

is finite and is called the Laplace exponent of ζ , ζ (ds) is its Lévy measure,
ρζ (s) = ζ (ds)/ds is the Lévy density. We will work with the case where c = 0.

It follows that the laws of ζ can be specified by any of these quantities. ζ is
said to be of infinite activity if ζ (∞) = ∞ and otherwise of finite activity. In
the latter case, ζ corresponds to compound Poisson process whose jumps have
a common probability density/mass function proportional to ρζ . Throughout we
shall reserve the notation ζ,L,Z for generic subordinators, and corresponding
random variables, and the notation ϑ for the OU–BDLP. As is well known, for
each fixed t , ζ(t) is a random variable in the class J of infinitely divisible ran-
dom variables (taking values in R+). We now describe the characteristics of some
important subclasses of J , say L, B, G and G+, satisfying G+ ⊂ G ⊂ L ⊂ J and
G+ ⊂ G ⊂ B ⊂ J .

We say that a random variable ζ(1) is in the class L of self-decomposable vari-
ables if ρζ (s) = s−1h(s), with h decreasing. We also note that from Jurek and
Vervaat [26] that, with respect to the OU process in (1.2), there is the relationship

ζ(1) d= v(0) d= v(t)
d=

∫ ∞
0

e−sϑ(ds).

Note that we will say that ζ is a subordinator in L to mean that it is a subordinator
whose Lévy density corresponds to that of a variable in L, of course ζ(t) is in L
for each fixed t . Similar statements will apply for other classes. We say that ζ(1)
is a variable in Bondesson’s [6], Section 9, B class, or the class of generalized
convolutions of mixtures of exponential distributions (GCMED), if the Lévy den-
sity is completely monotone, that is, ρζ (s) = ∫ ∞

0 e−syμ(dy), for some nonnegative
measure μ.

We now describe the classes G and G+. ζ(1) is a variable that is a generalized
gamma convolutions (GGC), see [6], if it is in the class G , characterized by

ρζ (s) = s−1
∫ ∞

0
e−syν(dy) and ψζ (ω) =

∫ ∞
0

log(1 + ω/y)ν(dy)

for some sigma-finite measure ν, formally known as a Thorin measure. We say
that ζ is a GGC(ν) subordinator.

A ζ(1) variable is in the class G+, if it satisfies

ρζ (s) = θs−1
E[e−s/R] and ψζ (ω) = θE[log(1 + ωR)](1.4)
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for some θ > 0 and some random variable R satisfying E[log(1 + ωR)] < ∞. In
this case, we say ζ(1) is a GGC(θ,R) variable. Moreover, ζ(t) is a GGC(θt,R)

variable for each fixed t , and ζ is referred to as a GGC(θ,R) subordinator.
We now highlight some important properties of GGC(θ,R) random variables,

and subordinators that for instance allow them to be exactly sampled by the meth-
ods in [15]. These facts can found in [19] as well as [20, 22], and depend heavily
on the results for Dirichlet means in [13]. Letting Zθ denote a GGC(θ,R) subor-
dinator, it follows that Zθ(t)

d= Zθt (1). Importantly, there is the representation, for

any κ ≥ θ > 0, Zθ(1)
d= γθMθ = γκM̃κ where

Mθ
d= βθ,1Mθ + (1 − βθ,1)R(1.5)

and

M̃κ
d= βκ,1M̃κ + (1 − βκ,1)Rξp(1.6)

for p = θ/κ . That is, a GGC(θ,R) random variable variable is a GGC(κ,Rξp)

variable. In particular, if 0 < θt ≤ 1, then Zθt (1) = Zθ(t)
d= γ1M̃1, where

M̃1
d= UM̃1 + (1 − U)Rξp(1.7)

for p = θt , and it follows from the work of Cifarelli and Regazzini [13] that M̃1
has density of the form

xp−1

π
sin(πFRξp(x))e

−p�R(x) for x > 0

with

�R(x) = E
[
log|x − R|I(R �=x)

]
.

Thus, as pointed out in [19], if one one can evaluate �R(x) in a suitable fashion,
then one can exactly sample any variable Zθ(t) for every fixed 0 < t ≤ 1/θ , by,
for instance, rejection sampling. Since any number s > 0, can be set to s = nt , for

some integer n and 0 < t ≤ 1/θ , it follows that Zθ(s)
d= Zθ(tn) can be exactly sam-

pled by at most exactly sampling n copies of the random variable Zθ(t)
d= γ1M̃1.

We note that in general Mθ for θ > 0, does not have a simple expression for its
density. So the exact sampling method suggested above relies solely on the ability
to sample the variable in M̃1 in (1.7), for each p. This is possible provided that
�R(x) is analytically tractable. However, since R can be quite arbitrary this will
not always be true. Fortunately, there is the recent Double CFTP perfect sampling
method by [15] that can be used to exactly sample any of the variables satisfying
(1.5), (1.6) or (1.7). This procedure applies provided that R is a bounded variable
and one has a method to sample R, but otherwise does not require any potentially
complicated calculations. Hence, any GGC(θ,R) variable, with R bounded, can
be exactly sampled by drawing an independent gamma variable and applying the
Double CFTP. Details may be found in [15], however we shall sketch out the de-
tails for a subclass of the variables T (τ) in the next section.
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REMARK 1.1. Letting QR(u) denote a quantile function of R, variables Mθ ,
satisfying (1.5), are called Dirichlet means since they can always be represented as

Mθ
d=

∫ 1

0
QR(u)D0,θ (du|FU)

d=
∫ ∞

0
yDθ(dy|FR),

where

Dθ(y|FR)
d=

∞∑
k=1

PkI(Rk≤y) =
∞∑
k=1

Vk

k−1∏
j=1

(1 − Vj )I(Rk≤y)

is a Dirichlet process with (Pk) a sequence of probabilities having a Poisson

Dirichlet law with parameter θ , see [16, 33]. That is, for each k, γθPk
d= Jk , where

(Jk) are the ranked jumps of a gamma(θ) subordinator. (Vk) are i.i.d. Beta(1, θ)
random variables, and (Rk) are i.i.d. FR . See [22, 27] for more details.

REMARK 1.2. For 0 < α < 1, positive stable subordinators Sα(t), where
Sα(1) := Sα , with ψSα(ω) = ωα , and corresponding processes Ŝα(t), with
ψŜα

(ω) = (1 + ω)α − 1, as well as their scaled variations, are in G but not G+.
Naturally a gamma(θ) subordinator, say (γθ (t); t ≥ 0), is in G+. However, Sα, Ŝα

and γθ , constitute a family of (generalized gamma) subordinators with Lévy den-
sity

Cs−α−1e−bs

for 0 ≤ α < 1 and b ≥ 0, see [33], Proposition 21. Additionally, heavy tailed vari-

ables such as Linnik variables of the form Sα(γθt )
d= γ

1/α
θt Sα are in G+. As well as

their exponentially tilted counterparts Ŝα(γθtp), for some 0 <p < 1. See [20].

2. Convoluted subordinators. We now give the formal specifications for
convoluted subordinators as defined in Bender and Marquardt [4]. Throughout the
rest of the paper, let L denote an infinite activity subdordinator. That is the Lévy
measure, L(∞) = ∞. In order that the convoluted subordinator

T (t) =
∫ t

0
k(t, s) dL(s)(2.1)

has strictly continuous and increasing trajectories, k is chosen to satisfy the fol-
lowing regularity conditions:

(a) for fixed t ∈ [0,∞), the mapping s 	→ k(t, s) is integrable,
(b) for fixed s ∈ [0,∞), the mapping t 	→ k(t, s) is continuous and increasing

and there is an ε > 0 such that t 	→ k(t, s) is strictly increasing on [s, s + ε],
(c) k(t, s) = 0 whenever s > t ≥ 0.
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The authors also derive a weighted Black–Scholes pricing formula for European
style options as follows. Let

Ŵμ(t) = W(t) + μt(2.2)

denote a standard Brownian motion with drift parameter μ, that is W(t) is a stan-
dard Brownian motion. Recall that for geometric Brownian motion the price pro-
cess under the risk neutral measure is given by

S(t) = S(0) exp{rt + Ŵ−1/2(σ
2t)},(2.3)

where Ŵ−1/2 is defined by (2.2) with μ = −1/2.
Setting Sτ = S(τ), the quantity (Sτ −K)+ is the the payoff function of a Euro-

pean call option with strike K > 0 and maturity τ , and r > 0 is the risk-free inter-
est rate. Then the Black–Scholes formula for the price at time 0, say B(σ,K, τ), is
given by

B(σ,K, τ) = e−rτ
E[(Sτ − K)+] = S0�(d1(σ )) − Ke−rτ�(d2(σ )),(2.4)

where �(x) is the standard normal distribution function

d1(σ ) = log(S0/K) + (r + σ 2/2)τ

σ
√
τ

and d2(σ ) = d1(σ ) − σ
√
τ .

