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This paper is devoted to studying constrained continuous-time Markov
decision processes (MDPs) in the class of randomized policies depending on
state histories. The transition rates may be unbounded, the reward and costs
are admitted to be unbounded from above and from below, and the state and
action spaces are Polish spaces. The optimality criterion to be maximized
is the expected discounted rewards, and the constraints can be imposed on
the expected discounted costs. First, we give conditions for the nonexplo-
sion of underlying processes and the finiteness of the expected discounted re-
wards/costs. Second, using a technique of occupation measures, we prove that
the constrained optimality of continuous-time MDPs can be transformed to an
equivalent (optimality) problem over a class of probability measures. Based
on the equivalent problem and a so-called w̄-weak convergence of probabil-
ity measures developed in this paper, we show the existence of a constrained
optimal policy. Third, by providing a linear programming formulation of the
equivalent problem, we show the solvability of constrained optimal policies.
Finally, we use two computable examples to illustrate our main results.

1. Introduction. Constrained Markov decision processes (MDPs) form an
important class of stochastic control problems and have been widely studied. Ex-
isting works on constrained MDPs can be roughly classified into four groups:
(i) constrained discrete-time MDPs with denumerable states [1, 2, 6–10, 23, 25,
37, 38, 41] and their extensive references, (ii) constrained discrete-time MDPs
with a Polish state space [19, 20, 29, 33] and their bibliographies, (iii) constrained
continuous-time MDPs with denumerable states [13, 15, 34, 36, 42], and (iv) con-
strained continuous-time MDPs with a Polish state space [11]. A review of these
references shows that most of the related literature is concentrated with the first
three groups. To the best of our knowledge, the fourth group is addressed only
in [11] for the average criteria. Concerning group (i), the existence and algorithms
of constrained optimal policies are given in [6–10] for variant discounted criteria
when states and actions are finite, in [1, 25, 37] for the discounted criteria and de-
numerable states, and in [1, 2, 23, 37, 38] for the average criteria and denumerable
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states. Also, the existence of constrained optimal policies and linear programming
formulation for group (ii) are given in [19, 33] for the discounted criteria and in
[20, 29, 33] for the average criteria. Although group (iii) has been studied in [13,
15, 34, 36, 42], the references [13, 15, 34, 36, 42] deal with the case of a single
constraint, the transition rates in [34] are assumed to be bounded, and the assump-
tion of denumerable states in these references cannot be dropped. On the other
hand, as mentioned above, constrained MDPs in Polish spaces are also studied in
[19, 20, 29, 33] for the discrete-time case and in [11] for the continuous-time case.
However, the reward and cost functions in [29] are assumed to be all bounded,
and all cost functions in [11, 19, 20, 33] are assumed to be essentially nonnega-
tive. Further, such nonnegativeness assumption cannot be removed because it is
required for the use of the standard weak convergence of probability measures.
This in turn implies that the constrained optimality problem of minimizing non-
negative costs in [11, 19, 20] with constraints imposed on other nonnegative costs
cannot be transformed to an equivalent optimality problem of maximizing bounded
rewards as in [29] with constraints imposed on bounded costs. Hence, the con-
strained discrete and continuous time MDPs with Polish spaces, in which rewards
(to be maximized) and costs (with constraints) may be unbounded from above and
from below, have not been studied.

On the other hand, as is known, continuous-time MDPs in Polish spaces have
been studied in [11, 12, 16, 27, 34]. However, the treatments in [12, 16, 27] are on
the unconstrained case, whereas the results in [11] for the constrained case can-
not be applied to the case in which the criterion to be maximized is unbounded
rewards. This is because the cost to be minimized in [11] is required to be nonneg-
ative. Moreover, the study in [11, 12, 16] with unbounded transition rates is limited
to the class of Markov policies, and yet the case of randomized policies depending
on state histories in [27, 34] is for bounded transition rates. Hence, as noted in
[15, 17, 40], the study on unconstrained continuous-time MDPs with unbounded
transition rates and history-dependent policies is an unsolved problem.

Constrained continuous-time MDPs with unbounded transition rates and poli-
cies depending on state histories have not been studied yet, and they will be con-
sidered in this paper. More precisely, we will deal with constrained continuous-
time MDPs, which have the following features: (1) the transition rates may be
unbounded; (2) the reward and costs are admitted to be unbounded from above
and from below; (3) the state and action spaces are Polish spaces; (4) admissible
policies can be randomized and depend on state histories; and (5) the optimality
criterion is to maximize expected discounted rewards, and several constraints are
imposed on expected discounted costs.

First, we give the conditions under which we ensure the nonexplosion of under-
lying processes induced from unbounded transition rates and randomized policies
depending on state histories (see Theorem 3.1 below). This result is a natural ex-
tension of the corresponding regularity of a jump Markov process in [5, 12, 15,
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16, 31] to a so-called “non-Markov” case and also a generalization of the regu-
larity in [18, 26–28, 30, 34, 37, 39, 40] for bounded transition rates. Inspired by
the condition for the nonexplosion, we obtain a condition (see Theorem 3.3 be-
low) for the finiteness of the expected discount rewards/costs of each policy when
rewards/costs are unbounded.

Second, as in [1, 2, 19–21, 29, 33, 35] for constrained MDPs, by introduc-
ing an occupation measure, we prove that the constrained optimality problem in
continuous-time MDPs [see (2.12) below] can be transformed into an equivalent
optimality problem [see (3.3) below] over a class of some probability measures.
The standard weak convergence technique used in [11, 19, 20, 22, 27, 29] for non-
negative costs does not apply directly to the case wherein rewards/costs are un-
bounded from above and from below. Therefore, to solve the equivalent optimality
problem in which rewards/costs may be unbounded from above and from below,
we introduce (Definition 3.7 below) a so-called w̄-weak convergence of proba-
bility measures. This w̄-weak convergence is an extension of the standard weak
convergence of probability measures. Using the properties of the w̄-weak conver-
gence and occupation measures developed here (see Theorem 3.5 and Lemmas 3.8
and 3.9 below), we prove the existence of a constrained optimal policy under mild
reasonable conditions (see Theorem 3.11 below). These conditions are slightly dif-
ferent from the usual continuity-compactness ones in [12–15] for continuous-time
MDPs and in [1, 2, 19, 20, 22, 29] for the discrete-time MDPs, and thus they are
weaker than those in the literature [12–15, 37]; see Remarks 3.10 and 3.12 for
details.

Third, for the solvability of constrained optimal policies, we further transform
the equivalent optimality problem to a linear programming (LP) problem [see (3.9)
below] by using the properties of occupation measures again. Then we present
the relationship between a constrained optimal policy and an optimal solution to
the LP (see Theorem 3.13 below), and characterize a stationary policy (see Theo-
rem 3.15 below). This relationship and characterization of a stationary policy are
used to obtain the solvability and structure of a constrained optimal policy (see
Corollary 3.14 and Theorem 3.16 below).

Finally, to illustrate our main results, we present two computable examples in
which our conditions are satisfied, whereas some of those in [11, 19, 20, 22, 27,
29] fail to hold (see Remark 4.7 below). In particular, our approach is also suitable
to the case of discrete-time MDPs with rewards/costs being unbounded from above
and from below, and similar results for the discrete-time case can also be obtained;
see Remark 3.17 for details. However, our model cannot be transformed to an
equivalent one of discrete-time MDPs using the uniformization technique because
the transition rates in our model may be unbounded.

The rest of this paper is organized as follows. In Section 2, the model and the
constrained optimality problem that we are concerned with are introduced. The
main results of this paper are stated in Section 3, and illustrated with computable
examples in Section 4. The proofs of the main results are presented in Section 5.
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2. The model for constrained continuous-time MDPs.
Notation. If X is a Polish space (i.e., a complete and separable metric space) and

w̄ ≥ 1 is a real-valued measurable function on X, we denote by B(X) the Borel σ -
algebra on X, by Dc the complement of a set D ⊆ X (with respect to X), by ‖u‖w̄

the w̄-weighted norm of a real-valued measurable function u on X [i.e., ‖u‖w̄ :=
supx∈X|u(x)|/w̄(x)], by Cb(X) the set of all bounded continuous functions on X,
and by P(X) the set of all probability measures on B(X). Let

Bw̄(X) := {u|‖u‖w̄ < ∞}
be the Banach space.

We now introduce the model of constrained continuous-time MDPs,{
S,

(
A(x) ⊆ A,x ∈ S

)
, q(·|x, a), r(x, a),

(
cn(x, a), dn,1 ≤ n ≤ N

)}
,(2.1)

where S is a state space, A is an action space, and A(x) is a Borel set of admissible
actions at state x ∈ S. We suppose that S and A are Polish spaces, and the following
set:

K := {(x, a)|x ∈ S, a ∈ A(x)}(2.2)

is a Borel subset of S × A.
The function q(·|x, a) in (2.1) refers to transition rates, that is, it satisfies the

following:

(T1) For each fixed (x, a) ∈ K,q(·|x, a) is a signed measure on B(S), whereas
for each fixed D ∈ B(S), q(D|·) is a real-valued Borel-measurable function on K ;

(T2) 0 ≤ q(D|x, a) < ∞ for all (x, a) ∈ K and x /∈ D ∈ B(S); and
(T3) q(S|x, a) = 0 for all (x, a) ∈ K . [Hence, q({x}|x, a) is finite for all

(x, a) ∈ K .]

The model is also assumed to be stable, which means

q∗(x) := sup
a∈A(x)

|q({x}|x, a)| < ∞ ∀x ∈ S.(2.3)

Finally, the function r(x, a) on K denotes the reward, whereas the functions
cn(x, a) on K and the real numbers dn denote the costs and constraints, respec-
tively. We assume that r(x, a) and cn(x, a) are real-valued measurable on K .
[r(x, a) is allowed to take positive and negative values, so it can be interpreted
as a cost rather than a “reward” only.]

To complete the specification of the constrained optimality problem, we of
course need an optimality criterion. This requires the definition of a class of poli-
cies admissible to a controller. To do so, we introduce some notation as in [24, 27,
28].

Let S∞ := S ∪ {x∞} with x∞ being an isolated point, �0 := (S × R+)∞
with R+ := (0,∞) and � := �0 ∪ {(x0, θ1, x1, . . . , θk−1, xk−1,∞, x∞, . . .)|θl ∈
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R+, x0, xl ∈ S for each 1 ≤ l ≤ k − 1 and k ≥ 2}. By the corresponding modifica-
tion of the σ -algebra over �0, we can obtain the basic measurable space (�, F ).
Then we define maps Tk,Xk,�k (k = 0,1, . . .) and ξt (t ≥ 0) on (�, F ) as fol-
lows: for each e := (x0, θ1, x1, . . . , θk, xk, . . .) ∈ �, let

Tk(e) := θ1 + · · · + θk (for k ≥ 1),
(2.4)

T∞(e) := lim
k→∞Tk(e) with T0(e) := 0;

Xk−1(e) := xk−1, �k(e) := θk for k ≥ 1;
ξt (e) := ∑

k≥0

xkI{Tk≤t<Tk+1}(e) + x∞I{T∞≤t}(e),(2.5)

where ID stands for the indicator function of a set D. Let hk(e) = (x0, θ1, x1, . . . ,

θk, xk), and call hk(e) a k-component state history. Obviously, these maps are
measurable on F . In what follows, the argument e = (x0, θ1, x1, . . . , θk, xk, . . .) is
often omitted.

Components �k play the role of inter-jump intervals or sojourn times, Tk are the
jump epoches, and Xk denotes the state of the process {ξt , t ≥ 0} on [Tk, Tk+1).
We do not intend to consider the process after moment T∞, so we view it to be
absorbed in state x∞. Hence, we write q(·|x∞, a∞) ≡ 0, where a∞ is an isolated
point, and let A(x∞) := {a∞}, A∞ := A ∪ {a∞}.

