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Abstract. A special type of the stochastic STOPBREAK process, which be-
haves properly when applied to time series data with emphatic permanent
fluctuations, is presented. A good dynamic behavior is induced by the thresh-
old regime and named the Split-BREAK process. General properties of this
threshold STOPBREAK process are investigated, as well as some estimation
procedures for the parameters of the process presented. A Monte Carlo sim-
ulation of the process is given and its application to the share trading on the
Belgrade Stock Exchange illustrated.

1 Introduction

Starting from fundamental results of Engle and Smith (1999), González (2004) and
Gonzalo and Martinez (2006), we will introduce a modified version of the well-
known STOPBREAK model. Concerning the STOPBREAK process, it is known
that it is successfully used to model time series with emphatic permanent fluctua-
tions. In our model, a threshold as a noise indicator will be set, as we have already
done in Popović and Stojanović (2005) where we used nonlinear time series of the
ARCH type. Therefore, the model which we introduce here will be a threshold,
noise-indicator STOPBREAK process which we simply name the Split-BREAK
process.

A definition and main properties of the Split-BREAK process will be described
in the next section. In addition to a usual analysis of its stochastic properties, in
Section 3, we also give estimates of parameters, above all, the critical value of
reaction of the Split-BREAK process. Asymptotic properties of those proposed
estimates are established, also. In Section 4, the Monte Carlo simulation of innova-
tions of the Split-BREAK process and the application of the estimation procedure
explained in Section 3 are given. In Section 5, the Split-BREAK process is applied
as a time series analysis for some real trading volume data on the Belgrade Stock
Exchange in the period 2002–2006. Finally, in the next section we compared the
efficiency of the Split-BREAK model and previously known models.
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2 Definition and general properties of the model

Let (yt ) be the time series with the known values at time t ∈ {0,1, . . . T }, adapted
to the filtration F = (Ft ). We say, following Engle and Smith (1999), that (yt ) will
be a STOPBREAK process if it satisfies

yt = mt + εt (2.1)

where the sequence (mt) is a so-called martingale mean sequence, and (εt ) is a
white noise, that is, the sequence of independent identically distributed F -adapted
random variables with E(εt |Ft−1) = 0,Var(εt |Ft−1) = σ 2 for each t = 1, . . . , T .

Also, let Ft = Gen{ε0, . . . , εt }, for any t = 0, . . . , T , and let martingale mean mt

be defined by

mt = mt−1 + qt−1εt−1 = m0 +
t−1∑
j=0

qj εj , t = 1, . . . , T , (2.2)

where m0 ≡ const and qt are random variables which depend on white noise (εt ).
In this way yt will be Ft measurable, and mt an Ft−1 measurable random variable.
In addition, let us suppose that

P {0 ≤ qt ≤ 1} = 1

for each t = 0,1, . . . , T . It means that the sequence (qt ) displays the (permanent)
reaction of the STOPBREAK process because its values determine the amount
of participation of previous elements of the white noise process engaged in the
definition of mt , and consequently in the definition of yt . In other words, qt ≈ 0
gives “small” changes of martingale mean at time t , while in the case of qt ≈ 1 an
emphatic (permanent) fluctuation is registered. So, the structure of the sequence
(qt ) determines the character and properties of the STOPBREAK process.

Let us further suppose that, besides (2.1) and (2.2), the following condition is
fulfilled:

qt = I (ε2
t−1 > c) =

{
1, ε2

t−1 > c,
0, ε2

t−1 ≤ c,
t = 1, . . . , T (2.3)

thus completing the definition of the threshold STOPBREAK process, which we
named Split-BREAK process. The constant c > 0 is the critical value of the reac-
tion, meaning that it will determine the level of the noise realization which will be
statistically significant for the noise to be included in (2.2). According to (2.3), it
follows that

E(qtεt |Ft−1) = qtE(εt |Ft−1) = 0 (2.4)

and it can be seen that the sequence (qtεt ) is a martingale difference, that is, the
sequence of uncorrelated random variables. Now, the fundamental stochastic prop-
erties of the sequence (yt ) can be determined. As, according to (2.1) and (2.2),

E(yt |Ft−1) = mt + E(εt |Ft−1) = mt (2.5)
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we can conclude that realizations of the sequence (yt ) are “close” to the mean
sequence (mt ). The mean values of these two sequences are equal and constant
because of (2.4) and (2.5):

E(yt ) = E(mt) = μ(const), t = 0, . . . , T . (2.6)