See Schoutens [35] for this notation. In [4], a price model under risk neutral dy-
namics is specified as

S̃(t) = S0 exp{rt + Ŵ−1/2(σ
2T (t))},(2.5)

where now S̃ is the asset price, and T (t) is a convoluted subordinator. They obtain
the following pricing formula.

THEOREM 2.1 (Bender and Marquardt [4], Theorem 4). For the price model
(2.5), with S̃τ = S̃(τ ). Let (S̃τ − K)+ be the payoff function of a European call
option with strike K ∈ R+ and maturity τ . Then the initial fair price of (S̃τ −K)+,
is given by

e−rτ
E[(S̃τ − K)+] = E

[
B

(
σ

√
T (τ)/τ ,K, τ

)]
,(2.6)

where for positive y, B(y,K, τ) is the Black–Scholes price given in (2.4) with y in
place of σ . Furthermore, S0 is considered fixed.

As noted in [4], and discussed in the Introduction, the problem with the above
result is that it is in general difficult to handle the exact law of T (τ). However, the
authors do point out that if T (τ) possesses an analytically tractable characteristic
function then it is possible to use fast Fourier transform (FFT) methods. They give
some special examples where this might be possible, but in general this is not
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straightforward. This is clear since the Laplace exponent of T (τ) can be expressed
as

ψT (τ)(ω) = τE[ψL(ωk(τ,Uτ))],(2.7)

where k and L are quite general and the expression otherwise depends on τ in a
nontrivial way.

We believe Theorem 2.1 does have quite a bit of utility provided that one can
have more control over the choice of marginal laws exhibited by T (τ), for each
fixed τ . Next, we show that by choosing L to be in G+ one can (in a practical
sense) use Theorem 2.1 for many kernels k. Even those that do not admit nice
characteristic functions.

REMARK 2.1. We note that the martingale argument used in [4] is different
than that used for standard time changed models. The filtration used by [4] pre-
serves the martingale property for a larger class of models including, of course,
time changes by a simple subordinator. However, the usual filtrations used for
simple subordinators may not preserve the martingale property for all convoluted
subordinators.

2.1. A general result for L in G+. As we just mentioned, we now look at the
choice where L is a GGC(θ, Y ) subordinator where Y is some random variable. In
terms of modeling for general T (t), we can view θ as a time parameter that can be
manipulated for practical convenience. This is partly because the variable Y can
have unknown parameters that can be used for calibration.

THEOREM 2.2. Let Ŵμ(t) denote a Brownian motion with drift as defined in
(2.2). Let

T (t) =
∫ t

0
k(t, y)Lθ (dy)(2.8)

denote a convoluted subordinator where Lθ is a GGC(θ, Y ) subordinator. For each

fixed t , define a random variable Rt
d= k(t,Ut). Then the process (Ŵμ(T (t)) :

t ≥ 0) is almost surely continuous and has the following distributional properties:

(i) for each fixed t , T (t) is a GGC(θt,RtY ) random variable satisfying

T (t)
d= γθtMθt , where

Mθt = βθt,1Mθt + (1 − βθt,1)RtY,(2.9)

(ii) if 0 < θt = p ≤ 1, then T (t)
d= γ1M1,t , where

M1,t
d= UM1,t + (1 − U)RtY ξp,(2.10)
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(iii) the density of the M1,t is given by

xp−1

π
sin(πF̃t (x))e

−p�̃t (x) for x > 0,

where F̃t = FRtYξp is the c.d.f. of the variable RtYξp and

�̃t (x) = E
[
log|x − RtY |I(RtY �=x)

]
.

PROOF. Following (2.7) and (1.4), it is easy to see that the Laplace exponent
of T (t) is given by

ψT (t)(ω) = tE[ψLθ (ωk(t,Ut))] = θtE[log(1 + ωRtY )].
The results (i), (ii) and (iii) then follow from the material we discussed at the end
of Section 1.2. �

We now state a result for European style options, which is immediate from
Theorems 2.1 and 2.2.

PROPOSITION 2.1. For the price model (2.5), let T (t) be the process specified
by (2.8) and otherwise consider the setup in Theorem 2.1. Let (S̃τ − K)+ be the
payoff function of a European call option with strike K ∈ R+ and maturity τ . Then
the initial fair price of (S̃τ − K)+, is now given by

e−rτ
E[(S̃τ − K)+] = E

[
B

(
σ

√
γθτMθ,τ /τ ,K, τ

)]
.(2.11)

The pricing formula in (2.11) can be expressed in terms of a (VG) process with
random scale Mθτ specified by (2.9). If for Rτ = k(τ,Uτ), RτY is bounded then
one can obtain perfect samples of the distribution of T (τ), via [15]. For certain k,
that are not necessarily bounded, one can use the density formula in (iii) of Theo-
rem 2.2.

The next result introduces a nonrandom time change that leads to a significant
reduction in complexity. First, define for m> 0,

φm(μ) =
√

2 + μ2m2/m + μ and bm(μ) = 1

m

√
2 + μ2m2

and cm(μ) = bm(μ)/φm(μ).

THEOREM 2.3. For the convoluted subordinator in Theorem 2.2, the time
changed process (X̃θ (s) : s ≥ 0) := (Ŵμ(T ((1−e−s)/θ)) : s ≥ 0) satisfies for each
fixed s > 0,

X̃θ (s)
d= Ŵμ(γ1M1,s∗),

where M1,s∗ satisfies (2.10) for t = s∗ = (1 − e−s)/θ and p = 1 − e−s .
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(i) Furthermore, for each fixed s, X̃θ (s) given M1,s∗ = m2, for m> 0, follows
a double exponential distribution, with density

f
X̃θ (s)

(z|m) =
{
bm(μ)ezφm(μ), z ≤ 0,
bm(μ)e−zφm(−μ), z > 0,

and distribution function

Fμ(z|m) =
{
cm(μ)ez[φm(μ)], z ≤ 0,
cm(μ) + cm(−μ)

(
1 − e−z[φm(−μ)]), z > 0.

(ii) Hence, if the price process in (2.11) is based on substituting T (t) with the
time time changed clock, T ((1 − e−s)/θ) for s > 0, then the fair price is given by

e−rτ
E[(S̃τ − K)+] = E[DE(σ 2M1,τ∗,K, τ)],(2.12)

where, τ ∗ = (1 − e−τ )/θ , and for z = log(S0/K) + rτ ,

DE(y2,K, τ) = S0F−1/2(z|y) − e−rτKF1/2(z|y).

PROOF. The result follows from the fact that, again,

ψT (t)(ω) = tE[ψLθ (ωk(t,Ut))] = θtE[log(1 + ωRtY )].
Substituting t = (1 − e−s)/θ = s∗, p = θs∗, yields a GGC(p,Rs∗Y) variable,
which is also a GGC(1,Rs∗Yξp). Statement (i) is straightforward. Statement (ii)
is also not difficult to verify. �

In order to evaluate the price in (2.12), it remains to evaluate M1,τ∗ . We sketch
out the details to do this via the Double CFTP perfect sampler in [15]. The deter-
ministic time change allows us to exploit generally the most efficient case, θ = 1,
of the Double CFTP.

First, note again that, Rτ∗ d= k(τ ∗, Ũτ ∗) where k(t, y) is a known function, and
Ũ is a Uniform[0,1] random variable. Hence, in order to sample Rτ∗ we simply
need to draw Ũ . Note that we write Ũ to distinguish it from the uniform variables
we introduce below denoted as Ui . Assuming

D
d= Rτ∗Yξp

d= k(τ ∗, Ũτ ∗)Y ξp

is bounded by a positive constant c, the Double CFTP exact sampler in [15] is
based on the following steps:

Backward phase. For i = −1,−2, . . .: keep generating (Ui,Di,D
′
i) and storing

(Di,D
′
i) until UT ≤ |DT − D′

T
|/(2c). Keep T.

Set starting point. Set M1,τ∗ = DT ∧ D′
T

+ 2cUT.
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Forward phase. For i = T+1,T+2, . . . ,−1: given (Di,D
′
i ,M1,τ∗) previously

stored, do the following step: generate U ′ uniform [0,1], ξ1/2, and generate U

uniform [0,1], and construct X = (1 − U)M1,τ∗ + UDiξ1/2 + UD′
i (1 − ξ1/2).

