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Abstract. For the first time, we introduce the log-generalized modified
Weibull regression model based on the modified Weibull distribution [Car-
rasco, Ortega and Cordeiro Comput. Statist. Data Anal. 53 (2008) 450–462].
This distribution can accommodate increasing, decreasing, bathtub and uni-
modal shaped hazard functions. A second advantage is that it includes classi-
cal distributions reported in lifetime literature as special cases. We also show
that the new regression model can be applied to censored data since it repre-
sents a parametric family of models that includes as submodels several widely
known regression models and therefore can be used more effectively in the
analysis of survival data. We obtain maximum likelihood estimates for the
model parameters by considering censored data and evaluate local influence
on the estimates of the parameters by taking different perturbation schemes.
Some global-influence measurements are also investigated. In addition, we
define martingale and deviance residuals to detect outliers and evaluate the
model assumptions. We demonstrate that our extended regression model is
very useful to the analysis of real data and may give more realistic fits than
other special regression models.

1 Introduction

Standard lifetime distributions usually present very strong restrictions to produce
bathtub curves, and thus appear to be inappropriate for interpreting data with this
characteristic. Some distributions were introduced to model this kind of data, as the
generalized gamma distribution proposed by Stacy (1962), the exponential power
family introduced by Smith and Bain (1975), the beta-integrated model defined
by Hjorth (1980), the generalized log-gamma distribution investigated by Lawless
(2003), among others. A good review of these models is presented, for instance,
in Rajarshi and Rajarshi (1988). In the last decade, new classes of distributions for
modeling this kind of data based on extensions of the Weibull distribution were
developed. Mudholkar, Srivastava, and Friemer (1995) introduced the exponenti-
ated Weibull (EW) distribution, Xie and Lai (1995) presented the additive Weibull
distribution, Lai, Xie, and Murthy (2003) proposed the modified Weibull (MW)
distribution and Carrasco, Ortega, and Cordeiro (2008) defined the generalized
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modified Weibull (GMW) distribution. The GMW distribution, due to its flexibil-
ity in accommodating many forms of the risk function, seems to be an important
distribution that can be used in a variety of problems in modeling survival data.
Furthermore, the main motivation for its use is that it contains as special submod-
els several distributions such as the EW, exponentiated exponential (EE) [Gupta
and Kundu (1999)], MW [Lai, Xie and Murthy (2003)] and generalized Rayleigh
(GR) [Kundu and Rakab (2005)] distributions. The new distribution can model
four types of failure rate function (i.e., increasing, decreasing, unimodal and bath-
tub) depending on its parameters. It is also suitable for testing goodness of fit of
some special submodels such as the EW, MW and GR distributions.

Different forms of regression models have been proposed in survival analy-
sis. Among them, the location-scale regression model [Lawless (2003)] is distin-
guished since it is frequently used in clinical trials. In this paper, we propose a
location-scale regression model based on the GMW distribution [Carrasco, Or-
tega, and Cordeiro (2008)], referred to as the log-generalized modified Weibull
(LGMW) regression model, which is a feasible alternative for modeling the four
existing types of failure rate functions.

For the assessment of model adequacy, we develop diagnostic studies to detect
possible influential or extreme observations that can cause distortions on the results
of the analysis. We discuss the influence diagnostics based on case deletion [Cook
(1977)] in which the influence of the ith observation on the parameter estimates
is studied by removing this observation from the analysis. We propose diagnostic
measures based on case deletion to determine which observations might be influ-
ential in the analysis. This methodology has being applied to various statistical
models [Davison and Tsai (1992); Xie and Wei (2007)].

Nevertheless, when case deletion is used, all information from a single subject
is deleted at once and therefore it is hard to say whether an observation has some
influence on a specific aspect of the model. A solution for this problem can be
found in the local influence approach where we again investigate how the results
of the analysis are changed under small perturbations in the model or data. Cook
(1986) proposed a general framework to detect influential observations which in-
dicate how sensitive is the analysis when small perturbations are provoked on the
data or in the model. Some authors have investigated the assessment of local in-
fluence in survival analysis models. For example, Pettitt and Bin Daud (1989) in-
vestigated local influence in proportional hazard regression models, Escobar and
Meeker (1992) adapted local influence methods to regression analysis under cen-
soring scheme and Ortega, Bolfarine, and Paula (2003) considered the problem of
assessing local influence in generalized log-gamma regression models with cen-
sored observations. Recently, Ortega, Cancho and Bolfarine (2006) derived curva-
ture calculations under various perturbation schemes in log-exponentiated Weibull
regression models with censored data. Xie and Wei (2007) developed the appli-
cation of influence diagnostics in censored generalized Poisson regression models
based on a case-deletion method and local influence analysis. Fachini, Ortega, and



66 E. M. M. Ortega, G. M. Cordeiro and J. M. F. Carrasco

Louzada-Neto (2008) considered local influence methods to polyhazard models
under the presence of explanatory variables. Silva et al. (2008) adapted local influ-
ence methods to the log-Burr XII regression analysis with censoring. Carrasco, Or-
tega and Paula (2008) investigated local influence in log-modified Weibull (LMW)
regression models with censored data and Ortega, Cancho and Paula (2009) de-
rived curvature calculations under various perturbation schemes in generalized
log-gamma regression models with cure fraction. We propose a similar method-
ology to detect influential subjects in LGMW regression models with censored
data.

The paper is organized as follows. In Section 2, we define the LGMW distribu-
tion and derive an expansion for its moments. In Section 3, we propose a LGMW
regression model, estimate the parameters by the method of maximum likelihood
and derive the observed information matrix. Several diagnostic measures are pre-
sented in Section 4 by considering case deletion and normal curvatures of local
influence under various perturbation schemes with censored observations. In Sec-
tion 5, a kind of deviance residual is proposed to assess departures from the under-
lying LGMW distribution as well as outlying observations. We also present and
discuss some simulation studies. In Section 6, a real dataset is analyzed which
shows the flexibility, practical relevance and applicability of our regression model.
Section 7 ends with some concluding remarks.

2 The log-generalized modified Weibull distribution

Most generalized Weibull distributions have been proposed in reliability literature
to provide a better fitting of certain datasets than the traditional two and three-
parameter Weibull models. The GMW distribution with four parameters α > 0,
γ ≥ 0, λ ≥ 0 and ϕ > 0, introduced by Carrasco, Ortega and Cordeiro (2008),
extends the MW distribution [Lai, Xie and Murthy (2003)] and should be able to
fit various types of data. Its density function for t > 0 is given by

f (t) = αϕ(γ + λt)tγ−1 exp[λt − αtγ exp(λt)]
{1 − exp[−αtγ exp(λt)]}1−ϕ

. (2.1)

The parameter α controls the scale of the distribution, whereas the parameters γ

and ϕ control its shape. The parameter λ is a kind of accelerating factor in the
imperfection time and thus it works as a factor of fragility in the survival of the
individual when the time increases.

Another important characteristic of the distribution is that it contains, as spe-
cial submodels, the EE distribution [Gupta and Kundu (1999)], the EW distri-
bution [Mudholkar, Srivastava and Friemer (1995)], the MW distribution [Lai,
Xie and Murthy (2003)], the GR distribution [Kundu and Rakab (2005)], and
some other distributions [see, e.g., Carrasco, Ortega and Cordeiro (2008)]. The
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survival and hazard rate functions corresponding to (2.1) are given by S(t) =
1 − {1 − exp[−αtγ exp(λt)]}ϕ and

h(t) = αϕ(γ + λt)tγ−1 exp[λt − αtγ exp(λt)]{1 − exp[−αtγ exp(λt)]}ϕ−1

1 − {1 − exp[−αtγ exp(λt)]}ϕ ,

respectively. A characteristic of the GMW distribution is that its failure rate func-
tion accommodates four shapes of the hazard rate functions that depend basically
on the values of the parameters γ and β [Carrasco, Ortega and Cordeiro (2008)].
For γ ≥ 1, 0 < ϕ < 1 and ∀t > 0, h′(t) > 0, h(t) is increasing. For 0 < γ < 1,
ϕ > 1 and ∀t > 0, h′(t) < 0, h(t) is decreasing. For 0 < γ < 1 and ϕ → ∞, h(t)

is unimodal. If λ = 0, γ > 1 and γ ϕ < 1, h(t) is bathtub shaped; if ϕ = 1, we
have h′(t) = αtγ−1 exp(λt)[(γ + λt){(γ − 1)t−1 + λ} + λ] = 0, and solving this
equation yields a change point t∗ = (−γ +√

γ )/λ. When 0 < γ < 1, we can show
that t∗ exists and is finite. When t < t∗, h′(t∗) < 0, the hazard rate function is de-
creasing; when t > t∗, h′(t∗) > 0, the hazard rate function is increasing. Hence,
the hazard rate function can be of bathtub shape.

