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MINIMIZING THE TIME TO A DECISION

BY SAUL JACKA, JON WARREN AND PETER WINDRIDGE

University of Warwick

Suppose we have three independent copies of a regular diffusion on [0,1]
with absorbing boundaries. Of these diffusions, either at least two are ab-
sorbed at the upper boundary or at least two at the lower boundary. In this
way, they determine a majority decision between 0 and 1. We show that the
strategy that always runs the diffusion whose value is currently between the
other two reveals the majority decision whilst minimizing the total time spent
running the processes.

1. Introduction. Let X1,X2 and X3 be three independent copies of a regular
diffusion on [0,1] with absorbing boundaries. Eventually, either at least two of the
diffusions are absorbed at the upper boundary of the interval or at least two are
absorbed at the lower boundary. In this way, the diffusions determine a majority
decision between 0 and 1.

In order to identify this decision, we run the three processes—not simultane-
ously, but switching from one to another—until we observe at least two of them
reaching a common boundary point. Our aim is to switch between the processes in
a way that minimizes the total time required to find the majority decision.

More precisely, we allocate our time between the three processes according to a
suitably adapted [0,∞)3-valued increasing process C with

∑3
i=1 Ci (t) = t . Such a

process is called a strategy and Ci (t) represents the amount of time spent observing
Xi after t ≥ 0 units of calendar time have elapsed. Accordingly, the process we
observe is

XC def= (
X1(C1(t)),X2(C2(t)),X3(C3(t)); t ≥ 0

)
,

and the decision time τ C for the strategy C is the first time that two components of
XC are absorbed at the same end point of [0,1], that is,

τ C def= inf
{
t ≥ 0 :XC

i (t) = XC
j (t) ∈ {0,1} for distinct i, j

}
.

In this paper, we find a strategy C� that minimizes this time. Roughly speaking,
C� runs whichever diffusion is currently observed to have “middle value” (see
Lemma 1.4 for a precise description). Our main theorem is that the decision time
τ C�

of this strategy is the stochastic minimum of all possible decision times, that
is, the following theorem holds.
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THEOREM 1.1. The decision time τ C�
of the “run the middle” strategy C�

given in Lemma 1.4 satisfies

P(τ C�

> t) = inf
C

P(τ C > t) for every t ≥ 0,

where the infimum is taken over all strategies and τ C is the corresponding decision
time.

The result fits with the existing literature on optimal dynamic resource alloca-
tion (see Section 1.1 below) and we find it interesting in its own right. However,
our original motivation for introducing the model came from the so-called “re-
cursive ternary majority” problem, which can be described as follows. Take the
complete ternary tree on n levels, place independent Bernoulli(1/2) variables on
each of the 3n leaves and define internal nodes to take the majority value of their
three children. We must find the value of the root node by sequentially revealing
leaves, one after the other, paying £1 for each leaf revealed. The quantity of con-
cern is the expected cost rn of the optimal strategy. Surprisingly, this number is not
known for n > 3 and there seems little prospect of finding it. Interest has rather
focused on the asymptotic behavior of rn, as this has more relevance in complexity
theory. In particular, the limit

γ
def= lim

n→∞ r1/n
n ,

which exists by a sub-additivity argument, has attracted the attention of several
researchers recently. The best nontrivial bounds are 9/4 ≤ γ ≤ 2.471 (the lower
bound follows from arguments in Section 3 of [20], the upper bound from numer-
ics).

Our idea was to find a better lower bound for γ by considering a continuous ap-
proximation to the large n tree. It was this continuous approximation that inspired
the diffusive model introduced in this paper. However, we caution that the results
we present here do not shed light on the value of γ .

1.1. Dynamic resource allocation. Our problem concerns optimal dynamic re-
source allocation in continuous time. The most widely studied example of this is
the continuous multi-armed bandit problem (see, e.g., El Karoui and Karatzas [8],
Mandelbaum and Kaspi [14]). Here, a gambler chooses the rates at which he will
pull the arms on different slot machines. Each slot machine rewards the gambler
at rates which follow a stochastic process independent of the reward processes
for the other machines. These general bandit problems find application in several
fields where agents must choose between exploration and exploitation, typified in
economics and clinical trials. An optimal strategy is easy to describe. Associated
to each machine is a process known as the Gittins index, which may be interpreted
as the equitable surrender value. It is a celebrated theorem that at each instant, we



MINIMIZING THE DECISION TIME 1797

should play whichever machine currently has the largest Gittins index. This is in
direct analogy to the discrete time result of Gittins and Jones [10].

There is no optimal strategy of index type for our problem. This reflects the
fact that the reward processes associated to running each of the diffusions are not
independent—once two of the diffusions are absorbed, it may be pointless to run
the third.

In [19], a different dynamic allocation problem is considered. It has a similar
flavor in that one must choose the rates at which to run two Brownian motions
on [0,1], and we stop once one of the processes hits an endpoint. The rates are
chosen to maximize a terminal payoff, as specified by a function defined on the
boundary of the square (the generalization of this problem to several Brownian
motions is considered in [24]). An optimal strategy is determined by a partition of
the square into regions of indifference, preference for the first Brownian motion
and preference for the second. However, there is no notion of a reward (cost) being
accrued as in our problem.

So, our problem, in which time is costly and there is a terminal cost of infinity
for stopping on a part of ∂S which does not determine a majority decision, could
be seen as lying between continuous bandits and the Brownian switching in [19].
Furthermore, although we adopt the framework of the aforementioned problems,
our proof has a different mathematical anatomy.

1.2. Overview of paper. The rest of the paper is laid out as follows. Section 1.3
contains a precise statement of the problem and our assumptions and a clarification
of Theorem 1.1. The proof of this theorem begins in Section 2, where we show that
the Laplace transform of the distribution of the decision time τ C�

solves certain
differential equations. This fact is then used in Section 3 to show that the tail of
τ C�

solves, in a certain sense, the appropriate Hamilton–Jacobi–Bellman equation.
From here, martingale optimality arguments complete the proof. Section 4 shows
the existence and uniqueness of the strategy C� and in Section 5 we explain the
connection between the controlled process and doubly perturbed diffusions. In the
final section, we make a conjecture about an extension to the model.

1.3. Problem statement and solution. We are given a complete probability
space (�, F ,P) supporting three independent Itô diffusions (Xi(t), t ≥ 0), i ∈
V = {1,2,3}, each of which is started in the unit interval [0,1] and absorbed at the
endpoints. The diffusions all satisfy the same stochastic differential equation

dXi(t) = σ(Xi(t)) dBi(t) + μ(Xi(t)) dt, t ≥ 0,(1.1)

where σ : [0,1] → (0,∞) is continuous, μ : [0,1] → R is Borel and (Bi(t), t ≥ 0),
i ∈ V , are independent Brownian motions.

We denote by S the unit cube [0,1]3, by R+ the set of nonnegative real numbers
[0,∞) and � its usual partial order on R

3+. It is assumed that we have a standard
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Markovian setup, that is, there is a family of probability measures (Px, x ∈ S) un-
der which X(0) = x almost surely and the filtration Fi = (Fi(t), t ≥ 0) generated
by Xi is augmented to satisfy the usual conditions.

From here, we adopt the framework for continuous dynamic allocation models
proposed by Mandelbaum in [18]. This approach relies on the theory of multipa-
rameter time changes; the reader may consult Appendix for a short summary of
this.

For η ∈ R
3+, we define the σ -algebra

F (η)
def= σ(F1(η1), F2(η2), F3(η3)),

which corresponds to the information revealed by running Xi for ηi units of time.
The family (F (η), η ∈ R

3+) is called a multiparameter filtration and satisfies the
“usual conditions” of right continuity, completeness and property (F4) of Cairoli
and Walsh [4]. It is in terms of this filtration that we define the sense in which our
strategies must be adapted.

A strategy is an R
3+-valued stochastic process

C = (
C1(t), C2(t), C3(t); t ≥ 0

)
such that:

(C1) for i = 1,2,3, Ci (0) = 0 and Ci (·) is nondecreasing,
(C2) for every t ≥ 0, C1(t) + C2(t) + C3(t) = t and
(C3) C(t) is a stopping “point” of the multiparameter filtration (F (η), η ∈ R

3+),
that is,

{C(t) � η} ∈ F (η) for every η ∈ R
3+.

REMARK 1.2. In the language of multiparameter processes, C is an optional
increasing path after Walsh [25].

REMARK 1.3. Conditions (C1) and (C2) together imply that for any s ≤ t ,
|Ci (t) − Ci (s)| ≤ t − s. It follows that the measure dCi is absolutely continuous
and so it makes sense to talk about the rate Ċi (t) = dCi (t)/dt , t ≥ 0, at which Xi

is to be run.

The interpretation is that Ci (t) models the total amount of time spent running
Xi by calendar time t , and accordingly, the controlled process XC is defined by

XC (t)
def= (X1(C1(t)),X2(C2(t)),X3(C3(t))), t ≥ 0.

Continuity of C implies that XC is a continuous process in S . It is adapted to the
(one parameter) filtration F C defined by

F C (t)
def= {

F ∈ F :F ∩ {C(t) � η} ∈ F (η) for every η ∈ R
3+

}
, t ≥ 0,
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which satisfies the usual conditions.
The decision time τ C for a time allocation strategy C is the first time that XC

hits the decision set

D
def= {

(x1, x2, x3) ∈ S :xi = xj ∈ {0,1} for some 1 ≤ i < j ≤ 3
}
.