Let R
0+ := [0,∞), and introduce the integer-valued random measure μ∗ on

R
0+ × S by

μ∗(dt, dx) = ∑
k≥0

I{Tk<∞}δ(Tk,Xk)(dt, dx),(2.6)

where δy(·) is the Dirac measure concentrated at any point y. Then we take the
right-continuous family of σ -algebras {Ft }t≥0 with Ft := σ {μ∗([0, s] × D), s ∈
[0, t],D ∈ B(S)}, and let

P := σ
(
B × {0},C × (s,∞)|B ∈ F0,C ∈ Fs−, s > 0

)
,

where Fs− := ∨
t<s Ft . Then, as in [24, 27, 28], a real-valued function on �×R

0+
is called predictable if it is measurable with respect to P .

We next introduce the definition of a policy, which is the same as in [27] and a
generalization of the corresponding one in [28, 34, 35] for denumerable states.

DEFINITION 2.1. A transition probability π from (� × R
0+, P) onto (A∞,

B(A∞)) such that π(A(ξt−(e))|e, t) ≡ 1 is called a policy, which can be random-
ized and depend on state histories. A policy is called randomized stationary if
there exists a transition probability φ from (S, B(S)) onto (A, B(A)) such that
φ(A(x)|x) ≡ 1 and π(da|e, t) = I{t<T∞}(e)φ(da|ξt−(e)) + I{t≥T∞}(e)δa∞(da).
We will write such a randomized stationary policy as φ. A randomized stationary
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policy φ is called (deterministic) stationary if there exists a measurable function
f from (S, B(S)) onto (A, B(A)) such that φ({f (x)}|x) ≡ 1. Such a stationary
policy will be written as f .

We denote by 
,
s and F the classes of all policies, randomized stationary
policies and stationary policies, respectively. Equivalently, 
s is the set of all
stochastic kernels φ on A given S such that φ(A(x)|x) = 1 for all x ∈ S, and
F is the set of all measurable functions f from S to A such that f (x) ∈ A(x) for
all x ∈ S. Obviously, F ⊂ 
s ⊂ 
.

REMARK 2.2. The requirement of predictability of a policy implies that at
time t ≥ 0 each policy depends on only the past jump moments T0, T1, . . . , Tm ≤ t

and the corresponding states x0, . . . , xm ∈ S. This means that a policy may depend
on state histories. However, the class 
 is not the complete collection of all history-
dependent policies. This is because each state history hk = (x0, θ1, x1, . . . , θk, xk)

does not include past actions am (0 ≤ m ≤ k). To overcome the shortcoming of
the definition of a state history, a possible and natural way is to replace hk with a
new history (x0, a0, θ1, . . . , xk−1, ak−1, θk, xk) including past actions. If we do so,
some results in [24, 28] such as the structure of the probability measure P π

γ in (2.9)
and the predictable properties of the randomized measure νπ in (2.7) and functions
m(D|e, t) in (2.8), which are required in following arguments, need to be checked
one by one. Since these desired results for the case of new histories have not been
proven, we still use the definition of a policy in Definition 2.1, which is the same
as in [27, 28, 34, 35], and which is also a generalization of the corresponding one
in [5, 11, 12, 15, 17] for a Markov policy.

For each π ∈ 
, by Definition 2.1 we see that the random measure on R
0+ × S

given by

νπ(e, dt,D) :=
[∫

A
π(da|e, t)q(D|ξt−(e), a)I{ξt− /∈D}(e)

]
dt

(2.7)
for D ∈ B(S)

is predictable, and νπ({t} × S) = νπ([T∞,∞) × S) ≡ 0 for all t ≥ 0. Thus, for
any initial distribution γ ∈ P(S), Theorem 4.27 in [28] (or Theorem 3.6 in [24])
ensures the existence of a unique probability measure P π

γ on (�, F ) such that
P π

γ {x0 ∈ dx} = γ (dx), and νπ is a dual predictable projection of the measure
μ∗ in (2.6). The expectation operator with respect to P π

γ is denoted by Eπ
γ . In

particular, Eπ
γ and P π

γ will be written as Eπ
x and P π

x , respectively, when γ is the
Dirac measure located at point x ∈ S.

For any fixed π ∈ 
 and γ ∈ P(S), let us recall how the measure P π
γ is con-

structed. First, by Definition 2.1 we see that, for each fixed D ∈ B(S), the following



2022 X. GUO AND X. SONG

function on � × R
0+:

m(D|e, t) :=
∫
A

π(da|e, t)q(D|ξt−(e), a)I{ξt− /∈D}(e)

is predictable, and thus (by Lemma 3.3 in [24]) has the following representation:

m(D|e, t) =: I{0}(t)m0(D|x0,0)
(2.8)

+
∞∑

k=0

I{Tk<t≤Tk+1}(e)mk

(
D|hk(e), t − Tk

)
,

where mk(·|hk(e), t̃ ) (depending on π ) is a measure on B(S) [for any fixed hk(e)

and t̃], mk(D|hk(e), t̃ ) is measurable in (e, t̃ ) [for any fixed D ∈ B(S)] and

mk({xk}|hk(e), t̃ ) = 0 for all xk ∈ S and k ≥ 0. Let Ĥ0
�= S, Ĥk

�= S × (R+ ×S∞)k

for k ≥ 1. Noting that a measure γ on B(Ĥ0) is given, we suppose that the mea-
sure P π

γ on B(Ĥk) has been constructed, then P π
γ on B(Ĥk+1) is determined as

follows:

P π
γ

(

 × (dt̃, dx)

)
:=

∫



P π
γ (dhk)I{θk+1<∞}mk(dx|hk, t̃ )e− ∫ t̃

0 mk(S|hk,v) dv dt̃;
(2.9)

P π
γ

(

 × (∞, x∞)

)
:=

∫



P π
γ (dhk){I{θk+1=∞} + I{θk+1<∞}e− ∫ ∞

0 mk(S|hk,v) dv},

where 
 ∈ B(Ĥk). According to the Ionescu Tulcea theorem in [4], there exists a
unique probability measure P π

γ on (�, F ), which has projections onto the spaces
of k-component state histories satisfying relations (2.9).

For any given γ ∈ P(S) and π ∈ 
, using (2.8) and (2.9), we now give a some-
what informal description of how the process {ξt , t ≥ 0} evolves. Suppose that the
process is at state xk at time t ∈ [Tk, Tk+1) (k ≥ 0). Then, a transition from xk to a
set D of states occurs with probability mk(D|hk, t −Tk), or the process remains at
xk with probability 1−mk(S|hk, t −Tk) dt +o(dt). In the former case, the sojourn
time �k+1 of {ξt , t ≥ 0} at xk has a distribution with a so-called “density function”
e− ∫ t

0 mk(S|hk,v) dv .
As mentioned above, we do not intend to consider the process after moment T∞.

Thus, we need to give conditions ensuring the nonexplosion of {ξt , t ≥ 0} [i.e.,
P π

x (ξt ∈ S) ≡ 1]. To do so, we consider the following condition.

ASSUMPTION A. There exist a continuous function w ≥ 1 on S and constants
ρ,b ≥ 0 and a sequence of nondecreasing subsets {Sk} of S, such that:

(1)
∫
S w(y)q(dy|x, a) ≤ ρw(x) + b for all (x, a) ∈ K ;
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(2) infx /∈Sk
w(x) ↑ +∞ as k → ∞, with inf ∅ := ∞;

(3) Sk ↑ S and supa∈A(x),x∈Sk
|q({x}|x, a)| < ∞ for all k ≥ 1.

REMARK 2.3. We call Assumption A a nonexplosion condition for {ξt , t ≥ 0}.
Obviously, Assumption A trivially holds when the transition rates are bounded; see
[18, 26, 27, 30, 34, 37, 39, 40], for instance. Assumption A is similar to those in
[5, 11, 12, 15, 17] for Markov policies and unbounded transition rates, and it can
be verified with examples in [5, 11, 12, 15, 17] and those below.

Under Assumption A, we see (by Theorem 3.1 below) that {ξt , t ≥ 0} is non-
explosive. Thus, for any fixed discount factor α > 0 and an initial distribution
γ ∈ P(S), we define the expected discounted criteria

Vα(x,π,u) :=
∫ ∞

0
e−αt

∫
A

Eπ
x [u(ξt−, a)π(da|e, t)]dt,

(2.10)
Vα(π,u) :=

∫
S
Vα(x,π,u)γ (dx)

for each π ∈ 
,x ∈ S and a measurable function u on K , provided the integrals in
(2.10) are well defined.

In particular, let

Vr(x,π) := Vα(x,π, r), Vr(π) := Vα(π, r)

and

Vn(x,π) := Vα(x,π, cn), Vn(π) := Vα(π, cn) for n = 1, . . . ,N.

[The finiteness of Vr(π) and Vn(π) will be ensured in Theorem 3.3 below.]
Let

U := {π |Vn(π) ≤ dn,n = 1, . . . ,N} and Vr(U) := sup
π∈U

Vr(π)(2.11)

be the set of constrained policies and the constrained optimal reward value, respec-
tively.

In the following arguments, we assume that the set U is not empty, and the
discount factor α and the initial distribution γ as well as the numbers dn are fixed.

Then, the constrained optimality problem under consideration is as follows:

Maximize Vr(π) over all π ∈ U.(2.12)

DEFINITION 2.4. A policy π∗ ∈ U is said to be constrained optimal if
Vr(π

∗) = Vr(U). When U = 
, a constrained optimal policy is said to be un-
constrained optimal.

The main goal of this paper is to give the conditions for the existence and solv-
ability of a constrained/unconstrained optimal policy.
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3. Main results. We state the main results of our work in this section. Their
proofs are presented later in Section 5. The main results are given in three subsec-
tions.

3.1. Conditions for nonexplosion and finiteness. This subsection states the re-
sults on the nonexposition of {ξt , t ≥ 0} and finiteness of Vn(x,π) and Vn(π).

For the nonexposition of {ξt , t ≥ 0}, we have the following fact.

THEOREM 3.1. Suppose that Assumption A holds. Then, for each π ∈ 
,
x ∈ S and t ≥ 0:

(a) P π
x (T∞ = ∞) = 1 and P π

x (ξt ∈ S) = 1.
(b)

Eπ
x [w(ξt )] ≤

⎧⎨
⎩ eρtw(x) + b

ρ
(eρt − 1), if ρ �= 0,

w(x) + bt, if ρ = 0.

(c) The analog of the forward Kolmogorov equation holds:

P π
x (ξt ∈ D) = ID(x) + Eπ

x

[∫ t

0

∫
A

π(da|e, s)q(D|ξs−(e), a) ds

]

for each D ∈ B(S) with supx∈D q∗(x) < ∞.

The proof of Theorem 3.1 appears in Section 5.

REMARK 3.2. Theorem 3.1(a) establishes the nonexplosion of {ξt , t ≥ 0} on
the probability space (�, F ,P π

x ) (for each policy π ∈ 
 and x ∈ S), and Theo-
rem 3.1 is an extension of the corresponding results in [18, 26, 27, 30, 34, 35, 37,
39, 40] for bounded transition rates and in [5, 11–17, 31] for Markov policies only.
The process {ξt , t ≥ 0} may not be Markovian because a policy π can depend on
state histories.

Inspired by Theorem 3.1, we introduce the following condition.

ASSUMPTION B. Let c0(x, a) := −r(x, a) for (x, a) ∈ K , and w be as in
Assumption A.

(1) There exists a constant M > 0 such that, |cn(x, a)| ≤ Mw(x) for every
(x, a) ∈ K and n = 0,1, . . . ,N .

(2) The discount factor α satisfies that α > ρ, with ρ as in Assumption A.
(3)

∫
S w(x)γ (dx) < ∞.