Henceforth, T is a random variable following the GMW density function (2.1)
and Y is defined by Y = log(T ). It is easy to verify that the density function of Y

obtained by replacing γ = 1/σ and α = exp(−μ/σ) reduces to

f (y) = ϕ[σ−1 + λ exp(y)]
× exp

{(
y − μ

σ

)
+ λ exp(y) − exp

[(
y − μ

σ

)
+ λ exp(y)

]}
(2.2)

×
{

1 − exp
[
− exp

{(
y − μ

σ

)
+ λ exp(y)

}]}ϕ−1

,

− ∞ < y < ∞,

where −∞ < μ < ∞, σ > 0, λ ≥ 0 and ϕ > 0. We refer to equation (2.2) as
the LGMW distribution, say Y ∼ LGMW(λ,ϕ,σ,μ), where μ ∈ � is the location
parameter, σ > 0 is the scale parameter and λ and ϕ are shape parameters. Figure 1
plots this density function for selected values of the parameters σ and ϕ showing
that the LGMW distribution could be very flexible for modeling its kurtosis. The
corresponding survival function is

S(y) = 1 −
{

1 − exp
[
− exp

{(
y − μ

σ

)
+ λ exp

[(
y − μ

σ

)
σ

]
exp(μ)

}]}ϕ

, (2.3)

and the hazard rate function is simply h(y) = f (y)/S(y). The random variable
Z = (Y − μ)/σ has density function

f (z) = ϕσ(σ−1 + v) exp[z + v − exp(z + v)]{1 − exp[− exp(z + v)]}ϕ−1, (2.4)

where v = λ exp(μ + σz).
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Figure 1 The LGMW density curves: (a) For some values of ϕ with σ = 5, λ = 0.5 and μ = 20.
(b) For some values of σ with λ = 0.1, μ = 10 and ϕ = 10. (c) For some values of ϕ and σ with
λ = 0.5 and μ = 10.

The r th ordinary moment μ′
r = E(T r) of the GMW density function (2.1) can

be expressed parameterized in terms of λ,ϕ,σ and μ as

μ′
r = exp(−μ/σ)

ϕ

σ

∫ ∞
0

t r+1/σ−1(1 + t) exp{λt − exp(−μ/σ)t1/σ exp(λt)}
(2.5)

× [1 − exp{− exp(−μ/σ)t1/σ exp(λt)}]ϕ−1 dt.

Carrasco, Ortega and Cordeiro (2008) derived an infinite sum representation for
μ′

r given by

μ′
r = exp(−μ/σ)ϕ

∞∑
j=0

(1 − ϕ)j

j !
∞∑

i1,...,ir=1

Ai1,...,ir �(sr/γ )

{exp(−μ/σ)(j + 1)}sr /γ+1 . (2.6)

Here, (1 − ϕ)j = (1 − ϕ)(1 − ϕ + 1) · · · (j − ϕ) is the ascending factorial, sr =
i1 + · · · + ir and the product Ai1,...,ir = ai1 · · ·air can be easily computed from the
quantities

ai = (−1)i+1ii−2

(i − 1)! (λσ)i−1.

When ϕ is real noninteger, we can use the formula (1 − ϕ)j = (−1)j�(ϕ)/�(ϕ −
j) in terms of gamma functions.

Formula (2.6) for the r th moment of the GMW distribution is quite general
and holds when both parameters λ and γ are positive and ϕ �= 1. By expanding
Y s = log(T )s in Taylor series around μ′

1, the sth moment of Y can be written as

E(Y s) = log(μ′
1)

s +
∞∑
i=2

G(i)(μ′
1)μi

i! ,

where G(i)(μ′
1) is the ith derivative of G(μ′

1) = log(μ′
1)

s with respect to μ′
1 and

μi = E(T − μ′
1)

i is the ith central moment of T .
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Expressing the central moments of T in terms of the ordinary moments, E(Y s)

can be written as an infinite sum of products of two ordinary moments of T

E(Y s) = log(μ′
1)

r +
∞∑
i=2

i∑
k=0

(−1)kG(i)(μ′
1)μ

′
i−kμ

′k
1

(i − k)!k! , (2.7)

where the moments μ′
i−k and μ′

1 come directly from equation (2.6). Formula (2.7)
is the main result of this section. The derivatives of G(μ′

1) = log(μ′
1)

s are easily
obtained in Maple up to any order. Hence, the ordinary moments of the LGMW
distribution are functions of the parameters λ,ϕ,σ and μ. A further research could
be addressed to study the finiteness of the moments of Y . Clearly, the moments of
Z are easily obtained from the moments of Y .

3 The log-generalized modified Weibull regression model

In many practical applications, the lifetimes are affected by explanatory variables
such as the cholesterol level, blood pressure, weight and many others. Parametric
models to estimate univariate survival functions and for censored data regression
problems are widely used. A parametric model that provides a good fit to lifetime
data tends to yield more precise estimates of the quantities of interest. Based on
the LGMW density, we propose a linear location-scale regression model linking
the response variable yi and the explanatory variable vector xT

i = (xi1, . . . , xip) as
follows:

yi = xT
i β + σzi, i = 1, . . . , n, (3.1)

where the random error zi has density function (2.4), β = (β1, . . . , βp)T , σ > 0,
λ ≥ 0 and ϕ > 0 are unknown parameters. The parameter μi = xT

i β is the loca-
tion of yi . The location parameter vector μ = (μ1, . . . ,μn)

T is represented by a
linear model μ = Xβ , where X = (x1, . . . ,xn)

T is a known model matrix. The
LGMW model (3.1) opens new possibilities for fitted many different types of data.
It contains as special submodels the following well-known regression models:

• Log-Weibull (LW) or extreme value regression model
For λ = 0 and ϕ = 1, the survival function is

S(y) = exp
[
− exp

(
y − xT β

σ

)]
,

which is the classical Weibull regression model [see, e.g., Lawless (2003)]. If
σ = 1 and σ = 0.5 in addition to λ = 0, ϕ = 1, it coincides with the exponential
and Rayleigh regression models, respectively.

• Log-Exponentiated Weibull (LEW) regression model
For λ = 0, the survival function is

S(y) = 1 −
{

1 − exp
[
− exp

(
y − xT β

σ

)]}ϕ

,
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which is the log-exponentiated Weibull regression model introduced by Mud-
holkar, Srivastava and Friemer (1995), Cancho, Bolfarine and Achcar (1999),
Ortega, Cancho and Bolfarine (2006) and Cancho, Ortega and Bolfarine (2009).
If σ = 1 in addition to λ = 0, the LGMW regression model becomes the log-
exponentiated exponential regression model. If σ = 0.5 in addition to λ = 0, the
LGMW model becomes the log-generalized Rayleigh regression model.

• Log-Modified Weibull (LMW) distribution
For ϕ = 1, the survival function becomes

S(y) = exp
{
− exp

[(
y − xT β

σ

)
+ λ exp

[(
y − xT β

σ

)
σ

]
exp(xT β)

]}
,

which is the LMW regression model introduced by Carrasco, Ortega and Paula
(2008).

