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GENERALIZED INTEGRANDS AND BOND PORTFOLIOS:
PITFALLS AND COUNTER EXAMPLES

BY ERIK TAFLIN1

EISTI

We construct Zero-Coupon Bond markets driven by a cylindrical Brown-
ian motion in which the notion of generalized portfolio has important flaws:
There exist bounded smooth random variables with generalized hedging port-
folios for which the price of their risky part is +∞ at each time. For these
generalized portfolios, sequences of the prices of the risky part of approximat-
ing portfolios can be made to converges to any given extended real number
in [−∞,∞].

1. Introduction. In this article, we consider continuous time bond markets
for which there exists a unique equivalent martingale measure (e.m.m.). It is well-
known that the uniqueness of the e.m.m. does not in general imply that such a
market is complete. We have here adopted the standard definition of complete
market, which we shall call L∞-completeness and which reads, omitting details:

Every random variable X in L∞ is replicable by an admissible H ′-valued self-financed
portfolio process θ, where H ′ is the dual of H, the state space of the price process.

To our knowledge, such noncompleteness results were first established in [1]
and [2] (see Proposition 4.7 of [1] and Proposition 6.9 of [2]). The considered price
model was a jump-diffusion model with a finite dimensional Brownian motion
(B.m.) and an infinite mark space, and H was the sup normed Banach space of
continuous functions on [0,∞[ with vanishing limit at ∞. It was also proved that
this market is approximately complete, that is, the subspace of replicable random
variables is dense in L∞, if and only if the e.m.m. is unique (see Proposition 6.10
and Theorem 6.11 of [2]).

Similar results were proved in [11] (see Theorem 4.1, Theorem 4.2 and Re-
mark 4.6 of [11]) for the case of price models introduced in [7], where the price is
a H -valued process driven by a standard cylindrical B.m. (cf. [4]) and where H is
a Sobolev space of continuous functions. Also various topological vector spaces A

for which these markets are A-complete (change L∞ to A in the above definition)
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were specified in Theorem 4.3 of [11]. Hedging in the case of a Markovian price
model was considered in [3].

The notion of admissible portfolio was weakened in [6] to that of generalized
self-financed bond portfolio, which reestablished, for very general price processes
having a unique e.m.m., the L∞-completeness of the market, but with H ′ in the
above definition replaced by the larger set U of bounded and unbounded linear
forms in H (see the discussion in Section 4 of [6] and see also [5]).

The aim of the present paper is to study and establish properties of generalized
self-financed bond portfolios. In particular, we are interested in the price of the
risky part (or equivalently, in the price of the risk-free part) of generalized bond
portfolios, for which the separation into risk-free and risky part makes sense. To
this end, simple price models driven by a standard cylindrical B.m., of the kind
introduced in [7] and [8] and with constant volatility operator, are considered. It is
proved that the price model can be chosen such that some generalized self-financed
bond portfolio will have properties to be handled with care and which can even
limit the mathematical and practical usefulness of generalized portfolios. In fact,
(see Theorem 3.2):

(a) There exist bounded smooth random variables, hedgeable in the sense of
[6] by a unique generalized self-financed bond portfolio (x,μ), whose risky part
μ1 is unique and is a positive C∞ density. The price of μ1 is +∞ at each time.
Equivalently, it requires to hold a loan of infinite amount, at each time.

(b) For all “admissible” utility functions, there exists a unique well-defined
optimal wealth X̂, solution of the optimal expected utility problem. X̂ is hedge-
able in the sense of [6] by a a unique generalized portfolio (x,μ). Also here this
generalized portfolio requires to hold a loan of infinite amount, at each time.

(c) In each one of the cases (a) and (b), approximate portfolios converging
to (x,μ) can be chosen such that the sequence of the prices of their risky part
converges to any given extended real number in [−∞,∞].

Theorem 3.2 gives counter examples to some statements in [6] (see Remark 3.3).
Results analogous to those of this paper should apply to other infinite dimensional
markets, as in [9].

The present article is a motivation for future research on the hedging problem
in bond markets treated as a super-replication problem under constraints instead
of replication by “standard” or generalized portfolios.

2. Mathematical set-up and the market model. We shall use a simple case
of the Hilbert space Zero-Coupon Bond models of [7] and [8]. The Zero-Coupon
Bond price curves belong to a Hilbert space H, of continuous functions on [0,∞[.
In this paper, we choose H = H 1([0,∞[), the Sobolev space of order 1 of real-
valued functions on [0,∞[. Let L be the contraction semi-group of left translations
in L2([0,∞[), let ∂ be its infinitesimal generator and for a positive integer n ≥ 0
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let Hn([0,∞[) be the subspace of functions f such that [0,∞[� a �→ Laf ∈
L2([0,∞[) is n-times continuously differentiable. Hn([0,∞[) is a Hilbert space
for the norm defined by

‖f ‖Hn =
(∫ ∞

0

n∑
i=0

|∂if (x)|2 dx

)1/2

(2.1)

and L (restricted to Hn([0,∞[)) is a contraction semi-group in Hn([0,∞[). Point-
wise multiplication Hn([0,∞[) × Hn([0,∞[) � (f, g) �→ fg ∈ Hn([0,∞[) is
continuous for n ≥ 1.

