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Nonparametric data envelopment analysis (DEA) estimators have been
widely applied in analysis of productive efficiency. Typically they are defined
in terms of convex-hulls of the observed combinations of inputs x outputs
in a sample of enterprises. The shape of the convex-hull relies on a hypoth-
esis on the shape of the technology, defined as the boundary of the set of
technically attainable points in the inputs x outputs space. So far, only the
statistical properties of the smallest convex polyhedron enveloping the data
points has been considered which corresponds to a situation where the tech-
nology presents variable returns-to-scale (VRS). This paper analyzes the case
where the most common constant returns-to-scale (CRS) hypothesis is as-
sumed. Here the DEA is defined as the smallest conical-hull with vertex at
the origin enveloping the cloud of observed points. In this paper we determine
the asymptotic properties of this estimator, showing that the rate of conver-
gence is better than for the VRS estimator. We derive also its asymptotic sam-
pling distribution with a practical way to simulate it. This allows to define a
bias-corrected estimator and to build confidence intervals for the frontier. We
compare in a simulated example the bias-corrected estimator with the origi-
nal conical-hull estimator and show its superiority in terms of median squared
error.

1. Introduction. Consider a convex set W in ]Rffl which takes the form

W={(x,y) e R :0<y < g},

where g is a nonnegative convex function defined on Ri such that g(ax) = ag(x)
for all @ > 0. Suppose that we have a random sample (X;, ¥;) drawn from a dis-
tribution which is supported on W. In this paper, we are interested in estimating
the “boundary” function g from the random sample. In particular, we study the
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asymptotic distribution of the estimator
(1) g(x) =max{y > 0: (x, y) € ¥},

where U is the convex-hull of the rays R; = {(yX;, vY;):y > 0} for all sample
points (X;, Y;).

The problem arises in an area of econometrics where one is interested in eval-
uating the performance of an enterprise in terms of technical efficiency. In this
context, X; is the observed input vectors of the ith enterprise, Y; is its observed
productivity and W is the production set of technically feasible pairs of input and
output. The property that g(ax) = ag(x) for all a > 0, or, equivalently, W = aW
for all a > 0, is called “constant returns-to-scale” (CRS), and the commonly used
estimator of W in this case is the CRS-version of the data envelopment analysis
(DEA) estimator defined by

n n
@0: (x,y)eRﬁH:szin[,nyin[ forsome y; >0,i=1,...,ny¢.
i=1 i=1

In fact, Wy given above is nothing else than the smallest convex set containing all
the rays R; and the hyperplane {(x, 0) : x € R”}. To see this, suppose that (x, y) be-
longs to Wy. Then, there exist y; > 0 such that x > Y viXiand y <Y, viY.
For these constants y;, define

*

y
Vi Vi(ﬁ) =Vi
Y i=1viYj

for 1 <i <n.Then )/, y*Y;=y.Sincex>>" ,¥X; > Y7, vX;, we have
x*=x—>",¥"X; > 0. This shows (x,y) = A?:l(yi*X,', YY) + (x*,0). The
estimator ¢ defined in (1) and the one based on W are identical with probability
tending to one if the density of (X;, ¥;) is bounded away from zero in a neighbor-
hood of the boundary point (X, g(x)).

The problem that we describe in the first paragraph can be generalized to the
case of vector-valued y € R?. This is particularly important in the specific problem
that we mention in the above paragraph where productivity is typically measured
in several variables. For this, we consider a conical-hull of a convex set A in Rfrq
which is given by

U ={(x,Yy) € ]RTLQ : there exists a constant a > 0 such that (ax, ay) € A} U {0}.
The set W is convex and satisfies the CRS condition
2) a¥v =v for all a > 0.