The variance of Split-BREAK process can be determined in a similar way. As

Var(yt |Ft−1) = E(y2
t |Ft−1) − m2

t = σ 2 (2.7)

we can conclude that the conditional variance (volatility) of the sequence (yt ) is
a constant and it is equal to the variance of the noise (εt ). Let us remark that
equalities (2.5) and (2.7) explain the stochastic nature of (2.1). As the sequence
(mt) is predictable, it will be a component which demonstrates the stability of the
process itself. On the other hand, the sequence (εt ) is a factor which represents the
deviation from values (mt). The variance of the sequence (mt), under the condition
of m0 ≡ const, is

Var(mt ) = σ 2tac,

where ac = P {ε2
t > c} and, accordingly, we have

Var(yt ) = Var(mt) + σ 2 = σ 2(tac + 1).

Hence, variances of sequences (yt ) and (mt) are not constants and they depend
on the observation time t . In a similar manner, correlation functions of these se-
quences can be solved. The correlation function of (yt ) is

K(s, t) = Corr(ys, yt ) =
⎧⎨⎩

ac[min(s, t) + 1]√
(acs + 1) · (act + 1)

, s �= t ;

1, s = t

and the correlation function of martingale means is

K̃(s, t) = Corr(ms,mt) =
⎧⎨⎩

min(s, t)√
s · t , s �= t ;

1, s = t .

So, correlation functions K(s, t) and K̃(s, t) depend on both time variables t and s,
and indicate nonstationarity of sequences (yt ) and (mt). However, on the contrary
to the correlation function of (yt ), the correlation function of the martingale means
is L2-continuous since

lim
s→t

K̃(s, t) = K̃(t, t) = 1.

Finally, in this section, we will discuss properties of the sequence of increments
of the Split-BREAK process, defined as Xt = yt − yt−1. The importance of the
sequence (Xt) is emphasized by almost all authors who investigated the STOP-
BREAK process. For that reason, we will investigate the sequence of increments
in case of the Split-BREAK process.
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We will use the following representation of elements of (Xt):

Xt = εt − θt−1εt−1, t = 1, . . . , T (2.8)

where θt = I (ε2
t−1 ≤ c), and (εt ) is the white noise that was defined previously.

Time series (Xt) will be called the threshold moving average (of order 1), that is,
Split-MA(1) process. It operates in two regimes and it is similar to the threshold
integrated moving average (TIMA) model introduced by Gonzalo and Martinez
(2006). The main distinction is threshold variables (εt ) which in the Split-MA(1)
case are observed in the “past,” that is, in the previous moment t − 1. If the fluctu-
ation of the white noise in time t − 1 is large, the equation Xt = εt will describe
the sequence (yt ) in a form of the random walk, that is, an increment will be equal
to the white noise. On the other hand, the fluctuation of the white noise which
does not exceed the critical value c will produce an MA(1) representation of the
sequence (Xt).

Engle and Smith (1999) and González (2004) also investigated sufficient con-
ditions for the invertibility of (Xt), which depended on the selection of proper re-
action (qt ). Engle and Smith (1999) showed that the invertibility of the increment
sequence is equivalent to the fact that the so-called permanent effect of observation

λt
d= lim

k→∞
∂E(yt+k|Ft )

∂yt

would satisfy, almost surely, the condition |λt | < 2 for all t ∈ Z. In our case, it
has λt ≡ qt and the condition of the invertibility is always satisfied. Furthermore,
we will investigate a basic stochastic structure of that sequence and make some
generalities in order to get good estimates of parameters and apply this model to
real data.

Let us determine basic parameters of the distribution of increments (Xt). Under
the previous assumption, the mean value and the variance of the sequence can be
easily calculated

E(Xt) = 0, Var(Xt) = E(X2
t ) = σ 2(bc + 1),

where bc = 1 − ac = P {ε2
t ≤ c}. Also, the covariance function of this time series

will be

Cov(Xs,Xt) =
⎧⎨⎩σ 2(bc + 1), s = t ,

−bcσ
2, |s − t | = 1,

0, otherwise,

and the MA(1) structure is evident. This will make it easy to recognize the station-
arity of time series (Xt) with the correlation function

ρ(h) = Corr(Xt+h,Xt) =
⎧⎨⎩

1, h = 0,
−bc(bc + 1)−1, h = ±1,
0, otherwise.

The following theorem asserts an invertibility of Split-MA(1).
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Theorem 2.1. Let time series (Xt) be defined by the recurrent relation (2.8),
where t ∈ Z and bc = P {ε2

t ≤ c} ∈ (0,1). Then, time series (εt ) satisfies

εt = Xt +
∞∑

j=1

αt,jXt−j , t ∈ Z, (2.9)

where αt,j = ∏j
k=1 θt−k . At the same time, this representation of (εt ) is unique,

and the sum converges in the mean square and the almost sure.