Repeat this step until:

U ′
[
I[0,1]

(
X − M1,τ∗

Di − M1,τ∗

)
1

|Di − M1,τ∗ | + I[0,1]
(

X − M1,τ∗

D′
i − M1,τ∗

)
1

|D′
i − M1,τ∗ |

]
> 1/c

or X <Di ∧ D′
i or X >Di ∨ D′

i . Then set M1,τ∗ = X.
Output. Return M1,τ∗ .

See [15] for more details.

REMARK 2.2. These results, which are considerably simplified by using the
deterministic time change, apply to a wide choice of kernels. It would also be nice
to find models for T (τ) whose marginal distributions were not strongly dependent
on the form of the kernel. Even better, would be the ability to specify laws in a
manner similar to how one selects the BDLP of an OU to induce general self-
decomposable laws for the instantaneous volatility v(t). In the next few sections,
we will show that this can be done for convoluted subordinators we refer to as
quantile clocks.

3. Quantile clocks. As in the Introduction, let R denote a positive random
variable with continuous strictly increasing cumulative distribution function FR .
Let QR denote its corresponding quantile function, that is, the continuous inverse
of the cumulative distribution function. Furthermore, assume that E[R] < ∞. Then
for a subordinator L, we say that the process TR = (TR(t) : t ≥ 0), defined as

TR(t) :=
∫ t

0
QR

((
1 − s

t

)
+

)
L(ds) for t ≥ 0(3.1)

is a quantile clock with parameters (R,L). Note here that R does not depend on t .
Furthermore, QR can be evaluated numerically in many cases, even though it may
not have a closed form.

PROPOSITION 3.1. A quantile clock TR = (TR(t) : t ≥ 0) with parameters
(R,L) has the following properties:

(i) If the support of the density of R, say fR , is of the form [0, b), b > 0, that
is, QR(0) = 0, then TR are random processes with samples paths that are almost
sure strictly continuous and strictly increasing.

(ii) Suppose the density of R has support starting at a > 0, that is, QR(0) = a,

then there is a positive random variable R̃ with Q
R̃
(0) = 0, such that R

d= R̃ + a

and QR(u) = Q
R̃
(u) + a for u ∈ [0,1]. Hence, it follows that the clock can be

represented as

TR(t) = T
R̃
(t) + aL(t), t ≥ 0,(3.2)
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where T
R̃

satisfies (i). Note T
R̃

is an (R̃,L) quantile clock and is obviously not
independent of L.

(iii) For each fixed t , the marginal distribution

TR(t)
d= ζ(t),

where ζ is a subordinator such that ζ(1) is a random variable with Laplace expo-
nent

ψζ (ω) = E[ψL(ωR)] = ψTR(1)(ω).

(iv) That is, the Lévy density of ζ has the form

ρζ (s) =
∫ ∞

0
ρL(s/r)r

−1FR(dr).

Note furthermore that for a constant c, TcR(t)
d= cζ(t).

PROOF. Setting k(t, s) = QR((1 − s
t
)+)) it follows from [4], Proposition 1,

that in order to verify statement (i) we only need to check whether k(t, s) satisfies
conditions (a), (b), (c). Conditions (b) and (c) are obvious and it remains to check
the integrability condition, which follows from∫ t

0
QR

((
1 − s

t

)
+

)
ds = t

∫ 1

0
QR(u)du = tE[R] < ∞,

since QR(U)
d= R. Now using this, and standard results for linear functionals of

Lévy processes, we see that for each fixed t , the Laplace exponent of TR(t) is given
by ∫ t

0
ψL

(
ωQR

((
1 − s

t

)
+

))
ds = t

∫ 1

0
ψL(ωQR(u)) du = tE[ψL(ωR)]

verifying (iii). Statements (ii) and (iv) follows easily from (i) and (iii). Note that
the quantile function of R in statement (ii) violates condition (b). �

We now give an interesting example that has explicit laws.

EXAMPLE 3.1 (Arcsine/Bessel occupation time quantile clocks driven by L =
γθ ). First, recall the exponentially tilted stable subordinator Ŝα discussed in Re-

mark 1.2. Suppose that one specifies R
d= β1/2,1/2 and L = γθ , a gamma(θ) subor-

dinator. Then

Q(β1/2,1/2)(u) = sin2
(
π

2
u

)
, 0 < u< 1,

and the quantile clock is defined as

Tβ1/2,1/2(t) =
∫ t

0
sin2

(
π(t − s)+

2t

)
γθ (ds)



1640 L. F. JAMES AND Z. ZHANG

for t ≥ 0. It follows (see [12, 20, 22]) that for each fixed t ,

Tβ1/2,1/2(t)
d= Ŝ1/2(γ2θt /2) d= γθtβθt+1/2,θ t+1/2.

More generally, for each fixed 0 < α < 1, let Oα(s) = ∫ s
0 I(Bu>0) du denote the

time spent positive up till time s of a symmetrized Bessel process (Bu,u ≥ 0) of

dimension 2 − 2α, see [1]. Then setting R
d= Oα(1) := Oα , the quantile of Oα is

QOα
(u) = QXα(u)

QXα(u) + 1
where QXα(u) =

[
sin(παu)

sin(πα(1 − u))

]1/α

is the quantile function of the ratio of i.i.d. positive stable random variables Xα =
Sα/S

′
α . Then, from James [20] (see Section 7), the clock TOα

with parameters
(Oα, γθ ), satisfies for each fixed t ,

TOα
(t)

d= Ŝα(γθt/α/2) d= γθtOα,θt ,

where

Oα,θt
d= βθt,1Oα,θt + (1 − βθt,1)Oα

d= βα+θt,1−αOα,α+θt + (1 − βα+θt,1−α)ξ1/2

are random variables corresponding to the time spent positive of generalized
Bessel bridges as explained in [20], Section 5. These variables can be exactly sam-
pled in various ways as explained in [15]. Furthermore, from [20], Proposition 5.3,
it follows that for 0 <p = θt ≤ 1,

TOα
(p/θ)

d= γ1Õα,p,

where Õα,p
d= βp,1−pOα,p is GGC(1,Oαξp) with density

f
Õα,p

(y) = 2p/α

π
yp−1 sin

(
p

α
arctan

(
(1 − y)α sin(πα)

(1 − y)α cos(πα) + yα

))
(3.3)

× [y2α + 2yα(1 − y)α cos(απ) + (1 − y)2α]−p/(2α),

0 < y < 1. In general, the process (Ŵμ(TOα
(t)), t ≥ 0) has almost surely continu-

ous sample paths and satisfies, for each fixed t ,

E
[
eiωŴμ(TOα (t))

] = 2θt/α(
1 + (

1 + (ω2/2 − iμω)
)α)−θt/α

.

REMARK 3.1. The last example shows that the class of quantile clocks where
L is a GGC(θ, Y ) subordinator is equivalent in a marginal sense to the represen-
tation of GGC variables in terms of Wiener–Gamma integrals as defined and pre-
sented in [22]. That manuscript, along with the works of [5, 19–21], yield many
examples of quantile functions which can be used to construct quantile clocks with
explicit laws, of which quite a few are constructed from QXα . We shall encounter
some more examples in Section 6, although in a slightly different context.
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4. Choosing quantile clocks to have specific laws in Uδ . The results in the
previous section suggest that the the marginal distributions of the quantile clocks,
while equating nicely to the marginals of a subordinator ζ , are strongly dependent
on a random variable R, induced by QR . Noting that QR(u) is in fact a determin-
istic function one would like to be able to choose explicit laws for TR , regardless
of the function QR . That is to say, how does one choose L so that TR(t) has a
marginal distribution not obviously depending on R? For example, for each QR

how does one choose L so that TR(t)
d= Ŝα(t)? Or how does one choose TR(t) so

that a log price process Ŵμ(TR(t)) has marginal distributions that are equivalent
to a CGMY process? Finally, for different quantile functions QR1 , QR2 , R1 not
equivalent in distribution to R2, how to choose the driving Lévy processes, say L1

and L2, such that marginally for each fixed t , TR1(t)
d= TR2(t)?