A real-valued bi-linear form 〈·, ·〉, where

〈f,g〉 =
∫ ∞

0
f (x)g(x) dx,(2.2)

is first defined for (real) tempered distributions f with support contained in [0,∞[
and for (real) tempered test functions g on R. H−n([0,∞[) is the subset of all such
f, for which the mapping g �→ 〈f,g〉 has a continuous extension to Hn([0,∞[).
The dual (Hn([0,∞[))′ of Hn([0,∞[) is identified with H−n([0,∞[) and we
write H ′ = (H 1([0,∞[))′.

We consider a time interval T = [0, T̄ ], where T̄ > 0 is a finite time-
horizon. The random source is an infinite dimensional �2-cylindrical Brown-
ian motion W = (W 1, . . . ,Wn, . . .) on a complete filtered probability space
(�,P, F , (Ft )t∈T), where F = FT̄ and the filtration is generated by the inde-
pendent Brownian motions Wn, n ≥ 1.

The price at time t ∈ T of a Zero-Coupon Bond with time to maturity x ≥ 0
is denoted p̃t (x) and the corresponding discounted price pt(x). By convention,
p̃t (0) = 1.

In this paper, we shall use a time independent volatility operator σ ∈L2(�
2,H 2),

the space of Hilbert–Schmidt operators from �2 to H 2([0,∞[). For z ∈ �2, σ z =∑
i≥1 σ izi, where the functions σ i satisfy σ i(0) = 0. Moreover, we impose that

σ i ∈ C∞([0,∞[), that σ i has compact support, that the set {σ 1, . . . , σ i, . . .} is lin-
early independent and total in the subspace of functions f ∈ H 1([0,∞[) satisfying
f (0) = 0. In particular, it follows that σ is injective.

A drift function m is given such that m = σ γ , for a time independent mar-
ket price of risk γ ∈ �2. In particular, it follows that m ∈ H 2([0,∞[), since
σ ∈ L2(�

2,H 2), and that m(0) = 0.

The discounted price p is a continuous H -valued process satisfying

pt = Ltp0 +
∫ t

0
Lt−s(psm)ds +

∫ t

0
Lt−s(psσ ) dWs,(2.3)

where p0 ∈ H 2([0,∞[) is a strictly positive function with p0(0) = 1. Here, the
notations of pointwise multiplication are used, so explicitly for the integrand in
the second integral: (La(psσ )z)(x) = ∑

i≥1 ps(x + a)σ i(x + a)zi for all z ∈ �2

and a, x ≥ 0.
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Equation (2.3) has a unique H -valued mild solution p (see [7] and [8] for prop-
erties of the solution of (2.3)). This solution is a strong solution and it satisfies the
following equation in H, which shows that p is a H -valued semi-martingale:

dpt = (∂pt + ptm)dt + ptσ dWt .(2.4)

For later reference, we note that it follows from Theorem 2.2 of [7], that the map-
ping [0,∞[� x �→ p(x) is a continuous mapping into the space of real semimartin-
gales S(P ) endowed with the semimartingale topology, cf. [10].

A portfolio, also called “standard portfolio” in this paper, is an H ′-valued pro-
gressively measurable process θ defined on T. If θ is a portfolio, then its dis-
counted value at time t is

Vt(θ) = 〈θt ,pt 〉.(2.5)

θ is an admissible portfolio if2

‖θ‖2
P = E

(∫ T̄

0
(‖θt‖2

H ′ + ‖σ ′θtpt‖2
�2) dt +

(∫ T̄

0
|〈θt ,ptm〉|dt

)2)
< ∞,(2.6)

where σ ′ is the adjoint of σ defined by 〈f,σ x〉 = (σ ′f, x)�2, for all f ∈ H ′ and
x ∈ �2. Explicitly, we have:

σ ′f = (〈f,σ 1〉, . . . , 〈f,σ i〉, . . .).(2.7)

The set of all admissible portfolios defines a Banach space P for the norm ‖ · ‖P.

A portfolio θ ∈ P is by definition self-financed if

dVt (θ) = 〈θt ,ptm〉dt + ∑
i∈N∗

〈θt ,ptσ
i〉dWi

t .(2.8)

There is a unique e.m.m. (equivalent martingale measure) Q. It is given by
dQ/dP = ξT̄ , where

ξt = exp
(
(γ ,Wt)�2 − 1

2‖γ ‖2
�2 t

)
.