Proof. As, for any n ∈ Z,

An = E

∣∣∣∣∣εt − Xt −
n∑

j=1

αt,jXt−j

∣∣∣∣∣
2

= E

∣∣∣∣∣
(

n+1∏
j=1

θt−j

)
εt−n−1

∣∣∣∣∣
2

≤ σ 2bn
c

it follows that An → 0 when n → ∞, the mean square convergence of (2.9) fol-
lows. On the other hand, according to

E(αt,jXt−j ) ≤ σ 2bj−1
c , E(αt,jXt−j )

2 ≤ σ 2(bj
c + bj−1

c )

and the convergence of the sums
∑∞

j=1 b
j−1
c and

∑∞
j=1(b

j
c + b

j−1
c ), the almost

sure convergence of (2.9) follows.
A uniqueness of the representation (2.9) follows, for instance, from Popović

(1992). �

3 Estimates of parameters

Let us first consider an estimate of the (unknown) critical value c > 0. The es-
timation procedure which we will use is analogous to the well-known estimation
procedure for coefficients of the linear MA model (Fuller, 1976) but required more
investigation and discussion regards the fit.

Let the Split-MA(1) model be defined by the equation (2.8). As we have already
shown, the coefficient of the first correlation of the model is

ρ(1) = − bc

1 + bc

, 0 < bc < 1

and solving the equation with respect to bc we have

b̃c = − ρ̂
T
(1)

1 + ρ̂
T
(1)

, (3.1)

where ρ̂
T
(1) = (

∑T −1
t=0 XtXt+1) · (∑T −1

t=0 X2
t )

−1 is an estimated value for the first
correlation. Using b̃c and solving the equation

P {ε2
t ≤ c} = b̃c, (3.2)

with respect to c, we can get the proper estimate for the critical value, c̃. Of course,
estimates b̃c and c̃ are proper estimates if −0,5 < ρ̂

T
(1) < 0. The proof of the

consistency of the estimates follows.
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Theorem 3.1. Let b̃c and c̃, defined in (3.1) and (3.2), be estimates of unknown
parameters b and c, respectively. Then,

b̃c
a.s.−→ bc, T −→ ∞. (3.3)

If also (εt ) has an absolutely continuous distribution, then

c̃
a.s.−→ c, T −→ ∞. (3.4)

Proof. The spectral density of the sequence (Xt) is

fX(ω) = σ 2

2π
(1 − 2 cosωbc + bc)

and it is obviously continuous for ω = 0. According to the ergodicity theorem, we
have

1

T

T −1∑
t=0

XtXt+h
a.s.−→ γ (h), T −→ ∞, (3.5)

where γ (h) = Cov(Xt ,Xt+h), h ≥ 0 is the covariance function of the sequence
(Xt). The last convergence implies

ρ̂
T
(1)

a.s.−→ γ (1)

γ (0)
= ρ(1), T −→ ∞

and, from here, we have (3.3) according to the well-known continuity of the almost
sure convergence (see, e.g., Serfling, 1980, page 24), that is, a consistency of the
estimate b̃c is fulfilled.

Let us suppose that the distribution of the elements of sequence (εt ) is ab-
solutely continuous, and F(x) = P {ε2

t ≤ x} is the distribution function of the
sequence (ε2

t ). According to the previously proven convergence (3.3) and the con-
tinuity of F−1(x), it will be

c̃ − c = F−1(b̃c) − F−1(bc)
a.s.−→ 0, T −→ ∞

which completes the proof. �

The following assertion concerns the asymptotic normality of proposed esti-
mates.

Theorem 3.2. Let b̃c and c̃ be estimates of bc and c defined as in (3.1) and (3.2)

where the distribution of elements of (εt ) is symmetric with respect to zero and

(i) E(θ2
t ε2

t−1) = E(θtε
2
t−1) =

∫ c

0
x dF(x) = Lσ 2,

(ii) E(ε4
t ) = ησ 4,

(iii) E(ε6
t ) = φσ 6,
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where L = L(c) > 0, η > 0, φ > 0 and F(x) = P {ε2
t ≤ x} is the distribution func-

tion of ε2
t . Then, one has

√
T (b̃c − bc)

d−→ N (0,V1), T −→ ∞, (3.6)

where V1 = (1 + bc)
2[1 + bc(1 + η + 5L) − 3b2

c ]. In addition, in the case of an
absolutely continuous distribution of (εt ) one has

√
T (c̃ − c)

d−→ N (0,V2), T −→ ∞ (3.7)

where V2 = V1/f
2(c), and f (x) = F ′(x) is the distribution density function of the

random variable ε2
t .