Consider a sample (y1,x1), . . . , (yn,xn) of n independent observations, where
each random response is defined by yi = min{log(ti), log(ci)}. We assume nonin-
formative censoring such that the observed lifetimes and censoring times are in-
dependent. Let F and C be the sets of individuals for which yi is the log-lifetime
or log-censoring, respectively. Conventional likelihood estimation techniques can
be applied here. The log-likelihood function for the vector of parameters θ =
(λ,ϕ,σ,βT )T from model (3.1) has the form l(θ) = ∑

i∈F

li(θ) + ∑
i∈C

l
(c)
i (θ), where

li(θ) = log[f (yi)], l
(c)
i (θ) = log[S(yi)], f (yi) is the density (2.2) and S(yi) is

survival function (2.3) of Yi . The total log-likelihood function for θ reduces to

l(θ) = ∑
i∈F

l1(λ,ϕ, zi, ui) + ∑
i∈C

l2(λ,ϕ, zi, ui), (3.2)

where

l1(λ,ϕ, zi, ui) = log[ϕ(σ−1 + ui)] + [zi + ui − exp(zi + ui)]
+ (ϕ − 1) log{1 − exp[− exp(zi + ui)]},

l2(λ,ϕ, zi, ui) = log
{
1 − [1 − exp{− exp(zi + ui)}]ϕ}

,

ui = λ exp(σzi + xT
i β), zi = (yi − xT

i β)/σ and r is the number of uncensored
observations (failures). The maximum likelihood estimate (MLE) θ̂ of the vector
of unknown parameters can be calculated by maximizing the log-likelihood (3.2).
We use the matrix programming language Ox (MaxBFGS function) [see Doornik
(2007)] to calculate the estimate θ̂ . Initial values for β and σ are taken from the fit
of the LW regression model with λ = 0 and ϕ = 1. The fit of the LGMW model
produces the estimated survival function for yi (ẑi = (yi − xT

i β̂)/σ̂ ) given by

S(yi; λ̂, ϕ̂, σ̂ , β̂
T
) = 1 − {

1 − exp[− exp{ẑi + λ̂ exp(σ̂ ẑi) exp(xT
i β̂)}]}ϕ̂

.

Under conditions that are fulfilled for the parameter vector θ in the interior
of the parameter space but not on the boundary, the asymptotic distribution of
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√
n(̂θ − θ) is multivariate normal Np+3(0,K(θ)−1), where K(θ) is the infor-

mation matrix. The asymptotic covariance matrix K(θ)−1 of θ̂ can be appro-
ximated by the inverse of the (p + 3) × (p + 3) observed information ma-
trix −L̈(θ). The elements of the observed information matrix −L̈(θ), namely
−Lλλ,−Lλϕ , −Lλσ ,−Lλβj

,−Lϕϕ,−Lϕσ ,−Lϕβj
,−Lσσ ,−Lσβj

and −Lβjβs for
j, s = 1, . . . , p, are given in Appendix A. The approximate multivariate normal
distribution Np+3(0,−L̈(θ)−1) for θ̂ can be used in the classical way to construct
approximate confidence regions for some parameters in θ .

We can use the likelihood ratio (LR) statistic for comparing some special sub-
models with the LGMW model. We consider the partition θ = (θT

1 , θT
2 )T , where

θ1 is a subset of parameters of interest and θ2 is a subset of remaining parameters.
The LR statistic for testing the null hypothesis H0 : θ1 = θ

(0)
1 versus the alternative

hypothesis H1 : θ1 �= θ
(0)
1 is given by w = 2{	(̂θ) − 	(̃θ)}, where θ̃ and θ̂ are the

estimates under the null and alternative hypotheses, respectively. The statistic w

is asymptotically (as n → ∞) distributed as χ2
k , where k is the dimension of the

subset of parameters θ1 of interest.

4 Sensitivity analysis

In order to assess the sensitivity of the MLEs, global influence and local influence
[Cook (1986)] under three perturbation schemes are now carried out.

4.1 Global influence

The first tool to perform sensitivity analysis is the global influence starting from
case deletion [see Cook (1977)]. Case deletion is a common approach to study the
effect of dropping the ith observation from the dataset. The case deletion for model
(3.1) is given by

Yl = xT
l β + σZl, l = 1, . . . , n, l �= i. (4.1)

In the following, a quantity with subscript “(i)” means the original quantity with
the ith observation deleted. The log-likelihood function for the model (4.1) is

l(i)(θ) and let θ̂ (i) = (λ̂(i), ϕ̂(i), σ̂(i), β̂
T

(i))
T be the corresponding estimate of θ .

The basic idea to assess the influence of the ith observation on the MLE θ̂ =
(λ̂, ϕ̂, σ̂ , β̂

T
)T is to compare the difference between θ̂ (i) and θ̂ . If deletion of an

observation seriously influences the estimates, more attention should be paid to
that observation. Hence, if θ̂ (i) is far away from θ̂ , then the case can be regarded
as an influential observation. A first measure of global influence is the well-known
generalized Cook distance defined by GDi(θ̂) = (θ̂ (i) − θ̂)T {−L̈(θ̂)}(θ̂ (i) − θ̂).
Other alternative is to assess the values GDi(β) and GDi(λ,ϕ,σ ) which reveal
the impact of the ith observation on the estimates of β and (λ,ϕ,σ ), respectively.
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Another well-known measure of the difference between θ̂ (i) and θ̂ is the likelihood
displacement given by LDi(θ̂) = 2{l(θ̂) − l(θ̂ (i))}.

Further, we can also compute β̂j − β̂j (i)(j = 1, . . . , p) to detect the differ-
ence between β̂ and β̂(i). Alternative global influence measures are possible.
We study the behavior of a test statistic, such as a Wald test for an explana-
tory variable or censoring effect, under a case deletion scheme. We can avoid
the direct estimation without the ith observation using the one-step approxima-
tion θ̂ (i) = θ̂ − L̈(θ̂)−1 l̇(i)(θ̂), where l̇(i)(θ̂) is equal to ∂l(i)(θ)

∂θ evaluated at θ = θ̂
[see Cook, Peña and Weisberg (1988)].

4.2 Local influence

Another approach suggested by Cook (1986) considers small perturbations rep-
resented by the vector ω instead of removing observations and is related to a
particular perturbation scheme. Local influence calculation can be carried out for
model (4.1). If likelihood displacement LD(ω) = 2{l(θ̂) − l(θ̂ω)} is used, where
θ̂ω is the MLE under the perturbed model, the normal curvature for θ at the direc-
tion d, where ‖d‖ = 1, is given by Cd(θ) = 2|dT �T [L̈(θ)]−1�d|, where � is a
(p+3)×n matrix which depends on the perturbation scheme, and whose elements
are given by �ji = ∂2l(θ |ω)/∂θj ∂ωi , i = 1, . . . , n and j = 1, . . . , p + 3 evalu-
ated at θ̂ and ω0, where ω0 is the no perturbation vector [see, e.g., Cook (1986);
Zhu et al. (2007); Jung (2008)]. For the LGMW regression model with censored
data, the elements of L̈(θ) are given in Appendix A. We can also calculate normal
curvatures Cd(λ), Cd(ϕ), Cd(σ ) and Cd(β) to perform various index plots, for
instance, the index plot of the eigenvector dmax corresponding to the largest eigen-
value Cdmax of the matrix B = −�T [L̈(θ)]−1�, and the index plots of Cdi

(λ),
Cdi

(ϕ), Cdi
(σ ) and Cdi

(β), the so-called total local influence [see, e.g., Lesaffre
and Verbeke (1998)], where di is an n × 1 vector of zeros with one at the ith po-
sition. Thus, the curvature at direction di takes the form Ci = 2|�T

i [L̈(θ)]−1�i |,
where �T

i denotes the ith row of �. It is usual to point out those cases such that
Ci ≥ 2C̄, where C̄ = 1

n

∑n
i=1 Ci.

