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ORDER-INVARIANT MEASURES ON CAUSAL SETS

BY GRAHAM BRIGHTWELL AND MALWINA LUCZAK1

London School of Economics and Political Science

A causal set is a partially ordered set on a countably infinite ground-set
such that each element is above finitely many others. A natural extension of
a causal set is an enumeration of its elements which respects the order.

We bring together two different classes of random processes. In one class,
we are given a fixed causal set, and we consider random natural extensions of
this causal set: we think of the random enumeration as being generated one
point at a time. In the other class of processes, we generate a random causal
set, working from the bottom up, adding one new maximal element at each
stage.

Processes of both types can exhibit a property called order-invariance: if
we stop the process after some fixed number of steps, then, conditioned on the
structure of the causal set, every possible order of generation of its elements
is equally likely.

We develop a framework for the study of order-invariance which includes
both types of example: order-invariance is then a property of probability mea-
sures on a certain space. Our main result is a description of the extremal
order-invariant measures.

1. Introduction. This work is intended as a common generalization of two
different strands of research: a proposal from physicists for a mathematical model
of space–time as a discrete poset, and a notion of a “random linear extension” of
an infinite partially ordered set. One of our aims is to show that these two lines of
research are intimately connected.

The objects we study are causal sets, which are countably infinite partially or-
dered sets P = (Z,<) such that every element is above only finitely many others.
A natural extension of a causal set is a bijection from N to Z whose inverse is
order-preserving; that is, it is an enumeration of Z that respects the ordering <.

We consider random processes that generate a causal set one element at a time,
starting with the empty poset, and at each stage adding one new maximal element,
keeping track of the order in which the elements are generated. Such a process
is called a growth process. The infinite poset P generated by a growth process is
always a causal set, and the order in which the elements are generated is a natural
extension of P .

We will postpone most of the formal definitions for a while, although we will
introduce some notation that will be consistent with that used in the bulk of the
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paper. Our main purpose in this section is to motivate the ideas of the paper by
examining some examples. Before that, we need a little terminology.

A (labeled) poset P is a pair (Z,<), where Z is a set (for us, Z will always
be countable), and < is a partial order on Z, that is, a transitive irreflexive relation
on Z. An order < on Z is a total order or linear order if each pair {a, b} of distinct
elements of Z is comparable (a < b or b < a).

A down-set in P is a subset Y ⊆ Z such that, if a ∈ Y and b < a, then b ∈ Y . An
up-set is the complement of a down-set: a set U ⊆ Z such that b ∈ U and a > b

implies a ∈ U .
A pair (x, y) of elements of Z is a covering pair if x < y, and there is no z ∈ Z

with x < z < y. We also say that x is covered by y, or that y covers x.
If P = (Z,<) is a poset, and Y ⊆ Z, then <Y denotes the restriction of the

partial order to Y , and PY = (Y,<Y ). For W ⊂ Z, we also write P \ W to mean
PZ\W .

For P = (Z,<) a poset on any ground-set Z, a linear extension of P is a total
order ≺ on Z such that, whenever x < y, we also have x ≺ y. In the case where Z

is finite, the set of linear extensions is also finite.
We will often be considering posets on the set N, or on one of the sets [k] =

{1, . . . , k}, for k ∈ N, which come equipped with a “standard” linear order. In these
cases, a suborder of N or [k] will be a partial order on that ground-set (typically
denoted <N or <[k]) with the standard order as a linear extension, that is, if <N is
a suborder of N and i <N j , then i is below j in the standard order on N.

In the case where the ground-set Z of P is countably infinite, the natural ex-
tensions of P correspond to the linear extensions ≺ with the order-type of the
natural numbers: specifically, given a natural extension of P , which is a bijection
λ : N → Z whose inverse is order-preserving, we obtain a linear extension ≺ of P

by setting λ(i) ≺ λ(j) whenever i < j in the standard order on N.

EXAMPLE 1. Figure 1 below shows the Hasse diagram of a labeled causal
set P = (Z,<), where Z = {a1, a2, . . .}, and aj > ai if j > i + 1. (Later, we will
require that the ai are distinct real numbers in [0,1], but the order < imposed on
the ai by P has no relation to the order of [0,1].)

The natural extensions of this poset P are the bijections λ : N → Z such that,
for i < j , ai �> aj . Equivalently, we require that {λ(1), . . . , λ(k)} is a down-set in
P , for each k.

We are interested in a particular probability measure μ on the set L(P ) of natu-
ral extensions λ of P , which has properties one would associate with a “uniform”
probability measure. The σ -field of measurable sets is generated by events of the
form

E(ai1ai2 · · ·aik ) = {λ :λ(j) = aij for j = 1, . . . , k},
the set of natural extensions with “initial segment” ai1ai2 · · ·aik , for k ∈ N and the
ij distinct elements of N. We call ai1ai2 · · ·aik an ordered stem if {ai1, . . . , aij } is
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FIG. 1. The causal set P = (Z,<).

a down-set in P , for j = 1, . . . , k: in other words if there is a natural extension of
P with this initial segment.

We describe the measure μ via a random process for generating the sequence
λ(1), λ(2), . . . sequentially. Given the set Xk = {λ(1), λ(2), . . . , λ(k)}, the element
λ(k + 1) has to be one of the minimal elements of P \ Xk , and there are at most
two of these. The random process we are interested in is the one defined by the
following rules:

• if there is only one minimal element ak of P \ Xk , take λ(k + 1) = ak with
probability 1;

• if there are two minimal elements ak+1 and ak+2 of P \ Xk , set λ(k + 1) =
ak+1 with probability φ = 1

2(
√

5 − 1) = 0.618 . . . and λ(k + 1) = ak+2 with
probability 1 − φ.

It is easy to see that the function λ generated by these rules is always a natural
extension of P .

We have described this as a process generating a random natural extension, but
we can also think of it as a growth process, growing a causal set by adding one
new maximal element at each step: the process always generates the same infinite
causal set P , but the order in which the elements are generated is random.

We now calculate

μ(E(a1a2)) = φ2 = 1 − φ = μ(E(a2a1)).(1)

Indeed, we choose λ(1) = a1 with probability φ; having done so, we choose
λ(2) = a2 with probability φ. On the other hand, we choose λ(1) = a2 with prob-
ability 1 − φ; having done so, a1 is the only minimal element of P \ {a2}, so we
choose λ(2) = a1 with probability 1.
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Moreover, we claim that, whenever ai1ai2 · · ·aik and a�1a�2 · · ·a�k
are two or-

dered stems with {ai1, . . . , aik } = {a�1, . . . , a�k
}, we have

μ(E(ai1ai2 · · ·aik )) = μ(E(a�1a�2 · · ·a�k
)).(2)

If the two orders ai1ai2 · · ·aik and a�1a�2 · · ·a�k
differ only by an exchange of ad-

jacent elements—necessarily ar and ar+1 for some r—then (2) follows by essen-
tially the same calculation as in (1): the two probabilities μ(E(ai1ai2 · · ·aik )) and
μ(E(a�1a�2 · · ·a�k

)) are products of terms which are the same except that one has
two terms equal to φ and the other has one term equal to 1 − φ and another equal
to 1. To see (2) in general, it suffices to show that we can step from ai1ai2 · · ·aik to
a�1a�2 · · ·a�k

by a sequence of exchanges of adjacent elements, staying within the
set of ordered stems. This is a standard fact about the set of linear extensions of
any finite poset: to see it in this case, start with the order ai1ai2 · · ·aik , and move
each a�j

in turn down until it reaches position j .
The property in (2) is called order-invariance. If we consider instead a finite

poset P = (Y,<), then the uniform probability measure νP on the set of linear
extensions of P satisfies order-invariance. Indeed, another way of obtaining the
measure μ in our example is to consider the sets Zn = {a1, . . . , an}, the finite
posets Pn = PZn , and the uniform measures νPn on their sets of linear extensions,
for each n. It can be shown that

νPn(E(ai1ai2 · · ·aik )) → μ(E(ai1ai2 · · ·aik ))

as n → ∞, for each ordered initial segment ai1ai2 · · ·aik .

Our second example is apparently of a very different nature. We consider a
family of probability measures on the set of causal sets with ground-set N—that
is, models of random causal sets—and explain how these measures also satisfy an
order-invariance property.

EXAMPLE 2. A random graph order P = (N,≺), with parameter p ∈ (0,1),
is defined on the set N as follows. We take a random graph on N—for each pair
(i, j) of elements of N, we put an edge between i and j with probability p, all
choices made independently. Then we define the random order ≺ from the random
graph by declaring that i ≺ j if there is an increasing sequence i = i1, i2, . . . , im =
j of natural numbers such that i�i�+1 is an edge for each � = 1, . . . ,m − 1.

Equivalently, we could define the random graph order with parameter p via a
growth process, adding a new maximal element at each stage. Given the restriction
P[k] to the set [k], at the next step of the process, a random subset � of [k] is
chosen, with each element taken into � independently with probability p. Then
k + 1 is placed above the elements of �, and the transitive closure is taken—so if
j is in � and i 
 j in P[k], then i is placed below k + 1 in P[k+1].

This is a model of random posets—there are versions with the ground-set being
a finite set [n], or Z—with a number of interesting features, and it also has the
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advantage that it is relatively easy to analyze. Accordingly, random graph orders
have attracted a fair degree of attention in the combinatorics literature; see, for
instance, [1, 2, 5, 23].

Fix some k ∈ N, and some suborder <[k] of [k]. We claim that the probability
that the order ≺[k] on [k] is equal to <[k] is given by

pc(<[k])(1 − p)b(<[k]),(3)

where c(<[k]) is the number of covering pairs of ([k],<[k]), and b(<[k]) is the
number of incomparable pairs.

To see this, note that, if i is covered by j in <[k], then in order for ≺[k] to equal
<[k], it is necessary for ij to be an edge of the random graph. Also, if i and j are
incomparable in <[k], then it is necessary for ij to be a non-edge. Conversely, if
i <[k] j , but i is not covered by j , then there is some sequence i = i1i2 · · · im = j

of elements of [k] such that i� is covered by i�+1 in <[k], for � = 1, . . . ,m − 1.
Provided that each edge i�i�+1 is in the random graph, we will have i ≺ j whether
or not the edge ij is in the random graph. Thus, ≺[k] is equal to <[k] if and only if
all the covering pairs of <[k] span edges in the random graph, and all the incom-
parable pairs do not.

The key point for our purposes is that the expression (3) is an isomorphism-
invariant of the poset <[k], and so isomorphic posets have equal probabilities of
arising as ≺[k]. We again call this property order-invariance. An interpretation is
that, if we stop the process when there are k elements, and look at the structure
of the poset, but not at the numbering of the elements, then, conditioned on this
information, each linear extension of the poset is equally likely to have been the
order in which the elements were generated.

Growth processes, of a type similar to those in Example 2, were investigated
by Rideout and Sorkin [24], who view them as possible discrete models for the
space–time universe. The idea is that the elements of the (random) causal set form
the (discrete) set of points in the space–time universe, and the partial order ≺ is
interpreted as “is in the past light-cone of.”

The order in which the elements of the causal set are generated is not deemed
to have any physical meaning, so it should not be possible to extract information
about this order from the causal set at any stage. Rideout and Sorkin thus viewed
growth processes as being Markov chains on the set of finite unlabeled causal
sets, where each transition adds a new maximal element. They studied such pro-
cesses with the property that, conditional on the causal set at some stage k being
equal to some unlabeled k-element poset P , each linear extension of P is equally
likely to have been the order in which the elements were generated. They called
this property “general covariance.” Alternatively, we can view the Rideout–Sorkin
processes as generating an order on the ground-set N, as in Example 2; then the
property of general covariance translates to the property of order-invariance, as
described in Example 2.
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In [24], Rideout and Sorkin characterized all growth processes satisfying gen-
eral covariance as well as another condition called Bell causality, and also a “con-
nectedness” condition that prevents the model breaking up as a sequence of models
of posets stacked on top of one another. The models satisfying all three conditions
are called classical sequential growth models or csg models; these were studied
further in [7, 16, 25]. Random graph orders, as in Example 2, are the prime exam-
ples of csg models. A general csg model can be described in similar terms to our
description of a random graph order as a growth model; the particular csg model is
specified by a sequence of real parameters tn representing the relative probability
of choosing the random set � to be equal to a given set S of size n.

Brightwell and Georgiou [7] determined that the large-scale structure of any
csg model is that of a semiorder, and in particular is quite unlike the observed
space–time structure of the universe.

Varadarajan and Rideout [27] and Dowker and Surya [12] describe the models
that can arise if the connectedness condition is dropped. Here there is a fascinating
extra layer of complexity: the causal sets arising are all obtained by stacking “csg
models” on top of one another, and the sizes of “later” components may depend
on the detailed structure of “earlier” ones if these are finite.

The underlying reason that csg models cannot produce causal sets that resem-
ble the observed universe seems to lie with the condition of Bell causality: it is
possible to show that any process producing causal sets of the desired type (essen-
tially, those induced on a discrete set of points arising from a Poisson process on a
Lorentzian manifold) will not satisfy this condition.

Our aim in this paper is, effectively, to study the class of growth processes sat-
isfying general covariance: this class is vastly richer than the class of csg models.
For instance, if we drop the labels ai from the causal set in Example 1, and con-
sider the growth process that we described there as being a process on unlabeled
posets, then the property of order-invariance again translates to general covariance.

Dealing with unlabeled combinatorial structures is often awkward; in cases sim-
ilar to Example 1, it is also very unnatural. So we will deal with labeled causal sets
from now on, and we want to express order-invariance in terms of notation similar
to that used in Example 1.

We are thus faced with the problem of how to incorporate random graph orders
(and other csg models) into our setting. The numbering of the elements that we
used in Example 2 specifies the order of generation of the elements, and so these
numbers cannot serve as labels in the same sense as the ai are used to label the
elements in Example 1.

It is useful at this point to introduce another family of examples, in some ways
trivial but in other ways far from it.

EXAMPLE 3. We consider growth processes where the causal set generated
is a.s. an antichain (i.e., no two elements are comparable). This is the case if we
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take a random graph order with p = 0: we certainly do want to include some such
growth processes within our framework.

If we require our causal sets to be labeled, then a growth process which a.s.
generates an antichain is nothing more than a sequence of random variables: the
labels of the elements, in the order they are introduced.

Order-invariance requires that, if we condition on the set of the first k labels, for
any k, then each of the k! orderings of these labels is equally likely. This is exactly
the requirement that the sequence of labels be exchangeable.

One way to generate a sequence of exchangeable random labels is to take any
probability distribution τ on any set X of potential labels, and let the labels be an
i.i.d. sequence of random elements of X with probability measure τ . We will want
our labels to be a.s. distinct, so we need the probability measure τ to be atomless.