We are interested in estimating the “directional edge” of W in the y-space, defined
by

A(X,y) =sup{r > 0:(x, Ay) € W}
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using a random sample from a density supported on W. In the case where g =1,
the directional edge is linked directly to the boundary function g by the identity
g(x) = yA(x, y). We consider the estimator

(3) A(x,y) = sup{i > 0: (x, Ay) € U},

where W is the convex-hull of the rays R; = {(yX;, yY;):y = 0} for all sample
points (X;, Y;).

To date, nonparametric data envelopment analysis (DEA) estimators have been
discussed or applied in more than 1800 articles published in more than 400 jour-
nals [see Gattoufi, Oral and Reisman (2004) for a comprehensive bibliography].
DEA estimators are used to estimate various types of productive efficiency of
firms in a wide variety of industries as well as governmental agencies, national
economies and other decision-making units. The estimators employ linear pro-
gramming methods, similar to the one appearing in (3), along the lines of Charnes,
Cooper and Rhodes (1978) who popularized the basic ideas of Farrell (1957).

Typically these DEA estimators are indeed defined in terms of convex-hulls of
the combinations of inputs x outputs (X;, Y;) in a sample of firms. The shape of
the convex-hull relies on a hypothesis on the shape of the technology defined as the
boundary of the set W of technically attainable points in the inputs x outputs space.
So far, only the statistical properties of the smallest convex polyhedron envelop-
ing the data points has been considered which corresponds to a situation where
the technology presents variable returns-to-scale (VRS). Convergence results for
DEA-VRS have been derived by Korostelev, Simar and Tsybakov (1995) in the
case of univariate output and by Kneip, Park and Simar (1998) in the multivariate
case. Asymptotic distribution of the DEA—VRS estimators was obtained in the bi-
variate case (p = g = 1) by Gijbels et al. (1999), for univariate output by Jeong and
Park (2006) and for the full multivariate case by Jeong (2004) and Kneip, Simar
and Wilson (2008).

VRS is a flexible assumption, but in many situations the economist assumes
that the technology presents CRS: the first version of the DEA estimator derived
by Farrell (1957) was for this situation. Here the DEA estimator U is defined, as
above, after (3), as the smallest conical-hull with a vertex at the origin enveloping
the cloud of observed points. The properties of this estimator have not been investi-
gated, yet it was conjectured that one would gain some efficiency in the estimation
by imposing the appropriate CRS structure to the estimator.

In this paper we determine the asymptotic properties of the DEA—CRS estimator
defined in (3), showing that the rate of convergence is better than that of the VRS
estimator. We derive also its asymptotic sampling distribution with a practical way
to simulate it. This allows us to define a bias-corrected estimator and to build
confidence intervals for the frontier. We compare, in a simulated example, the bias-
corrected estimator with the original DEA—CRS estimator and show its superiority
in terms of median squared error.
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2. Rate of convergence. In this section we give the first theoretical result,
the convergence rate of the estimator X, as defined in (3), in the general case of
p,q > 1. Before presenting the result, we first give two lemmas which will be
used in the proof of the first theorem.

LEMMA 1. For any a, B > 0, it holds that A(ax, By) = $A(X,y) whenever
(ax, By) € ¥ and (x,y) € V. The same identity holds for A

PROOF. The lemma follows from the CRS property (2) since
A8
sup{r > 0: (ax, ABY) E\D}:sup{k>0:<x, —y) e\IJ}. 0
o
The following lemma is also derived from the convexity of ¥ and W.

LEMMA 2. Forallr € [0, 1] and for all (x1,y1), (X2,¥2) € ¥,

Alr(xi,y1) + (I —r)(x2, y2)I = rA(x1, y1) + (I — r)A(x2, y2).
The same inequality holds for A

Our first theorem on the rate of convergence relies on the following assump-
tions. In what follows, we fix the point in W where we want to estimate X, and
denote it by (Xg, yo). Throughout the paper, we assume that (X;, Y;) are indepen-
dent and identically distributed with a density f supported on ¥ C Ri X Ri and
that (Xg, yo) is in the interior of W.