Proof. First of all, we shall prove the asymptotic normality of ρ̂
T

. In order to do
that, let us consider the sequence

Zt = XtXt+1, t = 0, . . . , T − 1

which is 1-dependent (see Definition 6.3.1 in Fuller, 1976, page 245). Thanks
to (iii) and Cauchy–Swartz and Minkowski’s inequalities, it follows that

E|Zt + bcσ
2|3 ≤ [(E|Zt |3)1/3 + bcσ

2]3 ≤ [φ1/3(1 + b1/6
c )2 + bc]3σ 6 < ∞.

Then, according to the Hoeffding-Robbins’ theorem, we have

1√
T

T −1∑
t=0

[Zt − γ (1)] d−→ N (0,A), T −→ ∞

where A = Var(Zt )+2 Cov(ZtZt+1) = σ 4[1+bc(1+η+5L)−3b2
c ]. If we apply

the almost sure convergence (3.5), for h = 0, we shall have
√

T [ρ̂
T

− ρ(1)] d−→ N (0,V0), T −→ ∞,

where V0 = A ·γ −2(0) = [1+bc(1+η+5L)−3b2
c ] ·(1+bc)

−2. Applying conver-
gence in distribution continuity (Serfling, 1980, page 118), we shall conclude that
the convergence (3.6) is fulfilled, where V1 = (dρ(1)/dbc)

−2 · V0. We can prove
an asymptotic normality of the estimate c̃ in a similar way. If elements of (εt ) are
continuously distributed, then, because of c̃ = F−1(b̃c), the random function c̃ is
a continuous function of b̃c. Applying the same continuity convergence theorem
and the fact that V2 = (dF (c)/dc)−2 · V1, we get the convergence (3.7). �

In spite of good stochastic properties of b̃c and c̃ discussed in previous two
theorems, it can be proven that b̃c, as in the case of MA models, is not an efficient
estimate of bc. (The asymptotic efficiency of b̃c, described by its variance V1 for
the normally distributed white noise, will be discussed at the end of this section.)
In order to get better estimates of unknown parameters we will modify the well-
known Gauss–Newton’s procedure for nonlinear functions described in details, for
instance, in Fuller (1976).
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First, let us remark that the equality (2.8) can be expressed in the following
form:

εt = Xt + θt−1εt−1, t = 1, . . . , T

or, in the functional form εt (X, θ) = Xt + θt−1εt−1(X, θ) where the parameter
bc ∈ (0,1) can be estimated from. Let b̃c be the initial (estimated) value of this pa-
rameter which we obtained previously, θ̃t = I (ε2

t−1 ≤ c̃) and ε0(X, θ) ≡ 0. Using
this as well as the iterative procedure, we can get values εt (X, θ̃).

On the other hand, let us define a sequence of random variables

Wt(X, θ) = θtWt−1(X, θ) + εt−1(X, θ).

It can be easily seen that random variables Wt(X, θ) are Ft−1 adapted for any
t = 1, . . . , T , as well as that they are independent of εt and θt+1. According to
Theorem 1 of Popović (1992) it follows that the sequence (Wt(X, θ)) is the sta-
tionary ergodic sequence of random variables. In this sequence, we can associate
the so-called residual sequence using the procedure described in Lawrence and
Lewis (1992),

Rt(X, θ) = Wt(X, θ) − bcWt−1(X, θ), t = 1, . . . , T . (3.8)

It can be easily shown that this is a sequence of uncorrelated random variables.
Equation (3.8) defines the sequence (Wt(X, θ)) as a linear AR process with the
white noise (Rt (X, θ)), so, we can apply the minimum square procedure and get
the estimate of bc as follows:

b̂c =
[

T −1∑
t=0

Wt+1(X, θ)Wt(X, θ)

]
·
[

T −1∑
t=0

W 2
t (X, θ)

]−1

. (3.9)

In the same way as before, we can get the estimate c = ĉ of the critical value c

based on b̂c as the solution of equation

P {ε2
t ≤ c} = b̂c (3.10)

with respect to c. Let us now prove the consistency of estimates b̂c and ĉ.