The Hewitt–Savage theorem [18] states that every sequence of exchangeable
random variables is a mixture of sequences of the type described above (i.e., there
is a probability measure ρ on some space of probability measures on a set X: one
measure τ is chosen according to ρ, and then an i.i.d. sequence of random elements
of X is generated according to τ ).

For instance, we can take X to be the interval [0,1], equipped with its usual
Borel σ -field and Lebesgue probability measure, and τ to be the uniform proba-
bility measure on X. Our growth process then operates as follows: at each stage,
we introduce a new element, labeled with a uniformly random element of [0,1],
chosen independently of all other labels, and we make the new element incompa-
rable with all existing elements. This is indeed order-invariant: if we condition on
the state of the process after k steps—an antichain labeled with a set of k numbers
from [0,1], a.s. distinct—then each of the k! orders of generation is equally likely.

Formally, we will handle random graph orders in exactly the same way as in
the example above: our growth process will proceed by taking a new element,
assigning it a uniformly random label from [0,1], independent of any other labels
and of the structure of the existing poset, and then placing the new element above
some of the existing elements as described in Example 2. Such a growth process
will be order-invariant.

In general, it is convenient to work only with causal sets labeled by elements
from a specific set, and we shall choose the interval [0,1], which comes equipped
with its standard (compact) topology, and the Borel σ -field B generated by the
topology.

One generally applicable way of specifying the outcome of a growth process is
by giving an infinite string of (labels of) elements, listed as x1x2 · · · in the order of
their generation, together with a suborder <N of the index set N with its standard
order: i <N j if and only if xi < xj in the causal set P = (X,<) generated by the
process.

Growth processes thus correspond to probability measures on the set 
 of pairs

(x1x2 · · · ,<N),
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where the xi are elements of [0,1] and <N is a suborder of N. We will proceed
by taking 
 as the outcome space, with the appropriate σ -field F , and consid-
ering probability measures on (
, F ). We will set up the notation carefully in
Section 3, introducing the notion of a causal set process or causet process, which
is effectively the same as a growth process, but where the states are formally pairs
(x1 · · ·xk,<

[k]), where the poset <[k] is on the index set [k], rather than on the set
Xk = {x1, . . . , xk}. We give a formal definition of order-invariance, as a property
of probability measures on (
, F ), in Section 4.

We emphasize that we will build one space (
, F ) to accommodate all causet
processes, subject only to the fairly arbitrary restriction that the set of potential
labels of elements is [0,1]. We will then study the space of all order-invariant
measures, which we will define as probability measures on (
, F ) satisfying a
certain condition. This space of order-invariant measures has some good proper-
ties; for instance, it is a convex subset of the set of all probability measures on
(
, F ), and we shall show in Section 6 that it is closed in the topology of weak
convergence.

In order to make a systematic study of order-invariant measures, we shall focus
on the extremal order-invariant measures: those that cannot be written as a convex
combination of two others.

An order-invariant measure that almost surely produces one fixed (labeled)
causal set P = (Z,<), as in Example 1, will be called an order-invariant mea-
sure on P . The process in Example 1 is in fact the only order-invariant measure
on the poset P of Figure 1, and it is extremal. We shall see an example later of a
causal set with infinitely many extremal order-invariant measures on it.

On the other hand, it follows from the analysis in Example 3 that a labeled an-
tichain (Z,<) admits no order-invariant measures. Indeed we saw that, if an order-
invariant measure generates an antichain a.s., then there is a probability measure ρ

on the space of probability measures on ([0,1], B), such that the sequence of labels
is generated by first choosing a probability measure τ according to ρ, then taking
an i.i.d. sequence of random variables with distribution τ . Now, if x ∈ [0,1], and
x occurs as a label with positive probability, then ρ(τ({x}) > 0) > 0, and in that
case x occurs as a label infinitely often with positive probability. So such a process
cannot generate each label in Z exactly once.

There is however an abundance of extremal order-invariant measures that are
measures on some fixed causal set. Also, there are extremal order-invariant mea-
sures a.s. giving rise to an antichain: it follows from the discussion in Example 3—
in particular, from the Hewitt–Savage theorem [18]—that these are effectively the
same as i.i.d. sequences of random elements of [0,1].

Our main result is Theorem 8.1, showing that all extremal order-invariant mea-
sures on (
, F ) are, in a sense to be made precise later, a combination of extremal
order-invariant measures of these two types.

Sections 2–4 are devoted to defining notation and terminology, setting up the
spaces we are studying, and giving precise definitions. We also establish some
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useful properties of order-invariant measures in Section 4. In Section 5, we give
details of how examples such as the ones in this section fit into the general frame-
work. In Section 6, we show that the set of order-invariant measures is the set of
measures invariant under a certain family of permutations on 
, and we derive as
a consequence that the set of order-invariant measures is closed in the topology
of weak convergence. In Section 7, we give a number of conditions equivalent to
extremality of an order-invariant measure, and also show that every order-invariant
measure is a mixture of extremal ones. Finally, in Section 8, we state, discuss and
prove Theorem 8.1.

Our results do not provide a classification of extremal order-invariant measures:
this would necessarily involve a classification of extremal order-invariant measures
on fixed causal sets, which seems likely to be prohibitively difficult. However,
some partial results in this direction are given in the authors’ companion paper [8],
where order-invariant measures on fixed causal sets are studied in depth.

For now, we just point out some more connections to existing literature. Some
years ago, the first author [9, 10] studied random linear extensions of locally finite
posets. The main theorem of [9], interpreted in the present context, is as follows.
If a causal set P has the property that, for some fixed t , every element is incom-
parable with at most t others, then there is a unique order-invariant measure on P .
For instance, this applies to the causal set in Example 1. More details can be found
in [8].

The specific case where P is the two-dimensional grid (N×N,<) has attracted
considerable attention, as it is connected with the representation theory of the infi-
nite symmetric group, and with harmonic functions on the Young lattice (which is
the lattice of down-sets of P ). A good account of this theory appears in Kerov [20],
where a somewhat more general theory is also developed. Our concerns in this pa-
per are different, but the two theories have various points of contact.

The family of natural extensions of a fixed causal set P can also be viewed
as the set of configurations of a (1-dimensional) spin system, and order-invariant
measures can then be interpreted as Gibbs measures, so that some of the general
results discussed in, for instance, Bovier [6] or Georgii [15] apply. In fact, as we
shall see later, some of the results in [15] apply to order-invariant measures in
general.

2. Causal sets and natural extensions. For a poset P = (Z,<) and an ele-
ment x ∈ Z, set D(x) = {y ∈ Z :y < x}, the set of elements below x. We also set
U(x) = {y ∈ Z :y > x} and I (x) to be the set of elements incomparable with x.
Thus, {D(x), I (x),U(x)} is a partition of Z \ {x}. A causal set is a poset in which
D(x) is finite for all x.

Recall that a natural extension of a causal set P = (Z,<) is a bijection λ from
N to Z such that λ−1 is order-preserving: that is, if λ(i) < λ(j), then i < j . It is
often convenient to write natural extensions as x1x2 · · ·, meaning that λ(i) = xi .
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In this notation, an initial segment of λ is an initial substring x1x2 · · ·xk , for some
k ∈ N.

A natural extension λ of a countably infinite poset P = (Z,<) gives rise to a
linear extension ≺ of P by setting x ≺ y whenever λ−1(x) < λ−1(y). The linear
extensions arising in this way are those with the order-type of N.

Similarly, if P = (Z,<) is a finite poset, with |Z| = k, we can think of a linear
extension as a bijection λ : [k] → Z such that λ−1 is order-preserving, that is, if
λ(i) < λ(j), then i < j in [k]. We shall sometimes write a linear extension of
a finite poset P as x1 · · ·xk , meaning that λ(i) = xi for i = 1, . . . , k. For finite
partial orders, we shall use these various equivalent notions of linear extension
interchangeably.

A stem in a causal set is a finite down-set (this term is less standard: it has been
used in some physics papers). An ordered stem of a causal set P = (Z,<) is a
finite string x1 · · ·xk such that X = {x1, . . . , xk} is a down-set in P , and x1 · · ·xk is
a linear extension of PX . In other words, ordered stems are exactly the strings that
can arise as an initial segment of a natural extension of P .

For a countable poset P = (Z,<), let L(P ) denote the set of natural extensions
of P . Also, let L′(P ) denote the set of injections λ from N to Z such that, for
each i, D(λ(i)) ⊆ {λ(1), . . . , λ(i − 1)}. In general, elements of L′(P ) need not be
bijections from N to Z: they may be invertible maps from N onto a proper subset
of Z, which will necessarily be an infinite down-set in P . Those elements of L′(P )

that are bijections from N to Z are exactly the natural extensions of P .
A countable poset has a natural extension if and only if every element is above

finitely many elements, that is, if and only if it is a causal set. If P has no element x

with I (x) infinite, then all linear extensions of P correspond to natural extensions,
and L(P ) = L′(P ). However, if there is an element x of P with I (x) infinite, then
there is (a) a linear extension of P that does not have the order-type of N and (b) an
element of L′(P ) whose image is the proper subset I (x) ∪ D(x) of P .

3. Causal set processes. A causal set process or causet process is a discrete-
time Markov chain on an underlying probability space (
, F ,μ), that we shall
specify shortly. The elements of the state space E of the Markov chain are ordered
pairs (x1 · · ·xk,<

[k]), where x1 · · ·xk is a string of elements from [0,1], and <[k]
is a suborder of [k]. The only permitted transitions of the chain are one-point ex-
tensions, from a pair (x1 · · ·xk,<

[k]) to a pair (x1 · · ·xkxk+1,<
[k+1]), where xk+1

is an element of [0,1], and <[k+1] is obtained from <[k] by adding k + 1 as a
maximal element. A transition from the state (x1 · · ·xk,<

[k]) is thus specified by
the element xk+1 of [0,1] to be appended to the string, and the set D(k + 1), a
down-set in ([k],<[k]).

From each state (x1 · · ·xk,<
[k]), we can derive a partial order Pk = (Xk,<),

with ground-set Xk = {x1, . . . , xk}, and xi < xj if and only if i <[k] j . We always
interpret <[k] as giving a partial order < on Xk in this way. The condition that <[k]
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is a suborder of [k] then translates to the condition that the linear order x1 · · ·xk is
a linear extension of Pk ; indeed the states of the causet process are in 1–1 corre-
spondence with the set of pairs (Pk, x1 · · ·xk), where Pk is a poset on {x1, . . . , xk}
and x1 · · ·xk is a linear extension of Pk . In this interpretation, as in Section 1, a
transition adds a new maximal element, drawn from [0,1], to Pk .

For fixed k ∈ N, let E [k] be the set of states (x1 · · ·xk,<
[k]) ∈ E , that is, those

with k elements. So all permitted transitions go from E [k] to E [k+1], for some k.
We shall declare our underlying outcome space 
 and σ -field F to be the sim-

plest structure supporting all causet processes. The outcome space 
 can thus be
taken to consist of all possible sequences of states, starting from the empty string.
Now, each ω ∈ 
 can be identified with a pair (x1x2 · · · ,<N), where x1x2 · · · is an
infinite sequence of elements of [0,1], and <N is a suborder of N. It is convenient
for us to define 
 as the set of all such pairs ω = (x1x2 · · · ,<N).

We define the projections πk :
 → E [k] by

πk(x1x2 · · · ,<N) = (
x1 · · ·xk,<

N[k]
)

(in line with our general notation, <N[k] denotes the restriction of the order < N

on the ground-set N to the subset [k]). In other words, πk is the “restriction” of
ω = (x1x2 · · · ,<N) to its first k entries. Thus, the sequence π0(ω),π1(ω), . . . is
the sequence of states corresponding to the outcome ω. The map πk is then seen
as the natural projection on to the kth state (and so in this case on to all the first k

states) in the sequence.
Given an element ω = (x1x2 · · · ,<N) of 
, we can derive a countably infinite

subset X = {x1, x2, . . .} of [0,1], together with a poset P = (X,<) on X, where
xi < xj if and only if i <N j , and a natural extension x1x2 · · · of P . Conversely,
such a triple (X,<P ,x1x2 · · ·) determines ω ∈ 
 uniquely. The sequence (Pk) of
finite posets can be obtained from P by setting Pk = PXk

, the restriction of P to
Xk = {x1, . . . , xk}, for each k.

We need some notation for functions on 
, that is, random elements on our
probability space; where possible, for an object denoted by a Roman letter, we will
use the Greek version of the letter to denote the corresponding random element.
Thus, we will denote by ξk the random kth coordinate, that is, the element in [0,1]
with ξk(ω) = ξk(x1x2 · · · ,<N) = xk . We shall use �k to denote the random set
{ξ1, . . . , ξk}, and � to denote the random set {ξ1, ξ2, . . .}. We use �k to denote the
random element taking values in the set of subsets of [k] with �k(ω) = D(k), the
down-set of elements below k in <N. Finally, we will use ≺N and ≺[k] to denote the
partial-order valued random elements with ≺N (ω) =<N and ≺[k] (ω) =<N[k], and
� and �k to denote the posets induced on the random sets � and �k , respectively,
by the random order ≺N and ≺[k], respectively; in other words, � = (�,≺) and
�k = (�k,≺), where ξi ≺ ξj if and only if i ≺N j or i ≺[k] j .

Let B denote the family of Borel subsets of [0,1]. For k ∈ N, sets B1, . . . ,Bk

in B, and <[k] a partial order on [k], define (B1 · · ·Bk,<
[k]) to be the set of pairs
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(x1 · · ·xk,<
[k]) in E [k] with xi ∈ Bi for each i. Now define

E
(
B1 · · ·Bk,<

[k]) = π−1
k

(
B1 · · ·Bk,<

[k]).
This subset E(B1 · · ·Bk,<

[k]) of 
 is to be thought of as the event that ξi ∈ Bi for
i = 1, . . . , k, and that ≺N has <[k] as its restriction to [k]. An event of this form
will be called a basic event.

For each k, we now define Fk to be the σ -field generated by the sets
E(B1 · · ·Bk,<

[k]), and we note that Fk ⊆ Fk+1. Clearly, the family of events
E(B1 · · ·Bk,<

[k]) determines, and is determined by, the first k states of the
causet process, so the Fk form the natural filtration for our process. We then take
F = σ(

⋃∞
k=1 Fk). A causet process thus gives rise to a probability measure μ

on F , that we will call a causet measure.
We remark that 
 can be identified formally with a subspace of the compact

space [0,1]N×2N, with the product topology (and the standard topology on [0,1]).
Here, we take an enumeration s : N → N × N of the set of pairs (i, j) of positive
integers with i < j , and then encode a suborder <N of N as a function q : N →
{0,1} by setting q(s−1(i, j)) = 1 if and only if i <N j . The topological space
[0,1]N × 2N is metrisable, for instance by the metric

d((a, c), (b,d)) = ∑
i

2−i (|ai − bi | + |ci − di |).

