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Rejoinder

Stefano Monni1 and Mahlet G. Tadesse2

We thank the discussants for their remarks and insights. We will organize our replies
by topics, as some questions were raised by more than one discussant.

Nature of the Correlation and Effective Sample Size

Some of the observations made by the discussants are on the nature of the correlation
captured by our model. We agree with Professors Chipman, George and McCulloch
(hereafter referred to as CGM) that the correlation captured by our method is not the
same as that captured by the method of Brown et al. (1998) (BVF). In our model,
the error terms εj in a component are assumed to be independent. Nevertheless, the
outcomes Yj are correlated because they have the same dependence on the predictor
variables

∑
r Xriβr (Breiman and Friedman 1997). We recognize that the totality of the

correlation among outcomes may not be captured by assuming independent errors, and
that ignoring a potential dependence among the error terms biases the posterior variance
of the model parameters (Gelman et al. 1995). However, we believe that this bias is
somehow mitigated in that we are not drawing inference on β, but simply identifying
associations between X and Y variables. In addition, this assumption allows us to gain
in (algorithmic) simplicity and efficacy. If we were to allow for correlation among the
error terms and specify εj ∼ N(0, Σ) as in BVF, it would not be possible to integrate
out the regression coefficients, for the prior covariance of the β could not be related to Σ
(unlike BVF, where instead Bp×q ∼ N (B0, Hp×p⊗Σq×q)). Accordingly, updating of the
regression coefficients would be required at each MCMC iteration and an appropriate
reallocation scheme for these parameters would need to be defined when splitting and
merging components, with a consequent complication of the algorithm. Furthermore,
by taking the noise terms among the outcome variables to be independent, we are able
to circumvent the high-dimensionality problem and convert the situation into one with
an effective sample size equal to N ·nk in each component k, where N is the true sample
size and nk the number of outcomes in that component, as noted by CGM and Professor
Li.

CGM noted that BVF have to estimate many more regression coefficients than we
do when assessing variables in a component. This is true and it is exactly what we are
avoiding by exploiting the cluster structure in the data. Outcomes are allocated to the
same component because of their identical dependence on the same set of covariates, thus
a single mk-vector β is used rather than an mk×nk matrix of regression coefficients. On
a similar note, Li wonders about the possibility of clustering response variables affected
by the same predictors with different regression coefficients. In our current formulation,
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this can be solved by post-processing the MCMC output and locating components that
contain identical subsets of regressors.

Comparison with other methods

Professor Stern states that the competitors for our model are not only Bayesian variable
selection methods but also multivariate exploratory tools. In particular, he invites us
to compare our method with canonical correlation analysis (CCA) and partial least
squares regression (PLS). A direct comparison with our method is however not quite
possible. In CCA, pairs of linear combinations of the original variables X and Y , called
canonical variates or coordinates, are constructed that are linearly correlated, with
the first pair maximizing the correlation and subsequent pairs maximizing the residual
correlation with the additional requirements that each pair be uncorrelated with the
previous pairs. Canonical variates are difficult to interpret, in general, and, in our case,
cannot be compared with the components of our model. To be more concrete, let us
apply CCA, as implemented by González et al. (2008), to the first simulated data set
described in the paper (see Table 1 for the underlying model). If we represent the
original variables in the space of the first two and three canonical directions in the
X space (Figure 1) we can see that, based on their correlations, the Y variables are
clustered so as to recover the groups of the underlying model. This is however not
all that we want to do with our method, as we need to identify associated sets of X
variables. While we were preparing this rejoinder, we discovered that there are some
recent papers on CCA, where a sparsity condition is imposed that results in modified
canonical variates that have sparse loadings. This might simplify the interpretation
of the canonical variates, which however still do not correspond to our components.
Nonetheless, we have applied sparse CCA as implemented in Parkhomenko et al. (2007)
to our simulated data. The first canonical X-variate contains 110 regressors, far more
than those that appear in our simulation. In addition, the associated first canonical
Y -variate contains the Y s in S8 and S9, which are not correlated to any X. We are
presenting these examples only to support our earlier statement that a comparison of
CCA with our method is difficult. Similarly, the goal of PLS is different from ours and
is closer to that of CCA. We have employed the R package pls (Mevik and Wehrens
2007) to carry out a PLS analysis, and, although it is possible to visually identify some
of the clusters for the outcome variables by plotting the Y variables along the first two
or three latent components (Figure 2), it is difficult to identify the associated covariates.
For these reasons, we see our method as additional, rather than competing, to those
already developed.