The objective is to find a strategy whose associated decision time is a stochastic
minimum. Clearly, it is possible to do very badly by only ever running one of the
processes as a decision may never be reached (these strategies do not need to be
ruled out in our model). A more sensible thing to do is to pick two of the processes,
and run them until they are absorbed. Only if they disagree do we run the third.
This strategy is much better than the pathological one (the decision time is almost
surely finite!) but we can do better.

We do not think it is obvious what the best strategy is. In the situation that
X1(0) is close to zero and X3(0) close to one, it is probable that X1 and X3 will be
absorbed at different end points of [0,1]. So, if X2(0) is close to 0.5 say, it seems
likely that X2 will be pivotal and so we initially run it, even though X1 and X3
might be absorbed much more quickly. Our guess is to run the diffusion whose
value lies between that of the other two processes. But if all the processes are near
one, it is not at all clear that this is the best thing to do. For example, one could be
tempted to run the process with largest value in the hope that it will give a decision
very quickly.

It turns out that we must always “run the middle.” That is, if, at any moment
t ≥ 0, we have XC

1 (t) < XC
2 (t) < XC

3 (t), then we should run X2 exclusively until
it hits XC

1 (t) or XC
3 (t). We need not concern ourselves with what happens when

the processes are equal. This is because there is, almost surely, only one strategy
that runs the middle of the three diffusions when they are separated. To state this
result, let us say that for a strategy C , component Ci increases at time t ≥ 0 if
Ci (u) > Ci (t) for every u > t .

LEMMA 1.4. There exists a time allocation strategy C� with the property that
(RTM) for each i ∈ V , C�

i increases at time t ≥ 0 only if

XC�

j (t) ≤ XC�

i (t) ≤ XC�

k (t)

for some choice {j, k} = V − {i}.
If C is any other strategy with this property, then C(t) = C�(t) for all t ≥ 0

almost surely (with respect to any of the measures Px ).

This lemma is proved in Section 4 and Theorem 1.1 states that C� gives a sto-
chastic minimum for the decision time.

In the sequel, the drift term μ is assumed to vanish. This is not a restriction, for
if a drift is present we may eliminate it by rewriting the problem in natural scale.
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2. The Laplace transform of the distribution of τC�
. The proof of Theo-

rem 1.1 begins by computing the Laplace transform

v̂r (x)
def= Ex[exp(−rτ C�

)],
of the distribution of the decision time.

This nontrivial task is carried out using the “guess and verify” method. Loosely,
the guess is inspired by comparing the payoffs of doing something optimal against
doing something nearly optimal. This leads to a surprisingly tractable heuristic
equation from which v̂r can be recovered.

The argument which motivates the heuristic proceeds as follows. From any
strategy C it is possible to construct (but we omit the details) another strategy,
Ĉ , that begins by running X1 for some small time h > 0 [i.e., Ĉ(t) = (t,0,0) for
0 ≤ t ≤ h] and then does not run X1 again until C1 exceeds h, if ever. In the mean-
time, Ĉ2 and Ĉ3 essentially follow C2 and C3 with the effect that once C1 exceeds h,
C and Ĉ coincide.

This means that if the amount of time, C1(τ
C ), that C spends running X1 is at

least h, then τ Ĉ and τ C are identical. On the other hand, if C1(τ
C ) < h, then Ĉ runs

X1 for longer than C , with some of the time Ĉ spends running X1 being wasted. In
fact, outside a set with probability o(h) we have

τ Ĉ = τ C + (h − T1)
+,(2.1)

where Ti = Ci (τ
C ) is the amount of time that C spends running Xi while determin-

ing the decision.
We compare Ĉ with the strategy that runs X1 for time h and then behaves opti-

mally. If we suppose that C� itself is optimal and recall that v̂r is the corresponding
payoff, this yields the inequality

Ex[exp(−rτ Ĉ )] ≤ Ex[exp(−rh)v̂r (X1(h),X2(0),X3(0))].(2.2)

Now, we take C = C� and use (2.1) to see that the left-hand side of (2.2) is equal
to

Ex

[
exp

(−r
(
τ C� + (h − T1)

+))] + o(h),

which, in turn, may be written as

v̂r (x) + Ex

[(
exp

(−r(τ C� + h)
) − exp(−rτ C�

)
)
1[Ti=0]

] + o(h).(2.3)

On the other hand, if we assume v̂r is suitably smooth, the right-hand side of
(2.2) is

v̂r (x) + h(G 1 − r)v̂r (x) + o(h), x1 ∈ (0,1),(2.4)

where we have introduced the differential operator Gi defined by

Gif (x)
def= 1

2
σ 2(xi)

∂2

∂x2
i

f (x), xi ∈ (0,1).
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After substituting these expressions back into (2.2) and noticing that there was
nothing special about choosing X1 to be the process that we moved first, we see
that

Ex

[(
exp

(−r(τ C� + h)
) − exp(−rτ C�

)
)
1[Ti=0]

] ≤ h(Gi − r)v̂r (x) + o(h)(2.5)

for each xi ∈ (0,1) and i ∈ V .
Dividing both sides by h, and taking the limit h → 0 yields the inequality

(Gi − r)v̂r (x) ≤ −rEx

[
exp(−rτ C�

)1[Ti=0]
]
.(2.6)

Now, in some simpler, but nevertheless related problems, we can show that (2.6)
is true with an equality replacing the inequality. This prompts us to try to construct
a function satisfying (2.6) with equality. Our effort culminates in the following.

LEMMA 2.1. There exists a continuous function hr : S → R such that:

• hr(x) = 1 for x ∈ D,

• the partial derivatives ∂2ĥr
∂xi ∂xj

exist and are continuous on {x ∈ S \ D :xi, xj ∈
(0,1)} (for any i, j ∈ V not necessarily distinct) and

• furthermore, for each i ∈ V and x /∈ D with xi ∈ (0,1),

(Gi − r)hr(x) = −rf̂ i
r (x),

where f̂ i
r (x)

def= Ex[exp(−rτ C�
)1[Ti=0]].

PROOF. We begin by factorizing f̂ i
r (x) into a product of Laplace transforms

of diffusion exit time distributions. This factorization is useful as it allows us to
construct h by solving a series of ordinary differential equations. Note that in this
proof, we will typically suppress the r dependence for notational convenience.

The diffusions all obey the same stochastic differential equation and so we lose
nothing by assuming that the components of x satisfy 0 ≤ x1 ≤ x2 ≤ x3 ≤ 1. Fur-
ther, we suppose that x /∈ D because otherwise Ti = 0 Px -almost-surely.

In this case, T2 > 0 Px-almost-surely, because for any t > 0, there exist times
t1, t3 < t/2 at which X1(t1) < x1 ≤ x2 ≤ x3 < X3(t3) and so it is certain our strat-
egy allocates time to X2. It follows that f̂ 2(x) vanishes.

Now consider f̂ 1. There is a Px-negligible set off which T1 = 0 occurs if, and
only if, both of the independent diffusions X2 and X3 exit the interval (X1(0),1)

at the upper boundary. Furthermore, τ C�
is just the sum of the exit times. That is,

if

m(i)
a

def= inf{t > 0 :Xi(t) = a}, a ∈ [0,1], i ∈ V,(2.7)

then

f̂ 1(x) = Ex

[
exp

(−r
(
m

(2)
1 + m

(3)
1

))
1[m(2)

1 <m
(2)
x1 ,m

(3)
1 <m

(3)
x1 ]

]
.
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Using independence of X2 and X3, we have the factorization

f̂ 1(x) =
3∏

i=2

Ex

[
exp

(−rm
(i)
1

)
1[m(i)

1 <m
(i)
x1 ]

]
.

Note that our assumption x /∈ D guarantees that x1 < 1.
To write this more cleanly, let us introduce, for 0 ≤ a < b ≤ 1, the functions

h+
a,b(u)

def= Eu

[
exp

(−rm
(1)
b

)
1[m(1)

b <m
(1)
a ]

]
,

where the expectation operator Eu corresponds to the (marginal) law of X1 when
it begins at u ∈ [0,1]. The diffusions obey the same SDE, and so

f̂ 1(x) = h+
x1,1

(x2)h
+
x1,1

(x3).(2.8)

Similarly,

f̂ 3(x) = h−
0,x3

(x1)h
−
0,x3

(x2),(2.9)

where

h−
a,b(u)

def= Eu

[
exp

(−rm(i)
a

)
1[m(i)

a <m
(i)
b ]

]
.

We take, as building blocks for the construction of h, the functions h±
0,1, ab-

breviated to h± in the sequel. If a < b and u ∈ [a, b] then by the strong Markov
property,

h+(u) = h+
a,b(u)h+(b) + h−

a,b(u)h+(a)

and

h−(u) = h+
a,b(u)h−(b) + h−

a,b(u)h−(a).

Solving these equations gives

h+
a,b(u) = h−(a)h+(u) − h−(u)h+(a)

h−(a)h+(b) − h−(b)h+(a)
(2.10)

and

h−
a,b(u) = h−(u)h+(b) − h−(b)h+(u)

h−(a)h+(b) − h−(b)h+(a)
.(2.11)

The functions h+ and h− are C2 on (0,1) and continuous on [0,1]. Further-

more, they solve Gf = rf where Gf
def= 1

2σ 2(·)f ′′. In light of this, and remember-
ing our assumption that the components of x are ordered, we will look for functions
λ+ and λ− of x1 and x3 such that

h(x) = λ−(x1, x3)h
−(x2) + λ+(x1, x3)h

+(x2)(2.12)

has the desired properties. For other values of x /∈ D, we will define h by symme-
try.
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To get started, plug (2.10) and (2.11) into (2.8) and (2.9) to see that f̂ i(x) has a
linear dependence on h+(x2) and h−(x2), that is,

f̂ i(x) = ψi−(x1, x3)h
−(x2) + ψi+(x1, x3)h

+(x2),

where

ψ1+(x1, x3)
def= h−(x1)h

+(x3) − h−(x3)h
+(x1)

h−(x1)
,

ψ1−(x1, x3)
def= −h+(x1)

h−(x1)
ψ1+(x1, x3),

ψ3−(x1, x3)
def= h−(x1)h

+(x3) − h−(x3)h
+(x1)

h+(x3)
,

and

ψ3+(x1, x3)
def= −h−(x3)

h+(x3)
ψ3+(x1, x3).