The requirement that <N be a partial order translates to: q(s−1(i, j)) + q(s−1(j,

k)) − q(s−1(i, k)) ≤ 1 for each i < j < k. The subspace of [0,1]N × 2N satisfying
these constraints is therefore closed, and hence compact.

In this representation of 
 as a product space, the σ -fields Fk contain all finite-
dimensional sets. By separability, every open set is a countable union of sets
in

⋃∞
k=1 Fk , so the product σ -field F is the Borel σ -field on 
 (see, e.g., Re-

mark 4.A3 in [15] or the discussion of product spaces in Chapter 3 in [13]), so our
causet measures will be Borel measures. As 
 is a closed subset of a complete and
separable metric space, 
 itself is also complete and separable.

As we have already indicated, we shall treat the concepts of causet measure and
causet process almost interchangeably. Let us spell out why we may do this.

The family of basic events E(B1 · · ·Bk,<
[k]) forms a separating class, that

is, any two probability measures that agree on all basic events are equal: see,
for example, Proposition 4.6 in Chapter 3 of [13] or Example 1.2 in [4]. Thus,
to specify a causet measure μ on (
, F ), it suffices to specify the probabilities
μ(E(B1 · · ·Bk,<

[k])) in a consistent way. Indeed, as mentioned earlier, the re-
striction μk = μπ−1

k of μ to Fk specifies the evolution of the process through
the first k steps; the measures μk are the finite-dimensional distributions of the
process, and they determine the distribution of the process—see Proposition 3.2
in [19] or Theorem 1.1 in Chapter 4 of [13], or Example 1.2 in [4].

Conversely, suppose we are given the causet process as a transition function
P(·, ·), that is:
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(i) for each state (x1 · · ·xk,<
[k]) in E [k], P((x1 · · ·xk,<

[k]), ·) [the transition
probability from the state (x1 · · ·xk,<

[k])] is a probability measure on E [k+1],
(ii) for every k ∈ N, every B1, . . . ,Bk+1 ∈ B, and every suborder <[k+1] of [k+1],

P(·, (B1 · · ·Bk+1,<
[k+1])) is a Borel-measurable function on E k .

Then the probabilities μ(E(B1 · · ·Bk,<
[k])) can be derived as integrals of prod-

ucts of evaluations of the transition function. See Chapter 4 of Ethier and
Kurtz [13] for details.

One feature of our model that we have not built in to the space (
, F ) is the
requirement that the labels on elements be distinct: ξi �= ξj for each i �= j . Indeed,
it is convenient to include elements with repeated labels in our sample space 
, for
instance, so that the space is compact. However, as we are interested in processes
that generate labeled causal sets, we do demand that the transitions of a causet
process are such that the probability of choosing any element more than once is 0:
μ({ω :∃i �= j, ξi(ω) = ξj (ω)}) = 0.

4. Order-invariant processes and measures. Causet processes, as defined
above, are very general in nature. We are principally interested in those satisfying
the property of order-invariance, which we shall define shortly.

When we consider an element ω = (x1x2 · · · ,<N) of 
, the real object of inter-
est is the derived causal set P = �(ω), with ground-set X = �(ω) = {x1, x2, . . .}.
Suppose that xλ(1)xλ(2) · · · is another natural extension of P ; this means exactly
that the permutation λ of N is a natural extension of <N. There is just one suborder,
which we shall denote λ[<N], of N with the property that (xλ(1)xλ(2) · · · , λ[<N])
induces P . To specify this order, note that we require i(λ[<N])j if and only if
xλ(i) < xλ(j) in P , which is equivalent to λ(i) <N λ(j).

Accordingly, for any ω = (x1x2 · · · ,<N) ∈ 
, and any natural extension λ of
<N, we define the order λ[<N] by: i(λ[<N])j if and only if λ(i) <N λ(j). We also
define λ[ω] = (xλ(1)xλ(2) · · · , λ[<N]). As we have seen, the elements ω and λ[ω]
of 
 give rise to the same poset P : in other words �(ω) = �(λ[ω]).

With this definition, the permutation λ of N acts on a subset of 
. Our definition
of order-invariance will demand, roughly, that, whenever λ is a permutation of N

that fixes all but finitely many elements, and λ acts bijectively on a suitable subset
E of 
, then μ(λ[E]) = μ(E).

We define similar notation for the case of finite posets with ground-set [k]. For a
permutation λ of [k], and <[k] a partial order on [k], let λ[<[k]] be the partial order
on [k] given by: i(λ[<[k]])j if and only if λ(i) <[k] λ(j). The permutations λ of
[k] such that λ[<[k]] is a suborder of [k] are exactly the linear extensions of <[k]:
those where, whenever λ(i) < λ(j), i precedes j in the standard order on [k].

A measure μ on (
, F ) is order-invariant if, for any finite sequence B1, . . . ,Bk

of sets in B, any suborder <[k] of [k], and any linear extension λ of <[k], we have

μ
(
E

(
B1 · · ·Bk,<

[k])) = μ
(
E

(
Bλ(1) · · ·Bλ(k), λ

[
<[k]])).(4)
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To check that a process or measure is order-invariant, it is enough to verify
condition (4) for those λ transposing two adjacent incomparable elements. This is
a consequence of the (easy) fact that, given two linear extensions of a finite partial
order, it is possible to step from one to the other via a sequence of transpositions
of adjacent incomparable elements: a proof of this is sketched in Example 1.

In the case where the Bi are singleton sets, (4) says that the probability of a
state (x1 · · ·xk,<

[k]) depends only on the set Xk = {x1, x2, . . . , xk} of elements,
and the partial order Pk induced on Xk by <[k], and not on the order in which
the elements of Xk were generated. For instance, in Example 1, where the causet
measure is prescribed by the probabilities of single states, this can be taken as the
definition of order-invariance, which is exactly what we did in the Introduction.
More typically, the probability of any single state (x1 · · ·xk,<

[k]) will be 0, so the
definition we used in Example 1 will not suffice.

A causet process whose distribution is given by an order-invariant measure μ

on (
, F ) is said to be an order-invariant causet process. As we saw at the end of
the previous section, we can talk about order-invariant measures and (distributions
of) order-invariant processes interchangeably.

As an example, suppose k = 3 and <[k] has only one related pair, 1 <[3] 2.
Consider the linear extension λ given by: λ(1) = 3, λ(2) = 1 and λ(3) = 2. Then
2(λ[<[3]])3 is the only related pair in λ[<[3]], and this instance of the condition of
order-invariance is that

μ
(
E

(
ABC,<[3])) = μ

(
E

(
CAB,λ

[
<[3]]))

for any A,B,C ∈ B. (Think of A, B and C as disjoint for convenience.) On both
sides the restriction is that the element in A is below the element in B in the partial
order �3, while the element in C is incomparable to both. The order-invariance
condition tells us that, conditioned on the event “after three steps, we have an ele-
ment in A below an element in B , and an element in C incomparable to both,” each
possible order of generation of the three elements is equally likely. In this case, the
possible orders of generation are just the ones in which the element of A precedes
the element in B: besides the two orders above, the only other possible order of
generation is ACB . The three orders correspond to the three linear extensions of
the poset Q with three elements labeled A, B and C, with A below B .

Another related condition we can impose on a causet process is that transitions
out of a state depend only on the set of elements generated and the partial order
induced on them. Specifically, we say that a causet process (or associated measure)
is order-Markov if we always have

μ(E(B1 · · ·BkBk+1,<
[k+1]))

μ(E(B1 · · ·Bk,<[k]))
= μ(E(Bλ(1) · · ·Bλ(k)Bk+1, λ

′[<[k+1]]))
μ(E(Bλ(1) · · ·Bλ(k), λ[<[k]])) ,

whenever either denominator is non-zero, where λ′ is the linear extension of <[k+1]
derived from a linear extension λ of <[k] by fixing k + 1. We see immediately that,
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if a causet process is order-invariant, then it is order-Markov, as the two numerators
and the two denominators above are both equal.

The converse is far from true: order-invariance is much stronger than the order-
Markov condition. One way to see this is to observe that, if we impose only the
order-Markov condition, then the transition laws out of states with one element
need bear no relation to the transition law out of the initial “empty” state: if we
demand order-invariance, then these are connected via equation (4) in cases where
<[2] is the two-element antichain.

However, if we know that a causet process is order-Markov, then to prove order-
invariance it is enough to check condition (4) for the permutation λ exchanging the
last two elements, whenever these are incomparable. To see this, let λ(i) denote the
permutation of any [k], with k > i, exchanging i and i + 1 and leaving all other
elements fixed. Suppose that the causet measure μ satisfies

μ
(
E

(
B1 · · ·Bj−2BjBj−1, λ

(j−1)[<[j ]])) = μ
(
E

(
B1 · · ·Bj−2Bj−1Bj ,<

[j ]))
for every sequence B1, . . . ,Bj of Borel sets, and every suborder <[j ] of [j ] in
which j − 1 and j are incomparable. Now if μ is order-Markov, we can use this
condition inductively to deduce that

μ
(
E

(
B1 · · ·Bj−2BjBj−1Bj+1 · · ·Bk,λ

(j−1)[<[k]]))
= μ

(
E

(
B1 · · ·Bj−2Bj−1BjBj+1 · · ·Bk,<

[k]))
for every k ≥ j , every sequence B1, . . . ,Bk of Borel sets, and every suborder <[k]
of [k] in which j − 1 and j are incomparable. This is exactly condition (4) for
λ(j−1). As we saw earlier, we can now deduce that μ is order-invariant.

Given two probability measures μ1 and μ2 on (
, F ), a convex combination of
μ1 and μ2 is a probability measure of the form rμ1 + (1 − r)μ2, for r ∈ (0,1). It
is immediate from the definition that, if μ1 and μ2 are order-invariant, then so is
any convex combination. Thus, the family of order-invariant measures is a convex
subset of the set of all causet measures.

More generally, given a probability space (W, G, ρ) whose elements are causet
measures μω, the mixture defined by this space is the probability measure μ de-
fined by

μ(·) =
∫
W

μω(·) dρ(μω).

It is again immediate from the definition that, if all the μω are order-invariant, then
so is the mixture μ.

We now give an alternative characterization of order-invariance. For this, we
need to introduce some notation that will feature prominently in the subsequent
sections as well.

For <N a suborder of N, k ∈ N, and λ a linear extension of <N[k], we define λ+
to be the natural extension of <N defined by

λ+(i) =
{

λ(i), i ≤ k,
i, i > k.
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So λ+[<N] is the partial order on N obtained from <N obtained by permuting the
first k labels according to λ.

For a fixed ω = (x1x2 · · · ,<N) ∈ 
, k ∈ N, and E ∈ F , we define νk(E)(ω) as
the proportion of linear extensions λ of <N[k] such that λ+[ω] is in E.

For any ω ∈ 
 and k, the function νk(·)(ω) gives a probability measure on F ,
namely the uniform measure on elements λ+[ω] of 
, where λ runs over linear
extensions of <N[k]. This measure can naturally be identified with the uniform mea-
sure on linear extensions of �k(ω).

Let us look more closely at νk(E(B1 · · ·Bn,<
[n]))(ω), where ω = (x1x2 · · · ,

<N), the Bi are Borel sets in [0,1], <[n] is a suborder of [n], and k ≤ n. In order
for this quantity to be non-zero, it is necessary for <N[k] to be isomorphic to <

[n]
[k] .

Suppose the poset <
[n]
[k] has � linear extensions, λ1, . . . , λ�. Each λi induces a

linear extension λ′
i on <[n], obtained by fixing the elements k + 1, . . . , n.

If now νk(E(B1 · · ·Bn,<
[n])(ω) is non-zero, then <N[k] also has � linear exten-

sions, and νk(E(B1 · · ·Bn,<
[n]))(ω) is equal to 1

�
times the number of them that,

applied to ω, yield an element in E(B1 · · ·Bn,<
[n]). If, for some linear extension

ρ of <N[k], ρ+[ω] is in the set E(B1 · · ·Bn,<
[n]), then we can reverse the process:

for one of the linear extensions λi , λ+
i [ρ+[ω]] = ω. In other words, ρ has to be the

inverse of one of the λi , and the set of ω for which ρ+[ω] is in E(B1 · · ·Bn,<
[n])

is the set E(Bλ′
i (1) · · ·Bλ′

i (n), λ
′
i[<[n]]).

It now follows that

νk(E(
B1 · · ·Bn,<

[n]))(ω) = 1

�

�∑
i=1

1
(
E

(
Bλ′

i (1) · · ·Bλ′
i (n), λ

′
i

[
<[n]]))(ω).(5)

LEMMA 4.1. For any k ∈ N, any Borel sets B1, . . . ,Bk , any suborder <[k] of
[k], any linear extension λ of <[k], and any ω ∈ 
, we have

νk(E(
B1 · · ·Bk,<

[k]))(ω) = νk(E(
Bλ(1) · · ·Bλ(k), λ

[
<[k]]))(ω).

PROOF. For ω = (x1x2 · · · ,≺N) ∈ 
, the quantity νk(E(B1 · · ·Bk,<
[k]))(ω)

is the proportion of linear extensions ρ of ≺N[k] such that ρ+[ω] ∈ E(B1 · · ·Bk,

<[k]). We see that ρ+[ω] ∈ E(B1 · · ·Bk,<
[k]) if and only if (λρ)+[ω] ∈ E(Bλ(1) ×

· · ·Bλ(k), λ[<[k]]). Therefore, as required, we have

νk(E(
B1 · · ·Bk,<

[k]))(ω) = νk(E(
Bλ(1) · · ·Bλ(k), λ

[
<[k]]))(ω). �

We are now in a position to establish our alternative characterization of order-
invariance.

THEOREM 4.2. Let μ be a causet measure. Then μ is order-invariant if and
only if

μ(E) = Eμνk(E)
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for every E ∈ F and every k ∈ N.

This is an analogue of the DLR equations from statistical physics (see, e.g.,
Bovier [6]) or Section 1.2 in [15], about conditional probabilities. It corresponds
to specifying a boundary condition outside a finite volume—here this means that
we condition on all the information about ω except the order in which the first k

elements are generated, and then realizing the conditional Gibbs measure, which
in our setting is νk(·)(ω).

PROOF OF THEOREM 4.2. Suppose first that μ is a causet measure satisfying
the condition. Consider any finite sequence B1, . . . ,Bk of sets in B, any suborder
<[k] of [k], and any linear extension λ of <[k].