Then the following fact establishes the finiteness of Vn(x,π) and Vn(π).
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THEOREM 3.3. Suppose that Assumptions A and B hold. Then, for each π ∈

 and x ∈ S:

(a) Eπ
x [|cn(ξt , a)|π(da|e, t)] ≤ MEπ

x [w(ξt )] for all t ≥ 0 and n = 0,1, . . . ,N;
(b) |Vn(x,π)| ≤ M[αw(x) + b]/[α(α − ρ)] and |Vn(π)| ≤ MM∗

1 for n =
0,1, . . . ,N , where V0(x,π) := Vα(x,π, c0),V0(π) := Vα(π, c0),M

∗
1 := [α ×∫

S w(x)γ (dx) + b]/[α(α − ρ)].
PROOF. Obviously, this theorem follows from Theorem 3.1(b) and (2.10). �

3.2. Existence of constrained optimal policies. This subsection states the main
results on the existence of constrained optimal policies.

In order to show the existence of a constrained optimal policy, as in [1, 2, 19–21,
29, 33, 35], we introduce a key concept of an occupation measure of a policy.

DEFINITION 3.4. Fix policies π,π1, π2 ∈ 
.

(i) The occupation measure of π is a probability measure ηπ on S × A con-
centred on K , which is defined by

ηπ(D × 
) := α

∫ ∞
0

e−αtEπ
γ

[
I{ξt∈D}(e)π(
|e, t)]dt

(3.1)
with D ∈ B(S),
 ∈ B(A).

(Obviously, ηπ concentrates on K and depends on π,α and γ . However, we im-
press γ and α in the occupation measure for simplicity.)

(ii) Two policies π1 and π2 are called equivalent if ηπ1 = ηπ2
.

(iii) We denote by η̂ the marginal (or projection) on S of a probability measure
η on S × A, and by φη(∈ 
s) the randomized stationary policy (depending on η),
which is determined by the following decomposition of η:

η(dx, da) = η̂(dx)φη(da|x).(3.2)

Thus, by (3.1) and (2.10), we have Vα(x,π,u) = 1
α

∫
S×A u(x, a)ηπ(dx, da),

and we can rewrite (2.12) as an equivalent optimality problem:

Maximize
1

α

∫
K

r(x, a)η(dx, da)

(3.3)

over η ∈
{
ηπ :

∫
K

cn(x, a)ηπ(dx, da) ≤ αdn,1 ≤ n ≤ N

}
.

To solve problem (3.3), we need to seek a certain compactness structure on the
set of all occupation measures. To do so, we require to characterize an occupation
measure, and we have the following fact.

THEOREM 3.5. Under Assumption A, the following assertions hold.



2026 X. GUO AND X. SONG

(a) The occupation measure ηπ (for each fixed π ∈ 
) satisfies the following
equation:

αη̂π(D) = αγ (D) +
∫
S×A

q(D|x, a)ηπ(dx, da)

∀D ∈ B(S) with sup
x∈D

q∗(x) < ∞.

(b) Conversely, if a probability measure η on S × A (concentrated on K) satis-
fies

αη̂(D) = αγ (D) +
∫
S×A

q(D|x, a)η(dx, da)

∀D ∈ B(S) with sup
x∈D

q∗(x) < ∞

and
∫
S |q({x}|x,φη)|η̂(dx) < ∞, then ηφη = η, where φη is as in (3.2).

(c) If, in addition, Assumptions B(2) and B(3) are satisfied, and q∗(x) ≤ Lw(x)

for all x ∈ S, with some constant L > 0, then φηφ = φ for all φ ∈ 
s .

The proof of Theorem 3.5 appears in Section 5.

REMARK 3.6. Theorems 3.5(a) and 3.5(b) are proved in [35] for continuous-
time MDPs with uniformly bounded transition rates and in [1, 2, 21] for discrete-
time MDPs.

To give a certain convergence of occupation measures, we introduce some no-
tation.

For any real-valued continuous function w̄ ≥ 1 on S, let

Pw̄(S × A) :=
{
η ∈ P(S × A)

∣∣∣ ∫
S
w̄(x)η̂(dx) < ∞

}
.

Then we define two maps, Tw̄ and T ′̄
w , as follows:

Tw̄ : Pw̄(S × A) −→ P(S × A), η �→ Tw̄(η),

where Tw̄(η) is given by

Tw̄(η)(D × 
) :=
∫
D w̄(x)η(dx,
)∫

S w̄(x)η̂(dx)
∀D ∈ B(S) and 
 ∈ B(A);(3.4)

T ′̄
w : P(S × A) −→ Pw̄(S × A), μ �→ T ′̄

w(μ),

where T ′̄
w(μ) is given by

T ′̄
w(μ)(D × 
) :=

∫
D(1/w̄(x))μ(dx,
)∫

S(1/w̄(x))μ̂(dx)
∀D ∈ B(S) and 
 ∈ B(A).(3.5)

[Since 1 ≤ w̄ < ∞ on S, we have 0 <
∫
S

1
w̄(x)

μ(dx) ≤ 1 for any μ ∈ P(S), and
thus the maps Tw̄ and T ′̄

w are well defined.]
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DEFINITION 3.7. The w̄-weak topology on Pw̄(S × A) is defined by the w̄-
weak convergence as follows: a sequence {ηk, k ≥ 1} ⊆ Pw̄(S × A) is called to

w̄-converge weakly to η ∈ Pw̄(S × A) (and written as ηk
w̄−→ η) if

lim
k→∞

∫
S×A

u(x, a)ηk(dx, da) =
∫
S×A

u(x, a)η(dx, da)

for each continuous function u(x, a) on S × A such that |u(x, a)| ≤ Luw̄(x) for
all (x, a) ∈ S × A, with some nonnegative constant Lu depending on u.

Obviously, ηk
w̄−→ η implies ηk

1−→ η (the standard weak convergence of prob-
ability measures). The following lemma establishes the relationship between w̄-
and standard weak convergence.

LEMMA 3.8. For any given real-valued continuous function w̄ ≥ 1 on S, let
{ηk, k = 0,1, . . .} ⊂ Pw̄(S × A) and {μk, k = 0,1, . . .} ⊂ P(S × A). Then:

(a) Tw̄(η) ∈ P(S × A) for all η ∈ Pw̄(S × A) and T ′̄
w(μ) ∈ Pw̄(S × A) for all

μ ∈ P(S × A);
(b) T ′̄

w(Tw̄(η)) = η for all η ∈ Pw̄(S × A) and Tw̄(T ′̄
w(μ)) = μ for all μ ∈

P(S × A);

(c) ηk
w̄−→ η0 if and only if Tw̄(ηk)

1−→ Tw̄(η0);

(d) μk
1−→ μ0 if and only if T ′̄

w(μk)
w̄−→ T ′̄

w(μ0).

The proof of Lemma 3.8 appears in Section 5.
To further analyze the properties of occupation measures, we let

Mo :=
{
ηπ

∣∣∣ ∫
S
w(x)η̂π (dx) < ∞, π ∈ 


}
⊆ Pw(K)

(3.6)
(with w as in Assumption A),

Mc
o :=

{
η ∈ Mo

∣∣∣ ∫
S×A

cn(x, a)η(dx, da) ≤ αdn,n = 1, . . . ,N

}
.(3.7)

LEMMA 3.9. Suppose that Assumptions A, B(2) and B(3) hold. If, in addi-
tion, q∗(x) ≤ Lw(x) for all x ∈ S, with some constant L > 0, then the following
assertions hold:

(a) Mo and Mc
o are convex.

(b) If, in addition,
∫
S g(y)q(dy|x, a) is continuous on K for each fixed g ∈

Cb(S), then Mo is closed (with respect to the w-weak topology).

The proof of Lemma 3.9 appears in Section 5.
For the solvability of (3.3), by Lemmas 3.8 and 3.9, we introduce the following

condition.
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ASSUMPTION C. Let w be as in Assumption A.

(1) The functions cn(x, a) and
∫
S g(y)q(dy|x, a) are continuous on K [for each

fixed g ∈ Cb(S) and 0 ≤ n ≤ N ].
(2) There exist a measurable function w′ ≥ 1 on S and a nondecreasing se-

quence of compact sets Km ↑ K , such that limm→∞ inf(x,a)/∈Km

w(x)
w′(x)

= ∞.
(3) There exist a constant L > 0 such that q∗(x) ≤ Lw(x) for all x ∈ S.

REMARK 3.10. Assumption C(2) is slightly different from the compactness
condition in [19–22, 29] for discrete-time MDPs and [12, 16] for continuous-time
MDPs.

We now state our second main result on the existence of a constrained optimal
policy.

THEOREM 3.11. Suppose that Assumptions A, B and C hold. Then:

(a) Mo and Mc
o are metrizable and compact (with respect to the w′-weak

topology), that is, for any sequence {ηk, k ≥ 1} in Mo (or Mc
o), there exists a

subsequence {ηkm,m ≥ 1} and η0 ∈ Mo (or Mc
o) such that such that ηkm

w′−→ η0
as m → ∞.

(b) There exists a constrained optimal policy.

The proof of Theorem 3.11 appears in Section 5.

REMARK 3.12. Theorem 3.11(b) shows the existence of a constrained opti-
mal policy. It should be noted that the conditions for Theorem 3.11(b) are weaker
than those in [12–15, 37] for the class of all Markov policies. This is because some
assumptions such as the nonnegativity of costs in [13] and the absolute integrabil-
ity condition in [12, 13, 15] are not required here.

3.3. Solvability of constrained optimal policies. This subsection states the re-
sults on the solvability of constrained optimal policies.

First, by (3.3) we see that the original constrained optimality problem (2.12) is
equivalent to the following constrained minimization problem:

Minimize V0(π) over π ∈ {π |Vn(π) ≤ dn,n = 1, . . . ,N}.(3.8)

By (2.10) and (3.1), the problem (3.8) can be rewritten into the following form:⎧⎪⎪⎨
⎪⎪⎩

inf
η∈{ηπ |π∈
}

1

α

∫
S×A

c0(x, a)η(dx, da),

subject to
∫
S×A

cn(x, a)η(dx, da) ≤ αdn, n = 1, . . . ,N ,
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which (by Theorem 3.5) is equivalent to the following linear program (LP):

LP : inf
η

∫
S×A

1

α
c0(x, a)η(dx, da)(3.9)

subject to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
S×A

cn(x, a)η(dx, da) ≤ αdn, n = 1, . . . ,N,

αη̂(D) = αγ (D) +
∫
S×A

q(D|x, a)η(dx, da),

for all D ∈ B(S) with sup
x∈D

q∗(x) < ∞,∫
S
w(x)η̂(dx) < ∞, η ∈ P(K).

(3.9′)

Obviously, (3.9) is a linear program over the set of probability measures η ∈ P(K)

satisfying (3.9′). We call (3.9) the primal linear programming formulation of
(2.12).

Thus, we obtain the following result on the solvability of constrained optimal
policies.

THEOREM 3.13. Under Assumptions A, B and C(3), the following assertions
hold.

(a) If there exists a feasible solution to LP (3.9), then the set U of constrained
policies is nonempty. Conversely, if U is nonempty, then there exists a feasible
solution to LP (3.9).

(b) If there exists an optimal solution η∗ to LP (3.9), then the randomized sta-
tionary policy φη∗

is constrained optimal. Conversely, if π∗ is constrained optimal,
then ηπ∗

is an optimal solution to LP (3.9).
(c) If, in addition, U �= ∅ and Assumptions C(1) and C(2) are satisfied, then an

optimal solution η∗ to LP (3.9) exists, and the policy φη∗
is constrained optimal.

The proof of Theorem 3.13 appears in Section 5.
In particular, when S and A(x) are finite, then LP (3.9) is the form of

minimize
∑
x∈S

∑
a∈A(x)

1

α
c0(x, a)η(x, a)

(3.10)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
x∈S

∑
a∈A(x)

c1(x, a)η(x, a) ≤ αd1,

...
...