Linearity of the operator (Gi − r) and linear independence of h− and h+ then
show the requirement that (Gi − r)h = −rf̂ i boils down to requiring

(Gi − r)λ± = −rψi±.

Of course, the corresponding homogeneous equations are solved with linear
combinations of h+ and h−—what remains is the essentially computational task
of finding particular integrals and some constants.

This endeavour begins with repeated application of Lagrange’s variation of pa-
rameters method, determining constants using the boundary conditions h(x) = 1
for x ∈ D where possible. Eventually, we are left wanting only for real constants,
an unknown function of x1 and a function of x3. At this point, we appeal to the
“smooth pasting” conditions(

∂

∂xi

− ∂

∂xj

)
h

∣∣∣∣
xi=xj

= 0, i, j ∈ V.(2.13)

After some manipulation, we are furnished with differential equations for our
unknown functions and equations for the constants. These we solve with little dif-
ficulty and, in doing so, determine that

λ−(x1, x3) = h−(x1) − h+(x1)h
+(x3)

∫ 1

x3

(d/du)h−(u)

h+(u)2 du

+ h−(x1)h
+(x3)

∫ x1

0

(d/du)h+(u)

h−(u)2 du

+ 2rh−(x3)

φ

∫ x1

0

(
h+(u)

σ (u)h−(u)

)2

× (
h−(x1)h

+(u) − h−(u)h+(x1)
)
du,
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and

λ+(x1, x3) = h+(x3) + h−(x1)h
−(x3)

∫ x1

0

(d/du)h+(u)

h−(u)2 du

− h−(x1)h
+(x3)

∫ 1

x3

(d/du)h−(u)

h+(u)2 du

+ 2rh+(x1)

φ

∫ 1

x3

(
h−(u)

σ (u)h+(u)

)2

× (
h−(u)h+(x3) − h−(x3)h

+(u)
)
du,

where φ denotes the constant value of the Wronskian h−(u) d
du

h+(u) − h+(u) ×
d
du

h−(u).
These expressions for λ± are valid for any x not lying in D with weakly ordered

components; so h is defined outside of D via (2.12). Naturally, we define h to be
equal to one on D.

Having defined h, we now show that it is continuous and has the required par-
tial derivatives. Continuity is inherited from h+ and h− on the whole of S apart
from at the exceptional corner points (0,0,0) and (1,1,1) in D. For these two
points, a few lines of justification are needed. We shall demonstrate continuity at
the origin, continuity at the upper right-hand corner (1,1,1) follows by the same
argument. Let xn be a sequence of points in S that converge to (0,0,0); we must
show h(xn) → h(0,0,0) = 1. Without loss of generality, assume that the compo-
nents of xn are ordered xn

1 ≤ xn
2 ≤ xn

3 and that xn is not in D [if xn ∈ D, then
h(xn) = 1 and it may be discarded from the sequence]. From the expression (2.12)
for h, we see that it is sufficient to check that

(i) λ−(xn
1 , xn

3 ) → 1 and (ii) h+(xn
2 )λ+(xn

1 , xn
3 ) → 0,

since h−(xn
2 ) → 1. For (i), the only doubt is that the term involving the first integral

in the expression for λ− does not vanish in the limit. The fact that it does can be
proved by the Dominated Convergence theorem. The term is

h+(xn
1 )h+(xn

3 )

∫ 1

xn
3

(∂/∂u)h−(u)

h+(u)2 du =
∫ 1

0
1[u>xn

3 ]
h+(xn

1 )h+(xn
3 )

h+(u)2

∂

∂u
h−(u) du.

The ratio
h+(xn

1 )h+(xn
3 )

h+(u)2 is bounded above by one when u > xn
3 ≥ xn

1 since h+ is

increasing. Further, the derivative of h− is integrable and so the integrand is dom-
inated by an integrable function, and converges to zero.

For the second limit (ii), there are two terms to check. First, that

h+(xn
2 )h−(xn

1 )h+(xn
3 )

∫ 1

xn
3

(∂/∂u)h−(u)

h+(u)2 du → 0
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follows from essentially the same argument as before. The second term of concern
is

h+(xn
1 )

∫ 1

xn
3

(
h−(u)

σ (u)h+(u)

)2(
h−(u)h+(xn

3 ) − h−(xn
3 )h+(u)

)
du.

Again, one may write this as the integral of a dominated function (recalling that
σ is bounded away from zero) that converges to zero. Thus, the integral above
converges to zero as required.

Now that we have established continuity of h, we can begin tackling the partial
derivatives.

When the components of x are distinct, differentiability comes from that of our
building blocks h+ and h−. It is at the switching boundaries, when two or more
components are equal, where we have to be careful. The key here is to remember
that we constructed h to satisfy the smooth pasting property (2.13)—this allows us
to show that the one-sided partial derivatives are equal at the switching boundaries.
For example, provided the limit exists,

∂

∂x1
h(x1, x2, x3)

∣∣∣∣
x1=x2=x3

= lim
ε→0

1

ε

(
h(x1 + ε, x1, x1) − h(x1, x1, x1)

)
.

Using (2.12) and the differentiability of λ, the limit from above is

∂

∂x3

(
λ−(x1, x3)h

−(x2) + λ+(x1, x3)h
+(x2)

)∣∣∣∣
x1=x2=x3

.

This is equal to the limit from below,

∂

∂x1

(
λ−(x1, x3)h

−(x2) + λ+(x1, x3)h
+(x2)

)∣∣∣∣
x1=x2=x3

,

by the smooth pasting property. The other first-order partial derivatives exist by
similar arguments. Note that we do not include in our hypothesis the requirement
that these first-order partial derivatives exist at the boundary points of the interval.

The second-order derivatives are only slightly more laborious to check. As be-
fore it is at switching boundaries where we must take care in checking that the
limits from above and below agree. For the partial derivatives ∂2

∂x2
i

h at a point x

not in D with xi ∈ (0,1), we equate the limits using the fact that (Gi − r)h(x)

vanishes whenever xi is equal to another component of x rather than smooth past-
ing. For the mixed partial derivatives, we use a different argument. When exactly
two components are equal, there is no problem. This is a consequence of the form
(2.12) of h—one component enters through the terms h+ and h− while the other
two components enter through λ+ and λ−. For example, if x1 = x2 < x3, then

∂2

∂x1 ∂x2
h(x1, x2, x3)

∣∣∣∣
x1=x2

=
(

dh−

dx1
(x1)

)
∂

∂x1
λ−(x1, x3)

+
(

dh+

dx1
(x1)

)
∂

∂x1
λ+(x1, x3)
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regardless of how the switching boundary is approached. When all three compo-
nents are equal, we must check that

∂2h

∂x1 ∂x3
(x1, x2, x3)

∣∣∣∣
x1=x2=x3

= ∂2h

∂x2 ∂x3
(x1, x2, x3)

∣∣∣∣
x1=x2=x3

= ∂2h

∂x1 ∂x2
(x1, x2, x3)

∣∣∣∣
x1=x2=x3

.

This is straightforward to do. Thus, h has all of the properties we required. �

From here, we need a verification lemma to check that the function we con-
structed really is equal to v̂r . The following result does just that, and, as a corollary,
shows that v̂r is maximal among Laplace transforms of decision time distributions
(note that this is weaker than the stochastic minimality claimed in Theorem 1.1).
The result is essentially that Bellman’s principle of optimality holds (specialists in
optimal control will notice that the function we constructed in Lemma 2.1 satisfies
the Hamilton–Jacobi–Bellman equation).

LEMMA 2.2. Suppose that hr : S → R satisfies:

• hr is continuous on S ,
• for i, j ∈ V , ∂2hr

∂xi ∂xj
exists and is continuous on {x ∈ S \ D :xi, xj ∈ (0,1)},

• hr(x) = 1 for x ∈ D,
• (Gi − r)hr(x) ≤ 0.

Then

hr(x) ≥ sup
C

Ex[exp(−rτ C )].

Furthermore, if (Gi − r)hr(x) vanishes whenever xj ≤ xi ≤ xk (under some
labeling) then

hr(x) = v̂r (x) = Ex[exp(−rτ C�

)].
PROOF. Let C be an arbitrary strategy and define the function g : S ×

[0,∞) → R by g(x, t)
def= exp(−rt)hr(x). Then, by hypothesis, g is C2,1 on

(0,1)3 × [0,∞). Thus, if dist denotes Euclidean distance and ρn
def= inf{t ≥ 0 :

dist(XC (t), ∂S) < n−1}, Itô’s formula shows that

g(XC (ρn), ρn) − g(XC (0),0) = ∑
i

∫ ρn

0

∂

∂xi

g(XC (s), s) dXC
i (s)

+
∫ ρn

0

∂

∂t
g(XC (s), s) ds

+ 1

2

∑
i,j

∫ ρn

0

∂2

∂xi ∂xj

g(XC (s), s) d[XC
i ,XC

j ]s .
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Theorem A.2 implies [XC
i ]s = [Xi]Ci (s) and that XC

i and XC
j are orthogonal

martingales. Hence, using absolute continuity of C and Proposition 1.5, Chapter V
of [23],

g(XC (ρn), ρn) − g(XC (0),0) = ∑
i

∫ ρn

0

∂

∂xi

g(XC (s), s) dXC
i (s)

+ ∑
i

∫ ρn

0
exp(−rs)(Gi − r)h(XC (s))Ċi(s) ds.