By Lemma 4.1, we have that

νk(E(
B1 · · ·Bk,<

[k]))(ω) = νk(E(
Bλ(1) · · ·Bλ(k), λ

[
<[k]]))(ω)

for each ω ∈ 
. Taking expectations, we have

Eμνk(E(
B1 · · ·Bk,<

[k])) = Eμνk(E(
Bλ(1) · · ·Bλ(k), λ

[
<[k]])),

and therefore the given condition implies that

μ
(
E

(
B1 · · ·Bk,<

[k])) = μ
(
E

(
Bλ(1) · · ·Bλ(k), λ

[
<[k]]))

for each basic event E(B1 · · ·Bk,<
[k]), as required for order-invariance.

Conversely, suppose that μ is order-invariant, and fix k ∈ N. Now consider a
basic event E(B1 · · ·Bn,<

[n]), for n ≥ k. Taking expectations in (5), we obtain
that

Eμνk(E(
B1 · · ·Bn,<

[n])) = 1

�

�∑
i=1

μ
(
E

(
Bλ′

i (1) · · ·Bλ′
i (n), λ

′
i

[
<[n]])),

where, as before, λ′
1, . . . , λ

′
� are the linear extensions of <

[n]
[k] that fix k + 1, . . . , n.

Now, by order-invariance, the sum above is equal to μ(E(B1 · · ·Bn,<
[n])).

For each fixed k, we now have that μ(E) = Eμνk(E) for all the basic events
E; as both μ(·) and Eμνk(·) are measures, and the basic events form a separating
class, we have that the condition holds for all events E ∈ F . �

5. Examples. In this section, we briefly revisit the three examples we intro-
duced in Section 1, and give one more.

Causet processes on fixed causal sets. Suppose we are given a fixed causal set
P = (Z,<), with Z ⊂ [0,1]. Recall that L′(P ) is the set of all natural extensions
of posets PY , where Y is an infinite down-set in P . In the case where the set I (x)

of elements incomparable to x is finite for all x, L′(P ) is equal to the set L(P ) of
natural extensions of P .
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A causet process on P is a process generating a random element λ of L′(P ):
we think of generating distinct elements λ(1), λ(2), . . . of Z in turn. At each stage,
an element z ∈ Z is available for selection only if all the elements in D(z) have al-
ready been selected [equivalently, at stage k, the element z is available for selection
if z is minimal in P \ {λ(1), . . . , λ(k − 1)}].

We can view a causet process on P as a special case of a causet process: the
states that can occur are pairs (x1 · · ·xk,<

[k]), where x1 · · ·xk is an ordered stem
of P , and <[k] is the poset induced from the order < on Z: i <[k] j if and only if
xi < xj . For a transition out of this state, at stage k + 1, a random (not necessarily
uniform) minimal element ξk+1 of P \ {x1, . . . , xk} is selected, and its down-set is
chosen to be the same as it is in P . Example 1 illustrates this.

A causet process on P is order-Markov if the law describing how we choose a
minimal element from P \{x1, . . . , xk} depends only on the set {x1, . . . , xk}. Again,
the condition of order-invariance is much more demanding than the order-Markov
condition.

One example is the process considered by Luczak and Winkler [21], which
grows, step by step, uniformly random n-element subtrees, containing the root as
the unique minimal element, of the complete d-ary tree T d . This process is a causal
set process on T d , and is order-Markov, but calculations on small examples reveal
that it is not order-invariant.

When considering causet processes on a fixed poset P , the order on any set of
elements is determined by P , so it is natural to drop the order from the notation,
and denote a state simply as x1 · · ·xk , and an element ω as x1x2 · · ·.

We study order-invariance on fixed causal sets in more detail in the companion
paper [8].

We saw one example of a causet process on a fixed causal set in Example 1. As
a further illustration, we give another example.

EXAMPLE 4. Let P = (Z,<) be the disjoint union of two infinite chains
B :b1 < b2 < · · · and C : c1 < c2 < · · ·, with every element of B incomparable
with every element of C. Fix a real parameter q ∈ [0,1], and define a causet pro-
cess on P as follows. For any stem A of P , there are exactly two minimal ele-
ments of P \ A, one in B and one in C: from any state with Xk = A, we define the
transition probabilities out of that state by choosing the element in B with prob-
ability q . Denote the associated probability measure μq : specifically, if a1 · · ·ak

is any ordered stem of P with A = {a1, . . . , ak} = {b1, . . . , bm, c1, . . . , cn}, then
μq(E(a1 · · ·ak)) = qm(1 − q)n. (As mentioned above, we have dropped the order
<[k], which can be derived from P , from the notation.)

It follows that μq is order-invariant for any q , since the expression for
μq(E(a1 · · ·ak)) does not depend on the order of the ai .

The cases q = 0 and q = 1 are special. If q = 0, then elements from C are never
chosen, and � = B a.s.; if q = 1, then � = C a.s. If q ∈ (0,1), then � = B ∪ C =
Z a.s.
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More generally, given any probability measure ρ on [0,1], define a prob-
ability measure μρ by first choosing a random parameter χ according to ρ,
then sampling according to μχ . Then, for a1 · · ·ak is any ordered stem of P

with A = {a1, . . . , ak} = {b1, . . . , bm, c1, . . . , cn}, we have μχ(E(a1 · · ·ak)) =
Eρ(χm(1 − χ)n). Again, this expression is independent of the order of the ai ,
so μρ is order-invariant. (Alternatively, μρ is a mixture of the order-invariant mea-
sures μq , so is also order-invariant.)

This last description includes several apparently different processes. For in-
stance, consider the following process: having chosen the bottom n elements, m

from B and k = n − m from C, choose the next element to be from B with prob-
ability (m + 1)/(n + 2). It is easy to check directly that this defines an order-
invariant process on P . The theory of Pólya’s Urn (see, e.g., Exercise E10.1 in
Williams [28]) tells us that the proportion of elements taken from B in the first n

steps converges a.s. to some limit χ as n → ∞, and that this limit χ has the uni-
form distribution on (0,1). Indeed, this process has the same finite-dimensional
distributions as the one defined by choosing χ from the uniform distribution in
advance, then choosing the natural extension according to μχ .

This example is covered in more detail in [8], and from a slightly different
perspective in Kerov [20].

Causet processes with independent labels. Another special class of causet pro-
cesses consists of those where, at every transition, the new random “label” ξk+1 in
[0,1] is chosen independently of the random down-set �k+1, and of all other la-
bels, and where the distribution of �k+1 itself depends only on <[k].

In this case, the labels from [0,1] play no essential role, and it is more natural
to think of the elements as unlabeled, and to view a process as a Markov chain on
the set of finite unlabeled causal sets. The csg models of Rideout and Sorkin [24],
which include the random graph orders in Example 2, are of this type.

Let us be specific about how to realize the random graph order with parameter
p as an order-invariant causet process. The case p = 0, where the random graph
order is a.s. an antichain, as in Example 2, is included in this description.

From a state (x1 · · ·xk,<
[k]), we make a transition to a state (x1 · · ·xkxk+1,

<[k+1]), where xk+1 is chosen uniformly at random from [0,1], independent of
any other choices. We choose a random subset � of [k], with each element of [k]
appearing in � independently with probability p. Now we define the down-set
D(k + 1) to be the set of elements i ∈ [k] with i ≤[k] j for some j ∈ �.

We showed in Section 1 that the probability that the random partial order ≺[k] is
equal to a particular suborder <[k] of [k] is given by pc(<[k])(1 − p)b(<[k]), where
c(<[k]) is the number of covering pairs of ([k],<[k]), and b(<[k]) is the number of
incomparable pairs. Thus, for B1, . . . ,Bk Borel sets in [0,1], and <[k] a suborder
of [k], we have

μ
(
E

(
B1 · · ·Bk,<

[k])) = |B1| · · · |Bk|pc(<[k])(1 − p)b(<[k]),
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where | · | denotes Lebesgue measure. The product |B1| · · · |Bk| is independent
of the order of the Bi , and the quantity pc(<[k])(1 − p)b(<[k]) is invariant under
isomorphisms of the poset, so the measure μ is order-invariant.

The two special cases discussed above are, in a way, two extremes. When we
have a causal set process on a fixed causal set, the label of each element determines
its down-set when it is introduced: in the case of causet processes with independent
labels, the label and the down-set of an element are independent.

6. Invariant measures. In this section, we develop some weaker notions of
invariance, and show how these relate to order-invariance. One goal is to show
that the family of order-invariant measures is a closed subset of the family of all
probability measures on (
, F ) with respect to the topology of weak convergence.

For i ∈ N, let λ(i) be the permutation of N exchanging i and i + 1:

λ(i)(j) =
⎧⎨
⎩

i + 1, if j = i,
i, if j = i + 1,
j, otherwise.

For ω = (x1x2 · · · ,<N) ∈ 
, a special case of a definition from Section 4 is that

λ(i)[ω] = (
xλ(i)(1)xλ(i)(2) · · · , λ(i)[<N])

whenever λ(i) is a natural extension of <N, that is, whenever i and i + 1 are
incomparable in <N. We now extend λ(i) to a function λ(i) :
 → 
 by setting
λ(i)[ω] = ω if the permutation λ is not a natural extension of <N, that is, if
i <N i + 1. Note that each λ(i) is a permutation, indeed an involution, on 
.

Observe that each λ(i) is continuous with respect to the product topology on

, and so is certainly measurable, as F is the Borel σ -field with respect to this
topology.

For E ∈ F , and i ∈ N, we naturally define λ(i)(E) = {λ(i)[ω] :ω ∈ E}. Given
also a causet measure μ, we set (μ ◦ λ(i))(E) = μ(λ(i)(E)). It is then straightfor-
ward to check that μ ◦ λ(i) is a causet measure for each μ and i.

LEMMA 6.1. For each i, a causet measure μ satisfies μ = μ ◦λ(i) if and only
if

μ
(
E

(
B1 · · ·BiBi+1 · · ·Bk,<

[k])) = μ
(
E

(
B1 · · ·Bi+1Bi · · ·Bk,λ

(i)[<[k]]))
for all k > i, all Borel sets B1, . . . ,Bk , and all suborders <[k] of [k] such that i

and i + 1 are incomparable.

PROOF. The given condition amounts to saying that the two measures μ and
μ ◦ λ(i) agree on all the basic events E = E(B1 · · ·Bk,<

[k]) with k > i and i and
i +1 incomparable in <[k]. This also holds trivially for those <[k] with i <[k] i +1,
so the condition is equivalent to the statement that the two measures agree on the
separating class of all basic events E = E(B1 · · ·Bk,<

[k]) with k > i. �
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For k ∈ N, let �k = {λ(1), . . . , λ(k−1)}. Also, set � = ⋃
k �k = {λ(i) : i ∈ N}.

We say that a measure μ is �k-invariant if μ = μ ◦ λ(i) for each λ(i) ∈ �k ; we
say that μ is �-invariant if μ ◦ λ(i) = μ for every i.

The following result is now immediate from Lemma 6.1.

THEOREM 6.2. A measure is �-invariant if and only if it is order-invariant.

PROOF. From Lemma 6.1, we see that a measure is �-invariant if and only
if μ satisfies (4) whenever λ is one of the λ(i), that is, whenever λ exchanges two
adjacent incomparable elements. As we remarked immediately after the definition
of order-invariance, this special case implies that (4) holds for all λ, that is, that μ

is order-invariant. �

For a fixed ω = (x1x2 · · · ,<N) ∈ 
, k ∈ N, and E ∈ F , recall that νk(E)(ω) is
the proportion of linear extensions λ of <N[k] such that λ+[ω] is in E.

We will now show that the measures νk(·)(ω) are �k-invariant, a result closely
related to Lemma 4.1. (To be precise, the special case of that lemma with λ = λ(i)

and i < k is also a special case of the following result, and from that special case
it is easy to deduce Lemma 4.1.)

THEOREM 6.3. For each k ∈ N and ω ∈ 
, the measure νk(·)(ω) is �k-
invariant.

PROOF. Fix k ∈ N and ω = (x1x2 · · · ,≺N) ∈ 
. We have to show that
νk(E)(ω) = νk(λ(i)(E))(ω) for every E ∈ F and every i < k.

For i < k, we can consider λ(i) as acting on the set of linear extensions ρ of ≺N[k]
as follows. If i and i + 1 are incomparable in ρ[≺N[k]]—that is, if ρ(i) and ρ(i + 1)

are incomparable in ≺N—then λ(i)[ρ] = λ(i) ◦ ρ; if i and i + 1 are comparable
in ρ[≺N[k]], then λ(i)[ρ] = ρ. Thus, λ(i) acts as an involution on the set of linear
extensions of ≺N[k].

We claim that (
λ(i)[ρ])+[ω] = λ(i)[ρ+[ω]].

If i and i + 1 are comparable in ρ[≺N[k]]—that is, if ρ(i) ≺N[k] ρ(i + 1)—then both

are equal to ρ+[ω]. If i and i + 1 are incomparable in ρ[≺N[k]], then both are
obtained from ρ+[ω] = (xρ+(1)xρ+(2) · · · , ρ[≺N[k]]) by exchanging the terms xρ+(i)

and xρ+(i+1) and changing the order to λ(i)[ρ[≺N[k]]] = (λ(i) ◦ ρ)[≺N[k]]: to see that

these orders are equal, note that j < � in each order if and only if λ(i)ρ(j) ≺N[k]
λ(i)ρ(�).

For a linear extension ρ of ≺N[k], we see that ρ+[ω] = (xρ(1)xρ(2) · · ·xρ(k)xk+1 ×
· · · , ρ+[≺N]) is in E if and only if (λ(i)[ρ])+[ω] = λ(i)[ρ+[ω]] is in λ(i)(E).
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Therefore, the proportion of linear extensions ρ of ≺N[k] such that ρ+[ω] ∈ E is
the same as the proportion of linear extensions λ(i)[ρ] such that (λ(i)[ρ])+[ω] ∈
λ(i)(E), and this is the desired result. �

For k ∈ N, define Gk to be the family of sets H in F such that ω ∈ H implies
λ(i)[ω] ∈ H for each i < k. We can alternatively write

Gk = {H ∈ F :λ(H) = H for all λ ∈ �k}
= {H ∈ F :λ−1(H) = H for all λ ∈ �k};

that is, Gk is the family of �k-invariant sets.
It is easy to check that each Gk is a σ -field, and also that Gk+1 ⊆ Gk for all k.

These σ -fields Gk can be seen to correspond to the external σ -fields in Section 1.2
of [15].