...∑
x∈S

∑
a∈A(x)

cn(x, a)η(x, a) ≤ αdN,

α
∑

a∈A(x)

η(x, a) = αγ (x) + ∑
y∈S

∑
a∈A(y)

q(x|y, a)η(y, a),

∀x ∈ S,η(x, a) ≥ 0, x ∈ S, a ∈ A(x),
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which is a LP and can be solved by many methods such as the well-known simplex
method.

To state the structure of constrained optimal policies, we need to recall some
concepts. We say that under φ ∈ 
s , there are m(x,φ) randomizations at x ∈ S if
there are m(x,φ) + 1 actions a ∈ A(x) for which φ(a|x) > 0. When S and A(x)

are finite, we call #(φ) := ∑
x∈S m(x,φ) the number of randomizations under φ.

Thus, following Theorem 3.8 in [1] and Theorem 3.13 above, we have the fol-
lowing fact.

COROLLARY 3.14. Suppose that S and A(x) are finite. Let η∗ be an optimal
basic solution to LP (3.10). Then, the policy φη∗

is constrained optimal, where φη∗

is given by

φη∗
(a|x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η∗(x, a)

η̂∗(x)
, when η̂∗(x) := ∑

a∈A(x)

η∗(x, a) > 0

and a ∈ A(x),
I{a(x)}(a), when η̂∗(x) = 0 and a ∈ A(x),

(3.11)

for all x ∈ S, a(x) ∈ A(x) is chosen arbitrarily. Further, #(φη∗
) ≤ N .

Corollary 3.14 provides the structure of a constrained optimal policy for finite
S and A(x), and it is proven for the case of denumerable states and a single con-
straint in [13, 42]. For a more general case of Polish spaces, we have the following
facts, in which the first one (i.e., Theorem 3.15) establishes the relationship be-
tween stationary policies in F and extreme points in Mo, and the second one (i.e.,
Theorem 3.16) shows a structure of a constrained optimal policy.

THEOREM 3.15. Suppose that Assumptions A, B(2), B(3) and C(3) hold.
Then:

(a) ηf is an extreme point in Mo for each f ∈ F .
(b) If, for each φ ∈ 
s and D ∈ B(S) with η̂φ(D) > 0, there exists state x ∈ D

(depending on D and φ) such that η̂φ({x}) > 0, then η is an extreme point in Mo

if and only if there exists a policy f ∈ F such that η = ηf .

[The condition in Theorem 3.15(b) is satisfied when S is denumerable.]

The proof Theorem 3.15 appears in Section 5.

THEOREM 3.16. Suppose that Assumptions A, B, C and the conditions for
Theorem 3.15(b) are satisfied. Then, there exists a constrained optimal policy
π∗ ∈ 
s , which is a mixture of (N + 1) stationary policies, that is, there ex-
ists (N + 1) numbers pn ≥ 0 and policies fn ∈ F (1 ≤ n ≤ N + 1) such that

π∗ = φ(p1η
f1+···+pN+1η

fN+1 ) and p1 + · · · + pN+1 = 1.
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The proof of Theorem 3.16 appears in Section 5.

REMARK 3.17. The arguments of Theorems 3.11, 3.13, 3.15 and 3.16 do not
depend on the data in model (2.1), but they are based on Theorem 3.5. Thus, the
discrete-time versions of Theorems 3.11, 3.13, 3.15 and 3.16 are still true because
Theorem 3.5 is established in [1, 2, 21] for discrete-time MDPs.

4. Examples. In this section, we illustrate our conditions and main results
with examples.

EXAMPLE 4.1. Let S := (−∞,∞), A(x) := [β0, β(|x| + 1)] for each x ∈
S with some constants 0 < β0 < β . Suppose that the reward r(x, a) and costs
cn(x, a) (1 ≤ n ≤ N) are given. We consider the transition rates q(·|x, a) given by

q(D|x, a) := (|x| + 1)

[∫
D−{x}

f (y|x, a) dy − δx(D)

]
(4.1)

for (x, a) ∈ K,D ∈ B(S),

where f (y|x, a) := 1√
2πa

e−(y−x)2/(2a) is the density function of Gaussian distri-
bution N(x, a).

We now aim to find conditions that ensure the existence of constrained optimal
policies for Example 4.1. To do so, we need the following hypotheses.

ASSUMPTION D. Let α,γ, dn and U ( �=∅) be as in (2.11).

(1) α > 6β and
∫
S x4γ (dx) < ∞ (hence, there exists a constant ρ such that

6β < ρ < α);
(2) cn(x, a) (0 ≤ n ≤ N ) are continuous on K and |cn(x, a)| ≤ L′(x2 + 1) for

all (x, a) ∈ K , with some constant L′ > 0, where c0(x, a) := −r(x, a).

Then, we have the following result.

PROPOSITION 4.2. Under Assumption D, Example 4.1 satisfies Assump-
tions A, B and C. Therefore (by Theorem 3.11), there exists a constrained optimal
policy for Example 4.1.

PROOF. For each m ≥ 1 and x ∈ S, let

Sm := [−m,m], Km := {(x, a)|x ∈ Sm,a ∈ A(x)},
(4.2)

w′(x) := x2 + 1, w(x) := x4 + 1.



2032 X. GUO AND X. SONG

To verify Assumption A, it suffices to verify Assumption A(1) because Assump-
tions A(2) and A(3) follow from (4.2) and (4.1). Indeed, by (4.1) and a straightfor-
ward calculation, we have∫

S
w(y)q(dy|x, a) = 6(x2a + 3a2)(|x| + 1)

(4.3)
≤ βw(x) + b for some constant b > 0,

which implies Assumption A(1).
Obviously, Assumption B follows from (4.3) and Assumptions D(1) and D(2).
To verify Assumption C, for any g ∈ Cb(S), by (4.1) we have the following:∫

S
g(y)q(dy|x, a) = (|x| + 1)

[∫ ∞
−∞

g(y)
1√
2πa

e−(y−x)2/(2a) dy − g(x)

]
,

which, together with the dominated convergence theorem, implies Assump-
tion C(1). Therefore, Assumption C holds because Assumptions C(2) and C(3)
follow from (4.1) and (4.2).

Using Example 4.1, we present computable examples for unconstrained optimal
policies.

EXAMPLE 4.3. With the same data as in Example 4.1, we further suppose that
r(x, a) in Example 4.1 is given by

r(x, a) := px2 − δa2 for (x, a) ∈ K,(4.4)

where p, δ > 0 are fixed constants.

ASSUMPTION E. Let β0 and β be as in Example 4.1, and L′ as in Assump-
tion D(2).

(1) dn ≥ L′[α ∫
S x4γ (dx) + α + b]/[α(α − β)] for all 1 ≤ n ≤ N), with b :=

β(
ρ+2β
ρ−β

+ 2)2;

(2) 2αβ0 − β2
0 ≤ p

δ
≤ min{α2,2αβ − β2}, with p, δ as in (4.4).

PROPOSITION 4.4. Suppose that Assumptions D and E hold. Then:

(a) Example 4.3 satisfies Assumptions A, B and C. Moreover, Vr(U) =∫
S u(x)γ (dx), where

u(x) = (
2δα − 2

√
δ2α2 − pδ

)
x2 +

(
4δα − 4

√
δ2α2 − pδ − 2p

α

)
|x|

+ 2δα − 2
√

δ2α2 − pδ − p

α
.
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(b) The stationary policy f ∗ is unconstrained optimal for Example 4.3, where

f ∗(x) :=
(
α −

√
α2 − p

δ

)
(|x| + 1) ∀x ∈ S.

PROOF. Note that Assumptions E(1) and D imply that U = 
 (by Theo-
rem 3.3), and so the problem (2.12) becomes an unconstrained optimality problem.
Thus, as in Proposition 4.2, under Assumptions D and E, we see that all assump-
tions in Theorem 3.3 in [12] are satisfied. Hence, Theorem 3.3 in [12] ensures the
existence of a function u in Bw(S) such that, for each x ∈ S and π ∈ 
,

αu(x) = sup
a∈A(x)

{
r(x, a) +

∫
S
u(y)q(dy|x, a)

}
and u(x) ≥ Vr(x,π).(4.5)

To obtain the analytic expression of u, we assume for a moment that

u(x) := l2x
2 + l1x + l0 for x ∈ S, with some constants l1, l2, l2.(4.6)

Then, using (4.1), (4.4) and (4.5), by a straightforward calculation we have

α(l2x
2 + l1x + l0) = sup

a∈A(x)

{
px2 − δ

(
a − l2(|x| + 1)

2δ

)2

+ l2
2(|x| + 1)2

4δ

}
,(4.7)

which implies that f ∗(x) := l2(|x|+1)
2δ

attains the maximum of the right-hand side
of (4.7). Therefore, by Theorem 3.3 in [12], we have

Vr(x, f ∗) = u(x) and α(l2x
2 + l1x + l0) = px2 + l2

2(|x| + 1)2

4δ
(4.8)

∀x ∈ S.

Comparing with the coefficients of both sides in (4.8), we obtain

αl2 = p + l2
2

4δ
, αl1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l2
2

2δ
, if x ≥ 0,

− l2
2

2δ
, otherwise,

αl0 = l2
2

4δ
.(4.9)

Under Assumption E, solving the system of equations (4.9) gives

l2 = 2δα − 2
√

δ2α2 − pδ, l0 = 2δα − 2
√

δ2α2 − pδ − p

α
,

l1 =

⎧⎪⎪⎨
⎪⎪⎩

4δα − 4
√

δ2α2 − pδ − 2p

α
, if x ≥ 0,

−
(

4δα − 4
√

δ2α2 − pδ − 2p

α

)
, otherwise,
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which, together with (4.6) and (4.8), yields

u(x) = (
2δα − 2

√
δ2α2 − pδ

)
x2 +

(
4δα − 4

√
δ2α2 − pδ − 2p

α

)
|x|

+ 2δα − 2
√

δ2α2 − pδ − p

α
,

f ∗(x) =
(
α −

√
α2 − p

δ

)
(|x| + 1) ∈ A(x) and Vr(x, f ∗) = u(x) ∀x ∈ S.

This, together with (4.5) and (2.10), completes the proof of this proposition. �

EXAMPLE 4.5. Let S := (−∞,∞), A(x) := [0, β(|x| + 1)] for each x ∈ S

with some constant β > 0, and the reward r(x, a) and transition rates q(·|x, a) are
defined as follows: for each (x, a) ∈ K and D ∈ B(S),

q(D|x, a) := (β|x| + a)

[∫
D−{x}

1√
2π(β(|x| + 1) − a + 1)

× e−(y−x)2/(2(β(|x|+1)−a+1)) dy − δx(D)

]
.

r(x, a) := p|x|a − δa2 for (x, a) ∈ K , with p, δ > 0.

ASSUMPTION E. α > β2;
∫
S x2γ (dx) < ∞; and β ≥ max{1,

p
2δ

}.

Then as the arguments for Example 4.3 in Proposition 4.4, we have the follow-
ing results.