By Girsanov’s theorem the W̄ i, i ≥ 1, where W̄ i
t = Wi

t + γ it, are independent
Q-B.m. Obviously,

pt = Ltp0 +
∫ t

0
Lt−s(psσ ) dW̄s.(2.9)

We shall only consider derivative products with discounted pay-off belonging
to the (Fréchet) space D0, which by definition is the intersection of all the spaces

2In this paper, all considered admissible portfolios will also satisfy Vt (θ) ≥ C a.e. (t,ω) for some
C ∈ R depending on θ.
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Lp(�,Q, F ), 1 ≤ p < ∞. Such a derivative X has a unique decomposition as a
stochastic integral w.r.t. W̄ (cf. [4] and Lemma 3.2 of [11])

X = EQ[X] +
∫ T̄

0
(xt , dW̄t ),(2.10)

where x is a progressively measurable �2-valued process satisfying

x ∈ Lp(�,Q,L2(T, �2)), 1 ≤ p < ∞.(2.11)

It is important to have information about the decay properties of xn
t for large n, to

study hedging properties of X. We therefore also introduce the spaces of derivative
products Ds, s > 0. Ds is the subspace of all X ∈ D0 such that the integrand x in
(2.10) satisfies (∫ T̄

0
‖xt‖2

�s,2 dt

)1/2

∈ D0,(2.12)

where �s,2 ≡ �s,2(q) is the Hilbert space of real sequences endowed with the norm

‖y‖�s,2 =
( ∑

i∈N∗
q2s
i |yi |2

)1/2

,(2.13)

where qi ≥ 1 is a given increasing unbounded sequence of real numbers. (See
Remark 4.7 of [11], where qi = (1 + i2)1/2 was used.)

Later we shall also impose X to be smooth in the sense of Malliavin.
A hedging portfolio θ of X is a self-financed portfolio θ ∈ P such that

〈θT̄ ,pT̄ 〉 = X, which then is called replicable.
Bounded and smooth X are not always replicable, see Remark 4.6 and Theo-

rem 4.1 of [11]. By the definition of self-financed portfolio, it follows that a port-
folio θ ∈ P is a hedging portfolio of X satisfying (2.11) iff ∀t ∈ T and i ≥ 1

〈θt ,pt 〉 = EQ[X|Ft ], 〈θt ,ptσ
i〉 = xi

t ,(2.14)

where x is given by formula (2.10). When it exists, the solution θ ∈ P is unique.
In fact, if θ and φ are two solutions, then the second formula in (2.14) gives that
〈θt − φt ,ptσ

i〉 = 0, for all i ≥ 1. Since the set of the σ i is total in the subspace
of functions vanishing at 0 in H 1([0,∞[), it follows that θt − φt = btδ0 for some
real process b, where 〈δa, f 〉 = f (a), for a ≥ 0. The first formula of (2.14) then
gives that 0 = 〈θt − φt ,pt 〉 = btpt (0). So bt = 0, since pt(0) > 0.

A self-financed discounted risk-free investment, with discounted value
Vt(θ) = 1, is realized by the portfolio

θt = exp
(∫ t

0
Rs(0) ds

)
δ0,(2.15)

where the instantaneous forward rate Rt(x) at t for time to maturity x is defined
by

Rt(x) = −(∂ lnpt)(x).
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In certain cases a portfolio θ can be separated into a risk-free part and a risky
part. This is the case when 0 is not in the singular support of θ or is an isolated
point in the singular support a.e. (t,ω). Then θ has a unique decomposition into a
risk-free part ψ0 and a risky part ψ1, such that

θ = ψ0 + ψ1, ψ0
t = atδ0, sing suppψ1

t ⊂]0,∞[,(2.16)

where a is progressively measurable real-valued process. So here 〈ψ0
t , pt 〉 =

atpt (0) and 〈ψ1
t , pt 〉 are respectively the discounted risk-free and risky invest-

ments at t corresponding to θ.

The notion of generalized bond portfolio was introduced in ref. [6], in an at-
tempt to circumvent the problem of the existence of bond markets with a unique
e.m.m., but which are not complete in the sense that every sufficiently integrable
r.v. is replicable (by a self-financed admissible bond portfolio).

Let the product-space R
R+ be given its natural product-topology and let U be

the set of all (bounded and unbounded) linear forms on R
R+ . Each element l ∈ U

is defined by its domain D(l) and its values l(f ) for f ∈ D(l). Adapted to our
mathematical set-up, a generalized self-financed bond portfolio (see Definition 3.1
of [6]) is a pair (x,μ), where x is a real number (the value of the generalized
portfolio at t = 0) and where μ is a generalized integrand in the sense that μ is a
U -valued weakly predictable process and there exist simple integrands μ(n), that
is, μ(n) = ∑

i h
n,iδxn,i

where the sum is finite and hn,i are bounded predictable real
processes, such that

(C1) μ(n) converges to μ a.s. in U (pointwise),
(C2) the sequence Yn, where Yn

t = ∫ s
0

∑
i〈μ(n)

s ,ptσ
i〉dW̄ i

s converges to a limit
process Y ∈ S(P ). Yt is also denoted

Yt =
∫ t

0

∑
i

〈μs,psσ
i〉dW̄ i

s .(2.17)

The limit Y of Yn is independent of the sequence (μ(n))n≥1. We recall that, more
generally (see Theorem 2.4 of [6]), if μ(n) is a sequence of generalized integrands
satisfying (C2) then there exists a generalized integrand μ such that equality (2.17)
is satisfied.