Let

G =
∞⋂

k=1

Gk = {
H ∈ F :λ(i)(H) = H for all i

}

be the tail σ -field, and call a set in G a tail event.
An equivalent definition of Gk is that it is the collection of sets H ∈ F such

that ω = (x1x2 · · · ,<N) ∈ H implies λ+[ω] ∈ H for every linear extension λ of
<N[k]. To see this, note again that, if λ is a linear extension of <N[k], then λ can be
generated from a sequence of transpositions of adjacent incomparable elements, so
there is a sequence ω = ω0,ω1, . . . ,ωm = λ+[ω] of elements of 
 such that, for
each j , ωj = λ(i)[ωj−1] for some i < k. If H ∈ Gk , and ω ∈ H , then each element
of the sequence is also in H .

Let us now consider the effect of conditioning on the σ -field Gk .
As usual, for E ∈ F and H a sub-σ -field of F , we shall write μ(E | H) for the

conditional expectation Eμ(1E | H).

THEOREM 6.4. Let μ be an order-invariant measure. For any event E ∈ F ,
and any k ∈ N, we have

μ(E | Gk) = νk(E)

almost surely.

PROOF. Fix E ∈ F and k ∈ N.
We start by showing that νk(E)(·) is Gk-measurable. Fix now ω = (x1x2 · · · ,

<N) ∈ 
 and i < k. We claim that νk(E)(ω) = νk(E)(λ(i)[ω]): this will imply
that {ω :νk(E)(ω) ≤ x} is in Gk , for all x, as required.

The result is immediate unless i and i + 1 are incomparable in <N, so we sup-
pose that they are incomparable. Then, for each linear extension ρ of <N[k], ρ+[ω]
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is in E if and only if the corresponding permutation ρλ(i) of <N[k] is such that

(ρλ(i))[λ(i)[ω]] ∈ E. Therefore, we indeed have νk(E)(ω) = νk(E)(λ(i)[ω]).
To show that the conditional expectation Eμ(1E | Gk) is equal to νk(E), we

need to show that ∫
H

1E dμ =
∫
H

νk(E)dμ(6)

for every H ∈ Gk . The left-hand side in (6) is just μ(H ∩ E).
The right-hand side is Eμ(1Hνk(E)). We claim that (1Hνk(E))(ω) = νk(H ∩

E)(ω) for all ω ∈ 
. Indeed, both sides are equal to νk(E) if ω ∈ H , and equal to
zero if not, as H is an invariant set for �k . Hence, Theorem 4.2 yields

Eμ(1Hνk(E)) = Eμ

(
νk(H ∩ E)

) = μ(H ∩ E)

as required. �

In the terminology of [15], Theorem 6.4 establishes that the functions νk(·)(·)
are a family of measure kernels, analogous to Gibbsian specifications in statistical
mechanics.

Our next aim is to show that the family of order-invariant measures, and the
family of �k-invariant measures for each fixed k, are closed subsets of the set of
all causet measures, in the topology of weak convergence.

Recall that a sequence (μn) of probability measures on a space (
, F ), where
F is the Borel σ -field for some topology on 
, is said to converge weakly to a
probability measure μ if Eμnf → Eμf , as n → ∞, for every bounded continuous
real-valued function f on 
: we write μn ⇒ μ. There are a number of equivalent
conditions—see Theorem 2.1 of Billingsley [4], for example. The one that we
shall make use of shortly is that μn ⇒ μ if and only if lim supμn(F ) ≤ μ(F) for
all closed sets F . Another fact that we shall use later is that μn ⇒ μ if and only
if μn(E) → μ(E) for all sets E ∈ F such that μ(∂E) = 0, where ∂E denotes the
boundary of E.

We have already seen that our σ -field F is the Borel σ -field for the product
topology on 
.

Let M be the set of probability measures on (
, F ), let P be the set of those
measures in M that are order-invariant, and, for k ∈ N, let Pk be the set of mea-
sures in M that are �k-invariant.

THEOREM 6.5. For each i, {μ :μ = μ◦λ(i)} is closed in the topology of weak
convergence. As a consequence, each of the Pk , and P , are closed in the topology
of weak convergence.

PROOF. Suppose that μn ⇒ μ, and that μn = μn ◦ λ(i) for each n. Let F

be any closed set in the product topology on 
. As λ(i) is a continuous invo-
lution, λ(i)(F ) is also closed. Hence, we have lim supμn(λ(i)(F )) ≤ μ(λ(i)(F )),
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or in other words lim sup(μn ◦ λ(i))(F ) ≤ (μ ◦ λ(i))(F ). This shows that μn =
μn ◦ λ(i) ⇒ μ ◦ λ(i). (Alternatively, we could appeal to the Continuous Mapping
theorem—see (2.5), or Theorem 2.7, in Billingsley [4].)

As weak limits are unique when they exist, we now deduce that μ = μ ◦ λ(i).
Each of the Pk , and P , are intersections of sets of the form {μ :μ = μ ◦ λ(i)}.

Therefore, these too are closed in the topology of weak convergence. �

7. Extremal order-invariant measures. As we mentioned in Section 4, it is
immediate that any convex combination of order-invariant measures is again an
order-invariant measure, so the family of all order-invariant measures is a con-
vex subset of the set of all causet measures. As usual, an extremal order-invariant
measure is one that cannot be written as a non-trivial convex combination of two
others.

The family of all order-invariant measures is extremely rich. In this and the next
section, our aim is to show that all the extremal members of this family are of a
very special form.

Under some very general conditions, the extremal measures are exactly those
that have “trivial tail;” see Bovier [6] or Georgii [15], for instance. We will prove a
similar result in our setting, regarding the tail σ -field G introduced in the previous
section; it is possible to deduce this from the results in Chapter 7 of Georgii—
see in particular Theorems 7.7 and 7.12 and Remark 7.13, as well as Section 7.2
therein—our proof is self-contained, and also brings in a third equivalent condition
that is of special interest in our setting.

To explain this condition, we shall first show that, for each fixed E ∈ F , the
family νk(E)(·) of random variables converges a.s. to a limit G -measurable random
measure ν(E).

THEOREM 7.1. Let μ be any order-invariant measure, and let E be any event
in F . Then the sequence νk(E)(ω) converges to a G -measurable limit ν(E)(ω)

μ-a.s. Moreover, ν(E) = μ(E | G), μ-a.s., and Eμν(E) = μ(E).

PROOF. Firstly, as G1 ⊇ G2 ⊇ · · · , the sequence μ(E | Gk) = Eμ(1E | Gk)

forms a backward martingale with respect to the sequence (Gk), for any E ∈ F .
Therefore, by the Backward Martingale Convergence theorem (see, e.g., Grim-
mett and Stirzaker [17]), μ(E | Gk) = νk(E) converges a.s. to some random vari-
able ν(E). Given n ∈ N, νk(E) is Gn-measurable for k ≥ n, and hence so is ν(E);
therefore, the limit ν(E) is G -measurable.

To show that ν(E) = μ(E | G) a.s., we need to verify that, for all H ∈ G ,

Eμ(1H∩E) = Eμ(1Hν(E)).(7)

By (6), we have that

Eμ(1H∩E) = Eμ(1Hνk(E))
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for every H ∈ G and every positive integer k. By almost sure and bounded conver-
gence, the right-hand side of the last equation tends to Eμ(1Hν(E)) as k → ∞, as
required.

The result that Eμν(E) = μ(E) is the special case of (7) with H = 
. �

We say that an order-invariant measure μ is essential if, for every E ∈ F ,
νk(E) → μ(E) a.s. In other words, μ is essential if, for every E, the limit ν(E) in
Theorem 7.1 is a.s. equal to μ(E), or equivalently μ(E | G) = μ(E) a.s.

We say that μ has trivial tails if μ(H) is equal to 0 or 1 for every H ∈ G .
As usual, this is equivalent to saying that every G -measurable random variable
is constant. We now establish two alternative characterizations of extremal order-
invariant measures.

THEOREM 7.2. The following are equivalent for an order-invariant mea-
sure μ:

(i) μ is extremal;
(ii) μ has trivial tails;

(iii) μ is essential.

PROOF. We will show that (ii) ⇒ (iii) ⇒ (i) ⇒ (ii).
(ii) ⇒ (iii). If μ has trivial tails, then, for any E ∈ F , the G -measurable random

variable ν(E) = μ(E | G) is a.s. constant. As ν(E) is bounded, it is a.s. equal to
its expectation μ(E). Thus, μ is essential.

(iii) ⇒ (i). Suppose μ is essential; we aim to show it is extremal.
If μ is not extremal, then we can write μ = αμ0 + (1 − α)μ1 for two distinct

order-invariant measures μ0,μ1 and some α ∈ (0,1).
As μ0 �= μ, we may choose some E ∈ F such that μ0(E) < μ(E).
Applying Theorem 7.1 to μ0, for this event E, we obtain that there is a limiting

random variable ν0(E), such that Eμ0(ν0(E)) = μ0(E) and νk(E) → ν0(E), μ0-
a.s.

Then μ0(E) = Eμ0(ν0(E)) ≥ μ(E)μ0({ω :ν0(E)(ω) ≥ μ(E)}), so

μ0
({ω :ν0(E)(ω) ≥ μ(E)}) ≤ μ0(E)

μ(E)
< 1,

which implies that μ0({ω :νk(E)(ω) → μ(E)}) < 1, and so μ({ω :νk(E)(ω) →
μ(E)}) < 1. Thus, μ is not essential.

(i) ⇒ (ii). Suppose μ does not have trivial tails, and take some tail event H ∈ G
with 0 < μ(H) < 1.

We now consider conditioning μ on the occurrence or not of H . Let μ1(E) =
μ(E ∩ H)/μ(H), and μ0(E) = μ(E ∩ Hc)/μ(Hc), where Hc is the complement
of H , for every E ∈ F . Then certainly μ = μ(H)μ1 + (1 − μ(H))μ0, and μ1 �=
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μ0. It remains to verify that μ1 and μ0 are order-invariant: this will imply that μ is
a convex combination of two distinct order-invariant measures, so is not extremal.

It will suffice to consider μ1. We have to show that

μ
(
E

(
B1 · · ·Bk,<

[k]) ∩ H
) = μ

(
E

(
Bλ(1) · · ·Bλ(k), λ

[
<[k]]) ∩ H

)
,

whenever B1, . . . ,Bk are Borel sets, and λ is a linear extension of <[k].
By Theorem 6.4, since H ∈ Gk we have

μ
(
E

(
B1 · · ·Bk,<

[k]) ∩ H
) =

∫
H

1E(B1···Bk,<
[k]) dμ(ω)

=
∫
H

νk(E(
B1 · · ·Bk,<

[k]))(ω)dμ(ω).

Lemma 4.1 tells us that

νk(E(
B1 · · ·Bk,<

[k]))(ω) = νk(E(
Bλ(1) · · ·Bλ(k), λ

[
<[k]]))(ω)

for all ω; integrating over H now implies that∫
H

νk(E(
B1 · · ·Bk,<

[k]))(ω)dμ(ω)

=
∫
H

νk(E(
Bλ(1) · · ·Bλ(k), λ

[
<[k]]))(ω)dμ(ω)

= μ
((

E
(
Bλ(1) · · ·Bλ(k), λ

[
<[k]])) ∩ H

)
again by Theorem 6.4, which completes the proof. �

Our next result is somewhat related to Theorems 7.1 and 7.2: we show that, for
any order-invariant measure μ, for μ-a.e. ω, the sequence νk(·)(ω) of measures
converges weakly to a version of μ(· | G)(ω); in particular, if μ is extremal, then,
μ-a.s., the νk(·)(·) converge weakly to μ(·). Although this is superficially similar
to the result that extremal order-invariant measures are essential, the consequences
are actually rather different. Our proof is closely related to that of Proposition 7.25
in Georgii [15].

THEOREM 7.3. There is a family [ν̂(·)(ω)]ω∈
 of order-invariant probability
measures on (
, F ) such that, for any order-invariant measure μ on F , and μ-
almost every ω,

νk(·)(ω) ⇒ ν̂(·)(ω).

Moreover, for each fixed E ∈ F , and each order-invariant measure μ,

ν̂(E)(ω) = μ(E | G)(ω) = ν(E)(ω), μ-a.s.
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PROOF. Since (
, F ) is Borel, and complete and separable with respect to
the product topology discussed in Section 3, it is thus standard Borel in the termi-
nology of Georgii [15]. Then by Theorem (4.A11) in [15], (
, F ) has a countable
core C , that is, a countable collection of sets in F with the following properties:

(i) C generates F , and is a π -system,
(ii) whenever (νk) is a sequence of probability measures such that νk(E) con-

verges for all E ∈ C , then there is a (unique) probability measure ν̂ on (
, F ) such
that ν̂(E) = limk→∞ νk(E) for all E ∈ C .

Let C be a countable core in F , and let


0 = {ω ∈ 
 :νk(E)(ω) converges ∀E ∈ C}.
For ω ∈ 
0 and E ∈ C , the limit limk→∞ νk(E)(ω) is equal to the G -measurable
function ν(E)(ω), as defined in Theorem 7.1: that result tells us that μ(
0) = 1
for any order-invariant measure μ. We also note that 
0 ∈ F , as the νk(E) are
F -measurable, and the statement that (νk(E)(ω)) is a Cauchy sequence can be
written in terms of these functions. Moreover, 
0 ∈ Gk for all k, as νn(E) is Gk-
measurable for n ≥ k, and so 
0 ∈ G .

For each ω ∈ 
0, the νk(·)(ω) are probability measures, and therefore, since C
is a core, the family ν(E)(ω) (E ∈ C ) may be extended uniquely to a probability
measure ν̂(·)(ω) on (
, F ).

For convenience, we fix one order-invariant measure ν0, and set ν̂(·)(ω) = ν0(·)
for ω /∈ 
0.

We next claim that, for each fixed E ∈ F , and any order-invariant measure μ,
ν̂(E) is a version of μ(E | G).

Let D = {E ∈ F : ν̂(E) is G -measurable}. The family D contains the countable
core C , since ν̂(E) coincides with ν(E) for E ∈ C —except on the G -measurable
set 
0, on which it is constant—and we saw in Theorem 7.1 that ν(E)(·) is G -
measurable. We also see that D is a Dynkin-system (see, e.g., Williams [28]), that
is, it is closed under relative complementation and increasing countable unions. By
Dynkin’s π -λ theorem (see [28], Theorem A1.3), D contains the σ -field generated
by C , which is F . Therefore, ν̂(E) is G -measurable for all E ∈ F .