PROPOSITION 4.6. Under Assumption E, Example 4.5 satisfies Assump-
tions A, B and C. Moreover, if, in addition, U = 
, then Vr(U) = ∫

S u(x)γ (dx),
where

u(x) = 1

2
δ
(√

κ + 1 − 1
)
x2

+ 1

2ακ

[
p

(√
κ + 1 − 1

) + κδβ
]
(β + 1)

(√
κ + 1 − 1

)|x|

+ 1

8ακ
δ(β + 1)2(√

κ + 1 − 1
)3

with κ := p2

δ2(α−β2)
> 0, and the following stationary policy f ∗ is unconstrained

optimal:

f ∗(x) := p(
√

κ + 1 − 1)

δκ
|x| + 1

2κ
(β + 1)

(√
κ + 1 − 1

)2 ∀x ∈ S.
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PROOF. The proof of Proposition 4.6 is similar to that of Proposition 4.2, and
thus the details are omitted here. �

REMARK 4.7. In Examples 4.1, 4.3 and 4.5, the transition rates are un-
bounded, and the reward and costs are allowed to be unbounded from above and
from below. In contrast, the transition rates in [18, 26, 27, 30, 37, 39, 40] are as-
sumed to be bounded, and the costs in [11, 19, 20, 22, 27, 29] are assumed to be
nonnegative. Moreover, Examples 4.3 and 4.5 seem to be first computable exam-
ples for the unconstrained optimal policies for discounted continuous-time MDPs
in Polish spaces.

5. Proofs of the main results. In this section, we give proofs of Theorems
3.1, 3.5, 3.11, 3.13, 3.15, 3.16 and of Lemmas 3.8 and 3.9, which are stated in
Section 3.

To prove Theorems 3.1, we need the following two lemmas.

LEMMA 5.1. Suppose that real-valued measurable functions w̄ ≥ 0 on S and
q̄t (D|x) on R

0+ × B(S) × S satisfy the following: for each t ≥ 0,D ∈ B(S) and
x ∈ S:

(1) q̄t (·|x) is a signed measure on B(S) such that q̄t (S|x) ≡ 0, q̄t (D|x) ≥ 0 for
all x /∈ D and q̄t (x) := q̄t (S − {x}|x) < ∞;

(2)
∫
S w̄(y)q̄t (dy|x) ≤ ρ̄w̄(x) + b̄, with constants ρ̄ �= 0 and b̄ ≥ 0.

Then nonnegative function

h̄(s, x, t) := eρ̄(t−s)w̄(x) + b̄

ρ̄

(
eρ̄(t−s) − 1

)
(5.1)

satisfies the following inequality:∫ t

s

∫
S−{x}

e− ∫ z
s q̄v(x) dvq̄z(dy|x)h̄(z, y, t) dz + e− ∫ t

s q̄v(x) dvw̄(x) ≤ h̄(s, x, t)

for all x ∈ S and 0 ≤ s ≤ t < ∞.

PROOF. Under conditions (1) and (2), a straightforward calculation gives∫ t

s

∫
S−{x}

e− ∫ z
s q̄v(x) dvq̄z(dy|x)h̄(z, y, t) dz

≤
∫ t

s
e− ∫ z

s q̄v(x) dv

[
eρ̄(t−z)

(
ρ̄w̄(x) + b̄

+ w̄(x)q̄z(x) + b̄

ρ̄
q̄z(x)

)
− b̄

ρ̄
q̄z(x)

]
dz

= h̄(s, x, t) − e− ∫ t
s q̄v(x) dvw̄(x),

which verifies this lemma. �
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LEMMA 5.2. Suppose that Assumption A(1) holds for ρ �= 0. Then, for any
π ∈ 
 and x ∈ S,

Eπ
x

[
w(ξt )I{t<Tk+1}

] ≤ eρtw(x) + b

ρ
(eρt − 1) ∀k ≥ 0 and t ≥ 0,

where w and b are from Assumption A(1).

PROOF. Fix any π ∈ 
, l ≥ 1, and (x0, θ1, x1, . . . , xl−1, θl) ∈ (S × R
0+)l . Let

ml(·|hl, t) be as in (2.8). Then, it follows from Assumption A(1) that the following
function on R

0+ × B(S) × S:

q̄t (D|x) :=
{

ml(D|x0, θ1, x1, . . . , θl, x, t), if x /∈ D,
−ml(S|x0, θ1, x1, . . . , θl, x, t), if D = {x},

satisfies conditions (1) and (2) for Lemma 5.1.
Let h(s, x, t) := eρ(t−s)w(x)+ b

ρ
(eρ(t−s) −1) for all x ∈ S and t ≥ s ≥ 0. Then,

for each fixed x ∈ S and 0 ≤ s ≤ t , by Lemma 5.1 we have∫ t

s

∫
S−{x}

ml(dy|hl−1, θl, x, z − Tl)h(z, y, t)

× e− ∫ z
s ml(S|hl−1,θl ,x,v−Tl) dv dz

+ w(x)e− ∫ t
s ml(S|hl−1,θl ,x,v−Tl) dv

=
∫ t−Tl

s−Tl

∫
S−{x}

ml(dy|hl−1, θl, x, ũ)h(ũ, y, t − Tl)(5.2)

× e
− ∫ ũ

s−Tl
ml(S|hl−1,θl ,x,ṽ) dṽ

dũ

+ w(x)e
− ∫ t−Tl

s−Tl
ml(S|hl−1,θl ,x,ṽ) dṽ

≤ h(s − Tl, x, t − Tl) = h(0, x, t − s).

Moreover, by (2.5) and (2.9), we have

Eπ
x

[
w(ξt )I{t<Tk+1}|FTk

]

= e− ∫ t−Tk
0 mk(S|hk,v) dvw(xk)I{Tk≤t} + I{Tk>t}

k∑
m=1

I{Tm−1≤t<Tm}w(xm−1).

Now, using (5.2) at l = k, s = Tk = Tl, x = xk = xl , gives

Eπ
x

[
w(ξt )I{t<Tk+1}|FTk

]

≤ I{Tk≤t}h(Tk, xk, t) + I{Tk>t}
k∑

m=1

I{Tm−1≤t<Tm}w(xm−1),
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which implies that the following (5.3) holds for n = 0:

Eπ
x

[
w(ξt )I{t<Tk+1}|FTk−n

]

≤ I{Tk−n≤t}h(Tk−n, xk−n, t) + I{Tk−n>t}
k−n∑
m=1

I{Tm−1≤t<Tm}w(xm−1)(5.3)

∀k ≥ n ≥ 0.

Suppose that (5.3) holds for some 0 ≤ n < k. Then, by (2.9) we have

Eπ
x

[
w(ξt )I{t<Tk+1}|FTk−n−1

]
≤ Eπ

x

[
I{Tk−n≤t}h(Tk−n, xk−n, t)

+ I{Tk−n>t}
k−n∑
m=1

I{Tm−1≤t<Tm}w(xm−1)
∣∣∣FTk−n−1

]

= Eπ
x

[
I{Tk−n≤t}h(Tk−n, xk−n, t)

+ I{Tk−n>t}I{Tk−n−1≤t<Tk−n}w(xk−n−1)|FTk−n−1

]

+ I{Tk−n>t}
k−n−1∑
m=1

I{Tm−1≤t<Tm}w(xm−1)

= I{Tk−n−1≤t}
[∫ t−Tk−n−1

0

∫
S−{xk−n−1}

mk−n−1(dy|hk−n−1, t̃ )

× h(Tk−n−1 + t̃ , y, t)

× e− ∫ t̃
0 mk−n−1(S|hk−n−1,ṽ) dṽ dt̃

+ e− ∫ t−Tk−n−1
0 mk−n−1(S|hk−n−1,ṽ) dṽw(xk−n−1)

]

+ I{Tk−n−1>t}
k−n−1∑
m=1

I{Tm−1≤t<Tm}w(xm−1),

which together with h(Tk−n−1 + t̃ , y, t) = h(t̃, y, t − Tk−n−1) and (5.2) again,
gives

Eπ
x

[
w(ξt )I{t<Tk+1}|FTk−n−1

]
≤ I{Tk−n−1}≤t}h(Tk−n−1, xk−n−1, t)

+ I{Tk−n−1>t}
k−n−1∑
m=1

I{Tm−1≤t<Tm}w(xk−1).

Hence, (5.3) holds for all 0 ≤ n ≤ k, and so this lemma follows from (5.3) at n = k.
�
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PROOF OF THEOREM 3.1. (a) We first prove the following fact:

P π
x

(
ξt I{Tk≤t<Tk+1} /∈ Sl : for some k ≥ 0

) → 0 as l → ∞.(5.4)

To prove (5.4), let 
l := {e : ξt (e)I{Tk≤t<Tk+1}(e) /∈ Sl for some k ≥ 0} for any l ≥ 1.

Suppose that, for some ε > 0 and any L̃ ≥ 1, there exists l > L̃ such that

P π
x (
l) = P π

x

({
e : ξt (e)I{Tk≤t<Tk+1}(e) /∈ Sl for some k ≥ 0

})
> ε.(5.5)

Then, by Assumption A(2), we can take the corresponding l such that (5.5) holds
and also the following inequality:

w(y) >

[
eρ̃tw(x) + b

ρ̃
(eρ̃t − 1)

]/
ε ∀y /∈ Sl,(5.6)

is satisfied, where ρ̃ := |ρ| + 1.
For the taken l ≥ 1 in (5.6), let us define new transition rates q̃(D|x, a) as fol-

lows:

q̃(D|x, a) :=
{

q(D|x, a), if x ∈ Sl ,
0, if x /∈ Sl ,

for (x, a) ∈ K.

The quantities such as probabilities corresponding to q̃(D|x, a) are equipped with
the tilde.

We next to prove that

P π
x

(
ξt I{Tk≤t<Tk+1} ∈ Sl for all k ≥ 0

)
(5.7)

= P̃ π
x

(
ξt I{Tk≤t<Tk+1} ∈ Sl for all k ≥ 0

)
.

Indeed, it is obvious that

P π
x (X0 ∈ Sl) = P̃ π

x (X0 ∈ Sl) = ISl
(x).

Let Xt
k := XkI{Tk≤t<Tk+1}. Then, by (2.5) we have {ξt I{Tk≤t<Tk+1} ∈ Sl} = {Xt

k ∈
Sl}. We now suppose that for some n ≥ 0,

P π
x ({Xt

k ∈ Sl,0 ≤ k ≤ n} ∩ 
)
(5.8)

= P̃ π
x ({Xt

k ∈ Sl,0 ≤ k ≤ n} ∩ 
) ∀
 ∈ B(Ĥn),

where P π
x and P̃ π

x are regarded as the marginal on Ĥn+1.
Using the notation in (2.8) and (2.9), for any D ∈ B(S),0 < t1 < t2 < ∞, we

have

P π
x

({Xt
k ∈ Sl,0 ≤ k ≤ n, and Xt

n+1 ∈ Sl} ∩ {
 × (t1, t2) × D})
=

∫ t2

t1

∫



P π
x (dhn)I{Xt

k∈Sl,0≤k≤n}I{Xt
n+1∈Sl∩D}

× mn(Sl ∩ D|hn, t̃ )e− ∫ t̃
0 mn(S|hn,v) dv dt̃
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=
∫ t2

t1

∫



P̃ π
x (dhn)I{Xt

k∈Sl,0≤k≤n}I{Xt
n+1∈Sl∩D}

× m̃n(Sl ∩ D|hn, t̃ )e− ∫ t̃
0 m̃n(S|hn,v) dv dt̃

= P̃ π
x

({Xt
k ∈ Sl,0 ≤ k ≤ n, andXt

n+1 ∈ Sl} ∩ {
 × (t1, t2) × D}),
which together with the arbitrariness of D ∈ B(S) and 0 ≤ t1 < t2 implies (5.8) for
n + 1, and thus (5.7) follows from the induction.