Fraley cites several papers on Gaussian mixture models and clusterwise regression.
We appreciate the added bibliography, but as we were not writing a review paper we
thought it best to cite works we felt were directly connected to our own, which we classify
as a variable selection method in multivariate regression. (The italics are to emphasize
the important words omitted by Fraley in her quote of our statement). For completeness,
we outline the difference of our work with the four papers Fraley cites in the multivariate
regression context. Breiman and Friedman (1997) proposed a method for multivariate
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Figure 1: CCA applied to simulated data: Plot of the original variables in the space
of the first two and three canonical directions in the X space. The Y s are labeled
according to their true cluster membership and the Xs are shown as red dots.

prediction, which can be thought of as a shrunken canonical correlation model, and thus
is very different from ours, where selections of sets of the original variables are carried
out. In addition, we consider both p and q greater than N , which in 1997 seemed unusual
as the authors state in their rejoinder. Turlach et al. (2005) extend the LASSO method
to a multivariate response setting, but similarly to Brown et al. (1998) they consider a
few outcome variables and select the same set of regressors for all response variables and,
accordingly, the flexibility of selecting different sets of predictors for different outcomes
is lacking. Brusco et al. (2003) consider multiple outcomes but in a setting where
N À p,N À q and they are concerned with clustering the observations using all
available covariates, i.e., they do not perform variable selection. Gupta and Ibrahim
(2007) also consider clustering observations with multiple outcomes and perform variable
selection in a setting where N À p and N À q (in fact q = 2 both in their simulation
and real data examples). The MCMC approach they use to fit their model is also quite
different from ours.

Finally, Li states that our model is a minor modification of that of Khalili and Chen
(2007). Actually, the goal, model formulation, and model fitting of our method are
intrinsically different from theirs. Khalili and Chen (2007) want to identify clusters of
homogeneous observations from a univariate outcome and determine predictors related
to each component in a setting where q = 1 and, it seems from their applications
and simulations, N > p. Their model fitting is accomplished by introducing a cluster
membership indicator zik for each univariate outcome yi, defining penalty functions for
variable selection, and using an EM algorithm to maximize the penalized log-likelihood.

Inference, Model Complexity, and Overfitting

CGM question if our assessment of BVF may have been unfair by reporting MAP
estimates and not measures of uncertainty. We hope not; we did in fact look at both the
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Figure 2: PLS applied to simulated data: Plot of the original Y variables in the space
of the first two and three latent components. The points are labeled according to their
true cluster membership.

MAP and the marginal/pairwise posterior probabilities for inference. In the simulated
data, for components with a relatively large number of response variables, no regressors
were selected by BVF using the MAP model or marginal posterior probabilities as low
as 0.1.

Fraley makes some comments about quadratic complexity in p and q, which would
affect our method. In order to make some clarity in relation to the complexity of the
method (and we use the term loosely here), we offer some general observations. There
is a difference between complexity of the model and complexity of the inference. The
complexity to which Fraley refers (or so we think since the sentence she quotes from our
paper is about inference) relates to the way in which the information from the MCMC
output is summarized. Such complexity would always arise in any inferential strategy
that took into account multiple models. Only if we identify a single model (or a small
number of models), will we avoid resorting to pairwise posterior probabilities. When
Fraley vaguely suggests possible alternative approaches related to penalized regression
methods to remove the complexity of one of our inferential methods, she may have in
mind approaches that identify a unique model. Of course, we could identify a single
model with our method as well (the MAP configuration) which will do away with this
complexity, but as we stated in our paper, we prefer to combine both inferential strate-
gies. A useful suggestion to avoid computing marginal/pairwise posterior probabilities
and still consider the most likely models is made by Stern, namely locate different modes
of the posterior probability.

