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Chris Fraley∗

The problem of variable selection in a multiresponse setting is a difficult one that
deserves attention. With regard to this paper, I see two main areas for discussion: proof
of concept in terms of the scope of the examples, and the establishment of context in
terms of the relationship to and departure from existing work.

1 Simulated and Real Data Examples

The simulated and ‘real data’ examples leave a number of fundamental questions unan-
swered.

Simulated Data Examples. The design of the simulated examples raises two immediate
issues:

• In the simulated examples, the outcomes were generated with equal variance
throughout — formula (6) on page 10 — whereas in the model underlying the
method described on page 3, the variance is allowed to vary among components.
How well would the method work in simulations where the variance is allowed to
vary?

• Were the outcomes and/or covariates scaled, standardized or normalized in any
way? This could affect the resulting analysis and conclusions.

The subsection entitled Performance in the presence of high collinearity on page
15 starts with the sentence “It is reasonable to assume that the presence of highly cor-
related covariates may complicate the identification of relevant predictors.” Two new
covariates, which are linear combinations of existing covariates, are then added to simu-
lated data which had N = 50 samples and p = 200 covariates, with the conclusion that
“. . . the algorithm is reasonably resistant to colinearity between predictors.”
It’s not clear what’s intended here, since the dimensions of the data imply multicolin-
earlity, and the method is supposed to address cases in which the number of regressors
is much larger than the sample size (e.g. page 2).
Questions of interest with regard to multicolinearity would include:

• How would permutations of the covariates and/or outcomes affect the results in
the simulated and ‘real data’ examples?

• Is identifiability an issue?
Because of the inherent multicolinearity, more than one set of predictors could fit a
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given set of responses equally well. The prior weight assigned to each configuration
— formula (5) on page 6 — may help avoid this, but not when the sets of predictors
and responses in question are equal in size.

The subsection entitled Performance under deviations from normality, also on
page 15, raises further issues. According to the model formulation, each individual ele-
ment of an outcome is drawn from a univariate normal distribution (bottom of page 3),
with the accompanying description: “The model we consider is a multivariate Gaussian
mixture model . . . ”. These outcomes can be viewed as coming from a multivariate Gaus-
sian mixture, but only under the restriction that each component has a covariance of
the form σ2

kI (no cross-covariances). The ‘departure from normality’ referred to here is
a departure from univariate normality for the individual elements of the outcomes. The
t-distributed outcomes generated will form components with fatter tails, while retaining
spherical symmetry.

• There are numerous statements to the effect that the proposed method is designed
to account for correlation among outcomes (e.g. in the the prior specification on
page 6 or the beginning of the concluding section on pages 18 and 21).
If the outcomes were drawn from a multivariate Gaussian mixture with component
covariances Σk, where there is nonnegligible cross-covariance, instead of σ2

kI, how
well would the method work? Can it be shown to account for the correlation
among outcomes in such instances?

• How well would this method work if the mixture components of the simulated data
overlap (intersecting clusters), with restricted and/or unrestricted covariance?

Real Data Example. The section on Real data: CGH and gene expression profiles
summarizes application of the method to publicly available data.

• Were the downloaded outcomes and/or covariates further processed in any way
before analysis? This could influence the results and conclusions.

On the download page http://discover.nci.nih.gov/cellminer/loadDownload.do,
the normalized Affymetrix HG-U133A RMA data used by the authors, with a total of
q = 21, 225 possible probes, have since been replaced by the normalized RNA: Affy
U133(A-B) RMA data, with q = 35, 086 probes.1

To quote from page 9, “We considered q = 3291 probe sets that showed variability
across tissue types . . . ”

• How were the 3, 291 probes selected out of the 21, 225 possibilities? This could
also influence the results and conclusions.

It might be assumed that the proposed method could model the data with all 21, 225
of the responses, given the premises: “In this paper we are interested in cases where

1author’s communication
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Figure 1: Pairs plots for the RNA: Affy U133A RMA probes used by the authors, showing
significant correlation among the outcomes.

not only is the number of regressors much larger than the sample size but so too is the
number of responses.” (introduction, page 2). However, quadratic complexity limits the
size of p and q in practice: “. . . we have also considered, the p × q matrix of posterior
probabilities of association between a covariate Xi and an outcome Yj , the p×p matrix of
posterior probabilities that any pair (Xi, Xj) is assigned to the same component (m,n)
and the two q × q matrices of posterior probabilities that any pair Yi, Yj is allocated to
the same (0, n) or (m,n) component.” (applications section, page 9).

• Given that preselection will be necessary in the proposed method for datasets in
which p and/or q are quite large (a situation that often arises in bioinformatics),
are there effective strategies or is this choice likely to be highly data dependent?
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Figure 2: BIC for multivariate Gaussian mixture model fits to the 3291 probe sets used by the
authors. LEFT: BIC for the model with unconstrained (ellipsoidal) component covariances.
RIGHT: BIC for the model with component covariances constrained to be a multiple of the
identity (spherical). Note the difference in scale in both the horizontal and vertical axes of the
two plots. The sign is chosen so that higher BIC values are meant to indicate better models.
The BIC peaks at three components for the unconstrained model, while BIC values for the
constrained model are much lower for the constrained model, which compensates for lack of fit
by adding large numbers of components.

Pairs plots for the 3291 Affymetrix probes used by the authors, with coordinates
randomly sampled from among the 59 cell lines are displayed in Figure 1, showing
considerable correlation among outcomes.

• Do the mixture components produced by the proposed method reflect this corre-
lation structure?