Theorem 3.3. Let b̂c and ĉ be the estimators of unknown parameters bc and c,
defined by (3.9) and (3.10), then

b̂c
a.s.−→ bc, T −→ ∞. (3.11)

If, in addition, (ε2
t ) has some absolutely continuous distribution with the distribu-

tion function F(x) then also

ĉ
a.s.−→ c, T −→ ∞. (3.12)
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Proof. From (3.9) and the definition of the residual sequence it follows that

b̂c − bc =
[

T −1∑
t=0

Rt+1(X, θ)Wt(X, θ)

]
·
[

T −1∑
t=0

W 2
t (X, θ)

]−1

. (3.13)

If the ergodicity theorem is applied, the almost sure convergence will be as

1

T

T −1∑
t=0

Rt+1(X, θ)Wt(X, θ) −→ At, T −→ ∞,

where At = E[Rt+1(X, θ) ·Wt(X, θ)] = 0. The next almost sure convergence will,
similarly, be

1

T

T −1∑
t=0

W 2
t (X, θ) −→ Bt, T −→ ∞, (3.14)

where Bt = Var[Wt(X, θ)] = σ 2(1 − bc)
−1. If we now apply these two conver-

gences to (3.13), we will get (3.11).
The second part of this theorem can be proven in the same way as it was done

in Theorem 3.1. Particularly, as ĉ = F−1(b̂c) is the continuous function of the
consistent estimate b̂c, it can be easily shown that (3.12) is valid. �

At the end of this section we will prove the asymptotic normality of estimates
b̂c and ĉ.

Theorem 3.4. Let b̂ = b̂c and ĉ be estimates of unknown parameters bc and c,
respectively, and the distribution of the sequence (εt ) be symmetric with respect to
zero and

(i) E(θtε
2
t−1) = E(θ2

t ε2
t−1) =

∫ c

0
x dF(x) = Lσ 2,

(ii) E(ε4
t ) = ησ 4,

where L = L(c) > 0, η > 0 and F(x) is the distribution function of ε2
t . Then it is

valid that
√

T (b̂c − bc)
d−→ N (0,V3), T −→ ∞, (3.15)

where V3 = (1 − bc)[1 + 6Lbc + ηbc(1 − bc)]. If, in addition, the distribution of
(ε2

t ) is absolutely continuous, then

√
T (ĉ − c)

d−→ N (0,V4), T −→ ∞, (3.16)

where V4 = V3/f
2(c), and f (x) = F ′(x).
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Proof. According to equation (3.13), the following separation is valid

√
T (b̂c − bc) = T −1/2 · UT −1

T −1 · VT −1
, (3.17)

where UT −1 = ∑T −1
t=0 Rt+1(X, θ) · Wt(X, θ),VT −1 = ∑T −1

t=0 W 2
t (X, θ). As the se-

quence (UT ) is martingale, applying the central limit theorem for martingales (see,
e.g., Billingsley, 1961, or Nicholls and Quinn, 1982), we will have

T −1/2 · UT
d−→ N (0,D1), T −→ ∞,

where D1 = Var[Rt+1(X, θ) ·Wt(X,bc)] = σ 4[1+6Lbc +ηbc(1−bc)](1−bc)
−1.

Then, according to the almost sure convergence of (3.14) and equation (3.17), it
follows immediately that (3.15) is fulfilled.

The proof of convergence (3.16) is completely analogous to procedure applied
in Theorem 3.2. �

Finally, we can note some more facts that follow directly from the above de-
scribed estimation procedure for the critical value c and the theorems we have just
proven.

Remark 1. If we apply estimates b̃c and b̂c, we can model values of (εt ), and
thereby, we can estimate the variance σ 2 of the sequence (εt ). To do this, we can
use the sample variance

σ̃ 2 = 1

T

T∑
t=1

ε2
t (X, θ̃) or σ̂ 2 = 1

T

T∑
t=1

ε2
t (X, θ̂),

where εt (X, θ̃) and εt (X, θ̂) are modeled values of the white noise which we ar-
rived at by applying estimates b̃c and b̂c, respectively. In the case of the Gaussian
white noise (εt ), these estimates are identical to those which we can get applying
the maximum likelihood procedure (see Section 5 of this paper), as it has been also
shown in Stojanović and Popović (2005). The consistency and asymptotic normal-
ity of estimates σ̃ and σ̂ can be easily shown. As per the illustration, in Figure 1

Figure 1 Comparative values of the white noise (the left side picture) and modeled values (the right
side picture).
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Figure 2 Comparative values of asymptotic variances of b̃c and b̂c .

we can look at “pretty” coincidental behavior of the Monte Carlo simulation of the
white noise (εt ) with standard N (0,1) distribution (see the following section) and
modeled values of the white noise (εt (X, θ̃)), generated by the estimate b̃c.