We saw that this was difficult in the case of general convoluted subordinators as
their laws depend strongly on t through the kernel or variable k(t,Ut). However,
Proposition 3.1 shows that one can represent

TR(t)
d=

∫ 1

0
QR(y)L(t dy),(4.1)

and there is a clear separation of the effects of t and QR . This is similar to the case
of the OU models v(0), see [2, 3, 26], where every positive self-decomposable
random variable can be represented as

v(0) d= v(t)
d=

∫ y

−∞
e−λ(y−s)ϑ(λds)

d=
∫ ∞

0
e−sϑ(ds),(4.2)

where ϑ , is a subordinator referred to as a OU–BDLP. More strikingly, there is a
simple way of obtaining any desired self-decomposable law for v(0) by choosing
the BDLP according to either of the equations

ψϑ(ω) = ωψ ′
v(0)(ω) and ρϑ(x) = −ρv(0)(x) − xρ′

v(0)(x).(4.3)

We noticed from (4.1) that if R d= U1/δ d= βδ,1 for δ > 0, then

Tβδ,1(t)
d=

∫ 1

0
u1/δZ(t du)

d= ζ (δ)(t),

where, we substitute Z for L, and ζ (δ) are subordinators having laws in Jurek’s
[17, 23–25] Uδ class of generalized s-selfdecomposbale laws, where Uδ ⊂ J . The
case of δ = 1, corresponds to Jurek’s U = U1 class of s-selfdecomposable class.
Using Jurek [24, 25], one sees that for 0 < δ1 < 1 < δ2 < ∞,

G+ ⊂ G ⊂ L ⊂ Uδ1 ⊂ U ⊂ Uδ2 ⊂ J .

It follows that for each ζ (δ) ∈ Uδ there is a, Uδ-BDLP, Z such that

ψζ(δ)(ω) = ψTβδ,1 (1)
(ω) =

∫ 1

0
ψZ(ωu1/δ) du = ω−δ

∫ ω

0
ψZ(u)δu

δ−1 du
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and hence from [14], Lemma 1, which can be verified directly by taking derivatives
with respect to ω of

ωδψζ(δ)(ω) =
∫ ω

0
ψZ(u)δu

δ−1 du,(4.4)

one sees that the Uδ-BDLP Z is related to ζ (δ), and hence Tβδ,1 , by the equation

ψZ(ω) = ψζ(δ)(ω) + 1

δ
ωψ ′

ζ (δ)(ω).(4.5)

This is analogous to the relationships between v(0) and its OU–BDLP ϑ , given in
(4.2) and (4.3). We shall show that this relationship becomes more explicit as one
restricts their choices of laws for ζ (δ) to L, G and G+.

REMARK 4.1. The specifications in (4.5) and its refinements now allow us to
specify any law in Uδ for quantile clocks based on QU1/δ , analogous to the case
of the BNS–OU v(t). This, as far as we know, is the first instance where such
a property has been noticed for convoluted subordinators. However, in terms of
choices of QR this is still restrictive. The next results show how, for a large class of

quantile functions QR , to choose L such that for each fixed t , TR(t)
d= ζ (δ)(t) ∈ Uδ .

THEOREM 4.1. Consider the specifications for a quantile clock

TR(t) =
∫ t

0
QR

((
1 − s

t

)
+

)
L(ds)

with parameters (R,L). Now select R so that its density has bounded support and
let Y denote a positive bounded random variable such that

RY
d= U1/δ d= βδ,1(4.6)

for a fixed δ > 0; if R
d= cU1/δ , then Y = 1/c. Suppose that one wishes to choose

L such that

TR(t)
d= ζ (δ)(t),

where ζ (δ) is a subordinator with

ψζ(δ)(ω) = E[ψZ(ωU1/δ)],
where Z is a Uδ-BDLP, satisfying (4.5), and hence ζ (δ) is in Uδ . Then for this Z,
L is chosen such that

ψL(ω) = E[ψZ(ωY)] equivalently ρL(x) = E[ρZ(x/Y )Y−1].(4.7)

That is,

ψL(ω) = E
[
ψζ(δ)(ωY )

] + 1

δ
ωE

[
Yψ ′

ζ (δ)(ωY )
]
.(4.8)

Note that Y is chosen independent of R and Z.
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PROOF. The difficulty of this result is envisioning its construction. The proof
itself is otherwise straightforward, since (4.7) and (4.5) implies that

ψζ(δ)(ω) = E[ψL(ωR)] = E[ψZ(ωU1/δ)]. �

We now specialize this result to self-decomposable laws.

THEOREM 4.2. Consider quantile clocks TR with parameters (R,L) satisfy-
ing (4.6) and (4.7), (4.8). The next result describes further specifications in order
for TR, (ζ

(δ)) to have laws in L, G and G+, respectively.

I. TR ∈ L: If TR is selected such that its marginal laws are self-decomposable,
then it is known that there exists a subordinator ϑ , such that

TR(1)
d= ζ (δ)(1) d=

∫ y

−∞
e−λ(y−s)ϑ(λds)

d=
∫ ∞

0
e−sϑ(ds)

d= v(0).

Furthermore, adapting (4.3), one has

ψϑ(ω) = ωψ ′
ζ (δ)(ω) and ρϑ(x) = −ρζ(δ)(x) − xρ′

ζ (δ)(x).(4.9)

(i) Hence, the BDLP L has to be chosen such that the Lévy density of Z is

ρZ(x) =
(

1 − 1

δ

)
ρζ(δ)(x) − x

δ
ρ′
ζ (δ)(x)

= ρζ(δ)(x) + 1

δ
ρϑ(x).

That is,

ρL(x) = E

[(
ρζ(δ)(x/Y ) + 1

δ
ρϑ(x/Y )

)
Y−1

]
.

(ii) Statement (i) implies that the subordinators are related as follows:

Z(t)
d= ζ (δ)(t) + ϑ(t/δ), t ≥ 0.

II. TR ∈ G : If TR, (ζ
(δ)) is selected such that its marginal laws are GGC(ν), it

follows that

ρζ(δ)(x) = x−1
∫ ∞

0
e−xyν(dy) and ρϑ(x) =

∫ ∞
0

e−xyyν(dy).

(i) Hence, the Lévy density of Z, say ρZ , satisfies

ρZ(x) =
∫ ∞

0
e−xy[x−1 + y/δ]ν(dy).
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(ii) Equivalently,

ψZ(ω) =
∫ ∞

0

[
log(1 + ω/y) + 1

δ

ω

y + ω

]
ν(dy).

III. TR ∈ G+: If TR, (ζ
(δ)) is selected such that its marginal laws are GGC(θ,V ),

(i) then L must be selected such that it is equivalent in distribution to the
subordinator

L(s)
d= ζδ,Y (s) + ϑY (sθ/δ), s ≥ 0,

where ζδ,Y is a GGC(θ,V Y ) subordinator and

ϑY (s)
d=

N(s)∑
k=1

γ
(k)
1 VkYk, s ≥ 0,

where (γ
(k)
1 ) are independent exponential(1) variables, (Yk) are i.i.d.

variables with distribution FY , (Vk) are i.i.d. FV , and N(s) denotes a
homogeneous Poisson process with E[N(s)] = s.

(ii) As special cases TR(t)
d= γθ (t) is obtained by setting V = 1.

The proof of this result is fairly immediate from the definitions of the various
classes, details are omitted.

REMARK 4.2. Theorem 4.2 shows that in order to specify TR to have laws
in L, one only needs to identify the OU–BDLP ϑ that leads to a corresponding

stationary law for v(t)
d= TR(1)

d= ζ (δ)(1), and use it appropriately to define L.
One may consult for instance [3] for many explicit examples ϑ , and the laws they
induce.

5. Choosing R and Y such that RY
d= U1/δ . The results in the previous

section show that for a deterministic quantile function QR one can choose quite
arbitrary marginal laws for TR , analogous to the case of v(0), provided that one

identifies a variable Y such that RY
d= U1/δ = βδ,1 for a fixed δ > 0. Notice that

QR1/δ (u) = [QR(u)]1/δ.(5.1)

The easiest case is to choose R = U and Y = 1, which as seen from (5.1) leads
to quantile clocks corresponding to the Holmgren–Liouville convoluted subordina-
tors discussed in [4]. The equation (5.1) suggests that one may always work with
the pair satisfying the solution RY = U and then obviously R1/δY 1/δ = U1/δ .
However, the case of δ = 1 may not always be the most obvious.
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EXAMPLE 5.1 (Beta variables including the arcsine distribution). Consider
the case of products of independent beta variables

βδ,κ−δβκ,1+δ−κ
d= βδ,1

d= U1/δ(5.2)

for δ ≤ κ ≤ 1 + δ. Hence, for each δ, one can choose many (R,Y ), ranging over
δ ≤ κ ≤ 1 + δ, such that

(R1/δ, Y 1/δ)
d= (βδ,κ−δ, βκ,1+δ−κ) or

(5.3)
(R1/δ, Y 1/δ) = (βκ,1+δ−κ , βδ,κ−δ).