The BIC (Bayesian Information Criterion — Schwarz 1978) is an approximate Bayes
factor that is often used for model selection in mixture modeling (e.g. McLachlan and
Peel 2000). Figure 2 shows the BIC obtained from fitting Gaussian mixture models to
the 3291 outcomes used by the authors.

Two possible mixture models are considered, one with the covariance of each com-
ponent constrained to be of the form σ2

kI, and the other without this restriction. The
sign is chosen so that higher BIC values are meant to indicate better models.

The BIC peaks at three components for the unconstrained model, while BIC values
are much lower for the constrained model, which tries to compensate for lack of fit by
adding large numbers of components. The mean/median uncertainty of the 3 component
unconstrained model fit is 4.62e-3/2.56e-8, indicating well-separated clusters (e.g.
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Fraley and Raftery 2002). This suggests treating the groups of outcomes separately
as a plausible approach. The behavior of the constrained model raises concerns about
overfitting in the proposed method, as does the statement on page 6 discussing the
penalty term on the size of components included in the prior: “We try to favor smaller
components because larger ones tend to fit the noise.”

To quote page 17: “Some components captured known associations and grouped
probe sets of genes which are involved in similar biological processes.” It’s interesting
that some of the components reflect known biological relationships, but it’s not really
possible to assess usefulness without analyzing the signal-to-noise ratio.

• What proportion of the output components can be considered noise? Are there
any that don’t seem to make biological sense or any well-known relationships that
are missed or fragmented? If so can these anomalies be explained?

• Would the associations mentioned as being noteworthy also be obtained if each
component was regressed separately?

2 Relationship to Existing Work

There appear to be quite a few missing links to the literature.

- From Section 2.2 Prior specification (page 5) through Section 3 Model
specification and posterior inference (page 9), there is one citation (Geyer
1991 in Section 3.2 A tempering extension), although the conclusion on
page 21 states: “We have, however, preferred to use standard priors . . . ”. Who’s
standard?

- Use of the U133 RNA data currently requires citation of Shankavaram et al. (2007)
— see http://discover.nci.nih.gov/cellminer/citing.do.

- The discussion of the ‘real data’ example also lacks citations, which could be
helpful in evaluating statements like: “These genes are involved in hematopoietic
development and lymphocytic proliferation, known to be implicated in a subset
of human T-cell leukemia.” (page 18).

- There are also ties to the Bayesian variable selection, clusterwise regression, and
model-based clustering literatures.

The method draws heavily from Bayesian variable selection, for which a cou-
ple of older references are cited (George and McCulloch 1997, Brown et al.
1998), although there is an extensive recent literature (surveyed, for example,
in O’Hara and Sillanpää 2009).

There is also a fairly extensive literature on clusterwise regression, which was
introduced by Späth (1979) and later formulated as a mixture model by De-
Sarbo and Cron (1988). Bayesian approaches are proposed in the Jiang and
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Tanner (1999a) paper cited by the authors, as well as in Lenk and DeSarbo
(2000). A recent paper by Kahlili and Chen (2007) addresses variable selec-
tion in these models. Situations involving multiple dependent variables are
addressed in Wedel and Steenkamp (1991), Brusco et al. (2003) and Gupta
and Ibrahim (2007). There are known identifiability issues, discussed for
example in Jiang and Tanner (1999b) and Hennig (2000).

The authors refer a number of times to “standard model-based clustering”
(e.g. pages 4 and 15). This seems intended to mean clustering based on
Gaussian mixture models, for which references include McLachlan and Bas-
ford (1988), McLachlan and Peel (2000), Fraley and Raftery (2002) and —
in the context of genomics — Yeung et al. (2001). However, the proposed
model constrains the covariance of each component to be a multiple of the
identity (as discussed above), which would not usually be considered stan-
dard for multivariate data in mixture modeling. Moreover, many clustering
methods are based on mathematical and statistical models, so that the term
‘model-based clustering’ does not necessarily imply mixture modeling (see
e.g. Banerjee and Rosenfeld 1993).

- Of the “few existing methods for multivariate regression” (page 21), one alterna-
tive (Brown et al. 1998) is mentioned and considered by the authors. There are
a number of other relevant references, including Breiman and Friedman (1997),
Brusco et al. (2003), Turlach et al. (2005), and Gupta and Ibrahim (2007). The
latter also proposes a simulation-based variable selection method that uses regres-
sion mixture modeling, with application to genomics data.

3 Concluding Remarks

In conclusion, I don’t think it’s clear that this method can capture situations in which
there is significant crosscorrelation among components. Approaches along the model-
ing lines described in this paper can perhaps offer an improvement over fitting each
response separately, but overfitting remains a critical concern. The authors’ rationale
against clustering the outcomes in advance and then fitting each cluster separately is:
“. . . this two stage procedure would treat the clusters as known, and would ignore uncer-
tainty in estimating the cluster memberships when searching for relevant predictors, and
thus inevitably introduce some bias into the analysis (Bryant and Williamson 1978).”
(page 1–2). When clustering based on mixture models, an assessment of uncertainty is
available in terms of the conditional probabilty of each sample being in each component
(e.g. Fraley and Raftery 2002), which could be exploited in a Bayesian setting.

For outcomes effectively modeled by a mixture of well-separated components, it
seems unlikely that the proposed method would have an advantage over the two-stage
alternative. Moreover, approaches related to elastic net (Zou and Hastie 2005) and lasso
(Tibshirani 1996) can avoid quadratic complexity in p and q (e.g. bottom of page 9) —
not to mention simulation overhead — by either using an active set approach (Turlach
et al. 2005 — see also Osborne et al. 2000 and Efron et al. 2004) or coordinate descent
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(e.g. Friedman et al. 2009). New methods may need to be developed to handle cases in
which clusters of responses overlap.
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