Consider the vector of weights ω = (ω1, . . . ,ωn)
T . From the log-likelihood

(3.2), under three perturbation schemes, we derive the matrix

� = (�ji)(p+3)×n =
(

∂2l(θ |ω)

∂θiωj

)
(p+3)×n

, j = 1, . . . , p + 3 and i = 1, . . . , n.

• Case-weight perturbation
In this case, the log-likelihood function has the form

l(θ |ω) = ∑
i∈F

ωil1(λ,ϕ, zi, ui) + ∑
i∈C

ωil2(λ,ϕ, zi, ui),

where 0 ≤ ωi ≤ 1, ω0 = (1, . . . ,1)T and lm(·) is defined in equation (3.2) for
m = 1,2. The matrix � = (�T

λ ,�T
ϕ ,�T

σ ,�T
β )T is given in Appendix B.
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• Response perturbation
Here, we consider that each yi is perturbed as yiw = yi + ωiSy , where Sy is

a scale factor that may be estimated by the standard deviation of the observed
response y and ωi ∈ �. The perturbed log-likelihood function can be expressed
as

l(θ |ω) = ∑
i∈F

l1(λ,ϕ, z∗
i , u

∗
i ) + ∑

i∈C

l2(λ,ϕ, z∗
i , u

∗
i ),

where z∗
i = [(yi + ωiSy) − xT

i β]/σ , u∗
i = λ exp(σz∗

i + xT
i β), ω0 = (0, . . . ,0)T

and lm(·) is defined in equation (3.2) for m = 1,2. The matrix � = (�T
λ ,�T

ϕ ,�T
σ ,

�T
β )T is given in Appendix C.

• Explanatory variable perturbation
Consider now an additive perturbation on a particular continuous explanatory

variable, say Xq , by setting xiqω = xiq + ωiSq , where Sq is a scale factor and
ωi ∈ �. The perturbed log-likelihood function has the form

l(θ |ω) = ∑
i∈F

l1(λ,ϕ, z∗∗
i , u∗∗

i ) + ∑
i∈C

l2(λ,ϕ, z∗∗
i , u∗∗

i ),

where z∗∗
i = (yi −x∗T

i β)/σ , x∗T
i β = β1 +β2xi2 +· · ·+βq(xiq +ωiSq)+· · ·+

βpxip , u∗∗
i = λ exp(σz∗∗

i + x∗T
i β), ω0 = (0, . . . ,0)T and lm(·) is defined in

equation (3.2) for m = 1,2. The matrix � = (�T
λ ,�T

ϕ ,�T
σ ,�T

β )T is given in
Appendix D.

Previous works for which local influence curvatures are derived in regression mod-
els with censored data are due to Escobar and Meeker (1992), Ortega, Bolfarine,
and Paula (2003), Silva et al. (2008) and Ortega, Cancho and Paula (2009). The
interplay between local and global influence could be further elaborated following
the proposal of Wu and Luo (1993). However, this approach will be addressed in
a future research.

5 Residual analysis

For studying departures from error assumptions as well as the presence of out-
liers, we consider two types of residuals: a deviance component residual [Mc-
Cullagh and Nelder (1989)] and a martingale-type residual [Therneau, Grambsch,
and Fleming (1990)]. Therneau, Grambsch and Fleming (1990) introduced the de-
viance component residual in counting process by using basically martingale resid-
uals. The martingale residuals are skew, have maximum value +1 and minimum
value −∞. In parametric lifetime models, the martingale residual can be expressed
as rMi

= δi + log[SY (yi; θ̂)], where δi = 0 if the ith observation is censored and
δi = 1 if the ith observation is uncensored [see, e.g., Klein and Moeschberger
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(1997); Ortega, Bolfarine and Paula (2003, 2008)]. Hence, the martingale residual
for the LGMW model takes the form

rMi
=

{
1 + log

{
1 − [

1 − exp
(− exp[ẑi + λ̂ exp(ẑi σ̂ ) exp(xT

i β̂)])]ϕ̂}
, if i ∈ F ,

log
{
1 − [

1 − exp
(− exp[ẑi + λ̂ exp(ẑi σ̂ ) exp(xT

i β̂)])]ϕ̂}
, if i ∈ C,

where the sets F and C are defined in Section 3.
The deviance component residual proposed by Therneau, Grambsch and Flem-

ing (1990) is a transformation of the martingale residual to attenuate the skewness
which was motivated by the deviance component residual in generalized linear
models. In particular, the deviance component residual for the Cox’s proportional
hazards model with no time-dependent explanatory variables can be written as

rDi
= sinal(rMi){−2[rMi + δi log(δi − rMi)]}1/2, (5.1)

where rMi
is the martingale residual. Ortega, Paula and Bolfarine (2008) and Car-

rasco, Ortega and Paula (2008) investigated the empirical distributions of rMi
and

rDi
for the generalized log-gamma and LMW regression models varying the sam-

ple sizes and censoring proportions, respectively.

5.1 Simulation studies

We investigate the form of the empirical distribution of the deviance component
residual rDi

for different values of n and censoring percentages through some
simulation studies. Plots of the ordered residuals obtained from the simulations
against the expected quantiles of the standard normal distribution are displayed in
Figures 2 and 3. We fixed n = 30,50 and 100 and the lifetimes t1, . . . , tn were
generated from the GMW distribution (2.1) considering γ = 1.4, λ = 0.1 and
ϕ = 0.5 (with ϕ < 1) and γ = 1.4, λ = 0.1 and ϕ = 1.8 (with ϕ > 1), taking
again the reparametrization γ = 1/σ and α = exp(−μ/σ). Further, we assume
μi = β0 +β1xi , where xi was generated from a uniform distribution on the interval
(0,1), and β0 = 0.5 and β1 = 1.0. The censoring times c1, . . . , cn were generated
from a uniform distribution (0, θ), where θ was adjusted until the censoring per-
centages 10%, 30% or 50% are reached. The lifetimes considered in each fit were
calculated as min{ci, ti}. For each combination of n, σ , λ, ϕ and censoring per-
centages, 1000 samples were generated. For each generated dataset, we fitted the
LGMW regression model (3.1), where μi = β0 +β1xi and calculated the residuals
rDi

. Thus, the ordered residuals were plotted against the expected quantiles of the
standard normal distribution.

Figures 2 and 3 lead to some conclusions. The main conclusion from the gen-
erated plots is that the empirical distributions of the residual rDi

present a good
agreement with the standard normal distribution. When the censoring percentage
decreases or the sample size increases, the empirical distribution of the residuals
rDi

performs better agreement with the standard normal distribution, as expected in
both situations. Thus, we can use normal probability plots for the residuals rDi

with
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Figure 2 Normal probability plots for the residuals rDi
. Sample sizes n = 30, n = 50 and n = 100,

percentages of censoring = 10%, 30% and 50%, parameter values γ = 1.4, λ = 0.1 and ϕ = 0.5.

simulated envelopes for both models, as suggested by Atkinson (1985), obtained
as follows: (i) fit the model and generate a sample of n independent observations
using the fitted model as if it were the true model; (ii) fit the model to the gen-
erated sample using the dataset (δi,xi) and compute the values of the residuals;
(iii) repeat steps (i) and (ii) m times; (iv) obtain ordered values of the residuals,
r∗
(i)v, i = 1, . . . , n and v = 1, . . . ,m; (v) consider n sets of the m ordered statis-

tics and for each set compute the mean, minimum and maximum values; (vi) plot
these values and the ordered residuals of the original sample against the normal
scores. The minimum and maximum values of the m ordered statistics yield the
envelope. The observations corresponding to residuals outside the limits provided
by the simulated envelope require further investigation. Additionally, if a consider-
able proportion of points falls outside the envelope, then we have evidence against
the adequacy of the fitted model. Plots of such residuals against the fitted values
can also be useful.



76 E. M. M. Ortega, G. M. Cordeiro and J. M. F. Carrasco

Figure 3 Normal probability plots for the residuals rDi
. Sample sizes n = 30, n = 50 and n = 100,

percentages of censoring = 10%, 30% and 50%, parameter values γ = 1.4, λ = 0.1 and ϕ = 1.8.