The discounted value process of the generalized portfolio (x,μ) is by definition
x + Y. For every x ∈ R and portfolio μ ∈ P, (x,μ) is a generalized self-financed
bond portfolio. A generalized self-financed bond portfolio (x,μ) is called gener-
alized hedging portfolio of X when

X = x +
∫ T̄

0

∑
i

〈μt,ptσ
i〉dW̄ i

t .(2.18)
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3. Main results. A natural question is what are the sequences of risk-free and
risky investments permitting to realize a sequence of approximations (x,μ(n)), sat-
isfying (C1) and (C2), of a generalized self-financed bond portfolio (x,μ). What
are the limits of these sequences, if they exist, and are they independent of the
choice of the approximating sequence? More precisely and generally (cf. Theo-
rem 2.4 of [6]), let (μ(n))n≥1 be a sequence of integrands in P (i.e., portfolios)
satisfying (C1) and (C2), with the corresponding sequence (Y n)n≥1. Self-financed
portfolios θ(n) ∈ P are then defined by (cf. Proposition 2.5 of [7])

θ(n) = bnδ0 + μ(n), bn
t = (

x + Yn
t − 〈

μ
(n)
t , pt

〉)
/pt (0).(3.1)

If the decomposition (2.16) applies to the portfolios μ(n), with risky part μ(n)1,

then it follows that the self-financed portfolio θ(n) has a unique decomposition

θ(n) = θ(n)0 + θ(n)1,
(3.2)

θ
(n)0
t = an

t δ0, θ
(n)1 = μ(n)1, sing supp θ

(n)1
t ⊂]0,∞[.

The real-valued process an, which is the investment in the risk-free asset, is then
given by

an
t = (

x + Yn
t − 〈

μ
(n)1
t , pt

〉)
/pt (0).(3.3)

We will come back later to the above questions concerning the possible limits of
the sequence an

t of risk-free investments, by studying the sequence rn
t = 〈μ(n)1

t , pt 〉
of discounted risky investments.

Another natural question is what risk-free and risky investments are required to
realize the generalized self-financed portfolio (x,μ). Suppose that the risky part,
lets call it μ1, is well-defined. Then if μ1

t is (a.s.) a positive density, its discounted
value 〈μ1

t , pt 〉 ∈ [0,∞] (a.s.) is well-defined. This can easily be generalized to the
case where the limit of

∫ x
0 μ1

t (y)pt (y) as x → ∞ makes sense. In these cases, the
risk-free investment is obtained as in (3.3)

at = (x + Yt − 〈μ1
t , pt 〉)/pt (0).

We shall construct a bond market and generalized self-financed bond portfolios
(x,μ), whose realization require an infinite short position in the risk-free asset
(i.e., loan) at each instant t ∈ T. More precisely, to have a clear separation between
the investment into the risk-free asset and the risky assets, we construct a market
and generalized portfolios (x,μ) satisfying:

(P1) ν is an element in U with domain (ls denotes linear span)

D(ν) = ls
(
C∞

0 (]0,∞[) ∪ {p0}).(3.4)

The restriction of ν to C∞
0 (]0,∞[) is a function ν1 ∈ C∞([0,∞[), suppν1 ⊂

[3/4,∞[, 〈ν,p0〉 = 0 and

lim
x→∞

∫ x

0
ν1(y)p0(y) dy = ∞.(3.5)
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μt ∈ U a.s. has domain

D(μt ) = ls
(
C∞

0 (]0,∞[) ∪ {pt })(3.6)

and

〈μt, f 〉 = αt

〈
ν,f

p0

pt

〉
, f ∈ D(μt ),(3.7)

where α is a strictly positive continuous adapted uniformly bounded (in t and ω)
process. The discounted total risky investment is

lim
x→∞

∫ x

0
μ1

t (y)pt (y) dy = ∞ a.e. (t,ω).(3.8)

(P2) For all C ∈ [−∞,∞], μ is the limit in the sense of (C1) and (C2) of a
sequence (μ(n))n≥1 of continuous linear functionals on H such that, a.s.

μ(n) = μ(n)0 + μ(n)1, ∀t ∈ T suppμ
(n)0
t ⊂ {0},

(3.9)
μ

(n)1
t ∈ C∞

0 (]1/2,∞[)
and

lim
n→∞an

0 = C,(3.10)

where an is defined by (3.3). Moreover, if C = −∞ (resp. C is finite and C = +∞)
then

∀t ∈ T, lim
n→∞an

t = −∞ (resp. finite and + ∞).(3.11)

REMARK 3.1. The definition of ν makes sense since p0 is not in K = {f ∈
H | f (0) = 0}, the closure of C∞

0 (]0,∞[) in H. The formula (3.7) makes sense
since, according to Theorem 21 of [8], ‖�t/pt‖L∞ < ∞, where �t = Ltp0. So
f �t/pt ∈ D0 a.s.