We now need to show that, for any order-invariant measure μ,∫
H

ν̂(E)dμ =
∫
H

1E dμ

for all H ∈ G and E ∈ F . This is satisfied if μ(H) = 0. For other H , we can divide
by μ(H) and express the required identity as

Eμ(1H ν̂(E))

μ(H)
= μ(E ∩ H)

μ(H)

for all E ∈ F . We see that both sides of the above identity are probability mea-
sures on (
, F ): the left-hand side is countably additive, and equal to 1 for E = 
,
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since ν̂ is a probability measure, while the right-hand side is the probability mea-
sure conditional on H . Moreover the two measures agree on C , as we established
in Theorem 7.1. Since C is a π -system generating F , this implies that the two
measures are equal (see, e.g., Lemma 1.6 in Williams [28]).

Thus, for each fixed E ∈ F , and each order-invariant measure μ, ν̂(E) is indeed
a version of μ(E | G).

Combining this with Theorem 7.1 tells us that, for each E ∈ F , and each order-
invariant measure μ,

ν̂(E)(ω) = μ(E | G)(ω) = ν(E)(ω) = lim
k→∞νk(E)(ω), μ-a.s.(8)

Now let C̃ be the family of events of the form E(B1 · · ·Bn,<
[n]), where the

Bi are open intervals in [0,1] with rational endpoints in [0,1] (including half-
open intervals with endpoints 0 or 1). Note that C̃ is a countable family, and a
basis for the product topology on 
. Further, C̃ is a π -system. By Theorem 2.2 in
Billingsley [4] (see also Examples 1.2 and 2.4 therein), for weak convergence of a
sequence of probability measures to a probability measure, it is enough to verify
convergence on the sets in C̃ . Let


̃0 = {ω ∈ 
0 :νk(E)(ω) → ν̂(E)(ω) ∀E ∈ C̃}.
By (8) and the choice of C̃ to be countable, we have that μ(
̃0) = 1, for any order-
invariant measure μ.

Now, for ω ∈ 
̃0, since ν̂(·)(ω) and all of the νk(·)(ω) are probability measures,
and νk(E)(ω) → ν̂(E)(ω) for all E ∈ C̃ , we deduce that νk(·)(ω) ⇒ ν̂(·)(ω).

For each fixed �, all the measures νk(·)(ω) for k ≥ � are ��-invariant, by The-
orem 6.3. By Theorem 6.5, it follows that, for ω ∈ 
̃0, the weak limit ν̂(·)(ω) is
��-invariant for each �, and so is order-invariant. �

Using this result, we obtain a fourth equivalent condition for an order-invariant
measure μ to be extremal. This condition is a weak version of the property of being
essential, which can be easier to check, as we shall see shortly.

COROLLARY 7.4. Let H be the family of basic events E = E(B1 · · ·Bn,<
[n])

where each Bi is a closed interval with rational endpoints. Suppose that μ is an
order-invariant measure such that, for each E ∈ H, νk(E) → μ(E) a.s. Then μ is
essential, and therefore extremal.

PROOF. The property we need of H is that it is a countable separating class.
Let [ν̂(·)(ω)]ω∈
 be the family of order-invariant measures guaranteed by The-

orem 7.3. For each E ∈ H, we have that ν̂(E)(ω) = ν(E)(ω) = μ(E) for μ-
almost every ω. As H is countable, this implies that, a.s., ν̂(E) = μ(E) for all
E ∈ H. Since H is a separating class, and ν̂ and μ are both measures, this im-
plies that ν̂ = μ a.s. Now, for any E ∈ F , an application of Theorem 7.3 gives that
ν(E) = ν̂(E) = μ(E) a.s., so μ is essential, as claimed. �
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To illustrate some of the subtleties involved here, we consider processes where
the partial order <N generated is a.s. an antichain, as in Example 3. Fix any element
ω = (x1x2 · · · ,<N) of 
, where <N is the antichain on N, and x1, x2, . . . is a
sequence of distinct elements of [0,1].

For a Borel subset B , E(B) = E(B,<N[1]) is the event that the first element is
in B . Now, for any k, νk(E(B))(ω) is the proportion of the elements x1, . . . , xk

that lie in B . So νk(E({xj }))(ω) = 1/k → 0 as k → ∞, for each fixed j , yet
νk(E({x1, x2, . . .}))(ω) = 1 for all k.

So, if we have a process that generates an antichain a.s., then we can never
have a measure ν̂ such that νk(E)(ω) → ν̂(E) for every set E ∈ F . However,
such sequences νk(·)(ω) may have weak limits. Indeed, weak convergence to a
measure ν̂ only guarantees convergence on ν̂-continuity sets E, that is, sets E

whose boundary ∂E satisfies ν̂(∂E) = 0.
To be specific, consider the process that assigns independent uniform labels

from [0,1] to the elements as they are generated. Then, for any Borel sub-
set B of [0,1], νk(E(B)) is the proportion of elements of B among Xk =
{x1, . . . , xk}, and, by the strong law of large numbers, νk(E(B)) → |B| a.s.,
where | · | denotes Lebesgue measure. Similarly, for k ≥ n and <[n] the antichain
on [n], νk(E(B1 · · ·Bn,<

[n])) is the proportion of n-tuples of distinct elements
(xi1, . . . , xin) from the set Xk such that xij ∈ Bj for each j = 1, . . . , n. This pro-
portion tends to |B1| · · · |Bn| a.s. (and the limit is equal to 0 if <[n] is not the
antichain). The sequence νk(·) thus a.s. converges weakly to the product Lebesgue
measure on [0,1]N. The process described here is essential, and therefore extremal,
by Corollary 7.4.

This phenomenon can also be seen in otherwise well-behaved examples. For
instance, in Example 1, where we have an order-invariant measure on the fixed
causal set P , let ω = (a1a2 · · ·)—as before, the order is implied—and let E be the
event {ω = (x1x2 · · ·) ∈ 
 :xi = ai for all but finitely many i}. Then νk(E)(ω) = 1
for all k; however νk(·)(ω) ⇒ μ, and μ(E) = 0.

In Theorems 7.1 and 7.3, we showed that, for each fixed E ∈ F , and any order-
invariant measure μ, νk(E)(ω) tends μ-a.s. to ν̂(E)(ω), where ν̂(·)(ω) is μ-a.s.
an order-invariant measure. We will now show that the measures ν̂(·)(ω) are μ-
a.s. extremal; it will follow that an order-invariant measure μ can be decomposed
uniquely as a mixture of these extremal order-invariant measures.

Similar results are proved in Chapter 7 of Georgii [15]. Instead of using these
results, we shall apply a result of Berti and Rigo [3] giving a “conditional 0–1 law.”

The function taking ω ∈ 
 to ν̂(·)(ω) is a regular conditional distribution for
any order-invariant measure μ given G : that is, each ν̂(·)(ω) is a probability mea-
sure, and that ν̂(E) = μ(E | G) μ-a.s., for all E ∈ F —which we showed in The-
orem 7.3. Moreover, as ν̂(E)(ω) is independent of the particular order-invariant
measure μ, the tail σ -field G is sufficient for the collection P of order-invariant
measures.
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The following result is (essentially) Lemma 5 of [3], which in turn is adapted
from a result of Maitra [22].

LEMMA 7.5 (Berti–Rigo). Let F be a countably-generated σ -field of subsets
of a set 
. Let � be a countable set of F -measurable functions, and let P be the
family of �-invariant probability measures on (
, F ). Let G be a sub-σ -field of F
that is sufficient for P , and let ν̂(·)(·) be a regular conditional distribution for all
μ ∈ P given G .

Then, for any μ ∈ P , there is a set G ∈ G with μ(G) = 1 such that ν̂(H)(ω) ∈
{0,1} for all H ∈ G and ω ∈ G.

Evidently all the conditions of this lemma are satisfied in our setting, and so
the conclusion holds: it says that the probability measure ν̂(·)(ω) is tail-trivial, for
μ-almost every ω.

We now show that every order-invariant measure can be written uniquely as a
mixture of extremal order-invariant measures.

COROLLARY 7.6. For any order-invariant measure μ, there is a family
[ν̃(·)(ω)]ω∈
 of extremal order-invariant probability measures on (
, F ), with
ν̃ = ν̂, μ-a.s., such that μ can be decomposed as

μ(·) =
∫

ν̃(·)(ω)dμ(ω).(9)

Moreover, this is the unique decomposition of μ as a mixture of extremal order-
invariant measures, up to a.s.

PROOF. Given an order-invariant measure μ, let G ∈ G be the set guaranteed
in Lemma 7.5, with μ(G) = 1 and ν̂(H)(ω) ∈ {0,1} for all H ∈ G and ω ∈ G. For
ω ∈ G, ν̂(·)(ω) is an extremal order-invariant measure, by Theorem 7.2.

Now let ν1 be some particular extremal order-invariant measure, and define

ν̃(·)(ω) =
{

ν̂(·)(ω), if ω ∈ G,
ν1(·), otherwise.

By properties of conditional expectation, we have that, for all E ∈ F , μ(E) =
Eμ(μ(E | G)), which means that

μ(E) =
∫

μ(E | G)(ω)dμ(ω) =
∫

ν̂(E)(ω)dμ(ω)

by Theorem 7.3. We can write this in terms of the measures as

μ(·) =
∫

ν̂(·)(ω)dμ(ω).

Since ν̂(·)(ω) = ν̃(·)(ω) for μ-almost every ω, we also have the stated decompo-
sition of μ, solely in terms of the extremal order-invariant measures ν̃(·)(ω).



ORDER-INVARIANT MEASURES ON CAUSAL SETS 1523

For uniqueness, we remark that ν̃(·)(·) is a (P, G)-kernel, as in Definition 7.21
in [15]. Let P G be the family of tail-trivial (equivalently, extremal) order-invariant
measures. By Proposition 7.22 (or by Proposition 7.25, Theorem 7.26 and com-
ments at the end of Section 6.3) in Georgii [15], there is a unique measure w on
the set P G , with the evaluation σ -field, such that

μ =
∫

PG
νw(dν)

with w given by w(M) = μ(ν ∈ M), for M a set in the evaluation σ -field. There-
fore, this must be the decomposition in (9), as required. �

Alternatively, the result above can be deduced from the main result of
Maitra [22], since (
, F ) is a perfect space.

As an illustration of all the ideas above, we return to Example 4, where we
studied order-invariant measures on the poset P consisting of two chains. It is
not too hard to see that the order-invariant measures μq , for fixed q ∈ [0,1], are
extremal; moreover, these are the only order-invariant measures on P . (This is
proved in detail in [8].) We also described the order-invariant measures μρ , where
ρ is a probability measure on [0,1]. These are, by definition, mixtures of the μq :
they can be written as

μρ(·) =
∫

μq(·) dρ(q).

Corollary 7.6 now states that every order-invariant measure on P can be expressed
as μρ , for some probability measure ρ on [0,1].

Given a causal set P = (Z,<), and an element ω = x1x2 · · · ∈ 
, we say that ω

generates a measure μ on (
P , F ) if νk(·)(ω) converges weakly to μ as k → ∞.
Theorem 7.3 tells us that, if μ is extremal, then νk(·)(ω) converges weakly to μ

a.s.: in other words, μ-almost all ω generate μ. In particular, if μ is extremal, then
μ is generated by at least one ω ∈ 
. We suspect that the converse is likely to be
true.

CONJECTURE 7.7. If μ is an order-invariant measure that is generated by
some ω ∈ 
, then μ is extremal.

The best result we can prove in this direction is the following.

THEOREM 7.8. For an order-invariant measure μ, let 
0 = {ω :ω generates
μ} and suppose that μ(
0) > 0. Then μ is extremal.

PROOF. Consider the family ν̃(·)(ω) of extremal order-invariant measures in
Corollary 7.6. Set


̃0 = {ω ∈ 
0 :νk(·)(ω) ⇒ ν̃(·)(ω)}.
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Then μ(
̃0) = μ(
0) > 0, by Theorem 7.3 and Corollary 7.6. In particular, 
̃0 is
non-empty; for any ω ∈ 
̃0, μ is the weak limit of the νk(·)(ω), and is therefore
equal to the extremal order-invariant measure ν̃(·)(ω). �

8. Description of extremal order-invariant measures. Our aim in this sec-
tion is to prove the following result.

THEOREM 8.1. Let μ be an extremal order-invariant measure. Then there is
a poset Q = (Z,<), either a causal set or a finite poset, with a marked set M of
maximal elements such that, if Q′ is obtained from Q by replacing each element
z of M with a countably infinite antichain Az, then the poset � generated by μ is
a.s. equal to Q′, except for the labels on the antichains Az.

Probably the most interesting special case is when the set M of marked maximal
elements is empty, so that the extremal measure μ is an order-invariant measure on
the fixed (labeled) causal set Q. As we saw in Example 4, and the discussion after
Corollary 7.6, not every order-invariant measure on a fixed causal set is extremal—
indeed, whenever there is more than one order-invariant measure on a fixed causal
set P , a non-trivial convex combination will be non-extremal—so Theorem 8.1
falls short of characterizing extremal order-invariant measures.

In our companion paper [8], we discuss at length the issue of which fixed causal
sets admit an order-invariant measure. We have seen examples in this paper of
causal sets that admit just one order-invariant measure (Example 1), many order-
invariant measures (Example 4), or none (e.g., a labeled antichain: see Example 3).

The other extreme case is when Q consists of a single marked element z, and
so Q′ consists of the single antichain Az. As discussed in Example 3, an order-
invariant measure that a.s. generates an antichain is effectively the same as an
exchangeable sequence of random labels [0,1], and the extremal order-invariant
measures correspond to the atomless probability distributions on [0,1].

Theorem 8.1 allows intermediate cases as well. For instance, suppose Q consists
of a chain y1 < y2 < · · · of elements from [0,1], together with a marked element
zi above each yi . Suppose we are also given atomless probability distributions Wi

on [0,1] for each i, and a strictly decreasing sequence of positive real numbers
1 = p1 > p2 > · · ·. Then the following causet process is order-invariant. Suppose
we are at a state in which the elements y1, . . . , yr−1 are present, but yr is not.
Then, with probability pr , select yr and place it above yr−1; for j = 1, . . . , r − 1,
with probability pj − pj+1, select an element from [0,1] according to the distri-
bution Wj , and place it above yj . It is easily checked that this is an order-invariant
measure, and indeed that it is extremal.

Before proving Theorem 8.1, we need a number of preliminary results and def-
initions.

Our first tools are from the theory of linear extensions of finite posets. For a
finite poset P = (Z,<), let νP denote the uniform measure on linear extensions



ORDER-INVARIANT MEASURES ON CAUSAL SETS 1525

of P . We shall denote a uniformly random linear extension of an n-element poset
by ζ = ζ1 · · · ζn, and we shall set �i(ζ ) = {ζ1, . . . , ζi}, the set consisting of the
bottom i elements of a uniformly random linear extension ζ of a finite poset. (It is
useful to have different notation for uniformly random linear extensions of finite
posets and for random samples from order-invariant measures on causal sets, as
we shall shortly need to consider both notions simultaneously.)