The integrand of the stochastic integral against the square integrable martingale
XC

i is continuous and hence bounded on each compact subset of (0,1)3. Thus, the
integral’s expectation vanishes, that is,

Ex

[∫ ρn

0

∂

∂xi

g(XC (s), s) dXC
i (s)

]
= 0.

Next, the fact that (Gi − r)h is not positive gives

Ex

[∫ ρn

0
exp(−rs)(Gi − r)h(XC (s))Ċi (s) ds

]
≤ 0,

and so

Ex[exp(−rρn)h(XC (ρn))] − h(x) ≤ 0.(2.14)

Now, the times ρn taken for XC to come within distance n−1 of the boundary of

S converge to ρ
def= inf{t ≥ 0 :XC (t) ∈ ∂S} as n → ∞. So, the continuity of h and

the Dominated Convergence theorem together imply

Ex[exp(−rρ)h(XC (ρ))] ≤ h(x).(2.15)

In summary, inequality (2.15) arises by applying the three dimensional Itô for-
mula to g composed with the controlled process stopped inside (0,1)3 and then
using continuity of h. But, from time ρ onward, our controlled process runs on a
face or an edge of the cube and Itô’s formula in three dimensions does not apply.
This is not a problem though—a similar argument with Itô’s formula in one (or
two) dimensions does the trick. That is, if ρ′ denotes the first time that XC hits an
edge of S (so 0 ≤ ρ ≤ ρ ′ ≤ τ C ), then both

Ex[exp(−rρ ′)h(XC (ρ′)) − exp(−rρ)h(XC (ρ))] ≤ 0(2.16)

and

Ex[exp(−rτ C)h(XC (τ C )) − exp(−rρ′)h(XC (ρ′))] ≤ 0.(2.17)

Summing these differences and using the boundary condition h(x) = 1 for x ∈
D yields

Ex[exp(−rτ C)] = Ex[exp(−rτ C )h(XC (τ C ))] ≤ h(x).
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Thus, h is an upper bound for the Laplace transform of the distribution of the
decision time arising from any strategy. It remains to prove that h is equal to the
Laplace transform v̂r .

Suppose that C is the strategy C� from Lemma 1.4, then for almost every s ≥ 0,
Ċi (s) is positive only when XC

j (s) ≤ XC
i (s) ≤ XC

k (s) under some labeling. So,
(Gi − r)h(XC (s))Ċi (s) vanishes for almost every s ≥ 0 and (2.14) is an equality.
Taking limits show that (2.15)–(2.17) are also equalities. �

So, v̂r is twice differentiable in each component and satisfies the heuristic equa-
tion

(Gi − r)v̂r (x) = −rf̂ i
r (x), x /∈ D, xi ∈ (0,1).(2.18)

In the next section, we will show that Px(τ
C�

> t) is the probabilistic solution
to certain parabolic partial differential equations. To do this, we need to rewrite v̂r

in a more suitable form. Introduce the notation X(1)(t) = (X1(t),X2(0),X3(0)),
X(2)(t) = (X1(0),X2(2),X3(0)) and X(3)(t) = (X1(0),X2(0),X3(t)) for each
t ≥ 0. We define ρ(i) to be the absorption time of Xi , that is,

ρ(i) def= inf{t ≥ 0 :Xi(t) /∈ (0,1)}.

LEMMA 2.3. For any x /∈ D, v̂r can be written as

v̂r (x) = Ex

[
exp

(−rρ(i))v̂r

(
X(i)(ρ(i))) + r

∫ ρ(i)

0
f̂ i

r

(
X(i)(s)

)
exp(−rs) ds

]
.

PROOF. Fix x /∈ D, then the function xi 
→ v̂r (x) is C2 on (0,1) and C0 on

[0,1]. Introduce the a.s. finite Fi stopping time ρ
(i)
n

def= inf{t ≥ 0 :Xi(t) /∈ (n−1,1−
n−1)}, so Itô’s formula (in one dimension) gives

exp
(−rρ(i)

n

)
v̂r

(
X(i)(ρ(i)

n

)) − v̂r (X(0))

=
∫ ρ

(i)
n

0
exp(−rs)

∂

∂xi

v̂r

(
X(i)(s)

)
dXi(s)

+
∫ ρ

(i)
n

0
exp(−rs)(Gi − r)v̂r

(
X(i)(s)

)
ds.

The function ∂
∂xi

v̂r is continuous on (0,1) and hence bounded on the compact

sets [n−1,1−n−1]. It follows that the expectation of the stochastic integral against
dXi vanishes. So, using equation (2.18),

v̂r (x) = Ex

[
exp

(−rρ(i)
n

)
v̂r

(
X(i)(ρ(i)

n

))]

+ rEx

[∫ ρ
(i)
n

0
exp(−rs)f̂ i

r

(
X(i)(s)

)
ds

]
.
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The stopping times ρ
(i)
n converge to ρ(i) as n → ∞ and so by continuity of Xi ,

v̂r , the exponential function and the integral,

exp
(−rρ(i)

n

)
v̂r

(
X(i)(ρ(i)

n

)) → exp
(−rρ(i))v̂r

(
X(i)(ρ(i)))

and
∫ ρ

(i)
n

0
exp(−rs)f̂ i

r

(
X(i)(s)

)
ds →

∫ ρ(i)

0
exp(−rs)f̂ i

r

(
X(i)(s)

)
ds.

To finish the proof, use the Dominated Convergence theorem to exchange the
limit and expectation. �

REMARK 2.4. We can generalize our heuristic argument to value functions of
the form

J (x, t)
def= Ex[g(τ C� + t)], x ∈ S, t ≥ 0,

for differentiable g. The heuristic equation reads
(

Gi + ∂

∂t

)
J (x, t) = Ex

[
g′(τ C� + t)1[Ti=0]

]
.(2.19)

Equation (2.18) is the specialization g(t) = exp(−rt). Such a choice of g

is helpful because it effectively removes the time dependence in (2.19), mak-
ing it easier to solve. The benefit is the same if g is linear and it is not diffi-
cult to construct and verify (as we did in Lemmas 2.1 and 2.2) an explicit ex-
pression for J (x)

def= Ex[τ C�]. In terms of the expected absorption times G(u) =
Eu[m(1)

0 ∧ m
(1)
1 ] and integrals

Ik(x1)
def=

∫ x1

0

G(u)

(1 − u)k
du and Jk(x3)

def=
∫ 1

x3

G(u)

uk
du, k ∈ N,

the expression for J reads

J (x) = G(x2) + (1 − x1)
−2G(x1)

× (
(1 − x2)

(
(1 − x1) − (1 − x3)

) + (1 − x1)(1 − x3)
)

− 2I3(x1)
(
(1 − x2)

(
(1 − x1) + (1 − x3)

) + (1 − x1)(1 − x3)
)

+ 6I4(x1)(1 − x2)(1 − x1)(1 − x3) + x−2
3 G(x3)

(
x2(x3 − x1) + x1x3

)
− 2J3(x3)

(
x2(x3 + x1) + x1x3

) + 6J4(x3)x1x2x3.

3. A representation for Px(τC�
> T ). The aim of this section is to connect

the tail probability v : S × [0,∞) → [0,1] defined by

v(x, t)
def= Px(τ

C�

> t),
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to the formula for v̂r from Lemma 2.3. Before continuing, let us explain the key
idea. Just for a moment, suppose that v is smooth and consider the Laplace trans-
form of (Gi − ∂

∂t
)v(x, ·). It is straightforward to show that the Laplace transform

of v satisfies [see (3.4)]∫ ∞
0

v(x, t) exp(−rt) dt = r−1(
1 − v̂r (x)

)
.

Bringing Gi through the integral and integrating by parts in t ,
∫ ∞

0
exp(−rt)

(
Gi − ∂

∂t

)
v(x, t) dt = −r−1(Gi − r)v̂r (x).

Combining this with the heuristic equation (2.18) gives
∫ ∞

0
exp(−rt)

(
Gi − ∂

∂t

)
v(x, t) dt = f̂ i

r (x).(3.1)

This shows that (Gi − ∂
∂t

)v is nonnegative (i.e., v satisfies the associated Hamilton–
Jacobi–Bellman equation). From here, one could use Itô’s formula (cf. the proof
of Lemma 2.2) to see that (v(XC (t), T − t),0 ≤ t ≤ T ) is a sub-martingale for any
strategy C . In particular,

Px(τ
C > T ) = Ex[v(XC (T ),0)] ≥ v(x,T ).

So, ideally, to prove Theorem 1.1, we would establish that v is smooth enough
to apply Itô’s formula. We are given some hope, by noticing that if we can show
that f̂ i

r (x) is the Laplace transform of a function fi(x, t) say, then (3.1) implies
that v solves (

Gi − ∂

∂t

)
v = fi.(3.2)

We can show such a density fi exists (Lemma 3.1 below) but not that it is Hölder
continuous. Unfortunately, without the latter, we cannot show that (3.2) has a clas-
sical solution. Nevertheless, we can deduce the sub-martingale inequality by show-
ing merely that v solves (3.2) in a weaker sense (Lemma 3.2).