6 Application

Survival times for the Golden shiner data, Notemigonus crysoleucas, were ob-
tained from field experiments conducted in Lake Saint Pierre, Quebec, in 2005
[Laplante-Albert (2008)]. Each individual fish was attached by means of a monofil-
ament chord to a chronographic tethering device that allowed the fish to swim in
midwater. A timer in the device was set off when the tethered fish was captured
by a predator. The device was retrieved approximately 24 hours after the onset
of the experiment and survival time was then obtained from the difference: time
elapsed between onset of the experiment and retrieval time elapsed in device timer
since predation event. The variables involved in the study are: yi—observed sur-
vival time (in hours); censi—censoring indicator (0 = censoring, 1 = lifetime
observed); xi1—north or south bank of the lake (0 = north, 1 = south); xi2—
distance over the longitudinal axis of the lake (in km); xi3—size of the fish (in
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Figure 4 TTT plot for the Golden shiner data.

cm); xi4—depth of the place (in cm); xi5—abundance index of macro-thin plants
(in percentage) and xi6—transparency of the water (in cm).

In many applications there is qualitative information about the hazard shape
which can support a specified model. In this context, a device called the total time
on test (TTT) plot [Aarset (1987)] is very useful. The TTT plot is obtained by
plotting G(r/n) = [(∑r

i=1 Ti:n)+ (n− r)Tr:n]/(∑n
i=1 Ti:n) for r = 1, . . . , n against

r/n, where Ti:n are the order statistics of the sample (i = 1, . . . , n). The TTT plot
for Golden shiner data given in Figure 4 has first a convex shape and then a concave
shape, thus indicating a bathtub shaped failure rate function.

The Golden shiner data have been analyzed by Carrasco, Ortega and Paula
(2008) using the LMW regression model. We now reanalyzed these data using
the LGMW regression model. First, we consider the equation

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6 + σzi,
(6.1)

i = 1, . . . ,106,

where the random variable yi has the LGMW distribution. The MLEs (approximate
standard errors and p-values in parentheses) are: λ̂ = 0.001 (0.003), ϕ̂ = 12.855
(20.066), σ̂ = 5.086 (2.776), β̂0 = −1.894 (5.904) (0.748), β̂1 = 2.197 (0.536)
(<0.001), β̂2 = 0.097 (0.037) (0.008), β̂3 = −0.125 (0.032) (<0.001), β̂4 = 0.035
(0.009) (<0.001), β̂5 = 0.022 (0.017) (0.202) and β̂6 = 0.222 (0.204) (0.278).
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Table 1 Statistics AIC, BIC and CAIC for compar-
ing the LGMW and LMW models

Model AIC BIC CAIC

LGMW 422.3 424.6 448.9
LWM 427.2 429.0 451.1

Further, we calculate the maximum unrestricted and restricted log-likelihoods and
the LR statistics for testing some submodels. An analysis under the LGMW re-
gression model provides a check on the appropriateness of the LW, LEW and
LMW submodels and indicates the extent for which inferences depend upon the
model. For example, the LR statistic for testing the hypotheses H0 :ϕ = 1 versus
H1 :H0 is not true, that is, to compare the LMW and LGMW regression models, is
w = 2{−201.142 − (−204.577)} = 6.87 (p-value <0.05) which yields favorable
indications toward to the LGMW regression model. A summary of the values of
the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC)
and the Consistent Akaike Information Criterion (CAIC) to compare the LGMW
and LMW regression models is given in Table 1. The LGMW regression model
outperforms the LMW model irrespective of the criteria and can be used effec-
tively in the analysis of these data. The explanatory variables x1, x2, x3 and x4
are marginally significant for the LGMW model at the significance level of 5%.
We use Ox to compute case-deletion measures GDi(θ) and LDi(θ) defined in
Section 4.1. The results of such influence measure index plots are displayed in
Figure 5. These plots show that the cases �5, �34 and �101 are possible influential
observations. We apply the local influence theory developed in Section 4.2, where

Figure 5 (a) Index plot of GDi(θ) for θ on the Golden shiner data. (b) Index plot of LDi(θ) for θ

on the Golden shiner data.
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Figure 6 (a) Index plot of |dmax| for θ on the Golden shiner data (case-weight perturbation).
(b) Total local influence on estimates θ in the Golden shiner data (case-weight perturbation).

case-weight perturbation is used, and obtain the value of the maximum curvature
Cdmax = 2.136. Figure 6(a) plots the eigenvector corresponding to |dmax|, whereas
Figure 6(b) plots the total influence Ci versus the index, where we verify that the
observations �5, �34 and �101 are again very distinguished related to the others.

The influence of perturbations on the observed survival times is now analyzed
(response variable perturbation). The value of the maximum curvature is Cdmax =
10.845. Figure 7a plots |dmax| versus the observation index and shows that the
observation �5 is far way from the others. Figure 7b plots the total local influence
(Ci), where the observation �5 again stand out. The index plot of |dmax| as well as
the total local influence Ci for the explanatory variable perturbations (x2, x3, x4,
x5, x6 and x7), omitted here, also confirm the influence of the observations �5, �34
and �101. We perform the residual analysis by plotting in Figure 8a the deviance
component residual rDi

(see Section 5) against the index of observations. Figure
8b gives the normal probability plot with generated envelope. Figure 8a shows
some large residuals (observations �5, �34 and �101), although Figure 8b supports
the hypothesis that the LGMW model is very suitable for these data, since there
are no observations falling outside the envelope.

6.1 Impact of the detected influential observations

We conclude that the diagnostic analysis (global influence and local influence) de-
tected as potentially influential observations, the following three cases: �5, �34 and
�101. The observations �5 and �101 are censored. The lifetime �5 is the highest in
the sample, whereas �101 is the smallest for the uncensored observations. On the
other hand, the observation �34 refers to the fish with smallest survival time. In or-
der to reveal the impact of these three observations on the parameter estimates, we
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Figure 7 (a) Index plot of |dmax | for θ on the Golden shiner data (response perturbation). (b) Total
local influence for θ on the Golden shiner data (response perturbation).

refitted the model under some situations. First, we individually eliminated each one
of these three observations. Next, we removed from the set “A” (original dataset)
the totality of potentially influential observations.

Table 2 gives the relative change (in percentage) of each estimate defined by
RCθj

= [(θ̂ j − θ̂ j (I ))/θ̂ j ] × 100, and the corresponding p-value, where θ̂ j (I )

is the MLE of θ j after the “set I” of observations being removed. Table 2 pro-

Figure 8 (a) Index plot of the deviance component residual for the Golden shiner data. (b) Normal
probability plot for the deviance component residual from the fitted LGMW regression model to the
Golden shiner data.
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Table 2 Relative changes [-RC- in %], estimates and their p-values (in parentheses) for the cor-
responding set

Dropping λ̂ ϕ̂ σ̂ β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

– – – – – – – – – –
None 0.001 12.86 5.09 −1.89 2.20 0.10 −0.13 0.04 0.02 0.22

(0.78) (0.52) (0.07) (0.75) (0.00) (0.01) (0.00) (0.00) (0.20) (0.28)
[217] [56] [27] [−140] [5] [9] [−5] [15] [89] [22]

Set I1 0.00 5.61 3.73 0.76 2.31 0.11 −0.13 0.04 0.00 0.27
(0.52) (0.37) (0.03) (0.83) (0.00) (0.00) (0.00) (0.00) (0.88) (0.18)

[5] [181] [30] [−162] [0] [6] [−6] [4] [19] [13]
Set I2 0.00 36.09 6.64 −4.95 2.19 0.10 −0.13 0.03 0.02 0.19

(0.70) (0.69) (0.14) (0.63) (0.00) (0.00) (0.00) (0.00) (0.32) (0.33)
[54] [52] [26] [−150] [8] [14] [−8] [0] [29] [33]