Fraley also raises concern about overfitting. She applied two Gaussian mixture mod-
els to the gene expression data: one with an unconstrained covariance structure and the
second with a covariance matrix proportional to the identity. Based on the results she
obtained from the BIC criterion, which selected a small number of components in the
former case and a much larger number of components in the latter, she concluded that
our model as well would behave similarly, viz. it would fit a very large number of com-
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ponents. What Fraley does not take into consideration is that in our model regressors
do play an important part in the correlation and accordingly her argument would at
best apply only to (0, n) components. Rather than belaboring this point, we prefer
to give some experimental evidence. Let us consider the simulated data with q = 1000
outcome variables and K = 35 components presented in the paper. In this case we know
the true solution. Fitting a Gaussian mixture model with an unconstrained covariance
or assuming covariance σ2

kI using the R package MCLUST (Fraley and Raftery 2002,
2006) gives BIC plots similar to the ones drawn by Fraley for the real data. As shown
in Figure 3, the BIC peaks at three components for the unconstrained model, while the
model with covariance matrix proportional to the identity adds large numbers of compo-
nents and has lower BIC values. Our algorithm, however, recovered a configuration very
similar to the simulated one. Even our worst result with non-tuned hyper-parameters,
which we reported in the paper, identified the (m, n) components of the true model.
We believe that is because the covariance is modulated by a contribution carried along
by the regressors. In addition, the prior distribution of a configuration (Equation (5) of
the paper) plays a role in this context, as well as in limiting the selection of irrelevant
covariates into components (another potential source of overfitting).

A two-stage approach is suggested by Fraley to achieve the same goal as our method:
in stage 1, a cluster analysis procedure would be used to group correlated outcomes,
and in stage 2 a variable selection procedure would be applied to each component. This
is similar to the comparison we have illustrated in the first simulated example, where we
applied the multivariate variable selection approach of Brown et al. (1998) at the second
stage. As we discussed there, even if the outcome variables could be clustered correctly,
there would still remain the problem of performing variable selection in a multivariate
response setting, because clusters of outcomes will have cardinality greater than one.

Li advocates the use of a penalized likelihood approach implemented with an EM
algorithm and asks about the potential advantages of our method over this approach.
An obvious advantage is that our MCMC sampler explores a much larger space of
possible configurations compared to the suggested EM algorithm and is less prone to
being trapped in a local mode. Another advantage is that our method provides a
posterior model probability for all visited configurations. This allows us to perform
model averaging for inference, as well as identify several models that have high posterior
probabilities. The procedure suggested by Li, however, presumes the existence of one
best model, which is not realistic when exploring high-dimensional data sets. This said,
we recognize that it would still be interesting to perform a thorough comparison of the
two algorithms.

Analysis of array CGH and gene expression data

Li asked if it would be preferable to estimate the copy numbers, and then link them to
the gene expression data. We opted against this approach since it would require choosing
among the many available methods for copy number detection and this estimation would
introduce another level of uncertainty/error in the data. Li and Fraley asked if the
associations between array CGH and transcript profiles identified by our algorithm
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could also be identified by univariate analysis. Some are. But the univariate analysis
tends to select many CGH clones as being associated to each gene expression, and as
our simulations showed us, we think many are false positives.

Fraley questioned the independence of the samples in the data sets. It is important
to note that when thousands of variables are considered and very few of them are
significantly different between samples, the correlation across samples using all variables
will appear very high. Or, put it differently, a substantial correlation of the genes can
induce the appearance of a correlation among the samples (Efron 2008).

Stern remarked that we showed limited results. Because of space constraints and
since the focus of the paper (and the journal) is on the statistical method, we just
selected a few associations to illustrate some of the results. Several of the associations,
for example those presented in the paper, made biological or technical sense (e.g. probes
representing the same gene being assigned to the same component) and we hope that
others may be good candidates for further investigation. Naturally there will be some
that will have no biological meaning.

We agree with Stern that it would be valuable to check the assumptions prior to
fitting the model, but performing an extensive check for all variables and trying to iden-
tify the optimal transformation in this high-dimensional setting is practically infeasible.
Here, we have relied on the fact that gene expression levels on the log-scale often follow
a fairly symmetric distribution and are commonly assumed to be normally distributed.
The assumptions of normality and linear association are indeed strong and may not be
satisfied in most applications. We are now investigating non-parametric models that
would weaken these assumptions.

To conclude this rejoinder, we thank the discussants for their contributions, and
we hope more methods will be developed to deal with variable selection in multivari-
ate regression and more generally to address the problem of combining different high-
dimensional data sets.
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