Remark 2. Asymptotic values of variances V1 and V3 are commonly used as a
measure of bias of estimates b̃c and b̂c, respectively, compared to the true value
of bc. If we consider them as the functions of bc ∈ (0,1), we will be able to com-
pare values of V1 and V3 in order to register the quality of two considered esti-
mates. Figure 2 illustrates the graphs of V1 = V1(bc) and V3 = V3(bc) if N (0,1)

is the distribution of white noise (εt ). In that case V3(bc) < V1(bc),∀bc ∈ (0,1),

that is, b̂c is more efficient than b̃c.

4 Monte Carlo study of the model

In this section we will demonstrate some applications of the above-described esti-
mation procedure of the critical value of Split-MA(1). First of all, using the Monte
Carlo simulation for the model

Xt = εt − θt−1εt−1, t = 1, . . . , T ,

where θt = I (ε2
t−1 ≤ 1) and ε0 = ε−1 = 0, we get estimates of the critical value

c = 1, therefore probabilities bc = P {ε2
t ≤ 1}. For the white noise we used a simple

random sample from N (0,1) distribution, so that the elements of the sequence
(ε2

t ) were χ2
1 distributed, which had been used for solving the critical value of the

reaction c̃ and ĉ. We show these estimates based on 100 independent Monte Carlo
simulations for each sample size T = 50, T = 100 and T = 500 in Table 1.

The average values of the estimates are set, together with the correspondent
estimating errors (the numeric values set in the brackets) in the rows of Table 1.
The second column of Table 1 contains values ρ̂

T
(1). The average values of that

column are somewhat smaller in the absolute value of the true value which is in
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Table 1 Estimated values of Monte Carlo simulations of the Split-MA(1) process

Averages of estimated values

Sample size ρ̂T (1) b̃c c̃ b̂c ĉ σ̃ 2 σ̂ 2

T = 50 −0.376 0.614 0.894 0.647 0.944 1.216 1.042
(0.139) (0.219) (0.726) (0.192) (0.571) (0.292) (0.202)

T = 100 −0.386 0.634 0.894 0.671 1.039 1.168 1.016
(0.097) (0.156) (0.444) (0.141) (0.427) (0.184) (0.124)

T = 500 −0.394 0.664 0.916 0.676 0.992 1.135 0.997
(0.056) (0.091) (0.259) (0.068) (0.194) (0.102) (0.099)

True values 0.406 0.683 1.000 0.683 1.000 1.000 1.000

this case ρ(1) = −bc(1 + bc)
−1 ≈ −0.406. Next two columns contain estimated

values b̃c and c̃ attained from the correlation coefficient ρ̂
T

, formula (3.1) and
the quantiles of the χ2

1 distribution. Average values in these columns are smaller
than the true values bc ≈ 0.683 and c = 1 also. In the case of a modified Gauss–
Newton procedure two estimated values coincide better to the true values. Realized
values of estimates b̂c and ĉ are more often closer to the true values than previously
mentioned estimates. Especially, we emphasize the average values of these two
estimates.

The dispersion of values c̃ and ĉ is illustrated in Figure 3. It can be seen that ĉ

has the asymptotically normal distribution even for the sample of a “small” sam-
ple size. The gathering of the estimated values of the parameter c around the true
value is visible in the figure. Finally, in the last two columns of Table 1, average
estimated values of σ 2, based on modeled values of the white noise (εt ) as men-
tioned above, are displayed. Their average values differ from the true value σ 2 = 1
as a consequence of two stage estimating procedure that was used. In spite of that,
it can be seen that the average values of σ̂ 2 are closer to the true one than the
average values of σ̃ 2.

5 Application of the model

Now, we will demonstrate the usage of our STOPBREAK model. We applied it
to shares on the Belgrade Stock Exchange. Starting from a similar presumption as
Hafner (1998), as a basic financial time series we have considered log-volume data

yt = ln(St · Ht), t = 0,1, . . . , T , (5.1)

where St is the share price at time t and Ht is the volume of trading of the same
share at time t . (The price is in dinars and the volume is the number of shares that
were traded on the certain day. The days of trading are used as successive data.)
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Figure 3 Empirical densities of c̃ and ĉ.