Set I3 0.00 6.13 3.78 0.95 2.37 0.11 −0.14 0.03 0.03 0.15
(0.92) (0.42) (0.05) (0.81) (0.00) (0.00) (0.00) (0.00) (0.09) (0.47)
[177] [25] [13] [−90] [5] [14] [−11] [11] [95] [11]

Set I4 0.00 9.60 4.41 −0.19 2.31 0.11 −0.14 0.04 0.00 0.25
(0.51) (0.49) (0.06) (0.97) (0.00) (0.00) (0.00) (0.00) (0.95) (0.21)
[266] [72] [41] [−223] [14] [25] [−14] [16] [62] [18]

Set I5 0.00 3.60 3.02 2.33 2.50 0.12 −0.14 0.04 0.01 0.18
(0.54) (0.29) (0.02) (0.39) (0.00) (0.00) (0.00) (0.00) (0.60) (0.37)
[34] [5] [8] [−72] [7] [18] [−13] [3] [11] [38]

Set I6 0.00 12.15 4.68 −0.53 2.35 0.12 −0.14 0.03 0.02 0.14
(0.86) (0.56) (0.09) (0.93) (0.00) (0.00) (0.00) (0.00) (0.15) (0.48)
[224] [73] [6] [−196] [13] [28] [−18] [12] [69] [22]

Set I7 0.00 3.46 5.39 1.82 2.49 0.12 −0.15 0.04 0.01 0.17
(0.54) (0.04) (0.38) (0.58) (0.00) (0.00) (0.00) (0.00) (0.67) (0.37)

vides the following sets: I1 = {�5}, I2 = {�34}, I3 = {�101}, I4 = {�5, �34},
I5 = {�5, �101}, I6 = {�34, �101} and I7 = {�5, �34, �101}.

The figures in Table 2 show that the estimates for the LGMW regression model
are not highly sensitive under deletion of the outstanding observations. Few varia-
tions are only observed for the estimates of the parameters λ and β0, but inferen-
tial changes are not observed. In general, the significance of the estimates does not
change (at the 5% level) after removing the set I . Hence, we do not have inferential
changes after removing the observations handed out in the diagnostic plots. The
LR statistic for testing the null hypothesis H0 : (β5, β6)

T = (0,0)T versus H1 :H0
is not true, that is, to verify the joint contribution effects of the explanatory vari-
ables x5 and x6, is w = 1.4 (p-value = 0.497), and then we conclude that the
parameters β5 and β6 are not jointly significant for the model. Based on this anal-
ysis, we conclude that the LGMW regression model is more appropriate for fitting
these data leading to the final equation

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + σzi, i = 1, . . . ,106, (6.2)
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where the estimates (approximate standard errors and p-values in parentheses) of
the parameters are: λ̂ = 0.001 (0.003), ϕ̂ = 35.910 (73.936), σ̂ = 7.043 (4.039),
β̂0 = −6.318 (9.322) (0.497), β̂1 = 2.356 (0.543) (<0.001), β̂2 = 0.072 (0.034)
(0.037), β̂3 = −0.117 (0.033) (0.0004) and β̂4 = 0.034 (0.009) (0.0002).

Finally, the expected survival time should decrease (approximately) 11% ([1 −
e−0.117] × 100%) when the size of the fish measurement increases one unity, all
the others variables being fixed.

7 Concluding remarks

We introduce the so-called log-generalized modified Weibull (LGMW) distribu-
tion whose hazard rate function accommodates four types of shape forms, namely
increasing, decreasing, bathtub and unimodal. We derive an expansion for its mo-
ments. Based on this new distribution, we propose a LGMW regression model very
suitable for modeling censored and uncensored lifetime data. The new regression
model permits testing the goodness of fit of some known regression models as spe-
cial submodels. Hence, the proposed regression model serves as a good alternative
for lifetime data analysis. Further, the new regression model is much more flex-
ible than the exponentiated Weibull, modified Weibull and generalized Rayleigh
submodels. We use the matrix programming language Ox (MaxBFGS function)
to obtain the maximum likelihood estimates and perform asymptotic tests for the
parameters based on the asymptotic distribution of these estimates. We examine
a simulation study. We discuss influence diagnostics and model checking analysis
in the LGMW regression models fitted to censored data. We also discuss the sen-
sitivity of the maximum likelihood estimates from the fitted model via deviance
component residuals and sensitivity analysis. We demonstrate in one application
to real data that the LGMW model can produce better fit than its submodels.

Appendix A: Matrix of second derivatives −L̈(θ)

Here we give the necessary formulas to obtain the second-order partial derivatives
of the log-likelihood function. After some algebraic manipulations, we obtain

Lλλ = −[(u̇i)λ]2
[∑
i∈F

(σ−1 + ui)
−2 + ∑

i∈F

vi

]
+ ∑

i∈F

(ϕ − 1){[(ḧi)λλ]h−1
i − [(ḣi)λ]2h−2

i }

− ∑
i∈C

ϕ

(
h

ϕ−1
i

1 − h
ϕ
i

)
{(1 − h

ϕ
i )−1[(ḣi)λ]2

× [(ϕ − 1)h−1
i (1 − h

ϕ
i ) + ϕh

ϕ−1
i ] + [(ḧi)λλ]},



Log-generalized modified Weibull model 83

Lλϕ = ∑
i∈F

h−1
i [(ḣi)λ] − ∑

i∈C

[(ḣi)λ]
(

h
ϕ−1
i

1 − h
ϕ
i

)
[1 + ϕ log(hi)(1 − h

ϕ
i )−1],

Lλσ = ∑
i∈F

σ−2(σ−1 + ui)
−2 exp(yi) + ∑

i∈F

σ−1zi exp(yi)vi

+ ∑
i∈F

(ϕ − 1)h−2
i {[(ḧi)λσ ]hi − [(ḣi)λ][(ḣi)σ ]}

− ∑
i∈C

ϕ

(
h

ϕ−1
i

1 − h
ϕ
i

)
× {[(ḣi)σ ][(ḣi)λ](1 − h

ϕ
i )−1(ϕ − 1)h−1

i (1 − h
ϕ
i ) − [(ḧi)λσ ]},

Lλβj
= ∑

i∈F

σ−1xij exp(yi)vi + ∑
i∈F

(ϕ − 1)h−2
i {[(ḧi)λβj

]hi − [(ḣi)λ][(ḣi)βj
]}

− ∑
i∈C

ϕ

(
h

ϕ−1
i

1 − h
ϕ
i

)
× {[(ḣi)βj

][(ḣi)λ](1 + h
ϕ
i )−2[(ϕ − 1)h−1

i (1 − h
ϕ
i ) + ϕh

ϕ−1
i ]}

− ∑
i∈C

ϕ

(
h

ϕ−1
i

1 − h
ϕ
i

)
[(ḧi)λβj

],

Lϕϕ = −rϕ−2 − ∑
i∈C

h
ϕ
i [log(hi)]2(1 − h

ϕ
i )−2,

Lϕσ = ∑
i∈F

h−1
i [(ḣi)σ ]

− ∑
i∈C

[(ḣi)σ ]
(

h
ϕ−1
i

1 − h
ϕ
i

)
× {(1 − h

ϕ
i )−1 log(hi)[(ϕ − 1)h−1

i (1 − h
ϕ
i ) + ϕh

ϕ−1
i ] + 1},

Lϕβj
= ∑

i∈F

h−1
i [(ḣi)βj

] − ∑
i∈C

[(ḣi)βj
]
(

h
ϕ−1
i

1 − h
ϕ
i

)
× {log(hi)[(ϕ − 1)h−1

i + ϕh
ϕ−1
i (1 − h

ϕ
i )−1] + 1},

Lσσ = ∑
i∈F

σ−3(σ−1 + ui)
−1[2 + σ−1(σ−1 + ui)

−1]

+ ∑
i∈F

σ−2zi[2(1 − vi) + zivi]