An admissible utility function U is (in this article), a strictly concave and in-
creasing C2 function on ]0,∞[ satisfying conditions, stated in (3.12), strengthen-
ing the Inada conditions. Let I be the inverse of U ′ and assume that there exists
C,p > 0 such that

U ′(]0,∞[) = ]0,∞[ and
(3.12)

|I(x)| + |xI′(x)| ≤ C(xp + x−p), x > 0.

We shall consider the optimal portfolio problem. For an admissible utility func-
tion U and an initial investment of EQ[I(yξT̄ )], for given y > 0, the optimal final
wealth is given by

X̂ = I(yξT̄ )(3.13)
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and X̂ ∈ Lq, for all 1 ≤ q < ∞, cf. Theorem 3.3 of [7].
We can now state the main results (in which risky means that 0 is not in the

singular support).

THEOREM 3.2. One can choose an initial condition p0, a time-independent
volatility operator σ and a time-independent drift function m such that:

A. The σ i ∈ C∞
0 (]0,∞[), σ ∈ L2(�

2,H 2([0,∞[)) is injective and p0(x) =
e−ax, for some a > 0. The drift m ∈ H 2([0,∞[) and the market price of risk
γ ∈ �2.

B. For all admissible utility functions U and y > 0, X̂ given by (3.13) has a
generalized hedging portfolio (EQ[X̂],μ) satisfying (2.18) and with the properties
(P1) and (P2). The risky part of (EQ[X̂],μ) is unique.

C. There exists a bounded smooth r.v. X having a generalized hedging portfo-
lio (EQ[X],μ) satisfying (2.18) and satisfying (P1) and (P2) with ν1 positive. The
risky part of (EQ[X],μ) is unique and positive.

REMARK 3.3. If (x,μ) is a generalized hedging portfolio given by Theo-
rem 3.2 then:

1. Since (P1) is satisfied it follows that the value of the risky part of (x,μ),

is infinite and that the realization of (x,μ) requires an infinite short position in the
risk-free asset (i.e., loan) at each instant t ∈ T.

2. According to (P2), the sequence of prices, at t = 0, rn
0 of the risky part (or

an
0 of the risk-free part) of approximating sequences (x,μ(n)) give no information

concerning the value of the risky part (or of the risk-free part) of (x,μ). As matter
of fact for the given (x,μ), one can choose an approximating sequence (x,μ(n))

such that the limit of an
0 is equal to any extended real number in [−∞,∞].

3. pt ∈ D(μt ) [in fact 〈μt,pt 〉 = 0 a.e., according to (P1)], which is a condi-
tion in a discussion in [6] (second paragraph after Definition 3.1). The preceding
points 1 and 2 of this remark are counter examples the conclusions of that discus-
sion.

4. Proofs. Following [11], we introduce for t ∈ T, the operator Bt = �tσ ∈
L2(�

2,H), where �t = Ltp0. Here, Bt is deterministic. Let B∗
t be the adjoint of

Bt with respect to the scalar product (·, ·)H in H. We also introduce

At = B∗
t Bt ,(4.1)

which is a strictly positive self-adjoint trace-class operator in �2. We shall impose
the following condition [to be verified after (4.27)] on the operators At : There
exists s > 0 and k > 0 such that for all t ∈ T and x ∈ �2,

‖x‖�2 ≤ k‖(At )
1/2x‖�s,2 .(4.2)

When this condition is satisfied, the contingent claims in Ds are replicable by self-
financed portfolios in P (Theorem 4.3 of [11]).
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Let S be the canonical isomorphism of H onto H ′ defined by

∀f,g ∈ H, (f, g)H = 〈Sf,g〉(4.3)

and let St be the isometric embedding of �2 into H equal to the closure of
Bt(At)

−1/2. We note that if f ∈ H is C2, then

Sf = f − ∂2f − (∂f )(0)δ0.(4.4)

If X ∈ Ds, with s > 0 as in (4.2), then the equations (2.14) have a unique solu-
tion θ ∈ P and θ = θ0 + θ1, θ0, θ1 ∈ P, where

θ1
t = (lt /pt )Sηt , ηt (ω) = St (At )

−1/2xt (ω)(4.5)

and

θ0
t = btδ0, bt = (EQ[X|Ft ] − 〈θ1

t , pt 〉)/pt (0).(4.6)

For such X,

〈θ1
t , pt 〉 = (St (At )

−1/2xt , lt )H .(4.7)

We shall now construct the volatility operator σ and drift function m of Theo-
rem 3.2. For a given a > 0, we define p0 by

p0(x) = exp(−ax).(4.8)

C∞
0 (]0,∞[) is dense in the (closed) subspace K of functions f ∈ H, satisfying

f (0) = 0. Let h1 ∈ C∞
0 (]0,∞[) be such that h1 ≥ 0, supph1 ⊂ [3/4,5/4] and

‖h1‖H = 1. h2n−1 ∈ C∞
0 (]0,∞[), n > 1 is defined by h2n−1(x) = h1(x − 2n + 2)

if x ≥ 2n − 2 and hn(x) = 0 if 0 ≤ x < 2n − 2. The set of functions {h2n−1}n≥1 is
orthonormal in K and

supphn ⊂ [
n − 1

4 , n + 1
4

]
, n odd.