To commence, let us first verify the claim that f̂ i
r is the Laplace transform of a

function.

LEMMA 3.1. For each x /∈ D and i ∈ V , the Borel measure B 
→ Px(τ
C� ∈ B,

Ti = 0) has a (defective) density fi : S × [0,∞) → [0,∞), that is,

Px(τ
C� ∈ dt, Ti = 0) = fi(x, t) dt, t ≥ 0.

PROOF. Suppose that 0 ≤ x1 ≤ x2 ≤ x3 ≤ 1. Then the event T2 = 0 is Px null
and consequently Px(τ

C� ∈ dt, T2 = 0) vanishes for any t . That is, f2(x, t) = 0.
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Existence of a density for Px(τ
C� ∈ dt, Ti = 0), i = 1,3, is essentially a corol-

lary of the decomposition of τ C�
on {Ti = 0} which was discussed in the proof of

Lemma 2.1. Let us consider the case i = 1 (i = 3 is similar). Recall that if m
(i)
a is

the first hitting time of a by Xi and x1 ≤ x2 ≤ x3 then

Px(τ
C� ∈ B,T1 = 0) = Px

(
m

(2)
1 + m

(3)
1 ∈ B,m

(2)
1 < m(2)

x1
,m

(3)
1 < m(3)

x1

)
.

The right-hand side is the convolution of the sub-probability measures

Px

(
m

(i)
1 ∈ ·,m(i)

1 < m(i)
x1

)
, i = 1,2.

Now, if x1 = x2, then T1 > 0 almost surely under Px . Furthermore, the assump-
tions x2 ≤ x3 and x /∈ D imply x2 < 1. So, we may assume that x2 is in the interval
(x1,1). In this case, {m(2)

1 < m
(2)
x1 } is not null and X2 can be conditioned, via a

Doob h-transform, to exit (x1,1) at the upper boundary. That is, under the mea-
sure Px2(·|m(2)

1 < m
(2)
x1 ), X2 is a regular diffusion on (x1,1] with generator Gh

defined by Ghf = (1/h)G(hf ), where

h(x2)
def= Px2

(
m

(2)
1 < m(2)

x1

) = x2 − x1

1 − x1

(e.g., Corollary 2.4, page 289 of [22]) with absorption at 1. In particular, the law
of the first hitting time, Px(m

(2)
1 ∈ ·|m(2)

1 < m
(2)
x1 ), has a density (page 154 of [12]).

Thus,

Px

(
m

(2)
1 ∈ ·,m(2)

1 < m(2)
x1

) = Px

(
m

(2)
1 ∈ ·|m(2)

1 < m(2)
x1

)
Px

(
m

(2)
1 < m(2)

x1

)

is also absolutely continuous and Px(τ
C� ∈ ·, T1 = 0) is the convolution of two

measures, at least one of which has a density. �

The next step is to show that v solves (3.2) in a probabilistic sense.

LEMMA 3.2. Fix i ∈ V and define the function u : S × [0,∞) → R by

u(x, t)
def= Ex

[
v
(
X(i)(t ∧ρ(i)), (

t −ρ(i))+)−
∫ t∧ρ(i)

0
fi

(
X(i)(s), t −s

)
ds

]
,(3.3)

where ρ(i) = inf{t ≥ 0 :Xi(t) /∈ (0,1)} and fi is the density from Lemma 3.1.
Then:

(a) for each x /∈ D, u(x, ·) has the same Laplace transform as v(x, ·),
(b) both u(x, ·) and v(x, ·) are right continuous, and as a result,
(c) the tail probability v is equal to u and so has the representation given in

(3.3).
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PROOF. (a) The Laplace transform of the tail probability is, for x /∈ D,
∫ ∞

0
v(x, t) exp(−rt) dt = Ex

[∫ ∞
0

1[τ C�
>t] exp(−rt) dt

]

= Ex

[∫ τ C�

0
exp(−rt) dt

]

= r−1(
1 − v̂r (x)

)
,

using Fubini’s theorem to get the first equality (the integrand is nonnegative). Fur-
thermore, for x ∈ D, both v(x, t) and 1− v̂r (x) vanish and so in fact, for any x ∈ S
we have ∫ ∞

0
v(x, t) exp(−rt) dt = r−1(

1 − v̂r (x)
)
.(3.4)

Now, we consider the Laplace transform of u. By linearity of the expectation
operator,

u(x, t) = Ex

[
v
(
X(i)(t ∧ ρ(i)), (

t − ρ(i))+)] − Ex

[∫ t∧ρ(i)

0
fi

(
X(i)(s), t − s

)
ds

]
.

First, consider the Laplace transform of the first member of the right-hand side:∫ ∞
0

Ex

[
v
(
X(i)(t ∧ ρ(i)), (

t − ρ(i))+)]
exp(−rt) dt.

Applying Fubini’s theorem, the preceding expression becomes

Ex

[∫ ∞
0

v
(
X(i)(t ∧ ρ(i)), (

t − ρ(i))+)
exp(−rt) dt

]
,

which can be decomposed into the sum

Ex

[∫ ρ(i)

0
v
(
X(i)(t),0

)
exp(−rt) dt

]

+ Ex

[∫ ∞
ρ(i)

v
(
X(i)(ρ(i)), t − ρ(i)) exp(−rt) dt

]
.

The first term in the sum is

Ex

[∫ ρ(i)

0
v
(
X(i)(t),0

)
exp(−rt) dt

]
= r−1

Ex

[
1 − exp

(−rρ(i))],(3.5)

because when x /∈ D, Px -almost-surely we have X(i)(t) /∈ D for t < ρ(i). As for
the second term, we shift the variable of integration to u = t − ρ(i) and then use
(3.4) to show that it is equal to

r−1
Ex

[
exp

(−rρ(i))(1 − v̂r

(
X(i)(ρ(i))))].(3.6)
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The treatment of∫ ∞
0

Ex

[∫ t∧ρ(i)

0
fi

(
X(i)(s), t − s

)
ds

]
exp(−rt) dt(3.7)

proceeds in a similar fashion—exchange the expectation and outer integral and
then decompose the integrals into t < ρ(i) and t ≥ ρ(i). The integral over t < ρ(i)

is

Ex

[∫ ρ(i)

0

∫ t

0
fi

(
X(i)(s), t − s

)
ds exp(−rt) dt

]
.

Exchanging the integrals in t and s gives

Ex

[∫ ρ(i)

0

∫ ρ(i)

s
fi

(
X(i)(s), t − s

)
exp(−rt) dt ds

]
.

For the integral over t ≥ ρ(i), we again exchange the integrals in t and s to give

Ex

[∫ ρ(i)

0

∫ ∞
ρ(i)

fi

(
X(i)(s), t − s

)
exp(−rt) dt ds

]
.

Summing these final two expressions and substituting u = t − s shows that (3.7) is
equal to

Ex

[∫ ρ(i)

0

∫ ∞
0

fi

(
X(i)(s), u

)
exp(−ru) du exp(−rs) ds

]
.

The Laplace transform is a linear operator, and so we may sum (3.5)–(3.7) to
show that the Laplace transform of u is equal to

r−1
Ex

[
1 − exp

(−rρ(i))v̂r

(
X(i)(ρ(i)))]

(3.8)

+ Ex

[∫ ρ(i)

0
f̂ i

r

(
X(i)(s)

)
exp(−rs) ds

]
,

where we have used ∫ ∞
0

fi(x, u) exp(−rt) du = f̂ i
r (x)

for x /∈ D.
But, (3.8) is exactly what we get by substituting the representation for v̂r from

Lemma (2.3) into (3.4), and so we are done.
(b) Right-continuity of v in t follows from the Monotone Convergence theorem.

A little more work is required to see that u is right-continuous. We begin by ob-
serving that if ρ(i) > t then Xi has not been absorbed by time t and so, if x /∈ D,
there is a Px-negligible set outside of which X(i)(t) /∈ D.

It follows that {X(i)(t) /∈ D,ρ(i) > t} = {ρ(i) > t} up to a null set. Combining
this with the fact that v(·,0) = 1[·/∈D] shows

Ex

[
v
(
X(i)(t ∧ ρ(i)), (

t − ρ(i))+)
1[ρ(i)>t]

] = Px

(
ρ(i) > t

)
for x /∈ D.
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The latter is right-continuous in t by the Monotone Convergence theorem. The
complementary expectation

Ex

[
v
(
X(i)(t ∧ ρ(i)), (

t − ρ(i))+)
1[ρ(i)≤t]

]

is equal to

Ex

[
v
(
X(i)(ρ(i)), t − ρ(i))1[ρ(i)≤t]

]
,

the right continuity of which follows from that of v and the indicator 1[ρ(i)≤t],
together with the Dominated Convergence theorem.

We now consider the expectation of the integral,

Ex

[∫ t∧ρ(i)

0
fi

(
X(i)(s), t − s

)
ds

]
.

Using Fubini’s theorem, we may exchange the integral and expectation to get
∫ t

0
Ex

[
fi

(
X(i)(s), t − s

)
1[ρ(i)>s]

]
ds.(3.9)

This suggests the introduction of (p†
s ; s ≥ 0), the transition kernel of Xi killed

(and sent to a cemetery state) on leaving (0,1). Such a density exists by the argu-
ments in Section 4.11 of [12].

For notational ease, let us assume i = 1, then (3.9) can be written
∫ t

0

∫ 1

0
p†

s (x1, y)f1
(
(y, x2, x3), t − s

)
dy ds.