For a finite poset P = (Z,<), and z1, . . . , zk ∈ Z, let E(z1 · · · zk) be the set of
linear extensions of P with initial segment z1 · · · zk , so that νP (E(z1 · · · zk)) is the
proportion of linear extensions of P with initial segment z1 · · · zk . In particular,
νP (E(z)) is the probability that a uniformly random linear extension of P has z as
its bottom element.

LEMMA 8.2. Let P = (Z,<) be a finite poset, and suppose that x is a mini-
mal element of P . Let D be a down-set in P , not including x. Then νP (E(x)) ≤
νP \D(E(x)).

In other words, if x is a minimal element of P , and the probability that x is
the bottom element of a uniformly random linear extension of P is p, then the
probability that x is the bottom element of a uniformly random linear extension of
P \D is always at least p, for any down-set D of P not including x. Hopefully this
seems intuitively plausible, but, as is often the case with correlation inequalities,
no completely elementary proof is known.

Lemma 8.2 can be seen as a special case of the following inequality, due to
Fishburn [14].

THEOREM 8.3 (Fishburn). Let U and V be up-sets in a finite poset P = (Z,

<), and, for Y ⊆ Z, let e(Y ) denote the number of linear extensions of PY . Then

e(U)e(V ) ≤ e(U ∪ V )e(U ∩ V ).

Indeed, setting U = Z \ {x} and V = Z \ D, we have that νP (E(x)) =
e(U)/e(U ∪ V ) and νP \D(E(x)) = e(U ∩ V )/e(V ); Fishburn’s inequality in this
case is exactly Lemma 8.2.

Theorem 8.3 was first proved by Fishburn in [14]; Brightwell gave a simpler
proof in [9]. A version of Lemma 8.2 is used as part of the proof of Lemma 3.5 in
Brightwell, Felsner and Trotter [11].

We make use of Lemma 8.2 in the proof of our next result, which is the key to
the proof of Theorem 8.1.

LEMMA 8.4. Let P = (X,<) be a finite poset, and take δ > 0 and k ∈ N such
that kδ ≤ 1. Suppose that Z is a family of down-sets Z in P , each with |Z| ≤ k,
such that ∅ ∈ Z and, whenever Z ∈ Z , |Z| ≤ k − 1, and Z ∪ {x} /∈ Z , we have
νP \Z(E(x)) ≤ δ.
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Let Y be the union of the sets in Z , and let M be the set of minimal elements of
P \ Y . Then

νP ({ζ :�k(ζ ) ⊆ Y ∪ M}) ≥
k∏

j=1

(
1 − (j − 1)δ

) ≥ 1 −
(

k

2

)
δ.

The idea is that Y contains all elements of the poset that are “likely” to appear
among the first k elements, even conditioned on other “likely” events. The conclu-
sion states that, with high probability, all of the first k elements are either in Y or
are minimal in P \ Y —in other words, the first k elements do not contain a pair of
comparable elements that are not in Y .

Lemma 8.4 is asymptotically best possible, at least in the case where 1/δ =
m ∈ N. To see this, let P be the disjoint union of m chains, each of length t ,
with Z = {∅}, so Y = ∅ and M consists of the bottom elements of the chains.
For k ≤ m, the probability that, in a uniformly random linear extension of P , the
bottom k elements are all in M—that is, all in different chains—is asymptotically
equal to the product above as t tends to infinity.

PROOF OF LEMMA 8.4. We call a down-set D of P low if it is the union of a
set Z ∈ Z and a set W of minimal elements of P \Z. Note that each low down-set
is a subset of Y ∪ M . If D is a low down-set, we may and shall take Z to be a
maximal element of Z with Z ⊆ D, and W = D \Z, so that Z ∪ {w} /∈ Z for each
w ∈ W .

Let D = Z ∪W be a low down-set as above, with |Z| ≤ k − 1. This implies that
νP \Z(E(x)) ≤ δ for x ∈ W . Let N = N(Z) denote the set of minimal elements of
P \Z, so W ⊆ N , and note that each set D ∪{x}, for x ∈ N \W , is a low down-set.
We claim that νP \D(

⋃
x∈N\W E(x))—the probability that, in a uniformly random

linear extension of P \D, the bottom element x is in N \W—is at least 1 − |W |δ.
We start by considering the probability that each element is bottom in a uni-

formly random linear extension of the larger poset P \ Z. For x ∈ N , set px =
νP \Z(E(x)). Note that

∑
x∈N px = 1, and also that px = νP \Z(E(x)) ≤ δ for each

x ∈ W .
We consider now the poset P \ D = (P \ Z) \ W , and the various probabilities

that an element is bottom in a uniformly random linear extension of this poset.
For x ∈ N \ W , we set qx = νP \D(E(x)); by Lemma 8.2, we have qx ≥ px for all
x ∈ N \ W . Thus,

νP \D
( ⋃

x∈N\W
E(x)

)
= ∑

x∈N\W
qx ≥ ∑

x∈N\W
px = 1 − ∑

x∈W

px ≥ 1 − |W |δ

as claimed.
To complete the proof, observe that, for 1 ≤ j ≤ k,

νP (�j is low | �j−1 is low)
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is a convex combination of terms of the form νP (�j is low | �j−1 = D = Z∪W),
where D = Z ∪ W is a low down-set of size j − 1. As all the down-sets D ∪ {x},
for x ∈ N(Z) \ W , are low, we have

νP (�j is low | �j−1 = D = Z ∪ W) ≥ νP \D
( ⋃

x∈N(Z)\W
E(x)

)

≥ 1 − |W |δ ≥ 1 − (j − 1)δ.

Therefore,

νP (�j is low | �j−1 is low) ≥ 1 − (j − 1)δ

for each j . Multiplying terms, we see that

νP (�k is low) ≥
k∏

j=1

(
1 − (j − 1)δ

)
.

The result follows. �

Next, we state a result of Stanley [26]. For an element x in a finite poset P =
(Z,<), let ri(x) = νP ({ζ : ζi = x}), the probability that, in a uniformly random
linear extension ζ of P , x appears in position i.

THEOREM 8.5 (Stanley). For any element x in an n-element poset P = (Z,

<), the sequence (ri(x))ni=1 is log-concave.

There are many equivalent ways of expressing the property of log-concavity.
One is that the sequence of ratios ri+1(x)/ri(x) is nonincreasing over the range of
i for which ri(x) > 0. This implies that, for j ≤ j + m ≤ j + s, we have

(
rj+s(x)

rj (x)

)1/s

=
(

s∏
i=1

rj+i (x)

rj+i−1(x)

)1/s

≤
(

m∏
i=1

rj+i(x)

rj+i−1(x)

)1/m

=
(

rj+m(x)

rj (x)

)1/m

.

This is the inequality we use to prove the following lemma.

LEMMA 8.6. Fix 0 < ε < 1, 0 < δ < 1 and k ∈ N. Suppose P = (Z,<) is a
finite poset. Let L denote the set of elements x of P such that νP ({ζ :x ∈ �k(ζ )}) ≥
δk+1.

Set q = q(k, δ, ε) = 10kδ−(k+1) log(5k/εδk+1). Then

νP ({ζ :L ⊆ �q(ζ )}) > 1 − ε/8.

Loosely: if L is the set of elements that have a significant probability of appear-
ing within the bottom k positions in a uniformly random linear extension of a finite
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poset P , then, for sufficiently large q , it is very likely that all the elements of L

appear within the bottom q positions.

PROOF OF LEMMA 8.6. Set η = δk+1 for convenience. Note that the number
� of elements of L is at most kη−1. Now fix any element x of L, set ri = ri(x), for
each i, and consider the sequence (ri).

By assumption,
∑k

i=1 ri ≥ η. So one of r1, . . . , rk , say rj , is at least η/k. Also,
as the ri sum to 1, one of the next �2k/η� terms rj+1, . . . , rj+�2k/η�, say rj+m, is
at most η/2k. By Theorem 8.5, the sequence (ri) is log-concave. So, for s ≥ m,(

rj+s

rj

)1/s

≤
(

rj+m

rj

)1/m

≤ 2−1/m ≤ 2−η/3k.

Therefore, for t ≥ m,
∞∑
s=t

rj+s ≤
∞∑
s=t

2−sη/3k = 2−tη/3k

1 − 2−η/3k
≤ 3k

η
2−tη/3k.

This implies that, for t ≥ 2k/η, the probability that a particular element of L is
not among the bottom k + t elements ξ1, . . . , ξk+t is at most 3kη−12−tη/3k . The
probability that some element of L is not among the bottom k + t is thus at most
3k2η−22−tη/3k . Provided t ≥ 3kη−1 log2(24k2/εη2), this probability is at most
ε/8. We set t = q − k, where q is as in the statement of the lemma. Noting that t

is large enough, we are done. �

Next, we establish some properties of an extremal order-invariant measure μ. In
what follows, we make heavy use of Theorem 7.2, which tells us that μ is essential,
and that μ has trivial tails. We shall also use Theorem 7.3, which tells us that the
sequence νk(·)(ω) a.s. converges weakly to μ.

For z ∈ [0,1] and k ∈ N, we define the event G(z, k) = {ω′ ∈ 
 : z ∈ �k(ω
′)}:

this means that z is one of the first k elements generated. For a fixed ω =
(x1x2 · · · ,<N) ∈ 
, observe that νn(G(z, k))(ω) is equal to νPn({ζ : z ∈ �k(ζ )}),
the probability that z appears among the bottom k elements in a uniformly random
linear extension ζ of the finite poset Pn = �n(ω). Indeed, for any event G ∈ Fn,
we have these two different interpretations of νn(G)(ω), and it is usually conve-
nient to work with the latter.

LEMMA 8.7. Let μ be an extremal order-invariant measure. For μ-almost
every ω ∈ 
, νn(G(z, k))(ω) → μ(G(z, k)) for every z ∈ [0,1] and k ∈ N.

PROOF. Theorem 7.3 tells us that, μ-a.s., νn(·)(ω) converges weakly to μ. For
an ω such that weak convergence holds, this implies that νn(E)(ω) → μ(E) for
all events E ∈ F such that μ(∂E) = 0, where ∂E denotes the boundary of E.

Each of the events G(z, k) is a union of finitely many sets of the form {ω ∈

 : ξi(ω) = z}, each of which is a closed set with empty interior. Thus, G(z, k)
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is itself a closed set with empty interior, so the boundary ∂G(z, k) is the event
G(z, k) itself.

Next, we note that, for each k ∈ N and m ∈ N, there are at most km elements
z ∈ [0,1] such that μ(G(z, k)) ≥ 1/m. Therefore, the set C of pairs (z, k) such
that μ(G(z, k)) > 0 is countable.

As μ is essential, we have, μ-a.s., that νn(G(z, k))(ω) → μ(G(z, k)) for all
(z, k) in the countable set C.

Let


0 = {ω ∈ 
 :νn(·)(ω) ⇒ μ(·) and νn(G(z, k))(ω) → μ(G(z, k)) ∀(z, k) ∈ C}.
We have that μ(
0) = 1.

Now fix ω ∈ 
0. For (z, k) ∈ C, we know that νn(G(z, k))(ω) → μ(G(z, k)).
On the other hand, for every (z, k) /∈ C, we have that μ(∂G(z, k)) = μ(G(z, k)) =
0; as νn(·)(ω) converges weakly to μ, this implies that νn(G(z, k))(ω) →
μ(G(z, k)) = 0 for all (z, k) /∈ C. Hence, νn(G(z, k))(ω) → μ(G(z, k)) for all
pairs (z, k), as required. �

Let μ be an extremal order-invariant measure. For each z ∈ [0,1], the event
G(z) = {ω : z ∈ �(ω)}—the event that z is generated at all—is a tail event, so
μ(G(z)) is either 0 or 1. Set

V = V (μ) = {z ∈ [0,1] :μ(G(z)) = 1}.
Referring to the statement of Theorem 8.1, one of our goals is to identify V with
Q \ M .

We say that the element z ∈ [0,1] is persistent for ω ∈ 
 if, for some k ∈ N,

lim inf
n→∞ νn(G(z, k))(ω) > 0.

Lemma 8.7 tells us that, a.s., all the limits limn→∞ νn(G(z, k))(ω) exist, and are
equal to the corresponding μ(G(z, k)). Thus, a.s., the elements that are persistent
for ω are exactly those with μ(G(z, k)) > 0 for some k, which in turn are exactly
those in V .

Notice that, for ω = (x1x2 · · · ,<N), only elements appearing in the string
x1x2 · · · can be persistent for ω. However, elements that do appear in the string
need not be persistent. Consider, for instance, any element ω = (x1x2 · · · ,<N) ∈

, where <N is an antichain. Here, we have νn(G(x1, k))(ω) = k/n whenever
n ≥ k, so x1 is not persistent for ω, and indeed no element is persistent for such
an ω. In the setting of Example 3, where the generated partial order is a.s. an an-
tichain, this means that there are a.s. no persistent elements.

We know that, for μ-almost every ω, for each element z /∈ V , and for each
k ∈ N, νn(G(z, k))(ω) → 0. For fixed k, we now want to establish the existence
of a suitably large n0 so that, for all ω in some set with high μ-probability, all
of the νn0(G(z, k))(ω), for z /∈ V , are small. Although the previous results do not
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give us any form of uniform convergence of the sequences νn(G(z, k))(ω) for all
z /∈ V , the following result—covering only the elements z /∈ V that appear in the
set �q(ω) of the first q elements generated—will be sufficient for our purposes.

LEMMA 8.8. Let μ be an extremal order-invariant measure. Fix ε > 0, δ > 0
and k ∈ N, and let q be as in Lemma 8.6. Then there exists n0 ∈ N such that, for
all n ≥ n0,

μ
({ω : for all elements z of �q(ω) \ V , νn(G(z, k))(ω) < δk+1}) > 1 − ε/8.

PROOF. We have seen that, a.s., there are no elements persistent for ω other
than those in V . In particular, for each j = 1, . . . , q , we have

μ
({ω : ξj (ω) /∈ V, ξj (ω) is persistent for ω}) = 0.

Therefore, for j = 1, . . . , q , there is some n0(j) such that

μ
({ω : ξj (ω) ∈ V or νn(G(ξj (ω), k))(ω) < δk+1 for all n ≥ n0(j)}) ≥ 1 − ε/8q.

Choosing n0 to be the maximum of the n0(j) now gives the desired result. �

PROOF OF THEOREM 8.1. Let μ be an extremal order-invariant measure on
(
, F ).

For a given ω ∈ 
, the set of elements that are persistent for ω forms a down-set
in the causal set �(ω). We have seen that this down-set is a.s. the set V = V (μ).