+ ∑
i∈F

(ϕ − 1)h−1
i {−[(ḣi)σ ]2h−1

i + [(ḧi)σσ ]}
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+ ∑
i∈C

ϕh−1
i [(ḣi)σ ]2{(1 − h

ϕ
i )−2[(ϕ − 1)h−1

i (1 − h
ϕ
i ) + ϕh

ϕ−1
i ]}

+ ∑
i∈C

ϕ

(
h

ϕ−1
i

1 − h
ϕ
i

)
[(ḧi)σσ ],

Lσβj
= − ∑

i∈F

σ−2xij [(1 + zi)vi − 1]

+ ∑
i∈F

(ϕ − 1)h−2
i {[(ḧi)βj σ ]hi − [(ḣi)βj

][(ḣi)σ ]}

− ∑
i∈C

h
ϕ−1
i [(ḣi)βj

][(ḣi)σ ](1 − h
ϕ
i )−2[(ϕ − 1)h−1

i (1 − h
ϕ
i ) + ϕh

ϕ−1
i ]

− ∑
i∈C

(
h

ϕ−1
i

1 − h
ϕ
i

)
[(ḧi)βj σ ]

and

Lβjβs = − ∑
i∈F

σ−1xij xisvi + ∑
i∈F

(ϕ − 1)h−2
i {[(ḧi)βjβs ]hi − [(ḣi)βj

][(ḣi)βs ]}

− ∑
i∈C

ϕ

(
h

ϕ−1
i

1 − h
ϕ
i

)
{[(ḣi)βj

][(ḣi)βs ][(ϕ − 1)h−1
i + ϕh

ϕ−1
i (1 − h

ϕ
i )−1]

+ [(ḧi)βjβs ]},
where zi = (yi − xT

i β)/σ , gi = exp(zi + yi), vi = exp(zi + ui), ui = λ exp(yi),
hi = 1 − exp(−vi), (żi)σ = −σ−1zi , (żi)βj

= −σ−1xij , (żi)βs = −σ−1xis ,
(z̈i)σσ = −σ−2{[(żi)σ ]σ − zi}, (z̈i)σβj

= σ−2xij , (u̇i)λ = exp(yi), (üi)λλ = 0,

(ḣi)λ = exp(yi)gi exp(−vi), (ḧi)λλ = exp(2yi)vi exp(−vi)(1 − vi), (ḣi)σ =
[(żi)σ ]gi exp(−vi), (ḧi)σσ = vi exp(−vi){[(żi)σ ]2(1 − vi) + [(z̈i)σσ ]}, (ḣi)βj

=
−σ−1xijgi exp(−vi), (ḣi)βs = −σ−1xisgi exp(−vi), (ḧi)βjβs = σ−2xij xisvi ×
exp(−vi)(1 − vi), (ḧi)λσ = −σ−1zi exp(yi)vi exp(−vi)(1 − vi), (ḧi)λβj

=
−σ−1xij exp(yi)vi exp(−vi)(1 − vi) and (ḧi)σβj

= σ−2xij vi exp(−vi)[1 + zi(1 −
vi)].

Appendix B: Case-weight perturbation scheme

The elements of the matrix � = (�T
λ ,�T

ϕ ,�T
σ ,�T

β )T for the case-weight pertur-
bation scheme are expressed as

�λi =
{

exp(yi)[(σ̂−1 + ûi)
−1 + 1 − v̂i + (ϕ̂ − 1)ĥ−1

i ], if i ∈ F ,

−ϕ̂ĥ
ϕ̂−1
i (1 − ĥ

ϕ̂
i )−1[(ḣi)λ], if i ∈ C.
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�ϕi =
{

ϕ̂−1 + log(ĥi), if i ∈ F

−(1 − ĥ
ϕ̂
i )−1ĥ

ϕ̂
i log(ĥi), if i ∈ C.

�σi =
{

σ̂−2(σ̂−1 + ûi)
−1 − σ̂−1ẑi (1 − v̂i ) + (ϕ̂ − 1)ĥ−1

i [(ḣi)σ ], if i ∈ F ,

−ϕ̂(1 − ĥ
ϕ̂
i )−1ĥ

ϕ̂−1
i [(ḣi)σ ], if i ∈ C.

�βji =
{−σ̂−1xij (1 − v̂i ) + (ϕ̂ − 1)ĥ−1

i [(ḣi)βj
], if i ∈ F ,

−ϕ̂(1 − ĥ
ϕ̂
i )−1ĥ

ϕ̂−1
i [(ḣi)βj

], if i ∈ C,

where ẑi = (yi − xT
i β̂)/σ̂ , ûi = λ̂ exp(yi), ĥi = 1 − exp(−v̂i), ĝi = exp(ẑi + yi),

v̂i = exp(ẑi + ûi), (ḣi)λ = exp(yi)ĝi exp(−v̂i ), (ḣi)σ = −σ̂ ẑi ĝi exp(−v̂i) and
(ḣi)βj

= −σ̂−1xij ĝi exp(−v̂i).

Appendix C: Response perturbation scheme

The elements of the matrix � = (�T
λ ,�T

ϕ ,�T
σ ,�T

β )T for the response variable
perturbation scheme are expressed as

�λi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[(ü∗
i )ωiλ][σ̂−1 + ûi + 1 − v̂i − (ϕ̂ − 1)ĥi]
− ϕ̂[(u̇∗

i )ωi
][(u̇∗

i )λ]−v̂i[(u̇∗
i )λ]{[(ż∗

i )ωi
][(u̇∗

i )ωi
]}, if i ∈ F ,

−ϕ̂ĥ
ϕ̂−1
i {[(ḣ∗

i )ωi
][(ḣ∗

i )λ][(ϕ̂ − 1)ĥ−1
i (1 − ĥ

ϕ̂
i ) + ϕ̂ĥ

ϕ̂−1
i ]

+ (1 − ĥ
ϕ̂
i )[(ḧ∗

i )ωiλ]}, if i ∈ C.

�ϕi =

⎧⎪⎪⎨⎪⎪⎩
ĥ−1

i [(ḣ∗
i )ωi

], if i ∈ F ,

−ĥ
ϕ̂−1
i log(ĥi)[(ḣi

i)ωi
]{(ϕ̂ − 1)ĥ−1

i (1 − ĥ
ϕ̂
i ) + ϕ̂ĥ

ϕ̂−1
i }

− ĥ
ϕ̂−1
i (1 − ĥ

ϕ̂
i )−1[(ḣ∗

i )ωi
], if i ∈ C.

�σi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ̂−2(σ̂−1 + ûi)
−2[(u̇∗

i )ωi
] + (1 − v̂i)[(z̈∗

i )ωiσ ]
−v̂i[(ż∗

i )σ ]{[(ż∗
i )ωi

] + [(u̇∗
i )ωi

]}
+(ϕ̂ − 1)ĥ−2

i {[(ḧ∗
i )ωiσ ]ĥi − [(ḣ∗

i )ωi
][(ḣ∗

i )σ ]}, if i ∈ F ,

−ϕ̂ĥ
ϕ̂−1
i {[(ḣ∗

i )ωi
][(ḣ∗

i )σ ][(ϕ̂ − 1)ĥ−1
i (1 − ĥ

ϕ̂
i ) + ϕ̂h

ϕ̂−1
i ]

+ (1 − ĥ
ϕ̂
i )−1[(ḧ∗

i )ωiσ ]}, if i ∈ C.