Finally, changing the variable of integration from s to s′ = t − s gives

∫ t

0

∫ 1

0
p

†
t−s′(x1, y)f1

(
(y, x2, x3), s

′)dy ds ′,

and so regularity of (3.9) in t is inherited from p†. This is sufficient because p
†
t is

continuous in t > 0 (again see [12]).
(c) It follows from (a) that for each x /∈ D, u(x, t) and v(x, t) are equal for

almost every t ≥ 0. Hence, right continuity is enough to show v(x, t) = u(x, t) for
every t ≥ 0. �

From the probabilistic representation for v, we need to deduce some sub-
martingale type inequalities for v(XC (t), T − t), 0 ≤ t ≤ T . As we will see later, it
is enough to consider strategies that, for some ε > 0, run only one process during
the interval (kε, (k + 1)ε), for integers k ≥ 0. In other words, the rates for each
process are either zero or one and are constant over (kε, (k + 1)ε).
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DEFINITION 3.3 (ε-strategy). For ε > 0 we let �ε denote the set of strategies
Cε such that for any integer k ≥ 0,

Cε(t) = Cε(kε) + (t − kε)ξk, kε ≤ t ≤ (k + 1)ε,

where ξk takes values in the set of standard basis elements {(1,0,0), (0,1,0),

(0,0,1)}.

LEMMA 3.4. Suppose x ∈ S and 0 ≤ t ≤ T , then the following sub-
martingale inequalities hold.

(a) For i ∈ V ,

Ex

[
v
(
X(i)(t), T − t

)] ≥ v(x,T ).

(b) If Cε ∈ �ε then

Ex

[
v
(
XCε

(t), T − t
)] ≥ v(x,T ).

PROOF. Consider first the quantity

Ex

[
EX(i)(t)

[
v
(
X(i)((T − t) ∧ ρ(i)), (

T − t − ρ(i))+)]]
.(3.10)

Our Markovian setup comes with a shift operator θ = θ(i) for X(i) defined by
X(i) ◦ θs(ω, t) = X(i)(θsω, t) = X(i)(ω, s + t) for each ω ∈ �. Using the Markov
property of X(i), (3.10) becomes

Ex

[
Ex

[
v
(
X(i)((T − t) ∧ ρ(i)), (

T − t − ρ(i))+) ◦ θt

∣∣Fi(t)
]]

.

From here, use the Tower Property and the fact that ρ(i) ◦ θt = (ρ(i) − t) ∨ 0 to
find that (3.10) equals

Ex

[
v
(
X(i)(T ∧ ρ(i)), (

T − ρ(i))+)]
.(3.11)

We can give a similar treatment for

Ex

[
EX(i)(t)

[∫ (T −t)∧ρ(i)

0
fi

(
X(i)(s), T − t − s

)
ds

]]
.(3.12)

Again using the Markov property of X(i), (3.12) becomes

Ex

[
Ex

[∫ (T −t)∧ρ(i)

0
fi

(
X(i)(s), T − t − s

)
ds ◦ θt

∣∣∣Fi (t)

]]
.

Substituting in for X(i) ◦ θt and ρ(i) ◦ θt and using the Tower Property, the latter
expectation is seen to be

Ex

[∫ (T −t)∧(ρ(i)−t)∨0

0
fi

(
X(i)(s + t), T − t − s

)
ds

]
.
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Now make the substitution u = s + t in the integral and use the fact that fi is
nonnegative to show that (3.12) is less than or equal to

Ex

[∫ T ∧ρ(i)

0
fi

(
X(i)(u), T − u

)
du

]
.(3.13)

The final step is to note that, by Lemma 3.2,

v(x,T − t) = Ex

[
v
(
X(i)(T − t ∧ ρ(i)), (

T − t − ρ(i))+)]

− Ex

[∫ (T −t)∧ρ(i)

0
f

(
X(i)(s), T − t − s

)
ds

]
,

and so Ex[v(X(i)(t), T − t)] is equal to (3.10) minus (3.12), which by the argument
above is greater than or equal to

Ex

[
v
(
X(i)(T ∧ ρ(i)), (

T − ρ(i))+)] − Ex

[∫ T ∧ρ(i)

0
fi

(
X(i)(u), T − u

)
du

]
.

Again appealing to Lemma 3.2 shows that the latter is exactly v(x,T ).
(b) It is sufficient to prove that for kε ≤ t ≤ (k + 1)ε we have

Ex

[
v
(
XCε

(t), T − t
)|F Cε

(kε)
] ≥ v

(
XCε

(kε), T − kε
)
.(3.14)

The desired result then follows by applying the Tower Property of conditional
expectation and iterating this inequality. If XCε

enjoys the Markov property, this
inequality follows from (a), but in general our strategies can be non-Markov so we
must do a little extra work.

Let us take ν
def= Cε(kε) and H def= F Cε

(kε). Then ν takes values in the grid
Z def= {0, ε,2ε, . . .}3 and � ∈ H implies that � ∩ {ν = z} is an element of the σ -
field F (z) = σ(F1(z1), . . . , F3(z3)) for z ∈ Z . It follows from the definition of
conditional expectation that Px -almost-surely we have

Ex(·|H) = Ex(·|F (z)) on {ν = z}.(3.15)

Now, suppose that ξk ∈ {(1,0,0), (0,1,0), (0,0,1)} defines the process that Cε

runs during the interval (kε, (k + 1)ε), that is,

Cε(t) = Cε(kε) + (t − kε)ξk, kε < t < (k + 1)ε.

By continuity of Cε
i and right-continuity of F Cε

(Lemma A.1), ξk must be H-

measurable. So, if A
def= A1 × A2 × A3 with Ai Borel measurable for each i ∈ V ,

(3.15) gives the equality

Ex

(
1[ν=z,XCε

(t)∈A,ξk=ei ]|H
) = 1[ν=z,ξk=ei ]Ex

(
1[X(z+(t−kε)ei)∈A]|F (z)

)
,

where X(z) = (X1(z1),X2(z2),X3(z3)).
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Next, we use the facts that 1[Xj (zj )∈Aj ] is F (z) measurable for each j and that
the filtration Fi of Xi is independent of Fj for j �= i, to show that the preceding
expression is equal to

1[ν=z,ξk=ei ,Xj (zj )∈Aj ,j �=i]Ex

[
1[Xi(zi+(t−kε))∈Ai ]|Fi (zi)

]
.

Finally, the Markov property of Xi allows us to write this as

1[ν=z,ξk=ei ]EX(z)

[
1[X(i)(t−kε)∈A]

]
.

As E·[v(X(i)(t), s)] is Borel measurable for any s, t ≥ 0, this is enough to con-
clude that in our original notation, on {ξk = ei},

Ex

[
v
(
XCε

(t), T − t
)|F Cε

(kε)
] = EXCε

(kε)

[
v
(
X(i)(t − kε), T − t

)]
.(3.16)

But part (a) shows that

Ex

[
v
(
X(i)(t − kε), (T − kε) − (t − kε)

)] ≥ v(x,T − kε),

and so the right-hand side of (3.16) is greater than or equal to v(XCε
(kε), T − kε).

�

3.1. Proof of Theorem 1.1. It is now relatively painless to combine the ingre-
dients above. We take an arbitrary strategy C , use Lemma A.3 to approximate it by
the family Cε , ε > 0, and then use Lemma 3.4 part (b) with t = T ≥ 0 to show that

Px(τ
Cε

> T ) = Ex[v(XCε

(T ),0)] ≥ v(x,T )

for any x /∈ D (equality holds trivially for x ∈ D).
The approximations are such that C(t) � Cε(t + Mε) for some constant M > 0.

Thus, τ C ≤ t implies that τ Cε ≤ t + Mε. More usefully, the contrapositive is that
τ Cε

> t + Mε implies τ C > t and so monotonicity of the probability measure Px

then ensures

Px(τ
C > t) ≥ Px(τ

Cε

> t + Mε) ≥ v(x, t + Mε).

Taking the limit ε → 0 and using right continuity of v(x, t) in t completes the
proof.

4. Existence and almost sure uniqueness of C�. In this section, we give a
proof for Lemma 1.4. Recall that we wish to study strategies C that satisfy the
property (RTM) for each i ∈ V , Ci increases at time t ≥ 0 [i.e., for every s > t ,
Ci (s) > Ci (t)] only if

XC
j (t) ≤ XC

i (t) ≤ XC
k (t)

for some choice {j, k} = V − {i}.
Our idea is to reduce the existence and uniqueness of our strategy to a one-

sided problem. Then, we can use the following result, taken from Proposition 5
and Corollary 13 in [18] (alternatively Section 5.1 of [13] or Section 2 of [1]).
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LEMMA 4.1. Suppose that (Yi(t); t ≥ 0), i = 1,2, are independent and iden-
tically distributed regular Itô diffusions on R, beginning at the origin and with
complete, right continuous filtrations (Hi(t); t ≥ 0). Then:

(a) There exists a strategy γ = (γ1(t), γ2(t); t ≥ 0) [with respect to the mul-
tiparameter filtration H = (σ (H1(z1), H2(z2)); z ∈ R

2+)] such that γi increases
only at times t ≥ 0 with

Y
γ
i (t) = Y

γ
1 (t) ∧ Y

γ
2 (t),

that is, “γ follows the minimum of Y1 and Y2.”
(b) If γ ′ is another strategy with this property, then, almost surely, γ ′(t) = γ (t)

for every t ≥ 0. That is, γ is a.s. unique.
(c) The maximum Y

γ
1 (t) ∨ Y

γ
2 (t) increases with t .