We complete it to an orthonormal basis {hi}∞i=1 ⊂ C∞
0 (]0,∞[) of K. Then

hi/p0 ∈ K.

Let the volatility functions satisfy

σ i = kihi/p0, ki �= 0, s.t.
∑
i≥1

i2k2
i (1 + ‖hi/p0‖2

H 2) < ∞.(4.9)

The conditions σ ∈ L2(�
2,H 2) and σ i(0) = 0 are then satisfied and the set {σi}∞i=1

is by construction linearly independent and total in K.

The definition of Bt gives

Bty = e−at
∑
i≥1

kihiyi and (B∗
t f )i = e−at ki(hi, f )H .(4.10)

It follows that

(Aty)i = e−2at k2
i yi and (A

1/2
t y)i = e−at |ki |yi.(4.11)
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It then follows that (At )
−1/2 and (A0)

−1/2 have the same domain and that after
closure

Sty = ∑
i

sgn(ki)hiyi, y ∈ �2.(4.12)

So for y ∈ D((A0)
−1/2)

St (At )
−1/2y = eat

∑
i≥1

1

ki

hiyi and

(4.13)

‖St (At )
−1/2y‖2

H = e2at
∑
i≥1

(
yi

ki

)2

.

This gives for y ∈ D((A0)
−1/2):

(St (At )
−1/2y, �t )H = (S0(A0)

−1/2y,p0)H = ∑
i≥1

1

ki

(hi,p0)Hyi.(4.14)

We define

m = σ γ , γ i = 1

i
if i odd and γ i = 0 if i even.(4.15)

In the following lemma, Hc stands for the complex linear Hilbert space
H 1([0,∞[,C). The function [0,∞[� x �→ e−ax is in Hc for �a > 0.

LEMMA 4.1. For every i the function a �→ (hi, e
−a·)Hc, �a > 0, extends to

an entire analytic function on C. There is only a countable number of a ∈ C such
that

(hi, e
−a·)Hc = 0 for some i ≥ 1.(4.16)

PROOF. For �a > 0, F (a) ∈ Hc, where (F (a))(x) = e−ax. With an obvious
extension of 〈·, ·〉 and recalling that h is real-valued, we have

λi(a) ≡ (hi,F (a))Hc = 〈Shi,F (a)〉.
According to (4.4), the distribution Shi has compact support. The Fourier–Laplace
transformation λi of Shi therefore defines an entire analytic function in C. Since
Shi �= 0, the set of zeros Ai of the function λi in C is countable. The set

A = ⋃
i≥1

Ai

is then countable, since it is a countable union of countable sets. A is the set of a

that satisfies (4.16). �

PROOF OF THEOREM 3.2. Obviously, p0 and the σ i are as stated in the theo-
rem. By construction and γ ∈ �2 according to (4.15), so statement A is true.
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To prove the statement B, we follow Remark 4.6 of [11]. Since

ξt = exp
(
(γ , W̄t )�2 + 1

2‖γ ‖2
�2 t

)
,

X̂ has the representation

X̂ = EQ[X̂] +
∫ T̄

0
EQ[yξT̄ I′(yξT̄ )|Ft ]

∑
i≥1

(−γ i) dW̄ i
t .

Let c = 1/‖γ ‖�2 [see (4.15)] and e = cγ , Z = ∑
i≥1 eiW̄ i

T̄
. This proof is based

on the fact that e /∈ D((A0)
−1/2), according to (4.9) and (4.11). The real-valued

function g is defined by

g(z) = −1

c
h(z)I ′(h(z)), h(z) = y exp

(
z/c + T̄ /(2c2)

)
, z > 0,

g is strictly positive on ]0,∞[. Then

X̂ = EQ[X̂] +
∫ T̄

0

∑
i≥1

xi
t dW̄ i

t , xt = αte, αt = EQ[g(Z)|Ft ],(4.17)

where the r.v. αt is strictly positive.
The unbounded linear functional ν ∈ U is defined by its domain given by for-

mula (3.4) and by

〈ν,f 〉 =
〈∑
i≥1

ei

ki

Shi, f

〉
if f ∈ C∞

0 (]0,∞[) and 〈ν,p0〉 = 0.(4.18)

This definition makes sense, since for given f the sum has only a finite number
of terms and since p0 /∈ K, the closure of C∞

0 (]0,∞[) in H. We define ν1 by the
sum

ν1(x) = ∑
i≥1

ei

ki

Shi(x), x ≥ 0.(4.19)

Here, at most one term is nonvanishing and it must be a term with an odd index i.