We applied the conditional likelihood method to estimate the conditional vari-
ance σ 2 of the series (yt ). Under the assumption that (εt ) is the Gaussian white
noise, the log-likelihood function will be

L(y1, . . . , yT
;σ 2) = −T

2
ln(2πσ 2) − 1

2σ 2

T∑
t=1

(yt − mt)
2.
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From here, we can see that the estimated value of the variance

σ̂ 2 = 1

T

T∑
t=1

(yt − mt)
2 = 1

T

T∑
t=1

ε2
t

is identical to the sample variance of the series (εt ). Now, we can apply iterative
equations {

εt = yt − mt,

mt = mt−1 + εt−1I (ε2
t−2 > ĉ), t = 1, . . . , T (5.2)

to generate the corresponding values of sequences (εt ) and (mt ). As estimates of
the critical value ĉ, we used the value described above. As initial values of the
iterative procedure (5.2) we use

m0 = y0 = yT , ε0 = ε−1 = 0,

where yT is the empirical mean value of (yt ). The basic empirical series are log-
volumes defined by (5.1) which we use in solving the series of increments (Xt),
that is, the realized values of Split-MA(1) described above.

Table 2 contains the number of observations for the company (T ), estimated
value of ρ

T
(1), estimated values of bc according to (3.1) and (3.9) and estimated

values of the critical value c according to (3.2) and (3.10). Of course, the number
of observations (T ) will imply the value of the estimating error. The elements of
the sequence {θt } are independent random variables and the expectation of θt is bc

and the variance is bc(1−bc). Because of 0 < bc < 1, we have 0 < bc(1−bc) < 1.
We will be able to apply the central limit theorem and the criterion

P {|θ̄ − bc| < δ} = 1 − α

for a certain α ∈ (0,1) and a small δ > 0, where θ̄ = 1
T

∑T
t=1 θt . So, if the variance

of θt is limited by a number σ 2
0 (0 < σ0 ≤ 1

2 ) and we chose, for instance, σ 2
0 = 0.25,

α = 0.05 and δ = 0.15, it will be sufficient T = 43 to fulfill the criterion.
Table 3 contains estimated values of the critical value (ĉ) for the reaction in

Split-BREAK model, mean values and variances of previously defined sequences:

Table 2 Estimated values of the Split-BREAK parameters of real data

Companies Headquarters T ρ̂T (1) b̃c c̃ b̂c ĉ

ALFA PLAM Vranje 50 −0.337 0.508 0.710 0.417 0.753
DIN Niš 56 −0.348 0.534 2.660 0.621 3.871
HEMOFARM Vršac 54 −0.346 0.530 0.582 0.613 0.836
METALAC G. Milanovac 174 −0.449 0.816 4.929 0.829 5.223
T. MARKOVIĆ Kikinda 277 −0.351 0.542 1.263 0.469 0.965
SUNCE Sombor 157 −0.424 0.735 2.836 0.784 3.132
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Table 3 Estimated values of real data

Log-volumes Mart.means Split-MA(1) Noise
Critical

Companies values Mean Var Mean Var Mean Var Mean Var

ALFA PLAM 0.753 15.320 1.505 15.354 1.457 −0.011 2.460 −0.034 2.510
DIN 3.871 14.485 4.998 14.628 6.071 0.003 4.116 −0.143 5.016
HEMOFARM 0.836 15.250 0.814 15.310 0.694 0.030 1.741 −0.042 1.576
METALAC 5.223 13.665 2.788 13.798 2.731 0.001 4.002 −0.133 4.376
T. MARKOVIĆ 0.965 13.816 2.295 13.830 1.977 −0.016 2.442 0.026 3.982
SUNCE 3.132 12.748 2.282 12.730 2.151 −0.024 1.978 −0.005 2.052

log-volumes (yt ), martingale means (mt), the Split-MA(1) process (Xt) and the
white noise (εt ). If we analyze empirical values of these series, we can recognize
the relations that could be explained by the above theoretical results. Namely, the
empirical mean value of the log-volumes is close to the mean value of martingale
means, which is consistent with equations (2.5) and (2.6).

A good match between these two sequences can be seen in Figure 4. Realiza-
tions of these sequences confirm a strong correlation among them which concurs
with the definition of the STOPBREAK process, that is, equation (2.1). This jus-
tifies application of the threshold STOPBREAK process as a proper stochastic
model.