Furthermore, for some b > 0, and each fixed δ the variables in (5.3) lead to vari-

ables R1/b and Y 1/b, not having beta distributions, that satisfy (RY )1/b d= U1/b.

Lets look at a special case of this in more detail.

EXAMPLE 5.2 (Kumaraswamy and generalized arcsine clocks). Setting κ = 1
and δ = α, (5.3) leads to the choice of the pair

(βα,1−α,1 − U1/α)
d= (βα,1−α,β1,α),(5.4)

such that R1/αY 1/α d= U1/α d= βα,1, where the first component in (5.4) has the
generalized arcsine law which arises in many studies of random processes. Setting

R1/b d= [1 − U1/α]1/b = Kα,b leads to the quantile function

QKα,b
(u) = [1 − (1 − u)1/α]1/b

of a Kumaraswamy distribution. Hence, the law of a Kumaraswamy quantile clock
TKα,b

, that is, with parameters (Kα,b,L), can be specified such that its marginals
satisfy

TKα,b
(t)

d= ζ (αb)(t),

where ζ (αb) is a subordinator having any law in Uαb and hence in L. Specifically,
this is done by the choice of

ψL(ω) = E
[
ψζ(αb)(ω(βα,1−α)

1/b)
] + 1

αb
ωE

[
ψ ′

ζ (αb)(ω(βα,1−α)
1/b)(βα,1−α)

1/b].
Note that if we instead choose R = β1/2,1/2 and hence R1/b d= (β1/2,1/2)

1/b we
obtain clocks based on the arcsine law with quantiles

QR1/b (u) := [
Q(β1/2,1/2)(u)

]1/b = sin2/b
(
π

2
u

)
.(5.5)

This case can be compared with Example 3.1.
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5.1. Selections based on decompositions of an exponential(1) variable. In
general, by rescaling to [0,1], we see that choosing an R and Y to satisfy (4.6)
for some δ > 0 is equivalent to choosing variables �R and �Y such that

�R + �Y
d= γ1/δ.(5.6)

Recall also the relationship between quantiles of a positive variable X and e−X ,

Qe−X(u) = e−QX(1−u), 0 ≤ u ≤ 1.

There are obviously many pairs satisfying (5.6). We next look at two different
types of examples based on suggestions made to us by Prof. Marc Yor.

EXAMPLE 5.3 [Fractional and integer parts of an exponential(1)]. We first
note that one of the reasons the following example is interesting is that it identifies
a concrete example of a quantile clock that is of the form

TR(t) = T
R̃

+ aL(t)

as specified in statement (ii) of Proposition 3.1, but where we can apply Theo-
rem 4.1. Now, following Chaumont and Yor ([11], page 42, Exercise 2.18), let [γ1]
and {γ1} denote the fractional part and integer part of an exponential(1) variable γ1,
then (remarkably) these variables are independent and obviously satisfy

[γ1] + {γ1} = γ1.

In this case, RY
d= U , for

R
d= e−[γ1] d= U(1 − e−1) + e−1 and Y

d= e−{γ1},(5.7)

where {γ1} is a geometric random variable with success probability 1 − e−1 and
values in {0,1,2, . . .}. We say such a variable is geometric (1 − e−1). We can
extend this case as follows.

PROPOSITION 5.1. For 0 < p ≤ 1, let Ũp
d= Up + (1 − p) and let Xp be a

geometric(p) variable. Then

Ũpe−Xp[−log(1−p)] d= U.

PROOF. It is easy to verify that the Laplace transforms of −log(Up+ (1−p))

and Xp[−log(1 − p)] are given, respectively, by

1 − (1 − p)(1+ω)

p(1 + ω)
and

p

1 − (1 − p)(1+ω)
.

Hence, their product is 1/(1 + ω), which is the desired result. �
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That is, there are variables ŨpYp
d= U for

R = Ũp
d= Up + (1 − p) and Yp = e−Xp[−log(1−p)]

for Xp a geometric(p) variable for each 0 <p ≤ 1. Naturally Ũ1
d= U . Hence, for

each fixed p,

T
Ũp

(t) = L(t)(1 − p) + p

∫ t

0

(
1 − s

t

)
+
L(ds) for t ≥ 0.

We now state a result which now follows obviously from Theorem 4.1 and applies
for quantiles clocks based on the variable Ũ

1/δ
p .

PROPOSITION 5.2. For each δ > 0, and 0 <p ≤ 1, set λ = −log(1−p), then
the quantile clock

T
Ũ

1/δ
p

(t) =
∫ t

0

[
(1 − p) + p

(
1 − s

t

)
+

]1/δ

L(ds)

can be specified such that for each t , T
Ũ

1/δ
p

(t)
d= ζ (δ)(t) ∈ Uδ if L is chosen such

that

ψL(ω) = E
[
ψζ(δ)(ωe−λXp/δ)

] + 1

δ
ωE

[
e−λXp/δψ ′

ζ (δ)(ωe−λXp/δ)
]
,

where Xp is a geometric(p) random variable. When p = 1, the quantile clock is
continuous, otherwise it has jumps.

EXAMPLE 5.4 (Splitting the Laplace exponent of γ1, part I). Next, consider
the Laplace exponent of γ1/δ,

log(1 + ω/δ) =
∫ ∞

0
(1 − e−sω/δ)s−1e−s ds,

then choose �R and �Y according to the decomposition of the Lévy density

s−1e−s = π1(s) + π2(s).

In particular, �R and �Y are infinitely divisible based on the Lévy densities π1
and π2, respectively. The simplest case is where

s−1e−s = (1 − α)s−1e−s + αs−1e−s

leading to

(RY )1/δ d= [e−γαe−γ1−α ]1/δ d= U1/δ.

So, for instance, the quantile clock with parameters (e−γα ,L), that is,

Te−γα (t) =
∫ t

0
e−Qγα (1−(1−s/t)+)L(ds)
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is based on a nontrivial quantile which can however be evaluated by various com-
putational packages. Furthermore, our results show that despite the complexity of
this clock we can choose quite general marginal laws for Te−γα , not directly de-
pending on the quantile function, by working with a BDLP satisfying

ψL(ω) = E[ψZ(ωe−γ1−α )] =
∫ 1

0
ψZ(ωy)

[−log(y)]−α

�(1 − α)
dy.

6. GGC decompositions of a γ subordinator and resulting clocks. We now
identify a very large class of variables satisfying (5.6) based on Example 5.4, using
variables in B and in particular, the GGC class G+.

THEOREM 6.1. Let �δ be a subordinator in B with Lévy density ρ�δ(s) =∫ ∞
δ e−sxq(x) dx, where q(x) is a nonnegative measure such that q(x) ≤ 1 for
x ≥ δ. Then, there is another subordinator in B, say �̂δ , with Lévy density
ρ�̂δ

(s) = ∫ ∞
δ e−sx[1 − q(x)]dx, such that the Lévy density of a gamma(1) sub-

ordinator with scale 1/δ, has the decomposition

s−1e−sδ = ρ�̂δ
(s) + ρ�δ(s).(6.1)

Hence, the gamma subordinator can be expressed as a sum of the subordinators
�δ and �̂δ , which implies for each fixed θ

γθ/δ
d= �̂δ(θ) + �δ(θ).

PROOF. The Lévy density of the subordinator (γ1(t)/δ : t ≥ 0) can be ex-
pressed as

s−1e−sδ =
∫ ∞
δ

e−sx dx,

leading easily to (6.1). �

We next describe an interesting special case involving variables in G+.

THEOREM 6.2. Assume that �δ in Theorem 6.1 is a GGC(1,V/δ) subordina-

tor for V a random variable in [0,1], and let X
d= (1 − V )/V . Let (�t(V ) : t ≥ 0)

denote a subordinator with Lévy density denoted as ρ�1(V ). Note that �1(V ) is not
random in V .

(i) The Lévy density of a gamma(1) subordinator with scale 1/δ has the de-
composition

s−1e−sδ = δρ�1(V )(sδ) + s−1
E[e−sδ/V ],
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where

ρ�1(V )(s) =
∫ ∞

1
e−sx[1 − F1/V (x)]dx

(6.2)

= 1

s
e−s(1 − E[e−sX]).

(ii) If 0 < � = E[−log(V )] < ∞, then ρ�1(V )(s) = �f�e(X)(s), where
f�e(X)(s) is a density of a random variable denoted as �e(X), determined by (6.2).
In this case �t(V ) is a compound Poisson process representable as

�t(V ) =
N(�t)∑
k=1

�k, t ≥ 0.