For any x, y ∈ V , the event that x ≺ y in � is a tail event. Therefore, μ({ω :x ≺
y in �(ω)}) is equal to 0 or 1. The relation <V on V defined by x <V y if and only
if μ({ω :x ≺ y in �(ω)}) = 1 is a partial order on V , and moreover the restriction
�(ω)V is a.s. equal to (V ,<V ).

Consider any down-set D of (V ,<V ), and let �D be the (random) set of ele-
ments y of � \ V such that the set of elements below y in � is exactly equal to D.
Then |�D| is a random variable taking values in N ∪ {0,∞}. For each g, the set
{ω : |�D(ω)| = g} is a tail event, and so |�D| is a.s. determined. Our next aim is to
show that, for each D, the a.s. value of |�D| is either 0 or ∞.

Suppose, for a contradiction, that |�D| is a.s. equal to the positive integer m. For
any Borel set B ⊆ [0,1], the event KD(B) = {ω :�D(ω) ∩ B �= ∅} is a tail event,
so μ(KD(B)) is equal to 0 or 1. We say that B is occupied if μ(KD(B)) = 1. No
singleton set {v} is occupied: if v ∈ �D a.s., then certainly v ∈ � a.s., so v ∈ V ,
but we have defined �D to be disjoint from V .

If B is occupied, and {B1,B2, . . .} is any covering of B with countably many
Borel sets Bi , then KD(B) ⊆ ⋃∞

i=1 KD(Bi), so at least one set Bi in the covering
is occupied.

Let B1 = [0,1] and note that B1 is occupied. By repeatedly interval-halving,
we can find a decreasing sequence of closed intervals B1 ⊃ B2 ⊃ · · ·, with Bi of
length 21−i , each of which is occupied, and whose intersection is a single point v ∈
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[0,1]. We now partition [0,1] as the countable union of the Borel sets Bj \ Bj+1,
j = 1,2, . . . , together with the singleton {v}. We observe that at most m of these
sets are occupied: otherwise there are a.s. more than m elements of [0,1] in �D .
Moreover, the occupied sets do not include the singleton {v}. Hence there is a
maximum k such that Bk \ Bk+1 is occupied. But then we have a partition of the
occupied set Bk+1 into countably many sets, none of which are occupied. This is
a contradiction.

We conclude that, for each down-set D of (V ,<V ), the set �D is either a.s.
empty, or a.s. infinite.

We say that a down-set D of (V ,<V ) is active if �D is a.s. infinite. One conse-
quence of what we have just proved is that, a.s., all minimal elements of the poset
restricted to � \ V have a down-set (necessarily a subset of V ) that is active.

We are now in a position to construct the causal set Q = (Z,<) in the state-
ment of the theorem. We take the causal set (V ,<V ), and add a marked maximal
element zD above each active down-set D. We have already seen that the random
causal set � a.s. contains (V ,<V ) as a down-set, and infinite antichains AD above
each active down-set D. What remains to be shown is that there are a.s. no other
elements in �: specifically, we have shown that, a.s., the set A of minimal ele-
ments of � \ V is the union of the infinite antichains AD ; we now need to show
that there are a.s. no nonminimal elements of � \ V .

We shall prove the following equivalent statement. For every ε > 0, and every
k ∈ N,

μ
({ω :�k(ω) ⊆ V ∪ A(ω)}) ≥ 1 − ε,(10)

that is, the probability that the first k elements include a pair of comparable ele-
ments that are not in V is at most ε.

For the remainder of the proof, we fix a natural number k ≥ 2, and some ε

with 0 < ε ≤ 1. We set δ = ε/2k2 > 0 and q = 10kδ−(k+1) log(5k/εδk+1), as in
Lemma 8.6. We note here for future use that δk < ε/8.

For a given string z1z2 · · · zm of elements of V , let <[m] be the order on [m]
inducing <V{z1,...,zm}, that is, with i <[m] j if and only if zi <V zj , and define

E(z1z2 · · · zm) = E
({z1}{z2} · · · {zm},<[m]),

the event that an element ω ∈ 
 has z1 · · · zm as an initial substring, with the order
according to <V . For m = 0, corresponding to the empty string, E() = 
.

We are interested in the first k steps of the causal set process specified by
μ; we need to consider all the likely ways that this process can begin. Accord-
ingly, let T be the set of strings y1 · · ·yj of elements of V , with 0 ≤ j ≤ k, such
that μ(E(y1 · · ·yi−1yi) | E(y1 · · ·yi−1)) > δ for i = 1, . . . , j . Note that the empty
string is in T ; also, by definition, if a string is in T , then so is every initial substring
of it. Note also that μ(E(y1 · · ·yj )) > δj ≥ δk for every string y1 · · ·yj in T . One
consequence is that there are at most δ−k strings in T .
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We enumerate the elements of V as v1, v2, . . . . As the sum of the probabilities
μ({ω :vj ∈ �q(ω)}) is at most q , there is some m ∈ N such that

∞∑
j=m+1

μ
({ω :vj ∈ �q(ω)}) < δk.

Set Vm = {v1, . . . , vm}. Note that every element appearing in a string in T is in
Vm.

Now, for any string y1 · · ·yj of elements of Vm, we have νn(E(y1 · · ·yj ))(ω) →
μ(E(y1 · · ·yj )) a.s., since μ is essential. For n ∈ N, we define

Cn = {ω : |νn(E(y1 · · ·yj ))(ω) − μ(E(y1 · · ·yj ))| < δk/3,

for all strings y1 · · ·yj of at most k distinct elements of Vm}.
As there are only finitely many strings of at most k distinct elements of Vm, we
have μ(Cn) ≥ 1 − ε/8 for sufficiently large n.

If ω ∈ Cn, j < k, y1 · · ·yj ∈ T , y1 · · ·yjy /∈ T , and y ∈ Vm, then

νn(E(y1 · · ·yjy) | E(y1 · · ·yj ))(ω) = νn(E(y1 · · ·yjy))(ω)

νn(E(y1 · · ·yj ))(ω)

<
μ(E(y1 · · ·yjy)) + δk/3

μ(E(y1 · · ·yj )) − δk/3
(11)

<
δμ(E(y1 · · ·yj ))

2/3μ(E(y1 · · ·yj ))
+ δk/3

δk−1 − δk−1/3

<
3

2
δ + 1

2
δ = 2δ.

We now fix some n ≥ q (depending on k, ε, and also on the measure μ)
large enough that μ(Cn) ≥ 1 − ε/8, and also large enough for the conclusion of
Lemma 8.8 to hold.

For ω ∈ 
, we define a bad string for ω to be a string y1 · · ·yjy of elements
of �n(ω), with j < k, such that y1 · · ·yj is in T , y1 · · ·yjy is not in T , and
νn(E(y1 · · ·yjy) | E(y1 · · ·yj ))(ω) ≥ 2δ. Set F = {ω : there are no bad strings for
ω}.

We consider also the following events:

B1 = {ω :�q(ω) ∩ (V \ Vm) = ∅},
B2 = {ω : for all z ∈ �q(ω) \ V,νn(G(z, k))(ω) < δk+1},
B3 = {ω : for all z ∈ �n(ω) \ �q(ω), νn(G(z, k))(ω) < δk+1}.

We claim that Cn ∩ B1 ∩ B2 ∩ B3 ⊆ F .
Indeed, if ω is in Cn, then from (11) it follows that there are no bad strings

y1 · · ·yjy for ω with y ∈ Vm. If ω is in B1, it certainly follows that there are
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no bad strings with y ∈ �q(ω) ∩ (V \ Vm). Finally, if ω is in B2 ∩ B3, then
νn(G(z, k))(ω) < δk+1 for all z ∈ �n(ω) \ (�q(ω) ∩ V ); if ω is also in Cn, then
this implies that

νn(E(y1 · · ·yj z) | E(y1 · · ·yj ))(ω) <
δk+1

νn(E(y1 · · ·yj ))(ω)
<

δk+1

δk − δk/3
< 2δ

for all strings y1 · · ·yj ∈ T and all z ∈ �n(ω) \ (�q(ω) ∩ V ), and so there are no
bad strings y1 · · ·yj z for ω with z ∈ �n(ω) \ (�q(ω) ∩ V ). We conclude that, if
ω ∈ Cn ∩ B1 ∩ B2 ∩ B3, then there are no bad strings for ω, and so ω ∈ F .

We chose n so that μ(Cn) ≥ 1 − ε/8, and so that μ(B2) ≥ 1 − ε/8—see
Lemma 8.8. We also chose m so that μ(B1) ≥ 1 − δk > 1 − ε/8.

To estimate μ(B3), we use Theorem 4.2 to express this as Eμ(νn(B3)). The
event B3 depends only on the finite poset �n(ω), and νn(B3)(ω) is the probabil-
ity that, in a uniformly random linear extension of this poset, all the elements z

with νn(G(z, k)) ≥ δk+1 appear among the first q . Lemma 8.6 now tells us that
νn(B3)(ω) > 1 − ε/8 for every ω ∈ 
, and therefore we have μ(B3) > 1 − ε/8.

Hence, we have μ(F) ≥ 1 − ε/2.
Now let

H = {ω′ ∈ 
 :�k(ω
′) ⊆ V ∪ A(ω′)}.

For ω ∈ F , we claim that νn(H)(ω) ≥ 1 − ε/2.
To verify the claim, we take ω ∈ F , and apply Lemma 8.4 to the finite poset

�n(ω). Note that νn(H)(ω) is the probability that, in a uniformly random lin-
ear extension of this poset, all the first k elements are either in V or minimal in
�n \ V —in other words the first k elements do not contain a pair of comparable
elements that are not in V . We apply Lemma 8.4 with Z equal to the family of sets
{z1, . . . , zj }, for z1 · · · zj a string in T whose elements are all in �n(ω), and with δ

replaced by 2δ. The statement that ω ∈ F implies that the condition of Lemma 8.4
on Z is satisfied. As all the elements appearing in strings in T are in Vm ⊆ V , the
union Y of the sets in Z is a subset of V . We conclude from Lemma 8.4 that

νn(H)(ω) ≥ 1 −
(

k

2

)
2δ = 1 −

(
k

2

)
2

ε

2k2 ≥ 1 − ε/2

for all ω ∈ F , as claimed.
We now have, by Theorem 4.2 and our earlier calculations:

μ(H) = Eμ(νn(H)) ≥ μ(F)(1 − ε/2) ≥ (1 − ε/2)2 ≥ 1 − ε.

This establishes (10), and completes the proof. �

Now we have proved Theorem 8.1, it is possible to say more about the nature of
extremal order-invariant measures. In what follows, we omit some of the details.

Suppose Q = (Z,<) is a causal set or finite poset, with a set M ⊆ Z of marked
maximal elements. Let R(Q) be the set of causal sets obtained from Q by re-
placing each element z of M with a countably infinite antichain Az ⊂ [0,1].
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Let HQ = {ω ∈ 
 :�(ω) ∈ R(Q)}. Theorem 8.1 says that every extremal order-
invariant measure μ has μ(HQ) = 1 for some Q. We may assume that the down-
sets D(z), for z ∈ M , are all distinct: otherwise, we may replace a set of ele-
ments of M having the same down-set by a single element of M . We say that an
order-invariant measure μ, or its associated order-invariant process, generates Q

if μ(HQ) = 1.
Fix Q and M as above, and suppose μ is an extremal order-invariant measure

generating Q. If M is empty, then Q is a causal set, and μ is a causet measure
on the fixed causal set Q. Moreover, the set of order-invariant measures on Q is
a convex subset of the set of all order-invariant measures, and μ is an extremal
element of this set.

If M is non-empty, fix attention on one element z ∈ M , and let D = D(z) be
the down-set of elements below z in Q, all of which are unmarked. For ω ∈ 
 and
n ∈ N, let Rn(ω) be the proportion of elements of �n(ω) that have down-set equal
to D in �n(ω). It is not too hard to show that there is some q > 0 such that, μ-a.s.,
Rn → q .

Now, for each ω ∈ HQ such that Rn(ω) → q , let ζ1(ω), ζ2(ω), . . . be the se-
quence of labels of those elements of �(ω) with D(ζi) = D. Order-invariance
implies that the sequence (ζ1, ζ2, . . .) is a sequence of exchangeable random vari-
ables. Therefore, by the Hewitt–Savage theorem, as μ is extremal, there is some
probability distribution ρ on [0,1] such that the ζi are i.i.d. random variables with
distribution ρ.

Given a number q ∈ (0,1], a probability distribution ρ on [0,1], and a marked
element z ∈ M , we say that an order-invariant causet process generating Q pro-
duces z with parameters (q, ρ) if, at every stage after all elements of D(z) have
been generated, <[k+1] is obtained from <[k] by placing k + 1 above the elements
in the set of indices corresponding to D(z) with probability q , and—conditioned
on that event—the new element ξk+1 has distribution ρ.

Suppose Q = (Z,<) is a causal set or finite poset with a marked set M of
maximal elements, and μ is an extremal order-invariant measure that generates Q.
It can be shown that, for each element z of M , there is a number q(z) ∈ (0,1] and
a probability distribution ρ(z) on [0,1] such that μ produces z with parameters
(q(z), ρ(z)).

The sum of the q(z) must be at most 1, as these are probabilities of disjoint
events; if the poset Q is finite, then the sum must equal 1.

If there is an extremal order-invariant measure generating Q, producing each
z ∈ M with parameters (q(z), ρ(z)), then for any other set of distributions (ρ ′(z)),
there is also an extremal order-invariant measure generating Q, producing each z ∈
M with parameters (q(z), ρ ′(z)). To obtain this, we simply change the description
of the order-invariant process, replacing each ρ(z) by ρ′(z).

Moreover, given a causal set Q with a set M of marked maximal elements, de-
fine Q′ by replacing each element z of M with an infinite chain Cz, labeled arbitrar-
ily in such a way that all labels are distinct. Given an extremal order-invariant pro-
cess generating Q, producing each z ∈ M with parameters (q(z), ρ(z)), then we
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can obtain an extremal order-invariant process on the fixed causal set Q′: whenever
the original process calls for an element with down-set D(z), in the new process
we take the next element of the chain Cz.

This process is reversible: if we have an extremal order-invariant measure on
some fixed causal set P = (X,<), and there is an infinite chain C in P such that all
elements of C are above some set D and incomparable to all elements of X \ (C ∪
D), then we obtain an order-invariant measure generating the poset Q obtained
from P by replacing C by a single marked maximal element.

Therefore, in order to describe all extremal order-invariant measures, it suf-
fices to describe all extremal order-invariant measures on fixed causal sets P . This
serves to motivate the work in our companion paper [8].
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