�βji =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−v̂i[(ż∗

i )βj
]{[(ż∗

i )ωi
] + [(ż∗

i )ωi
]}

+ (ϕ̂ − 1)ĥ−2
i {[(ḧ∗

i )ωiβj
]ĥi − [(ḣ∗

i )ωi
][(ḣ∗

i )βj
]}, if i ∈ F ,

−ϕ̂h
ϕ̂−1
i {[(ḣ∗

i )ωi
][(ḣ∗

i )βj
][(ϕ̂ − 1)ĥ−1

i (1 − ĥ
ϕ̂
i ) + ϕ̂h

ϕ̂−1
i ]

+ (1 − h
ϕ̂
i )−1[(ḧ∗

i )ωiβj
]}, if i ∈ C,

where ẑi = (yi − xT
i β̂)/σ̂ , ûi = λ̂ exp(yi), ĥi = 1 − exp(−v̂i), ĝi = exp(ẑi +

yi), v̂i = exp(ẑi + ûi), (ż∗
i )σ = −σ̂−1ẑi , (ż∗

i )βj
= −σ̂−1xij , (ż∗

i )ωi
= σ̂−1Sx ,
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(u̇∗
i )λ = exp(yi), (u̇∗

i )ωi
= λ̂Sx exp(yi), (ḣ∗

i )λ = exp(yi)ĝi exp(−v̂i ), (ḣ∗
i )σ =

−σ̂−1ẑi ĝi exp(−v̂i), (ḣ∗
i )βj

= −σ̂−1xij ĝi exp(−v̂i), (ḣ∗
i )ωi

= Sxĝi exp{−v̂i ×
[σ̂−1 + λ̂ exp(yi)]}, (z̈∗

i )ωiσ = −Sxσ̂
−2, (z̈∗

i )ωiβj
= 0, (ü∗

i )ωiλ = Sx exp(yi),
(ḧ∗

i )ωiλ = ĝi exp(−v̂i){(1 − v̂i )([(ż∗
i )ωi

] + [(u̇∗
i )ωi

]) + Sx}, (ḧ∗
i )ωiσ = ĝi ×

exp(−v̂i){[(ż∗
i )σ ]([(ż∗

i )ωi
] + [(u̇∗

i )ωi
])(1 − v̂i) + [(z̈∗

i )ωiσ ]} and (ḧ∗
i )ωiβj

= ĝi ×
exp(−v̂i){[(ż∗

i )βj
]([(ż∗

i )ωi
] + [(u̇∗

i )ωi
])(1 − v̂i) + [(z̈∗

i )ωiβj
]}.

Appendix D: Explanatory variable perturbation scheme

The elements of the matrix � = (�T
λ ,�T

ϕ ,�T
σ ,�T

β )T are expressed as

�λi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−v̂i[(u̇∗

i )λ][(ż∗
i )ωi

] + (ϕ̂ − 1)ĥ−2
i

× {[(ḧ∗
i )ωiλ]ĥi − [(ḣ∗

i )ωi
][(ḣ∗

i )λ]}, if i ∈ F ,

−ϕ̂h
ϕ̂−1
i {[(ḣ∗

i )ωi
][(ḣ∗

i )λ][(ϕ̂ − 1)ĥ−1
i (1 − ĥ

ϕ̂
i ) + ϕ̂ĥ

ϕ̂−1
i ]

+ (1 − ĥ
ϕ̂
i )−1[(ḧ∗

i )ωiλ]}, if i ∈ C.

�ϕi =

⎧⎪⎪⎨⎪⎪⎩
ĥ−1

i [(ḣ∗
i )ωi

], if i ∈ F ,

ĥ
ϕ̂−1
i log(ĥi)[(ḣ∗

i )ωi
]{(ϕ̂ − 1)ĥ−1

i (1 − ĥ
ϕ̂
i ) + ϕ̂ĥ

ϕ̂−1
i }

+ ĥ
ϕ̂−1
i (1 − ĥ

ϕ̂
i )−1[(ḣ∗

i )ωi
], if i ∈ C.

�σi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[(z̈∗

i )ωiσ ](1 − v̂i) − v̂i[(ż∗
i )ωi

][(ż∗
i )σ ]

+ (ϕ̂ − 1)ĥ−2
i {[(ḧ∗

i )ωiσ ]ĥi − [(ḣ∗
i )ωi

][(ḣ∗
i )σ ]}, if i ∈ F ,

−ϕ̂ĥ
ϕ̂−1
i {[(ḣ∗

i )ωi
][(ḣ∗

i )σ ][(ϕ̂ − 1)ĥ−1
i (1 − ĥ

ϕ̂
i ) + ϕ̂ĥ

ϕ̂−1
i ]

+ (1 − ĥ
ϕ̂
i )−1[(ḧ∗

i )ωiσ ]}, if i ∈ C.

For j �= q , the elements take the forms

�βji =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[(z̈∗

i )ωiβj
](1 − v̂i ) − v̂i[(ż∗

i )ωi
][(ż∗

i )βj
]

+ (ϕ̂ − 1)ĥ−2
i {[(ḧ∗

i )ωiβj
]ĥi − [(ḣ∗

i )ωi
][(ḣ∗

i )βj
]}, if i ∈ F ,

−ϕ̂ĥ
ϕ̂−1
i {[(ḣ∗

i )ωi
][(ḣ∗

i )βj
][(ϕ̂ − 1)ĥ−1

i (1 − ĥ
ϕ̂
i ) + ϕ̂ĥ

ϕ̂−1
i ]

+ (1 − ĥ
ϕ̂
i )−1[(ḧ∗

i )ωiβj
]}, if i ∈ C

and for j = q , the elements take the forms

�βqi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[(z̈∗

i )ωiβq ](1 − v̂i) − v̂i[(ż∗
i )ωi

][(ż∗
i )βq ]

+(ϕ̂ − 1)ĥ−2
i {[(ḧ∗

i )ωiβq ]ĥi − [(ḣ∗
i )ωi

][(ḣ∗
i )βq ]}, if i ∈ F ,

−ϕ̂ĥ
ϕ̂−1
i {[(ḣ∗

i )ωi
][(ḣ∗

i )βq ][(ϕ̂ − 1)ĥ−1
i (1 − ĥ

ϕ̂
i ) + ϕ̂ĥ

ϕ̂−1
i ]

+ (1 − ĥ
ϕ̂
i )−1[(ḧ∗

i )ωiβq ]}, if i ∈ C,

where ẑi = (yi − xT
i β̂)/σ̂ , ûi = λ̂ exp(yi), ĥi = 1 − exp(−v̂i ), ĝi = exp(ẑi + yi),

v̂i = exp(ẑi + ûi), (ż∗
i )σ = −σ̂−1ẑi , (ż∗

i )βj
= −σ−1xij ,∀(j �= q), (ż∗

i )βq =
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−σ̂−1xit ,∀(j = q), (ż∗
i )ωi

= −σ̂−1Sqβq , (u̇∗
i )λ = exp(yi), (u̇∗

i )ωi
= 0, (ḣ∗

i )λ =
exp(yi)ĝi exp(−v̂i), (ḣ∗

i )σ = −σ̂−1ẑi ĝi exp(−v̂i), (ḣ∗
i )βj

= −σ̂−1xij ĝi exp(−v̂i ),

∀(j �= q), (ḣ∗
i )βq = −σ̂−1xit ĝi exp(−v̂i),∀(j = q), (ḣ∗

i )ωi
= −σ̂−1Sqβ̂q ĝi ×

exp(−v̂i), (z̈∗
i )ωiσ = σ̂−2Sqβ̂q , (z̈∗

i )ωiβj
= 0,∀(j �= q), (z̈∗

i )ωiβq = −σ̂−1Sq,

∀(j = q), (ü∗
i )ωiλ = 0, (ḧ∗

i )ωiλ = −σ̂−1Sqβ̂q exp(yi)ĝi exp(−v̂i)(1 − v̂i),
(ḧ∗

i )ωiσ = ĝi exp(−v̂i ){[(ż∗
i )σ ]([(ż∗

i )ωi
] + [(u̇∗

i )ωi
])(1 − v̂i ) + [(z̈∗

i )ωiσ ]},
(ḧ∗

i )ωiβj
= ĝi exp(−v̂i)[(ż∗

i )βq ] × [(ḣ∗
i )ωi

](1 − v̂i),∀(j �= q), (ḧ∗
i )ωiβq = ĝi ×

exp(−v̂i){[(ż∗
i )βq ][(ḣ∗

i )ωi
](1 − v̂i ) + [(ḧ∗

i )ωiβq ]},∀(j = q), i = 1, . . . , n and j =
1, . . . , p.
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