On the other hand, Figure 5 shows that the white noise (εt ) matches increments
(Xt). The strong correlation between these two sequences can be explained as
it was done in Section 3. Namely, when the fluctuation of (Xt) is strong (in a
certain moment t), in the next moment (t + 1) it will become equal to the noise
(εt ). It is clear that the concurrence of realizations of these two sequences will
be better if, in addition to the great fluctuation of (Xt), the critical value of the
reaction c is relatively small. In fact, small values of the parameter c point out to
the possibility that the true value of this parameter is c = 0, when increments (Xt)

match the white noise (εt ). In that case the basic sequence (yt ) is the sequence
with independent increments and the whole statistical analysis is easier. Of course,
if the sample size is big, testing the null hypothesis

H0 : c = 0 (i.e. H0 :bc = 0)

will be, in accordance with Theorems 3.2 and 3.4, based on the normal distribution,
that is, standard, well-known statistical tests.

6 Comparison of models

In this section we will compare the efficiency of the model that we have purposed
and some known models using the same data. The basic model which we are using
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Figure 4 Comparative graphs of the real and modeled data.

here is the model

yt = mt + at , at = σtεt ,

where mt is the conditional mean and, in general, it will be a regression on known
values of (yt ), σ 2

t is volatility and εt is the (0,1) i.i.d. white noise.
In order to model the sequence (mt), we will introduce ARMA models. To cap-

ture the possible heteroscedasticity in the volatility of the time series, we will use
GARCH models. ARMA models will be determined by using autocorrelation and
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Figure 5 Comparative graphs of real and modeled data.

partial autocorrelation functions. After that, we will use a correlogram of squared
standardized residuals to check the possible heteroscedasticity. The existence of a
significant correlation between squared standardized residuals imply an existence
of heteroscedasticity.

Finally, we will test models using Ljung-Box Q statistics. In our case, all calcu-
lations and model selections are done in the statistical software EViews 5.0. The
above-described method gives results that are shown in Table 4. Regarding the
HEMOFARM time series, we can see that has no significant autocorrelation and
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Table 4 Estimated values of real data by the known models

Models (mt/σ
2
t )

Companies Type Equation

ALFA PLAM AR(0) mt = 15.4656
GARCH(2,1) σ 2

t = 0.1101 − 0.068a2
t−1 + 0.3524a2

t−2 + 0.6818σ 2
t−1

DIN AR(3) mt = 13.7823 + 0.2258yt−1 + 0.3258yt−2
– –

HEMOFARM – –
– –

METALAC ARMA(1,1) mt = 13.824 + 0.9697yt−1 − 0.7903at−1
GARCH(2,1) σ 2

t = 0.0773 + 0.5573a2
t−1 − 0.4208a2

t−2 + 0.8437σ 2
t−1

T. MARKOVIĆ AR(2) mt = 12.5514 + 0.3711yt−1 + 0.27919yt−2
ARCH(1) σ 2

t = 0.8540 + 0.3980a2
t−1

SUNCE AR(3) mt = 13.82183 + 0.3670yt−1 + 0.2303yt−2
ARCH(2) σ 2

t = 1.2379 + 0.2287a2
t−1

also there is no heteroscedasticity. This means that we cannot model this series
with well-known models.

If we take a look at the models from Table 4, we can see that a lot of coefficients
are required to be estimated. These complex models cannot provide good results,
that is, the best results. The option is to apply some other method to estimate these
time series. One of these methods is the Split-BREAK, which provides much better
results. The standard approach is graphically presented in Figure 6.

7 Conclusion

Nonlinear dynamic systems are very efficient tools for the description of the dy-
namics of financial time series nowadays. They are, therefore, fundamental for
majority of empirical analysis in all segments of a market. Nonlinear stochastic
models of financial time series give good results in explaining of many of their fea-
tures. So, for instance, various modifications of the STOPBREAK process enable
successful description of dynamics of financial time series with emphatic perma-
nent fluctuations. In that sense, the original result of this paper, named the Split-
BREAK process, better represents these time series and fewer coefficients needed
to be estimated than with the well-known models used so far.

The Split-BREAK model can be applied when −0,5 < ρ̂
T
(1) < 0, but many

real datasets fulfill that condition. And, whenever is so, the Split-BREAK model
is in the advantage comparing with the previously known models. In Section 5,
we gave some of the real data which fulfill the condition mentioned above and
demonstrated the advantage of the Split-BREAK.



62 V. Stojanović, B. Popović and P. Popović

Figure 6 Comparative graphs of real and modeled data.

Finally, we underline that the Split-BREAK model was defined to describe the
behavior of the volume of trading shares on the stock market, but it can be suc-
cessfully applied in estimating other financial time series with emphatic permanent
fluctuations also.
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Popović, B. Č. and Stojanović, V. (2005). Split-ARCH. PLISKA Studia Mathematica Bulgarica 17

201–220. MR2181344
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