Thus, from (5.5) and (5.7), we have

P̃ π
x (
l) = P̃ π

x

(
ξt I{Tk≤t<Tk+1} /∈ Sl for some k ≥ 0

)
> ε.(5.9)

Moreover, since ‖q̃‖ := supx∈S,a∈A(x) |q̃({x}|x, a)| = supx∈Sl,a∈A(x) |q({x}|x,

a)| < ∞, we now show by induction that

Ẽπ
x [e−Tk ] ≤ [

1 − e−‖q̃‖(1 − e−1)
]k ∀k ≥ 1.(5.10)

In fact, by (2.8) we have |m̃k(S|hk) ≤ ‖q̃‖ for all k ≥ 1, and it follows from (2.9)
that

Ẽπ
x [e−T1] =

∫ 1

0
m̃0(S|x)e−m̃0(S|x)t e−t dt +

∫ ∞
1

m̃0(S|x)e−m̃0(S|x)t e−t dt

(5.11)

≤ 1 − e−‖q̃‖
∫ 1

0
e−t dt = [

1 − e−‖q̃‖(1 − e−1)
]
.

Suppose that (5.10) holds for some k ≥ 1. Then, as the arguments of (5.11), from
(2.8) and (2.9) we also have Ẽπ

x [e−Tk+1] ≤ Ẽπ
x [e−Tk [1 − e−‖q̃‖(1 − e−1)]] ≤ [1 −

e−‖q̃‖(1 − e−1)]k+1, and so (5.10) follows. Hence, by (5.10) and the Chebychev
inequality we have

P̃ π
x (T∞ ≤ t) ≤ P̃ π

x (Tk ≤ t) = P̃ π
x (e−Tk ≥ e−t ) ≤ et Ẽπ

x [e−Tk ]
≤ et [1 − e−‖q̃‖(1 − e−1)

]k
for all k ≥ 1, and so P̃ π

x (T∞ ≥ t) = 1. Since t > 0 can be arbitrary, we have
P̃ π

x (T∞ = ∞) = 1, and therefore,
∑∞

k=0 P̃ π
x (Tk ≤ t < Tk+1) = 1. Since Assump-

tion A(1) still holds when ρ and q(D|x, a) are replaced with ρ̄ and q̃(D|x, a),
respectively, by Lemma 5.2 we have

Ẽπ
x [w(ξt )] = lim

k→∞ Ẽπ
x

[
w(ξt )I{t<Tk+1}

] ≤ eρ̃tw(x) + b

ρ̃
(eρ̃t − 1).(5.12)

On the other hand, using (5.6) and (5.9), we see

Ẽπ
x [w(ξt )] = Ẽπ

x [w(ξt )|
l]P̃ π
x (
l) + Ẽπ

x [w(ξt )|
c
l ]P̃ π

x (
c
l )

> eρ̃tw(x) + b

ρ̃
(eρ̃t − 1),
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which contradicts to (5.12), and thus (5.4) is proved.
Since 
l+1 ⊆ 
l for all l ≥ 1, by (5.4) we conclude that P π

x (
⋂

l≥0 
l) = 0, and
so

P π
x

({
for each l ≥ 1, there exists k such that ξt I{Tk≤t<Tk+1} /∈ Sl

}) = 0.(5.13)

Since {inf{s : ξs /∈ Sl} ≤ t} ⊆ {ξt I{Tk≤t<Tk+1} /∈ Sl , for some k ≥ 1}, by (5.13) we
conclude P π

x (inf{s : ξs /∈ Sl} ≤ t, l = 1, . . .) = 0, and thus P π
x (inf{s : ξs /∈ Sl} > t ,

for some l ≥ 1) = 1, or, equivalently, P π
x (ξs ∈ Sl for all s ∈ [0, t], for some

l ≥ 1) = 1. For any k ≥ 1, let Bk := {ξs ∈ Sl for all s ∈ [0, k], for some l ≥ 1}.
Then, Bk+1 ⊆ Bk and P π

x (Bk) = 1 for all k ≥ 1, and thus P π
x (

⋂∞
k=1 Bk) = 1, which

together with (2.5) implies P π
x (T∞ = ∞) = 1. To further prove P π

x (ξt ∈ S) = 1,
using the facts

∑
k≥0 P π

x (Tk ≤ t < Tk+1) = P π
x (T∞ = ∞) = 1 and P π

x (ξt ∈
S|Tk ≤ t < Tk+1) = 1 for all k ≥ 1, we have that P π

x (ξt ∈ S) = ∑
k≥0 P π

x (ξt ∈
S|Tk ≤ t < Tk+1)P

π
x (Tk ≤ t < Tk+1) = 1, and thus (a) follows.

(b) First, consider the case of ρ �= 0. Since
∑∞

k=0 P π
x (Tk ≤ t < Tk+1) = 1 for all

t ≥ 0,

Eπ
x [w(ξt )] = Eπ

i

[
w(ξt )

∞∑
k=0

I {Tk ≤ t < Tk+1}
]

= lim
k→∞Eπ

i [w(ξt )I {t < Tk+1}],

which together with Lemma 5.2 implies the first part of (b). Moreover, the results
for the case of ρ = 0 can be obtained by letting ρ ↓ 0.

(c) Define an integer-valued random measure μ̃∗ on B(R0+) × B(S)

μ̃∗(dt, dx) := ∑
k≥1

I{Tk<∞}δ(Tk,Xk−1)(dt, dx),(5.14)

which counts the exits from dx. Then, as Lemma 4.28 in [28], the random measure

ν̃π (e, dt, dx) := −
[∫

A
π(da|e, t)q(dx|ξt−(e), a)Idx(ξt−(e))

]
dt

is a dual predictable projection of the measure μ̃∗ with respect to P and P π
γ (for

any fixed policy π ∈ 
 and initial distribution γ ). Hence, by (4.5) in [28] we have

Eπ
x [μ̃∗((0, t],D)] = Eπ

x [ν̃π ((0, t],D)]
≤ Eπ

x

[∫ t

0

∫
A

π(da|e, s) sup
x∈D

q∗(x) ds

]
< ∞ ∀t ≥ 0,

which together with |μ∗((0, t],D) − μ̃∗((0, t],D)| ≤ 1 and (4.5) in [28] again,
implies

Eπ
x [μ∗((0, t],D)] = Eπ

x [νπ((0, t],D)] < ∞.

Thus, using the obvious representation I{ξt∈D} = ID(x) + μ∗((0, t],D) − μ̃∗((0,

t],D), by taking the expectation Eπ
x of the representation we see that (c) is true.

�
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PROOF OF THEOREM 3.5. (a) For the given D, by Theorem 3.1(c) and (3.1)
we have

η̂π (D) = γ (D) + α

∫ ∞
0

e−αtEπ
γ

[∫ t

0

∫
A

π(da|e, s)q(D|ξs−(e), a) ds

]
dt

= γ (D) + α

∫
S

∫
A

q(D|x, a)

×
∫ ∞

0
e−αt

∫ t

0
Eπ

γ

[
π(da|e, s)I{ξs−(e)}(dx) ds

]
dt

= γ (D) + 1

α

∫
S

∫
A

q(D|x, a)ηπ(dx, da),

and so (a) follows.
(b) Recall that η(dx, da) = η̂(dx)φη(da|x). Then, to prove (b), it suffices to

show ∫
S

∫
A

u(x, a)η(dx, da) =
∫
S

∫
A

u(x, a)ηφη

(dx, da)(5.15)

for each nonnegative bounded measurable function u on K . In fact, for any such a
function u, by Lemma 5.3 in [12] and (2.10) we have

αVα(x,φη,u) =
∫
A(x)

u(x, a)φη(da|x)

(5.16)
+

∫
S
Vα(y,φη,u)q(dy|x,φη) ∀x ∈ S.

On the other hand, let ‖u‖1 := sup(x,a)∈K |u(x, a)| < ∞, and |q(dx|x,φη)| the
total variation of q(dy|x,φη). Then, by (T2)–(T3) and the condition in (b) we
have∫

S

∫
S
|Vα(y,φη,u)||q(dy|x,φη)|η̂(dx) ≤ 2‖u‖1

α

∫
S
|q({x}|x,φη)|η̂(dx) < ∞,

which together with the Jordan decomposition of q(·|x,φη) and Theorem 2.6.4
in [3], implies∫

S

∫
S
[η̂(dy)q(dx|y,φη)]Vα(x,φη,u) =

∫
S

[∫
S
Vα(y,φη,u)q(dy|x,φη)

]
η̂(dx).

Hence, by Assumption A(3) we have

lim
k→∞

∫
Sk

∫
S
[η̂(dy)q(dx|y,φη)]Vα(x,φη,u)

(5.17)

= lim
k→∞

∫
Sk

[∫
S
Vα(y,φη,u)q(dy|x,φη)

]
η̂(dx).
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Thus, for any fixed k ≥ 1, since supx∈Sk
q∗(x) < ∞, by (5.16) and (a) we have∫

Sk

∫
A

u(x, a)η(dx, da)

=
∫
Sk

∫
A(x)

u(x, a)[η̂(dx)φη(da|x)]

=
∫
Sk

[
αVα(x,φη,u) −

∫
S
Vα(y,φη,u)q(dy|x,φη)

]
η̂(dx)

= α

∫
Sk

Vα(x,φη,u)γ (dx) +
∫
Sk

Vα(y,φη,u)

[∫
S
η̂(dx)q(dy|x,φη)

]

−
∫
Sk

[∫
S
Vα(y,φη,u)q(dy|x,φη)

]
η̂(dx)

=
∫
Sk

∫
A

u(x, a)ηφη

(dx, da) +
∫
Sk

[∫
S
η̂(dy)q(dx|y,φη)

]
Vα(x,φη,u)

−
∫
Sk

[∫
S
Vα(y,φη,u)q(dy|x,φη)

]
η̂(dx),

which together with (5.17) gives (5.15).
(c) Since φ ∈ 
s , by (a) and (3.2) we have

αη̂φ(D) = αγ (D) +
∫
S
q(D|x,φ)η̂φ(dx)

= αγ (D) +
∫
S

∫
A

q(D|x, a)[η̂φ(dx)φ(da|x)]
∀D ∈ B(S) with sup

x∈D

q∗(x) < ∞.

Moreover, under Assumptions A, B(2) and B(3), by Theorem 3.3 we have∫
S
|q({x}|x,φ)|η̂φ(dx) ≤ L

[
α

∫
S
w(x)γ (dx) + b

]/
[α(α − ρ)] < ∞.(5.18)

Thus, by (b) we see that η̂φ(dx)φ(da|x) = ηφ(dx, da), and so (c) follows. �

PROOF OF LEMMA 3.8. (a) Since the first part of (a) follows from (3.4), we
need to verify the second part of (a). In fact, for each μ ∈ P(S × A), by (3.5)
we have

∫
S w̄(x)T̂ ′̄

w(μ)(dx) = 1∫
S 1/(w̄(x))μ̂(dx)

< ∞, and so the second part of (a)
follows.

(b) By (3.4) and (3.5) and a straightforward calculation, we see that (b) is true.

(c) and (d). We prove (c) and (d) together. Suppose that ηk
w̄−→ η0. Take any

bounded continuous function u on S × A. Then, since w̄ is continuous, by ηk
w̄−→
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η0 we have

lim
k→∞

∫
S×A

v(x, a)w̄(x)ηk(dx, da)

=
∫
S×A

v(x, a)w̄(x)η0(dx, da) for v := u,1,

which together with (3.4), imply

lim
k→∞

∫
S×A

u(x, a)Tw̄(ηk)(dx, da) =
∫
S×A

u(x, a)Tw̄(η0)(dx, da),(5.19)

and thus, Tw̄(ηk)
1−→ Tw̄(η0).