Due to the properties of hi for odd i and (4.4), we have ν1 ∈ C∞([0,∞[) and
suppν1 ⊂ [3/4,∞[. Obviously, ν1 is the restriction of ν to C∞

0 (]0,∞[).
In order to construct a generalized self-financed bond portfolio (EQ[X̂],μ),

with value process Y, where Yt = EQ[X̂|Ft ], we define μ a.e. dt ×dP by formulas
(3.6) and (3.7) and with α given by (4.17). This makes sense since f �→ f

p0
pt

maps
D(μt ) into D(ν). Property (P1) is then satisfied.

The sequence {e(n)}n≥1 in �2 is defined by (e(n))i = ei for 1 ≤ i ≤ n and
(e(n))i = 0 for i > n. Let

Xn = EQ[X̂] +
∫ T̄

0
αt

∑
i≥1

(
e(n))i dW̄ i

t , Y n
t = EQ[Xn|Ft ].
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As e(n) belongs to the domain of (At )
−1/2 we can proceed as in Remark 4.8 and

Theorem 4.3 of [11] to construct the unique hedging portfolio θ(n) = θ(n)0 + θ(n)1,

where θ(n)0, θ (n)1 ∈ P are given by (4.6) and (4.5). Applying (4.13) and (4.14), we
obtain

θ
(n)0
t = an

t δ0, an
t =

(
EQ[Xn

∣∣Ft ] − αt

∑
1≤i≤n

ei

ki

(hi,p0)H

)/
pt(0)(4.20)

and

θ
(n)1
t = p0

pt

αt

∑
1≤i≤n

ei

ki

Shi.(4.21)

The sequence ν(n) ∈ H ′ is defined by 〈ν(n), f 〉, f ∈ H, where

〈
ν(n), f

〉 = 〈 ∑
1≤i≤n

ei

ki

Shi, f

〉
, if f (0) = 0 and

〈
ν(n),p0

〉 = 0.(4.22)

We note that ν(n) converges to ν in U :

∀f ∈ D(ν), lim
n→∞

〈
ν(n), f

〉 = 〈ν,f 〉.(4.23)

Let ν(n)1 be the restriction of ν(n) to C∞
0 (]0,∞[). Due to the properties of hi for

odd i and (4.4), ν(n)1 ∈ C∞([0,∞[) has compact support,

suppν(n), suppν(n+1) ⊂ [
3/4, n + 1

4

[
, n odd.

We have the decomposition ν(n) = ν(n)0 +ν(n)1, where ν(n)0, ν(n)1 ∈ P are given
by

ν(n)1 = ∑
1≤i≤n

ei

ki

Shi, ν
(n)0
t = bnδ0, bn = − ∑

1≤i≤n

ei

ki

(hi,p0)H .(4.24)

We define μ
(n)
t ∈ H ′ a.e. (t,ω) by

μ
(n)
t = αt

p0

pt

ν(n).(4.25)

We have the decomposition μ(n) = μ(n)0 + μ(n)1, where

μ
(n)0
t = αt

1

pt(0)
ν(n)0, μ

(n)1
t = αt

p0

pt

ν(n)1 = θ(n)1.(4.26)

It follows from formulas (3.6), (3.7) and (4.25) that μ
(n)
t converges a.e. (t,ω) to

μt in U , so (C1) is satisfied. Since〈
μ

(n)
t , ptσ

i 〉 = αt

(
e(n))i ,
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it follows that Yn converges to Y in the topology of square integrable martin-
gales, which is stronger than the semi-martingale topology. So also (C2) is satis-
fied. Therefore, (EQ[X],μ) is a generalized hedging-portfolio of X.

We now fix a and the ki. a > 0 is chosen such that λi(a) ≡ (hi, e
−a·)H �= 0 for

all i ≥ 1, which is possible according to Lemma 4.1. Let

sgn(ki) = sgn(λi(a)),
(4.27)

0 < |ki | ≤ min
(|λi(a)|, (1 + ‖hi/p0‖2

H 2)
−1/2)

/i2.

The condition in (4.9) is then satisfied.
The sequence EQ[Xn|Ft ] converges to EQ[X|Ft ] in L2(�,Q) as n → ∞. We

have ∑
1≤i≤n

i odd

1

iki

(hi,p0)H ≥ ∑
1≤i≤n

i odd

i.

The last sum goes to +∞ when n → ∞. Since c > 0 and αt > 0 a.s. it follows
from (4.7) that (3.10) is satisfied in the case of C = −∞.

We shall impose supplementary conditions on the ki to ensure that (3.10) is
satisfied also for C finite and C = +∞. Let J : N∗ → 2N

∗ + 1 be defined by

J (n) = n + 2 if n is odd and J (n) = n + 1 if n is even.