We first consider the question of uniqueness, it will then be obvious how C�

must be defined. Suppose that C is a strategy satisfying (RTM).
If X1(0) < X2(0) = X3(0), then C cannot run X1 (i.e., C1 does not increase)

before the first time ν that either XC
2 or XC

3 hit X1(0). Until then (or until a decision
is made, whichever comes first), C2 may increase only at times t ≥ 0 when XC

2 (t) ≤
XC

3 (t) and C3 only when XC
3 (t) ≤ XC

2 (t). Hence, on τ C ∧ ν ≥ t , the value of C(t)

is determined by the strategy in Lemma 4.1. Now, XC
2 ∨ XC

3 increases during this
time, and so if ν < τ C , we have

X1(0) = XC
1 (ν) = XC

2 (ν) ∧ XC
3 (ν) < XC

2 (ν) ∨ XC
3 (ν).

So again, we are in a position to apply the argument above, and can do so repeat-
edly until a decision is made. In fact, it takes only a finite number of iterations of
the argument to determine C(t) for each t ≥ 0 (on τ C ≥ t) because each diffusion
Xi is continuous, the minimum XC

1 ∧ XC
2 ∧ XC

3 is decreasing and the maximum
XC

1 ∨ XC
2 ∨ XC

3 increasing. If X1(0) < X2(0) < X3(0), then C must run X2 ex-
clusively until it hits either X1(0) or X3(0). From then on, the arguments of the
previous case apply.

The remaining possibility is that X1(0) = X2(0) = X3(0) = a ∈ (0,1). We shall
define random times νε , 0 < ε < (1 − a) ∧ a, such that:

• C(νε) is determined by the property (RTM),
• under some labeling, either

a − ε < XC
1 (νε) < a < XC

2 (νε) = XC
3 (νε) = a + ε

or

a − ε = XC
1 (νε) = XC

2 (νε) < a < XC
3 (νε) < a + ε

and
• νε → 0 as ε → 0.
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Again, we may then use the one-sided argument to see that, almost surely, on
νε ≤ t ≤ τ C , C(t) is determined by (RTM). This is sufficient because νε → 0 as
ε → 0.

To construct νε , suppose, without loss of generality, that X1 and X2 both exit
(a − ε, a + ε) at the upper boundary. We denote by αi the finite time taken for this
to happen, that is,

αi
def= inf{t > 0 :Xi(t) /∈ (a − ε, a + ε)}.

Define

li
def= inf

0≤s≤αi

Xi(s)

to be the lowest value attained by Xi before it exits (a − ε, a + ε). It follows from
Proposition 5 of [18] that it is almost sure that the li are not equal and so, we may
assume that l3 < l2 < l1 (by relabeling if necessary).

Intuitively, (RTM) means that XC
1 and XC

2 should hit a + ε together while XC
3

gets left down at l2. We already know it takes time αi for Xi to hit a + ε (i = 1,2)
and X3 takes time

β3
def= inf{t > 0 :X3(t) = l2}

to reach l2. So, we set νε = α1 + α2 + β3, and claim that

C(νε) = (α1, α2, β3).

The proof proceeds by examining the various cases. Firstly, if C1(νε) > α1 and
C2(νε) ≥ α2, then necessarily C3(νε) < β3 and X3(z3) > l2 for any z3 ≤ C3(νε).
But, then there exist times α′

i < Ci (νε) (i = 1,2) with

l2 = X2(α
′
2) < X3(z3) < X1(α

′
1) = a + ε

for any z3 ≤ C3(νε), contradicting (RTM).
The second case is that C1(νε) < α1 and C2(νε) ≤ α2. Necessarily, we then have

C3(νε) > β3. Now, Xi(zi) ≥ l2 for zi ≤ αi , i = 1,2, and so (RTM) implies that
X3(z3) ≥ l2 as well for z3 ≤ C3(νε). In addition, (RTM) and C3(νε) > β3 imply
that

C2(νε) ≥ inf{t > 0 :X2(t) = l2}
[otherwise X3(β3) < Xi(zi) for zi ≤ Ci (νε), i = 1,2]. So, both X2 and X3 have
attained l2 and then stayed above it for a positive amount of time. But, by Propo-
sition 5 in [18], this event (that “the lower envelopes of X2 and X3 are simultane-
ously flat”) has probability zero.

The final case C1(νε) > α1 and C2(νε) ≤ α2 has two subcases, C3(νε) ≤ β3 and
C3(νε) > β3—both can be eliminated by the methods above. The only remaining
possibility is that Ci (νε) = αi for i = 1,2 and C3(νε) = β3.
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The discussion above tells us how to define C�—if X1(0) < X2(0) ≤ X3(0)

under some labelling, then we just alternate the one-sided construction from
Lemma 4.1 repeatedly to give a strategy satisfying (C1)–(C3). If X1(0) = X2(0) =
X3(0) = a ∈ (0,1), take 0 < ε < a ∧ (1 − a) and define C�(νu), 0 < u ≤ ε, via the
construction above. Now, νu is only left continuous, so we have yet to define C� on
the stochastic intervals (νu, νu+], u ≤ ε. But, this is easily done because XC�

(νu)

has exactly two components equal and so we can again use the one-sided construc-
tion on this interval. We define C� on (νε, τ

C�] similarly. The properties (C1) and
(C2) are readily verified. To confirm (C3), we first note that C� satisfies (RTM).
But (RTM) gives us almost sure uniqueness of the paths of C�. It follows that our
definition of C� does not depend on ε. The second observation, which is not trivial,
is that C satisfies (C3) with respect to the filtration F ε obtained by enlarging F
to include

∨3
i=1 Fi (α

ε
i ), where αε

i

def= inf{t > 0 :Xi(t) /∈ (a − ε, a + ε)}. That is,
F ε contains the information necessary to construct C(νε). Property (C3) follows
because F ε(η) → F (η) as ε → 0 for any η ∈ R

3+.

5. XC�
as a doubly perturbed diffusion. We now turn our attention to the

optimally controlled process XC�
. For convenience, we will work with the mini-

mum

It
def= XC�

1 (t) ∧ XC�

2 (t) ∧ XC�

3 (t),

maximum

St
def= XC�

1 (t) ∨ XC�

2 (t) ∨ XC�

3 (t)

and middle value

Mt
def= (

XC�

1 (t) ∨ XC�

2 (t)
) ∧ (

XC�

1 (t) ∨ XC�

3 (t)
) ∧ (

XC�

2 (t) ∨ XC�

3 (t)
)
, t ≥ 0,

of the components of XC�
[so, if XC�

1 (t) ≤ XC�

2 (t) ≤ XC�

3 (t), then It = XC�

1 (t),
Mt = XC�

2 (t), St = XC�

3 (t)]. There is no ambiguity when the values of the compo-
nents are equal since we are not formally identifying It , Mt and St with a particular
component of XC�

.
Clearly, M behaves as an Itô diffusion solving (1.1) away from the extrema

[0,1] and S, while at the extrema it experiences a perturbation. This behavior is
reminiscent of doubly perturbed Brownian motion, which is defined as the (path-
wise unique) solution (X′

t ; t ≥ 0) of the equation

X′
t = B ′

t + α sup
s≤t

X′
s + β inf

s≤t
X′

s,

where α,β < 1 and (B ′
t ; t ≥ 0) is a Brownian motion starting from the origin.

This process was introduced by Le Gall and Yor in [15]; the reader may consult
the survey [21] and introduction of [6] for further details. In Section 2 of [6], this
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definition is generalized to accommodate nonzero initial values for the maximum
and minimum processes in the obvious way—if i0, s0 ≥ 0, we take

X′
t = B ′

t + α
(
sup
s≤t

X′
s − s0

)+ − β
(

inf
s≤t

X′
s + i0

)−
,

that is, X′ hits −i0 or s0 before the perturbations begin. As usual, a+ = max(a,0)

and a− = max(−a,0).
Our suspicion that M should solve this equation if the underlying processes are

Brownian motions is confirmed in the following lemma.

LEMMA 5.1. Suppose that 0 ≤ i0 ≤ m0 ≤ s0 ≤ 1 and σ = 1. Then, under
P(i0,m0,s0), there is a standard Brownian motion (B ′

t ; t ≥ 0) (adapted to F C�
) for

which the process M ′ = Mt − m0, t ≥ 0, satisfies

M ′
t = B ′

t −
(
sup
s≤t

M ′
s − s′

0

)+ +
(

inf
s≤t

M ′
s + i ′0

)−
, t ≤ τ C�

,

where i′0 = m0 − i0 and s′
0 = s0 − m0. In other words, M is a doubly perturbed

Brownian motion with parameters α = β = −1.

PROOF. For simplicity we can, and do, ignore the fact that the Xi are absorbed
on leaving (0,1) as C� does not run any absorbed process before the decision time.

The multiparameter martingale (X1(z1)+X2(z2)+X3(z3); z ∈ R
3+) is bounded

and right continuous. Hence, Theorem A.2 implies that

ξt
def= XC�

1 (t) + XC�

2 (t) + XC�

3 (t), t ≥ 0,

is a continuous (single parameter) martingale with respect to the filtration F C�
.