(A1) A(x,y) is twice partially continuously differentiable in a neighborhood of
(X0, ¥0)-

(A2) The density f of (X,Y) on {(x,y) € ¥:[|(X,y) — (X0, A(X0, Yo)¥o) || < &} for
some ¢ > 0 is bounded away from zero.

THEOREM 1. Under the assumptions (Al) and (A2), it follows that )A»(Xo,
¥0) — A(X0, Yo) = O, (n~ %/ (P+4)),

PROOF. We apply the technique of Kneip, Park and Simar (1998). Put B (t,

ry={xe Ri :||x —t|| <r} and consider the balls near xo: C, = B,,(x(()r), h/2),r =

1,...,2p where X(()zj_l) =X — hej, x(()zj) =X + hej, e; is the unit p-vector with
the jth elementequal to 1 for j = 1,2, ..., p. Similarly, define Dy = B, (y(()s), h/2)
fors=1,...,2q. Take h small enough so that C;, x Dy C W forallr =1,...,2p

ands=1,...,2¢g.Forr =1,...,2p, consider the conical hull of C,,

C={xe Ri :3da > 0 such that ax € C,}.
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Similarly, define D;. Define

(Ul’ ’ VY) = arg min )"(Xl ’ Yl)
(Xi sYi)eCr x Dy

Since the number of points in A falling into W N [C, x Ds] is proportional to
nhP*472_ we have by assumption (A2),

@) AU, V) =1+ 0,0 'h P12, r=1,....2p,s=1,...,2q.

Let U =, U, and V; =B,V forr =1,...,2p and s = 1, ..., 2q where «;
and f; are positive constants such that U € C, and V§ € D;. Then from Lemma 1,
(4) and the fact that A, A > 1, it holds that forr =1,...,2pand s =1,...,2q,

MUL VY AUV 1
AU VE) AU, V) ~ AU, Vy)

=14 0,(n"hPat2),

which implies that A(U*, V¥) > A(U*, V¥) + 0,(n~'h=P~9+2). Since C, and D
are balls surrounding the point (X, yo), there exist scalars w, > 0 and ws; > 0 such
that Zfil w, =1, Zfil ws =1, xg = Zfil w, U and yo = Zf’il ws V. Thus,
from the assumption (A1) we have

2p 2q

Y weweh(UF, Vi) = A(x0, y0) + O, (h?)

r=1s=1
for all » and s. This, with Lemma 2 and the fact that A > )A», shows that

2p 2q
r=1s=l1
2p 2q
> 3 > woh (U, V) + 0, P4t

r=1s=1

= A(X0, Y0) + Op(h?) 4+ 0, (n~1h=P=1+2),

Taking & ~ n~ /(P9 completes the proof of the theorem. [

REMARK 1. In the case where W is a convex set in RP*¢ without having the
CRS property (2), the DEA (data envelopment analysis) estimator defined as in (3)
with W replaced by the convex-hull of (X;,Y;) is commonly used. In this case,
the DEA estimator of A(Xg, yo) is known to have n =%/ (PT4+1D rate of convergence
which is slightly worse than n~%/(P+49) [see Kneip, Park and Simar (1998)]. The
CRS property reduces the “effective” dimension by one.
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3. Asymptotic distribution. In this section we derive a representation for the
asymptotic distribution of the estimator A defined in (3). This representation en-
ables one to simulate the asymptotic distribution so that one can correct the bias of
the estimator to get an improved version of A. We work with the case where g = 1
first and then move to the general case where ¢ > 1. The result for the case ¢ = 1
is essential for the generalization to g > 1.