(�k) are i.i.d. random variables equal in distribution to �e(X).
(iii) In general, for each fixed θ ,

γθ
d= �θ(V ) + γθMθ,(6.3)

where Mθ
d= βθ,1Mθ + (1 − βθ,1)V .

PROOF. From [6], Section 9, we know that �1 corresponds to a GGC(1,V )

subordinator if q(x) = F1/V (x). Hence, scaling by δ, and using known properties
of variables in G+ concludes the result. �

Note from, for instance, [6], Example 9.2.3, it follows that for each δ > 0, one
can choose �δ(1)

d= −log(βδ,κ−δ) or �δ(1)
d= −log(βκ,1+δ−κ) for the beta vari-

ables in Example 5.1 satisfying (5.2). Furthermore, among these, the only choice

corresponding to a GGC variable is �δ(1)
d= −log(βδ,1). However, Theorem 6.2

allows us to construct many quantile clocks based on variables in G+ whose dis-
tributional properties are explicit. We next describe an interesting property of the
variable �1(p).

PROPOSITION 6.1. Suppose that TR is a quantile clock with parameters
(R,L) such that, for an independent variable Y ,

RY
d= U1/δ d= βδ,1

d= Up

for δ = 1/p > 1. If L is chosen such that

ψL(ω) = E
[
ψZ

(
ωY e−�1(p)

)]
,(6.4)

where Z is a U1-BDLP, satisfying (4.5) for a subordinator ζ ∈ U1, then TR(t)
d=

ζ(t) for each fixed t .
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PROOF. Setting V = p, it follows from (6.3), with θ = 1, that

γ1
d= pγ1 + �1(p),

which gives the identity

Upe−�1(p) d= U.

Hence, (6.4) leads to E[ψL(ωR)] = E[ψZ(ωU)]. �

6.1. Interpreting �t(V ) via diffusions straddling an exponential time. Pro-
vided that 0 < E[−log(V )] < ∞, the random variable �e(X), with density defined
by (6.2) has an interesting interpretation that we now discuss. This will also give
us an opportunity to describe some more explicit examples of QR . Let e/X̃ denote
an independent exponential(1) time e divided by an independent variable X̃ with
distribution characterized, for bounded measurable functions H , by

E[H(X̃)] = E[H(X) log(1 + X)]/�.
Now let {R(0,1)

s , s ≥ 0} denote a recurrent linear diffusion starting at 0 whose in-
verse local time, in this case, is a gamma(1) subordinator. Define for any t > 0,

gt := sup
{
s ≤ t; R(0,1)

s = 0
}
, dt := inf

{
s ≥ t, R(0,1)

s = 0
}
.

Then given X̃ = λ, it follows from (6.2) that for an independent exponential(λ)
variable e/λ, the random variable

�e(λ)
d= de/λ − ge/λ

corresponds to the length of excursion of R(0,1) above 0 straddling an
exponential(λ) time. See, for instance, [34], Section 4, for this description for
more general R as well as [5, 32, 36]. In addition, see [5, 19, 22] for �e(λ) rep-
resentation as a variable in G+. Hence, �e(X) interprets as �e(λ) but now for a
random time e/X̃, with c.d.f. Fe/X̃ satisfying

1 − Fe/X̃(y) = E[e−Xy log(1 + X)]/�.
It follows that for λ = (1 − p)/p and � = −log(p), that

�t(p)
d=

N(�t)∑
k=1

d
(k)
e/λ − g

(k)
e/λ, t > 0,

where (d
(k)
e/λ, g

(k)
e/λ) are i.i.d. copies of (de/λ, ge/λ).
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6.2. Some related examples. From the results in [5] (see also [19, 22]), we can
consider more generally R(α,1), in place of R(0,1), which, for 0 ≤ α < 1 is now a
process whose inverse local time is distributed as a generalized gamma subordi-
nator with Lévy density specified by s−α−1e−s/�(1 − α) for s > 0. Furthermore,

for λ = 1, �(α,1)
e , is the generalization of �e(1)

d= �
(0,1)
e , with density

�(α,1)
e

d= αx−α−1e−x(1 − e−x)

[2α − 1]�(1 − α)
for x > 0.(6.5)

Note that the variable Uα,e
d= e−�

(α,1)
e has density

fUα,e(u)
d= α[−log(u)]−α−1(1 − u)

[2α − 1]�(1 − α)
for 0 < u ≤ 1.(6.6)

In addition, [5] show that �(α,1)
e is GGC(1 − α,Dα), where Dα satisfies

Gα
d= 1

Dα

− 1

with

log(X1−α) = log(S1−α/S
′
1−α) = α

1 − α
log

(
Gα/(1 − Gα)

)
.

Furthermore, G1/2
d= β1/2,1/2, G1

d= U and 1/G0
d= 1 + eπη for η a standard

Cauchy variable. Furthermore γ1−αU
d= γ1β1−α,1+α is GGC(1 − α,Gα). We now

look at some special case of Theorem 6.2.

PROPOSITION 6.2. Let 0 ≤ α < 1.

(i) Then for V = Dα and X = Gα ,

γ1
d= �(α,1)

e + �1−α(Dα) + γα

d= �(α,1)
e + γαMα + �1(Dα)(6.7)

d= �(α,1)
e + �1(ξ1−αDα),

where �
(α,1)
e has density (6.5). Mα

d= βα,1Mα + (1 − βα,1)Dα . When α = 1/2,

γ1/2M1/2
d= �

(1/2,1)
e , otherwise, γαMα has an explicit density given in [19], Theo-

rem 4.2.
(ii) For V = Gα and X = (X1−α)

(1−α)/α ,

γ1
d= γ1−αU + �1−α(Gα) + γα

d= γ1−αU + γαM̃α + �1(Gα)(6.8)

d= γ1−αU + �1(ξ1−αGα),

where M̃α
d= βα,1M̃α + (1 − βα,1)Gα .
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PROOF. Note that �
(α,1)
e + γαMα is GGC(1,Dα) and the second equality

above is a direct consequence of Theorem 6.1. Additionally, it follows that since

�
(α,1)
e is GGC(1 − α,Dα), γ1−α

d= �
(α,1)
e + �1−α(Dα). The last equality follows

from �
(α,1)
e is GGC(1, ξ1−αDα). �

Recall the occupation time variables in Example 3.1, where the variable Õα,p

has density (3.3), and additionally O0 = 1/2 and O1
d= ξ1/2. Then using Theorems

6.1 or 6.2, we obtain the following result.

PROPOSITION 6.3. Let 0 ≤ α ≤ 1 and 0 <p ≤ 1.

(i) Then for V = Oα and X = Xα ,

γ1
d= γ1Õα,p + �p(Oα) + γ1−p.(6.9)

(ii) When α = 1/2, V d= β1/2,1/2 and X
d= γ1/2/γ

′
1/2,

γ1
d= γpβp+1/2,p+1/2 + �p(β1/2,1/2) + γ ′

1−p.(6.10)

REMARK 6.1. The diffusions above belong to a more general family, R(α,b)

for 0 ≤ α < 1, b ≥ 0 with inverse local time corresponding to a generalized gamma
subordinator with Lévy density Cs−α−1e−bs . Hence, the density of variables
�

(α,b)
e is proportional to s−α−1e−bs(1 − e−s). In particular, for b = 0, the vari-

able �
(α,0)
e

d= γ1−α/U
1/α is a GGC(1 − α,1/Gα) variable. See [5, 19, 22] for

more details.

REMARK 6.2. Reference [5], Theorem 1.4, yields the following decomposi-
tion of γ1, for 0 ≤ α ≤ 1:

γ1
d= γ1Gα + γ ′

1G1−α.

As a special case, with α = 0 or 1,

γ1
d= γ1U + γ ′

1/(1 + eπη).

Combining this fact with with (6.3), with V
d= G0

d= 1/(1 + eπη), leads to the
interesting identity

�1(G0)
d= γ1G0

with Lévy density given by (6.2). This follows since γ1U is a GGC(1,G0) variable.
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7. Composition of quantile clocks. We now highlight an important property
of the general class of quantile clocks. Recall from Proposition 3.1 that for each
fixed t , the marginal distribution of a quantile clock TR , with parameters (R,L),
satisfies

TR(t)
d= ζ(t),

where ζ is a subordinator such that ζ(1) has Laplace exponent

ψζ (ω) = E[ψL(ωR)] = ψTR(1)(ω).

An important operation for Lévy processes is the composition of Lévy processes,
in financial applications this is associated with time changed processes. The fact
that quantile clocks behave marginally like a subordinator allows us to obtain the
following results.