But, the Xi are independent Brownian motions and so the same argument applies
to the multiparameter martingale

((
X1(z1) + X2(z2) + X3(z3)

)2 − (z1 + z2 + z3); z ∈ R
3+

)
,

that is, ξ2
t − t is a martingale. It follows that (ξt ; t ≥ 0) is a Brownian motion with

ξ0 = i0 + m0 + s0 and we can take B ′ = ξ − (i0 + m0 + s0).
Now, C� always “runs M” away from the extrema [0,1] and S of XC�

and so

It = inf
s≤t

Ms ∧ i0, St = sup
s≤t

Ms ∨ s0,

relationships which can be proved using the arguments of Section 4. It follows that

M ′
t = Mt − m0 = ξt − m0 − St − It = B ′

t − sup
s≤t

Ms ∨ s0 + s0 − inf
s≤t

Ms ∧ i0 + i0.

The result now follows by noting that for real a and b we have a ∧ b − b =
−(a − b)− and a ∨ b − b = (a − b)+. �
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Lemma 5.1 is relevant because τ C�
is precisely the time taken for the doubly

perturbed Brownian motion M to exit the interval (0,1). In particular, the expres-
sion we find for the Laplace transform v̂r (x) can be recovered from Theorems 4
and 5 in Chaumont and Doney [5].

We have so far assumed that σ = 1 and are yet to say anything about more
general “perturbed diffusion processes.” There are several papers that consider this
problem. Doney and Zhang [7] consider the existence and uniqueness of diffusions
perturbed at their maximum. More recently, Luo [17] has shown that solutions to

X′
t =

∫ t

0
μ(s,X′

s) ds +
∫ t

0
σ(s,X′

s) dB ′
s + α sup

s≤t
X′

s + β inf
s≤t

X′
s,(5.1)

exist and are unique, but only in the case that |α| + |β| < 1. A more general per-
turbed process is considered in [11] but similar restrictions on α and β apply.

That is, there are no existence and uniqueness results for doubly perturbed dif-
fusions which cover our choice of α and β , and less still for the Laplace transform
of the distribution of the time taken to exit an interval.

This is where our results seem to contribute something new. Lemma 5.1 eas-
ily generalises to continuous σ > 0, and this combined with the other results in
this paper, lets us see that if μ is bounded and Borel measurable and σ > 0 is
continuous, then there is a solution to

M ′
t =

∫ t

0
μ(M ′

s) dB ′
s +

∫ t

0
σ(M ′

s) dB ′
s − sup

s≤t
Ms − inf

s≤t
Ms.

Furthermore, we can compute the Laplace transform of the distribution of the time
taken for any solution of this equation to exit any interval (−a, b) when μ is zero.

REMARK 5.2. While this paper was in review, we became aware of [2], which
contains an existence result for (5.1) covering α = β = −1.

6. Majority decisions of 2k + 1 diffusions and veto voting. The problem
that we have solved has a natural generalization in which there are m diffusions
instead of three. In particular, one might ask for the majority decision of an odd
number of “diffusive voters” (Xi(t); t ≥ 0), i = 1, . . . ,m. We believe that the op-
timal strategy is still to “run the middle.” In other words, if m = 2k + 1, and

XC�

1 (t) ≤ · · · ≤ XC�

k (t) < XC�

k+1(t) < XC�

k+2(t) ≤ · · · ≤ XC�

m (t)

then C�
k+1 increases at unit rate until XC�

k+1 hits either XC�

k (t) or XC�

k+2(t).
Another variant of majority voting is “veto voting,” where we have an arbitrary

number m′ > 0 of diffusions, and declare a negative decision if at least k ≤ m′ of
them get absorbed at the lower boundary (otherwise, no veto occurs and a positive
decision is made). In fact, this is a special case of majority voting in which some of
the processes begin in an absorbed state. For example, consider the case 2k < m′.
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This implies there is no veto if the majority of voters return positive decisions. This
is equivalent to asking for a majority of m = 2(m′ − k) + 1 diffusive voters, with
m + 1 − 2k of them beginning in a state of absorption at zero. The case 2k ≥ m′
admits a similar description in terms of majority voting. The analogue of the “run
the middle” conjecture is that if

XC�

1 (t) ≤ · · · ≤ XC�

k−1(t) < XC�

k (t) < XC�

k+1(t) ≤ · · · ≤ XC�

m′(t)

then C�
k should increase at unit rate until XC�

k hits either XC�

k−1(t) or XC�

k+1(t). In
other words, we “run the component with kth order statistic.” The extreme of this
is true veto voting in which a single diffusion being absorbed at zero will veto the
others. This is the case k = 1, and the conjecture is that we should always “run the
minimum” of the diffusions.

In principle, this conjecture could be tackled using the methods of this paper
since the heuristic argument used to compute the Laplace transform of the distri-
bution of the decision time still applies. The difficulty arises because we cannot
prove a more general existence result for solutions to the analogue of (2.18).

One might also consider diffusions which obey different stochastic differential
equations. We have found an implicit equation for the switching boundaries in
the optimal strategy for m′ = 2, k = 1 “veto voting” problem by solving a free
boundary problem. However, we have no conjecture for the general solution.

APPENDIX: RESULTS FOR MULTIPARAMETER PROCESSES

The proofs of Lemmas 2.2 and 5.1 appealed to the fact that a multiparameter
martingale composed with a strategy is again a martingale. Moreover, it was as-
serted that we can approximate an arbitrary strategy with a discrete one. This ap-
pendix contains a precise statement of these results, together with basic definitions
(adopted from Section 4 of [9]).

Let (�, F ,P) be a complete probability space, R+ denote the set of nonnegative
reals [0,∞) and d ≥ 2. A family (F (η), η ∈ R

d+) of σ -algebras contained in F is
called a multiparameter filtration if, for every η, ν ∈ R

d+ with η � ν,

F (η) ⊆ F (ν).

We make the strong assumption that F is generated from independent filtrations,
as is in Section 1.3; that is,

F (η) = σ(F1(η1), . . . , Fd(ηd)), η ∈ R
d+,

where (Fi (t), t ≥ 0), i = 1,2, . . . , d, are independent, right continuous, complete
filtrations. Note that this filtration satisfies the “usual conditions” of [9].

A real-valued process (Z(η), η ∈ R
d+) is called a multiparameter super-

martingale with respect to (F (η), η ∈ R
d) if for every η:

• E[|Z(η)|] < ∞, that is, Z is integrable,
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• Z(η) is F (η) measurable and
• E[Z(η)|F (ν)] ≤ Z(ν) for every η � ν.

A strategy C is a R
d+ valued process such that Ci increases from the origin,∑

i Ci (t) = t and {C(t) � η} ∈ F (η) for every t ≥ 0 and η ∈ R
d+ [conditions (C1)–

(C3) from Section 1.3]. For each strategy, we define a filtration (F C (t), t ≥ 0) by

F C (t)
def= {

F ∈ F :F ∩ {C(t) � η} ∈ F (η) ∀η ∈ R
d+

}
, t ≥ 0.

LEMMA A.1. F C is right continuous.

PROOF. Fix t ≥ 0 and suppose that F ∈ F C (s) for every s > t . We need to
show that F ∈ F C (t), that is,

F ∩ {C(t) � ν} ∈ F (ν) for all ν ∈ R
d+.

The trick is, for each ν ∈ R
d+, to take a decreasing sequence νn ∈ R

d+, n > 0,
such that νn → ν, νn

i > νi and use continuity of C to write

F ∩ {C(t) � η} = ⋂
m>0

⋃
n>0

{C(t + 1/n) � νm} ∩ F.

By assumption, F ∈ F C (t + 1/n) for each n > 0 and so, by definition,

{C(t + 1/n) � νm} ∩ F ∈ F (νm)

for each m > 0. Thus, the union

Am
def= ⋃

n>0

{C(t + 1/n) � νm} ∩ F

is also in F (νm). Because C is increasing, we have Am+1 ⊆ Am and so
⋂

m>0 Am =⋂
m>k Am for any k > 0. Hence, for any k,

F ∩ {C(t) ≺ ν} = ⋂
m>k

Am ∈ F (νk).

But, since F is generated from independent filtrations,⋂
k

F (νk) = F (ν)

by Lemma 2 of [16].1 This concludes the proof. �

The process

ZC def= (
Z1(C1(t)), . . . ,Zd(Cd(t)); t ≥ 0

)
is adapted to this filtration. The idea is that ZC should be a super-martingale with
respect to F C . Indeed, Proposition 4.3 in [9] is the following.

1A remark in this paper warns that the conclusion may be false if the filtrations are not independent!
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THEOREM A.2. Suppose that Z is a right continuous multi-parameter super-
martingale and that C is a strategy. Then ZC is a (local) F C -super-martingale.

This theorem appears in various guises throughout the literature (a good refer-
ence for the discrete case is Chapter 1 of [3]), we do not give the proof. Merely,
we will mention one of its stepping stones—approximation of an arbitrary strategy
with a discrete one.

Recall from Definition 3.3 that for any ε > 0, �ε denotes the set of strate-
gies which only increase in one component over each interval [kε, (k + 1)ε),
k = 0,1, . . . , that is, Cε is in �ε if Ċi a.e. takes only values 0 or 1 and is con-
stant on each interval (kε, (k + 1)ε). The promised approximation result is the
following lemma.

LEMMA A.3. (a) For any strategy C , there exist a family of strategies Cε ∈ �ε ,
ε > 0 that converge to C in the sense that

lim
ε→0

sup
t≥0

|C(t) − Cε(t)| = 0,

where | · | is any norm on R
d .

(b) Moreover, there is a positive constant M > 0 for which C(t) � Cε(t + Mε)

for every t ≥ 0.

Part (a) of this lemma is exactly Theorem 7 of Mandelbaum [18] and part (b)
follows from directly from the constructive proof of (a). The details are omitted.
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