On the other hand, suppose that μk
1−→ μ0, and pick up any continuous func-

tion u(x, a) on S × A such that |u(x, a)| ≤ Luw̄(x) for all (x, a) ∈ K , with some
nonnegative constant Lu depending on u. Then, the functions u(x,a)

w̄(x)
and 1

w̄
are

bounded continuous on S × A. Hence, a straightforward calculation gives

lim
k→∞

∫
S×A

u(x, a)T ′̄
w(μk)(dx, da) =

∫
S×A

u(x, a)T ′̄
w(μ0)(dx, da).(5.20)

By (5.19) and (5.20) and (b), we see that (c) and (d) are both true. �

PROOF OF LEMMA 3.9. (a) For any ηπ1, ηπ2 ∈ Mo and 0 ≤ β ≤ 1, let η :=
βηπ1 + (1 −β)ηπ2 . Then, by Theorem 3.5(a) and a straightforward calculation we
have

αη̂(D) = αγ (D) +
∫
S×A

q(D|x, a)η(dx, da)

(5.21)
∀D ∈ B(S) with sup

x∈D

q∗(x) < ∞,

and also
∫
S w(x)η̂(dx) = ∫

S w(x)[βη̂π1(dx) + (1 − β)η̂π2(dx)] < ∞. Thus, by
Theorem 3.5(b) and (5.21), there exists a randomized stationary policy φη ∈ 
s

such that η = ηφη
. Hence, Mo is convex, and thus so is Mc

o.

(b) Take any sequence {ηm} in Mo such that ηm
w−→ η0 (and thus ηm

1−→ η0).
Then, under Assumptions A, B(2) and B(3), by Theorem 3.1(b) we have∫

S
w(x)η̂m(dx) =

∫
S
w(x)ηm(dx, da) ≤ α

∫
S w(x)γ (dx) + b

α(α − ρ)
(5.22)

= M∗
1 < ∞ ∀m ≥ 1.

Thus, by Lemma 11.4.7 in [22] we have∫
S
|q({x}|x,φη0)|η̂0(dx) ≤ L

∫
S
w(x)η̂0(dx) ≤ L lim inf

m→∞

∫
S
w(x)η̂m(dx)

≤ LM∗
1 < ∞.
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Thus, to prove η0 ∈ Mo, by Theorem 3.5(b) it suffices to show

αη̂0(D) = αγ (D) +
∫
K

q(D|x, a)η0(dx, da)

∀D ∈ B(S) with sup
x∈D

q∗(x) < ∞,

which can follow (by Proposition 7.18 in [4]) from

α

∫
S
g(y)η̂0(dy) = α

∫
S
g(y)γ (dy) +

∫
S

∫
K

g(y)q(dy|x, a)η0(dx, da)

(5.23)
∀g ∈ Cb(S).

Thus, the rest verifies (5.23). For any g ∈ Cb(S), by ηm ∈ Mo and Theorem 3.5(a)
we have

α

∫
Sk

g(y)η̂m(dy) = α

∫
Sk

g(y)γ (dy) +
∫
Sk

∫
K

g(y)q(dy|x, a)ηm(dx, da)

(5.24)
∀k,m ≥ 1.

Since q∗(x) ≤ Lw(x) for all x ∈ S, using Assumption A(3) and the dominated
convergence theorem, by (5.22) and (5.24) with letting k → ∞ we have

α

∫
S
g(y)η̂m(dy) = α

∫
S
g(y)γ (dy) +

∫
S

∫
K

g(y)q(dy|x, a)ηm(dx, da)

(5.25)
∀m ≥ 1.

On the other hand, since | ∫S g(y)q(dy|x, a)| ≤ 2‖g‖1q
∗(x) ≤ 2L‖g‖1w(x) [for

all a ∈ A(x)], by ηm
w−→ η0 and Assumption C(1), we have

lim
m→∞

∫
S
g(y)η̂m(dy) = lim

m→∞

∫
S
g(y)ηm(dy, da) =

∫
S
g(y)η0(dy, da)

=
∫
S
g(y)η̂0(dy)

and

lim
m→∞

[∫
S

∫
K

g(y)q(dy|x, a)ηm(dx, da)

]
=

∫
S

∫
K

g(y)q(dy|x, a)η0(dx, da),

which together with ( 5.25) give (5.23), and so (b) follows. �

PROOF OF THEOREM 3.11. (a) Since P(S ×A) is metrizable, it follows from
Lemma 3.8 (with w̄ := w) that Pw(S × A) is also metrizable, and so are Mo

and Mc
o. Since Mo is closed (by Lemma 3.9) and Mc

o is a closed subset of Mo

under the additional Assumption C(1), it suffices to show that Mo is sequentially
relatively compact. Indeed, for each η ∈ Mo, since 1 ≤ ∫

S w′(x)η̂(dx) < ∞ [using
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Assumption C(2)], Tw′(η) is well defined. Moreover, by (3.4) and Theorem 3.3, we
have∫

S×A

w(x)

w′(x)
Tw′(η)(dx, da) =

∫
S×A w(x)η(dx, da)∫
S×A w′(x)η(dx, da)

≤
∫
S×A

w(x)η(dx, da) ≤ αM∗
1 ∀η ∈ Mo,

where M∗
1 is as in Theorem 3.3(b). Thus, by Assumption C(2) and Prohorov’ the-

orem (see Theorem 12.2.15 in [22]) we see that {Tw′(η), η ∈ Mo} is sequentially
relatively compact, and so is Mo (by Lemma 3.8 with w̄ := w′).

(b) Under Assumptions A and B, by Theorem 3.3(b) we have |Vr(π)| ≤ MM∗
1

and |Vn(π)| ≤ MM∗
1 for 1 ≤ n ≤ N . Moreover, by Theorem 3.5 and (2.12) [equiv-

alently, (3.3)] we can find a sequence {ηπk } (πk ∈ 
s, k = 1, . . .) such that

Vr(U) = lim
k→∞

1

α

∫
K

r(x, a)ηπk (dx, da),

(5.26) ∫
K

cn(x, a)ηπk (dx, da) ≤ αdn, n = 1, . . . ,N.

Then, by (a) there exists a subsequence {ηπkm } and η0 ∈ Mo such that ηπkm
w−→ η0

as m → ∞, which together with (5.26) implies

Vr(U) = 1

α

∫
K

r(x, a)η0(dx, da)

and ∫
K

cn(x, a)η0(dx, da) ≤ αdn, n = 1, . . . ,N,

and so φη0 is constrained optimal. �

PROOF OF THEOREM 3.13. Obviously, parts (a), (b) are directive conse-
quence of (3.9) and Theorem 3.5. Moreover, (c) follows from (b) and Theo-
rem 3.11(b). �

PROOF OF THEOREM 3.15. (a) Under Assumptions A, B(2), B(3) and C(3),
by Theorems 3.1 and 3.5 we have

Mo =
{
ηπ

∣∣∣ ∫
S
w(x)η̂π (dx) ≤ αM∗

1 , π ∈ 


}

=
{
ηπ

∣∣∣ ∫
S
w(x)η̂π (dx) ≤ αM∗

1 , π ∈ 
s

}
.

We now prove that ηf is an extreme point in Mo for each f ∈ F . In fact, for
any fixed f ∈ F , suppose that ηf is not any extreme in Mo. Then, there exist
β ∈ (0,1) and π1, π2 ∈ 
s such that

ηf = βηπ1 + (1 − β)ηπ2 and ηπ1 �= ηπ2,(5.27)
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which implies that η̂πk � η̂f (k = 1,2). Thus, it follows from (5.27) and Theo-
rem 3.5 that

f (da|x) = β
dη̂π1

dη̂f
(x)π1(da|x) + (1 − β)

dη̂π2

dη̂f
(x)π2(da|x) and

(5.28)

β
dη̂π1

dη̂f
(x) + (1 − β)

dη̂π2

dη̂f
(x) = 1 ∀x ∈ Ŝ

for some Ŝ ∈ B(S) with η̂f (Ŝ) = 1, where dη̂πk

dη̂f denote the (nonnegative) Radon–

Nikodym derivative. Moreover, by ηπ1 �= ηπ2 we see that η̂f ({x ∈ Ŝ|π1(
|x) �=
π2(
|x) for some 
 ∈ B(A)}) > 0. (Otherwise, ηπ1 and ηπ2 coincide.) Thus, for
each x ∈ {x ∈ Ŝ|π1(
|x) �= π2(
|x) for some 
 ∈ B(A)}, there exists a corre-
sponding 
x ∈ B(A) (depending on x) such that 0 < π1(
x |x) < π2(
x |x) < 1.
Therefore, by (5.28) we have that 0 < π1(
x |x) ≤ f (
x |x) ≤ π2(
x |x) < 1,
which contracts with the nonrandom of f ∈ F .

(b) By (a) we only need to show the necessity part. Suppose that π ∈ 
s and
ηπ �= ηf for all f ∈ F . Then, there exists D ∈ B(S) such that 0 < η̂π(D) < 1 and
0 < π(
x |x) < 1 for all x ∈ D and some 
x ∈ B(A(x)) (depending on x). Then,
by the condition in (b), there exists x′ ∈ D such that

0 < η̂π({x′}) < 1 and
(5.29)

0 < π(
x′ |x′) < 1 for some 
x′ ∈ B(A(x′)).
By (5.29), we now define two policies π1 and π2 as follows:

π1(da|x) :=
{

π(da|x), if x �= x′,
π(da ∩ 
x′ |x′)/π(
x′ |x′), if x = x′;(5.30)

π2(da|x) :=
{

π(da|x), if x �= x′,
π(da ∩ 
c

x′ |x′)/π(
c
x′ |x′), if x = x′.(5.31)

Let β := π(
x′ |x′), δ′ := βη̂π2 ({x′})
βη̂π2 ({x′})+(1−β)η̂π1 ({x′}) when η̂π1({x′}) + η̂π1({x′}) >

0, and δ′ = 1
2 when η̂π1({x′}) + η̂π1({x′}) = 0. Then, for each D ∈ B(S) with

supx∈D q∗(x) < ∞, by Theorem 3.5 and (5.30), (5.31) as well as a straightfor-
ward calculation we have

αη̂π1(D) = αγ (D) +
∫
S−{x′}

q(D|x,π)η̂π1(dx)

+
∫

x′

q(D|x′, a)π(da|x′)η̂π1({x′})/β,

αη̂π2(D) = αγ (D) +
∫
S−{x′}

q(D|x,π)η̂π2(dx)

+
∫

c

x′
q(D|x′, a)π(da|x′)η̂π2({x′})/(1 − β).
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Multiplying by δ′ and (1 − δ′) the two equalities, respectively, and then summariz-
ing, we have

α[δ′η̂π1(D) + (1 − δ′)η̂π2(D)]
= αγ (D) +

∫
S
q(D|x,π)[δ′η̂π1(dx) + (1 − δ′)η̂π2(dx)],

which together with Theorem 3.5(c) implies ηπ = δ′ηπ1 + (1 − δ′)ηπ2 . Moreover,
by (5.29) we see that 0 < ηπ1({x′} × 
x′) = η̂π1({x′}) < 1 and ηπ2({x′} × 
x′) =
η̂π2({x′})π2(
x′ |x′) = 0. Hence, ηπ = δ′ηπ1 + (1 − δ′)ηπ2 is not an extreme point.

�

PROOF OF THEOREM 3.16. Let φ∗ be a constrained optimal policy [by The-
orem 3.13(c)], and Mc

o(e) be the set of all extreme points in Mc
o in (3.7). Since

Mc
o has been proved to be convex compact [by Theorem 3.11(a) and Lemma 3.9].

Thus, by Choquet’s theorem [32], ηφ∗
is the barycenter of a probability measure μ̄

supported on Mc
o(e). Therefore,∫

S×A
c0(x, a)ηφ∗

(dx, da) =
∫

Mc
o(e)

(∫
S×A

c0(x, a)η(dx, da)

)
μ̄(dη).(5.32)

On the other hand, since
∫
S×A c0(x, a)ηφ∗

(dx, da) ≤ ∫
S×A c0(x, a)η(dx, da) for

all η ∈ Mc
o(e), it follows from (5.32) that there exists η∗ ∈ Mc

o(e) such that∫
S×A

c0(x, a)ηφ∗
(dx, da) =

∫
S×A

c0(x, a)η∗(dx, da).