First, we can discuss the composition of two independent quantile clocks TR1 ,
TR2 , with parameters (R1,L1) and (R2,L2), respectively, which can be written as

TR1(TR2(t)) =
∫ TR2 (t)

0
QR1

((
1 − s

TR2(t)

)
+

)
L1(ds)(7.1)

for t ≥ 0. The apparently complicated random process appearing in (7.1) is no
longer a quantile clock. However, as the next result shows, its marginals are easy
to describe. We use the notation ◦ to denote the composition of functions, so, for
instance, TR1 ◦ TR2 means the operation in (7.1).

PROPOSITION 7.1. Let TRi
, i = 1, . . . , k, denote independent quantile clocks

such that pointwise TRi
(t)

d= ζi(t) for independent subordinators with corre-
sponding Laplace exponents ψζi (ω) for i = 1, . . . , k. Then the composition T̂k :=
(T̂k(t) = TR1 ◦ · · · ◦ TRk

(t) : t ≥ 0) is an increasing process such that for each
fixed t ,

T̂k(t)
d= ζ̂k(t) = ζ1 ◦ · · · ◦ ζk(t),

where ζ̂k is a subordinator with Laplace exponent

ψζk ◦ · · · ◦ ψζ1(ω).

If each TRi
is a continuous process, then T̂k is a continuous process.

PROOF. It suffices to show this for k = 2. But this is immediate from Propo-
sition 3.1, since given TR2 ,

ψTR1 (TR2 (t))
(ω) = TR2(t)ψζ1(ω). �

Of course one can also compose these clocks with subordinators as follows. The
next result is immediate.



1654 L. F. JAMES AND Z. ZHANG

PROPOSITION 7.2. Let TR denote a quantile clock that satisfies TR(t)
d= ζ1(t)

for some subordinator ζ1. Furthermore, let ζ2 denote a subordinator independent
of TR and ζ1. Then for each fixed t

TR(ζ2(t))
d= ζ1(ζ2(t)) and ζ2(TR(t))

d= ζ2(ζ1(t)).

We now illustrate an important special case.

PROPOSITION 7.3. For 0 < α < 1 and 0 < β < 1, one can use the specifi-
cations in Theorem 4.2 to construct independent clocks TR1 and TR2 such that

marginally TR1(t)
d= Ŝα(t) and TR2(t)

d= Ŝβ(t), where Ŝα and Ŝβ are independent
with Laplace exponents [(1 + ω)α − 1] and [(1 + ω)β − 1]. Then for each fixed t

TR1(TR2(t))
d= TR2(TR1(t))

d= TR1(Ŝβ(t))
d= Ŝα(TR2(t))

d= Ŝαβ(t),

that is, for each fixed t the Laplace exponent is t[(1 + ω)αβ − 1]. Additionally,
the first two compositions can be specified such that the resulting processes are
continuous, but the latter compositions always correspond to processes with jumps.

8. Continuous VG, CGMY, NIG and other price processes. Summarizing,
we have demonstrated that quantile clocks TR can either be chosen to have strictly
continuous and increasing paths or can be expressed as T

R̃
(t)+aL(t), where T

R̃
is

a continuous increasing quantile clock. In general, quantile clocks have marginals

that are equivalent to those of a subordinator, ζ , for each t , that is, TR(t)
d= ζ(t).

Moreover, we have shown that for a large class of quantiles QR we can choose
TR to have any desired marginal law in Uδ , by choosing a random variable Y and
the subordinator L in a clearly prescribed fashion. Furthermore, our results in the
last section show that composition operations involving quantile clocks or quantile
clocks with subordinators are marginally equivalent in distribution to compositions
of subordinators. All these properties make them highly desirable components in
pricing models based on time changes. For example, the processes(

Ŵμ(TR(t)) : t ≥ 0
)

and
(
Ŵμ(TR1(TR2(t))) : t ≥ 0

)
can be chosen such that they are processes with continuous trajectories, but have
simple and familiar marginal laws. In addition, for a subordinator ζ̃ , the processes(

Ŵμ(ζ̃ (TR(t))) : t ≥ 0
)

and
(
Ŵμ(TR(ζ̃ (t))) : t ≥ 0

)
have jumps, exhibit volatility clustering, and otherwise may be chosen to have fa-
miliar marginal distributions, in fact the same marginal, for many choices of QR .
We illustrate these points through some examples that equate these processes
marginally with some of the most popular Lévy processes.
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EXAMPLE 8.1 (Continuous variance gamma processes). As a first example, it

follows from III of Theorem 4.2, that if RY
d= U , then for each δ > 0, a quantile

clock TR1/δ with parameters (R1/δ,Lδ), can be chosen such that for each fixed t ,

Ŵμ(TR1/δ (t))
d= Ŵμ(γθ (t)),

that is, it has marginal distributions equivalent to the log price of a variance gamma
(VG) process [28], not depending on δ, if for each δ > 0, the subordinator (depend-
ing on δ)

Lδ(s)
d= ζδ,Y 1/δ (s) +

N(θs/δ)∑
k=1

γ
(k)
1 Y

1/δ
k , s ≥ 0,

where ζδ,Y 1/δ is a GGC(θ, Y 1/δ) subordinator.

We next show how to obtain price processes whose marginal laws are equiva-
lent to a Carr–Geman–Madan–Yor (CGMY) process [7] but otherwise possesses
continuous sample paths.

EXAMPLE 8.2 (Continuous CGMY processes). For this example, we follow
the exposition in [29]. Let

A = G − M

2
and B = G + M

2
,

then the Lévy density of the log prices of a CGMY process, say χCGMY, is given
by

ρχCGMY(1)(x) = �(α)�(1 − α)

�(1 + α)
eAx−B|x||x|−d−1 for − ∞ < x < ∞(8.1)

and 0 < d = 2α < 2. Madan and Yor [29], show that the log price of a CGMY
process has an explicit representation in terms of a time changed brownian motion,
χCGMY(t) := ŴA(ζ(t)), where ζ is a subordinator with Lévy density

ρζ (s) = 2α�(α)

�(2α)
e(A

2−B2)s/2s−α−1
E

[
e−s(B2/2)(γα/γ1/2)

]
(8.2)

= 2α�(α)

�(2α)
s−α−1

E[e−sV ]
for

V
d=

(
4MG + B2 γα

γ1/2

)/
2.(8.3)

It is evident from (8.2) that ζ ∈ G . We now give the specifications for a quantile
clock to have marginals with Lévy density (8.2) hence inducing price processes
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that have the marginal distribution of a CGMY process. Notice that

−sρ ′
ζ (s) = 2α�(α)

�(2α)
s−α−1

E
[(
(1 + α) + sV

)
e−sV ]

(8.4)

= (1 + α)ρζ (s) + 2α�(α)

�(2α)
s−α

E[V e−sV ].

Hence, ψζ (ω) = E[ψZ(ωU1/δ)], for

ρZ(s) = (1 + α/δ)ρζ (s) + 2α�(α)

δ�(2α)
s−α

E[V e−sV ].(8.5)

PROPOSITION 8.1. Suppose that TR is a quantile clock with parameters

(R,L), such that there exists a variable Y satisfying RY
d= U1/δ for some δ > 0.

Then for each fixed t ,

ŴA(TR(t))
d= χCGMY(t)

specified by (8.1) if the subordinator L is chosen such that

ρL(s) = (1 + α/δ)
cα2α�(α)

�(2α)
s−α−1

E[e−sV/Yα ]
(8.6)

+ cα2α�(α)

δ�(2α)
s−α

E[(V/Yα)e
−sV/Yα ],

where V is defined by (8.3), cα = E[Yα] and Yα is the random variable whose
distribution is proportional to yαFY (dy). When Y = 1, L := Z satisfying (8.5).
Note also that E[V α] is finite only if α < 1/2. Hence,

s−α
E[(V/Yα)e

−sV/Yα ]
is the Lévy density of a compound Poisson process only in the case where α < 1/2.

PROOF. The result is a special case of Theorem 4.2 and the specifications we
derived above. In particular, (8.5). �

As a specific example with continuous paths, consider again the Kumaraswamy
quantile clock with

TKp,b
(t) =

∫ t

0

[
1 − (

1 − (1 − s/t)+
)1/p]1/b

L(ds)

for R d= Kp,b
d= (1 − U1/p)1/b d= β

1/b
1,p . Then for each fixed t ,

ŴA(TKp,b
(t))

d= χCGMY(t),

if L is selected according to (8.6) with Y
d= β

1/b
p,1−p and δ = bp.
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If we consider the arcsine clock using (5.5) with

T
β

1/b
1/2,1/2

(t) :=
∫ t

0
sin2/b

(
π

2

(
1 − s

t

)
+

)
L(ds)

then for each fixed t ,

ŴA(Tβ
1/b
1/2,1/2

(t))
d= χCGMY(t),

if L is selected according to (8.6) with Y
d= (1 − U2)

1/b
and δ = b/2.