For n odd let d(n) ∈ R, for n even let d(n) = d(n−1) and define for n ∈ N
∗

ν̃(n)1 = ν(n)1 + d(n)ShJ(n).

We define ν̃(n) ∈ H ′ by〈
ν̃(n), f

〉 = 〈
ν̃(n)1, f

〉
for f ∈ K and

〈
ν̃(n),p0

〉 = 0.

ν̃(n) converges to ν in U :

∀f ∈ D(ν), lim
n→∞

〈
ν̃(n), f

〉 = 〈ν,f 〉.(4.28)

Since 〈d(n)ShJ(n),p0σ
j 〉 = d(n)kj δjJ (n), it follows that

∞∑
j=1

(〈
d(n)ShJ(n),p0σ

j 〉)2 = (
d(n))2(

kJ (n)

)2
.(4.29)

We impose the following condition, which we for the moment suppose is possible:

lim
n→∞d(n)kJ (n) = 0.(4.30)

μ̃
(n)
t is defined as in (4.25), but with ν̃ instead of ν. Formulas (4.28) and (4.30)

imply that (x, μ̃(n)) is an approximating sequence for the generalized portfolio
(x,μ).
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We note that 〈
d(n)ShJ(n),p0

〉 = d(n)e−aJ (n)(h1,p0)H ,

which gives

〈
ν̃(n)1,p0

〉 = ∑
1≤i≤n

ei

ki

(hi,p0)H + d(n)e−aJ (n)(h1,p0)H .

Similarly as in (4.20), we introduce [recalling that p0(0) = 1] ãn
0 = EQ[X̂] −

α0〈ν̃(n)1,p0〉, which gives

ãn
0 = EQ[X̂] − α0

( ∑
1≤i≤n

ei

ki

(hi,p0)H + d(n)e−aJ (n)(h1,p0)H

)
.

For given ãn
0 , this is an equation for d(n). We now define for n ≥ 1:

ãn
0 = C if C is finite and

ãn
0 = EQ[X̂] + α0

∑
1≤i≤n

ei

ki

(hi,p0)H if C = ∞.

In both cases, limn→∞ ãn
0 = C. For C finite, d(n) is then given by

d(n) =
(
EQ[X̂] − C − α0

∑
1≤i≤n

ei

ki

(hi,p0)H

)
eaJ (n)

α0(h1,p0)H

and for C = +∞ by

d(n) = −2
eaJ (n)

(h1,p0)H

∑
1≤i≤n

ei

ki

(hi,p0)H .

The property d(n) = d(n+1) is then satisfied for n odd. For odd n, we choose
|kn+2| > 0 sufficiently small so that |d(n)kn+2| ≤ 1/n. Condition (4.30) is then
satisfied. This proves B.

To prove C, let ν1 be a positive function satisfying ν1 ∈ C∞([0,∞[), suppν1 ⊂
[3/4,∞[, (3.5) and ∑

i

(〈ν1,p0σ
i〉)2 < ∞,(4.31)

which is possible since the σ i have compact support and by possibly choosing the
|kn+2| > 0 even smaller. For this given ν1, ν ∈ U is defined as in (P1).

Let F ∈ C∞(R) be a positive function satisfying suppF ⊂ [0,2] and F(1) = 1.

Y is the unique (Ft )-adapted process satisfying

Yt = 1 +
∫ t

0
F(Ys) dMs, t ∈ T,(4.32)
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where M is the square integrable Q-martingale defined by

Mt = ∑
i

〈ν1,p0σ
i〉W̄ i

t .(4.33)

X = YT̄ is a positive bounded smooth F measurable random variable.
μ is defined by formulas (3.6) and (3.7), with αt = F(Yt ), and it is a generalized

integrand. This easily follows by introducing the sequence ν(n) ∈ H ′ defined by
〈ν(n), f 〉, f ∈ H, where〈

ν(n), f
〉 = 〈

ν(n)1, f
〉
, if f ∈ K and

〈
ν(n),p0

〉 = 0(4.34)

and where ν(n)1 = ν1gn for a sequence of positive C∞ cut-off functions gn. We
here choose gn(x) = 1 for 0 ≤ x ≤ n and gn(x) = 0 for x ≥ n + 1. The sequence
ν(n) ∈ H ′ then satisfies (C1) and (C2), which follows similarly as in the proof of B.

The decomposition (2.18) of X is valid with x = 1, so (1,μ) is a generalized
hedging portfolio of X.

The discounted risk-free investment at t, given by the generalized portfolio
(1,μ(n)) is

an
t pt (0) = Yt − 〈

μ
(n)
t , pt

〉 = Yt − αt

〈
ν(n)1,p0

〉
.(4.35)

We now choose ν1 and possibly further restrict the ki, which is possible, such that

lim
n→∞

〈
ν(n)1,p0

〉 = ∞(4.36)

and such that the condition in (4.31) is satisfied. This proves the part C = −∞ of
(P2). The statements for C finite and C = +∞ are proved so similarly to those in
B, that we omit the proof. �
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