Hence, π∗ := φη∗
is also constrained optimal. Moreover, since

∫
S×A cn(x, a)η(dx,

da) (for each fixed 1 ≤ n ≤ N ) is linear in η ∈ Mo and thus can be regarded as
a “hyperplane,” each extreme point of Mc

o is a convex combination of at most
N + 1 extreme points in M0. That is, there exists (N + 1) numbers pk ≥ 0 and
stationary policies fk ∈ F (k = 1, . . . ,N +1) (using Theorem 3.15) such that η∗ =
p1η

f1 +· · ·+pN+1η
fN+1,p1 +· · ·+pN+1 = 1, which together with Theorem 3.15

and (3.2) completes the proof of this theorem. �

REFERENCES

[1] ALTMAN, E. (1999). Constrained Markov Decision Processes. Chapman and Hall/CRC, Boca
Raton, FL. MR1703380

[2] ALTMAN, E. and SHWARTZ, A. (1991). Markov decision problems and state-action frequen-
cies. SIAM J. Control Optim. 29 786–809. MR1111660

[3] ASH, R. B. (2000). Probability and Measure Theory, 2nd ed. Academic Press, Burlington,
MA. MR1810041

[4] BERTSEKAS, D. P. and SHREVE, A. (1996). Stochastic Optimal Control: The Case of Discrete-
Time Case. Athena Scientific, Belmont, MA.

[5] CHEN, M.-F. (2004). From Markov Chains to Non-equilibrium Particle Systems, 2nd ed. World
Scientific, River Edge, NJ. MR2091955

http://www.ams.org/mathscinet-getitem?mr=1703380
http://www.ams.org/mathscinet-getitem?mr=1111660
http://www.ams.org/mathscinet-getitem?mr=1810041
http://www.ams.org/mathscinet-getitem?mr=2091955


2048 X. GUO AND X. SONG

[6] CHEN, R. C. and FEINBERG, E. A. (2007). Non-randomized policies for constrained Markov
decision processes. Math. Methods Oper. Res. 66 165–179. MR2317865

[7] FEINBERG, E. A. (2000). Constrained discounted Markov decision processes and Hamiltonian
cycles. Math. Oper. Res. 25 130–140. MR1854324

[8] FEINBERG, E. A. and SHWARTZ, A. (1995). Constrained Markov decision models with
weighted discounted rewards. Math. Oper. Res. 20 302–320. MR1342949

[9] FEINBERG, E. A. and SHWARTZ, A. (1996). Constrained discounted dynamic programming.
Math. Oper. Res. 21 922–945. MR1419909

[10] FEINBERG, E. A. and SHWARTZ, A. (1999). Constrained dynamic programming with two
discount factors: Applications and an algorithm. IEEE Trans. Automat. Control 44 628–
631. MR1680195

[11] GUO, X. P. (2007). Constrained optimization for average cost continuous-time Markov deci-
sion processes. IEEE Trans. Automat. Control 52 1139–1143. MR2329912

[12] GUO, X. P. (2007). Continuous-time Markov decision processes with discounted rewards: The
case of Polish spaces. Math. Oper. Res. 32 73–87. MR2292498

[13] GUO, X. P. and HERNÁNDEZ-LERMA, O. (2003). Constrained continuous-time Markov con-
trol processes with discounted criteria. Stochastic Anal. Appl. 21 379–399. MR1967719

[14] GUO, X. P. and HERNÁNDEZ-LERMA, O. (2003). Continuous-time controlled Markov chains.
Ann. Appl. Probab. 13 363–388. MR1952002

[15] GUO, X. P. and HERNÁNDEZ-LERMA, O. (2009). Continuous-time Markov Decision Pro-
cesses: Theory and Applications. Stochastic Modelling and Applied Probability 62.
Springer, Berlin. MR2554588

[16] GUO, X. P. and RIEDER, U. (2006). Average optimality for continuous-time Markov decision
processes in Polish spaces. Ann. Appl. Probab. 16 730–756. MR2244431

[17] GUO, X. P., HERNÁNDEZ-LERMA, O. and PRIETO-RUMEAU, T. (2006). A survey of resent
results on continuous-time Markov decision processes. TOP 14 177–246.

[18] HAVIV, M. and PUTERMAN, M. L. (1998). Bias optimality in controlled queueing systems.
J. Appl. Probab. 35 136–150. MR1622452

[19] HERNÁNDEZ-LERMA, O. and GONZÁLEZ-HERNÁNDEZ, J. (2000). Constrained Markov con-
trol processes in Borel spaces: The discounted case. Math. Methods Oper. Res. 52 271–
285. MR1797253

[20] HERNÁNDEZ-LERMA, O., GONZÁLEZ-HERNÁNDEZ, J. and LÓPEZ-MARTÍNEZ, R. R.
(2003). Constrained average cost Markov control processes in Borel spaces. SIAM J. Con-
trol Optim. 42 442–468 (electronic). MR1982278

[21] HERNÁNDEZ-LERMA, O. and LASSERRE, J. B. (1996). Discrete-time Markov Control Pro-
cesses: Basic Optimality Criteria. Applications of Mathematics (New York) 30. Springer,
New York. MR1363487

[22] HERNÁNDEZ-LERMA, O. and LASSERRE, J. B. (1999). Further Topics on Discrete-time
Markov Control Processes. Applications of Mathematics (New York) 42. Springer, New
York. MR1697198

[23] HORDIJK, A. and SPIEKSMA, F. (1989). Constrained admission control to a queueing system.
Adv. in Appl. Probab. 21 409–431. MR0997731

[24] JACOD, J. (1975). Multivariate point processes: Predictable projection, Radon–Nikodým
derivatives, representation of martingales. Z. Wahrsch. Verw. Gebiete 31 235–253.
MR0380978

[25] KADOTA, Y., KURANO, M. and YASUDA, M. (2006). Discounted Markov decision processes
with utility constraints. Comput. Math. Appl. 51 279–284. MR2203079

[26] KAKUMANU, P. (1971). Continuously discounted Markov decision model with countable state
and action space. Ann. Math. Statist. 42 919–926. MR0282651

[27] KITAEV, M. Y. (1985). Semi-Markov and Jump Markov controlled models: Average cost cri-
terion. Theory Probab. Appl. 30 272–288.

http://www.ams.org/mathscinet-getitem?mr=2317865
http://www.ams.org/mathscinet-getitem?mr=1854324
http://www.ams.org/mathscinet-getitem?mr=1342949
http://www.ams.org/mathscinet-getitem?mr=1419909
http://www.ams.org/mathscinet-getitem?mr=1680195
http://www.ams.org/mathscinet-getitem?mr=2329912
http://www.ams.org/mathscinet-getitem?mr=2292498
http://www.ams.org/mathscinet-getitem?mr=1967719
http://www.ams.org/mathscinet-getitem?mr=1952002
http://www.ams.org/mathscinet-getitem?mr=2554588
http://www.ams.org/mathscinet-getitem?mr=2244431
http://www.ams.org/mathscinet-getitem?mr=1622452
http://www.ams.org/mathscinet-getitem?mr=1797253
http://www.ams.org/mathscinet-getitem?mr=1982278
http://www.ams.org/mathscinet-getitem?mr=1363487
http://www.ams.org/mathscinet-getitem?mr=1697198
http://www.ams.org/mathscinet-getitem?mr=0997731
http://www.ams.org/mathscinet-getitem?mr=0380978
http://www.ams.org/mathscinet-getitem?mr=2203079
http://www.ams.org/mathscinet-getitem?mr=0282651


DISCOUNTED CONTINUOUS-TIME MARKOV DECISION PROCESSES 2049

[28] KITAEV, M. Y. and RYKOV, V. V. (1995). Controlled Queueing Systems. CRC Press, Boca
Raton, FL. MR1413045

[29] KURANO, M., NAKAGAMI, J.-I. and HUANG, Y. (2000). Constrained Markov decision pro-
cesses with compact state and action spaces: The average case. Optimization 48 255–269.
MR1785314

[30] LEWIS, M. E. and PUTERMAN, M. L. (2001). A probabilistic analysis of bias optimal-
ity in unichain Markov decision processes. IEEE Trans. Automat. Control 46 96–100.
MR1809468

[31] LUND, R. B., MEYN, S. P. and TWEEDIE, R. L. (1996). Computable exponential conver-
gence rates for stochastically ordered Markov processes. Ann. Appl. Probab. 6 218–237.
MR1389838

[32] PHELPS, R. R. (2001). Lectures on Choquet’s Theorem, 2nd ed. Lecture Notes in Math. 1757.
Springer, Berlin. MR1835574

[33] PIUNOVSKIY, A. B. (1997). Optimal Control of Random Sequences in Problems with Con-
straints. Mathematics and Its Applications 410. Kluwer, Dordrecht. MR1472738

[34] PIUNOVSKIY, A. B. (1998). A controlled jump discounted model with constraints. Theory
Probab. Appl. 42 51–72.

[35] PIUNOVSKIY, A. B. (2005). Discounted Continuous Time Markov Decision Processes: The
Convex Analytic Approach. 16th Triennial IFAC World Congress, Czech Republic, Praha.

[36] PRIETO-RUMEAU, T. and HERNÁNDEZ-LERMA, O. (2008). Ergodic control of continuous-
time Markov chains with pathwise constraints. SIAM J. Control Optim. 47 1888–1908.
MR2421334

[37] PUTERMAN, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York. MR1270015

[38] SENNOTT, L. I. (1991). Constrained discounted Markov decision chains. Probab. Engrg. In-
form. Sci. 5 463–475. MR1183189

[39] SENNOTT, L. I. (1999). Stochastic Dynamic Programming and the Control of Queueing Sys-
tems. Wiley, New York. MR1645435

[40] YUSHKEVICH, A. A. (1977). Controlled Markov models with contable states and continous
time. Theory Probab. Appl. 22 215–7235.

[41] ZADOROJNIY, A. and SHWARTZ, A. (2006). Robustness of policies in constrained Markov
decision processes. IEEE Trans. Automat. Control 51 635–638. MR2228025

[42] ZHANG, L. L. and GUO, X. P. (2008). Constrained continuous-time Markov decision pro-
cesses with average criteria. Math. Methods Oper. Res. 67 323–340. MR2390062

SCHOOL OF MATHEMATICS

AND COMPUTATIONAL SCIENCE

ZHONGSHAN UNIVERSITY

GUANGZHOU 510275
P. R. CHINA

E-MAIL: mcsgxp@mail.sysu.edu.cn

DEPARTMENT OF STATISTICS

CHINESE UNIVERSITY OF HONG KONG

LSB114, SHATIN, HONG KONG

P. R. CHINA

E-MAIL: xysong@sta.cuhk.edu.hk

http://www.ams.org/mathscinet-getitem?mr=1413045
http://www.ams.org/mathscinet-getitem?mr=1785314
http://www.ams.org/mathscinet-getitem?mr=1809468
http://www.ams.org/mathscinet-getitem?mr=1389838
http://www.ams.org/mathscinet-getitem?mr=1835574
http://www.ams.org/mathscinet-getitem?mr=1472738
http://www.ams.org/mathscinet-getitem?mr=2421334
http://www.ams.org/mathscinet-getitem?mr=1270015
http://www.ams.org/mathscinet-getitem?mr=1183189
http://www.ams.org/mathscinet-getitem?mr=1645435
http://www.ams.org/mathscinet-getitem?mr=2228025
http://www.ams.org/mathscinet-getitem?mr=2390062
mailto:mcsgxp@mail.sysu.edu.cn
mailto:xysong@sta.cuhk.edu.hk

	Introduction
	The model for constrained continuous-time MDPs
	Main results
	Conditions for nonexplosion and finiteness
	Existence of constrained optimal policies
	Solvability of constrained optimal policies

	Examples
	Proofs of the main results
	References
	Author's Addresses