The next two cases are from Section 6.2 involving quantile functions that can
be evaluated numerically. If we consider the clock T

U
1/δ
α,e

based on the variable Uα,e

with density (6.6), it follows from Proposition 6.2 that

ŴA(TU
1/δ
α,e

(t))
d= χCGMY(t),

if L is selected according to (8.6) with

Y
d= e−[�1−α(Dα)+γα]/δ.

If we consider the variables in Remark 6.2 then this leads to a quantile clock based
on the variable γ1Gα . Hence,

ŴA(Te−γ1Gα/δ (t))
d= χCGMY(t),

if L is selected according to (8.6) with

Y
d= e−γ1G1−α/δ.

Other examples using (6.9) and (6.10) are based on the pairs(
e−γ1Õα,p , e−[�p(Oα)+γ1−p]) and

(
e−γpβp+1/2,p+1/2, e−[�p(β1/2,1/2)+γ ′

1−p])
.

Finally, if instead one uses the clock

T
Ũ

1/δ
p

(t) :=
∫ t

0

[
(1 − p) + p

(
1 − s

t

)
+

]1/δ

L(ds),

then for each fixed t ,

ŴA(TŨ
1/δ
p

(t))
d= χCGMY(t),

if L is selected according to (8.6) with Y = e−Xp[−log(1−p)]/δ where again Xp

is geometric(p). Hence, for each 0 < p < 1, the resulting process has CGMY
marginals, exhibits volatility clustering, but also has jumps. If p = 1, then the pro-
cess is continuous and the quantile clock coincides with the Holmgren–Liouville
clock discussed in [4].
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It is evident that the specifications (8.6) for L appearing in Proposition 8.1 can
be modified such that TR(t) has marginals equivalent to a subordinator with Lévy
density

ρζ (s) = Cs−α−1
E[e−sV ]

for some positive constant C, where V is a much more general random variable.
That is, L is specified by

ρL(s) = (1 + α/δ)cαCs−α−1
E[e−sV/Yα ]

(8.7)
+ (cα/δ)Cs−α

E[(V/Yα)e
−sV/Yα ].

As a specific example, we next look at the case corresponding to NIG and related
processes.

EXAMPLE 8.3 (Processes with NIG and related marginals). For this example,
let Ŝα(t) denote any subordinator with Lévy density

ρα(s) = α

�(1 − α)
s−α−1e−s

and define the Lévy process on R by χα(t) := Ŵμ(Ŝα(t)). It follows that

χ1/2(t) := χNIG(t)

is a normal inverse Gaussian (NIG) process [2]. If T
(α)
R denotes a quantile clock

such that RY = U1/δ , and L is specified according to (8.7), specifically using

the Lévy density ρα , with V = 1, then Ŵμ(T
(α)
R (t))

d= χα(t). In particular setting
α = 1/2, it follows that for each t ,

Ŵμ

(
T

(1/2)
R (t)

) d= χNIG(t).

Thus, yielding processes with continuous trajectories but NIG marginals. In addi-
tion, choosing α and 0 < β ≤ 1 such that αβ = 1/2, it follows from Proposition 7.3
that

χβ

(
T (α)(t)

) d= Ŵμ

(
T (α)(Ŝβ(t))

) d= χNIG(t),

corresponding to processes with jumps, dependent increments and NIG marginal
distributions. Note that when Y = 1, corresponding to the quantile clock TU1/δ ,
then similar to (8.5),

L(t) = Ŝα

(
(1 + α/δ)t

) +
N(αs/δ)∑

k=1

γ
(k)
1−α for t > 0.(8.8)
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9. Choosing laws for the short memory kernel. We now apply our results
for quantile clocks to a convoluted subordinator that [4] refer to as a short memory
kernel. We note that this convoluted subordinator is not a quantile clock.

THEOREM 9.1. Let ζ denote a subordinator with self-decomposable laws
such that the quantile clock with parameters (U,Z), that is, TU has marginals

TU(t)
d= ζ(t) ∈ L. This is achieved by setting the Lévy density of Z to be

ρZ(x) = −xρ ′
ζ (x) = ρζ (x) + ρϑ(x),(9.1)

where ϑ is the OU–BDLP of v(0) d= TU(1) d= ζ(1). Then for Z satisfying (9.1), the
short memory convoluted subordinator constructed as

T̃ε(t) =
∫ t

0
min

(
1,

(t − s)+
ε

)
Z(ds)

has the following distributional properties:

(i) For each fixed t , the Laplace exponent of the r.v. T̃ε(t), is given by

ψ
T̃ε(t)

(ω) =
⎧⎪⎨⎪⎩ tψζ

(
ω
t

ε

)
, t ≤ ε,

tψζ (ω) + (t − ε)ωψ ′
ζ (ω), t > ε.

(ii) For each fixed t, the marginal distribution of T̃ε(t) is given by

T̃ε(t)
d=

⎧⎨⎩
t

ε
ζ(t), t ≤ ε,

ζ(t) + ϑ(t − ε), t > ε.

PROOF. First, notice that in general, for each fixed t , the Lévy exponent of the
random variable T̃ε(t) is given by

ψ
T̃ε(t)

(ω) =
∫ t

0
ψZ

(
ωmin

(
1,

(t − s)+
ε

))
ds.(9.2)

So for t ≤ ε, (9.2) can be expressed as∫ t

0
ψZ

(
ωmin

(
1,

(t − s)+
ε

))
ds = tE

[
ψZ

(
ω
t

ε
U

)]
= tψζ

(
ω
t

ε

)
,

where the last equality follows from (9.1). For t > ε, split the interval [0, t] into
[0, t − ε] and (t − ε, t] then (9.2) becomes

εE[ψZ(ωU)] + (t − ε)ψZ(ω).(9.3)

Now use (9.1) to show that (9.3) is equal to

εψζ (ω) + (t − ε)[ψζ (ω) + ψϑ(ω)]
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yielding the result. �

Our result now allows one to choose more convenient laws for T̃ε which allows
one to easily apply the option pricing formula of [4], as displayed in Theorem 2.1,
either by exact simulation or FFT methods. We illustrate this in the next example.

EXAMPLE 9.1 (Short memory convoluted subordinator with NIG related
marginals). First, it is interesting to recall from [3] that the OU–BDLP, ϑ , lead-

ing to v(0) d= Ŝα(1), as specified in Example 8.3, has Lévy density

ρϑ(s) = α

�(1 − α)
s−α−1[α + s]e−s .

Hence,

ϑ(s)
d= Ŝα(αs) +

N(αs)∑
k=1

γ
(k)
1−α for s > 0.

Now using (8.8) with δ = 1, setting the subordinator

Z(s) = Ŝα

(
(1 + α)s

) +
N(αs)∑
k=1

γ
(k)
1−α for s > 0

leads to the following marginal behavior of the corresponding short-memory
model, for each fixed t ,

T̃ε(t)
d=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t

ε
Ŝα(t), t ≤ ε,

Ŝα

(
t + α(t − ε)

) +
N(α(t−ε))∑

k=1

γ
(k)
1−α, t > ε.

Note however that T̃ε is a continuous process since Z is an infinite activity process
that satisfies the conditions in [4]. This leads to price processes (2.5) with con-
tinuous trajectories that have the following marginal behavior. Ŵ−1/2(σ

2T̃ε(t)) is
equivalent in distribution to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ŵ−1/2

(
σ 2 t

ε
Ŝα(t)

)
, t ≤ ε,

Ŵ−1/2
(
σ 2Ŝα

(
t + α(t − ε)

)) + Ŵ ′−1/2

(
σ 2

N(α(t−ε))∑
k=1

γ
(k)
1−α

)
, t > ε.

If one sets α = 1/2, then this reduces to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ŵ−1/2

(
σ 2 t

ε
Ŝ1/2(t)

)
, t ≤ ε,

Ŵ−1/2
(
σ 2Ŝ1/2

(
(3t − ε)/2

)) + Ŵ ′−1/2

(
σ 2

N((t−ε)/2)∑
k=1

γ
(k)
1/2

)
, t > ε.
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Hence, in this case, for each fixed t ≤ ε, the marginal distribution of the price
process (2.5) follows an NIG distribution, with scale parameters depending on t .
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