3.1. The case where g = 1. We consider the set
V={xy el xRi:0=y=gX)],

where g is a nonnegative convex function defined on a conical-hull A, of a convex
set A C RY such that

5 g(ax) =ag(x) forall a > 0,
and that, for all X1, x> € A, with x| # ax; for any a > 0,
(6) glax) + (1 —a)x2) > ag(x1) + (1 —a)g(x2)

for all « € (0, 1). In this case, A(Xg, yo) = g(X0)/yo so that the problem of estimat-
ing A(Xo, yo) reduces to tllat of estimating the function g at Xg. The estimator of
g(xp) that corresponds to A (X, yo) defined in (3) is given by

(7) §(x0) = YoA(Xo, yo) = sup{y: (Xo, y) € W}.

We note that the CRS condition (5) is satisfied, not only by linear functions of the
form g(x) = ¢'x, but also by those functions g(x) = cxy+---+ x;)l/’ for all
positive numbers ¢ and positive integers r.

Define S; by Sl-T = (Xl-T, Y;). Below we describe a canonical transformation
T on W such that the transformed data 7'(S;) behave, asymptotically, as an i.i.d.
sample from a uniform distribution on a region that can be represented by a simple
(p — 1)-dimensional quadratic function in the transformed space. The reduction of
the dimension, by one, for the boundary function is due to the CRS property (5).
This is consistent with the dimension reduction as we noted in Remark 1 in the
previous section.

The key element in the derivation of the asymptotic distribution of g(xq) is to
project the data S; onto a hyperplane which is perpendicular to the vector xo and
passes through xg. The projected points lie under the locus of the function g on
the hyperplane, and the estimator g(Xo) equals the maximal y such that (X, y)
belongs to the convex-hull of the projected points. The asymptotic distribution of
the estimator g(xo) is then obtained by analyzing the statistical properties of the
convex-hull of the projected points.

Let O be a p x (p — 1) matrix whose columns constitute an orthonormal basis
for X(J)‘, the subspace of R” that is perpendicular to the vector xg. Think of the

transformation
T T
X, X
T : X+ <O— XTQ) .

Ixoll”
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This transformation maps x to a vector which corresponds to x in the new coordi-
nate system where the axes are x¢ and the columns of Q. The first component of
T1(x) is nothing other than the projection of x onto the space spanned by xp, and
the vector of the rest components is its orthogonal complement in R”. Thus, the
inverse transform Tl_1 is given by
—1 X0
T,z Z1<—) + Q1,,
lIxoll

where z" = (z;, ZZT).

It would be more convenient to use a transformation that takes xg to the origin
in the new coordinate system. This can be done by the following transformation:

Tie 2 T
DX+ [XO (x XO),(”?” )XTQ] .

%ol Xy X

Scaling by the factor ||xq 1K / X(T x is introduced to factor out a common scalar for the

inverse map of 7». In fact, ||xo]|? /X(—l)— x equals the scalar ¢ such that the projection
of cx onto the linear span of xy equals xg itself. Thus

Ixol|* T IIxoll?
T X=X0+Q<Q 0 X)

XOX OX

so that the inverse transform of 75 is given by

<21 + [I%oll
lIxoll

Note that xa— x > 0 if x # 0 since then xg, x > 0. It is easy to see that 7>(xg) = 0.

Define a (p — 1)-dimensional function g* by g*(z,) = g(xo + Qz). For a func-
tion v, let 1/f and 1// denote, respectively, the gradient vector and the Hessian matrix
of v. Since, for any u € RP-L

u' g% (z)u=(Qu) ' §(x0 + 02)(Qu)

and also (Qu) " (Qu) = u'u, it can be seen that g™ is convex if g is convex. In
particular, (6) implies the strict convexity of g*. Note that ¢* does not have the
CRS property (5), however.

Next, we introduce a further transformation on the new coordinate system (z, y).
This transformation maps the equation y = g*(zy) to a perfect quadratic equa-
tion in the further transformed space. Since g* is strictly convex, —g*(0)/2 =
Q' (—8(x0)/2)Q is positive definite and symmetric. Thus, there exist an orthogo-
nal matrix P and a diagonal matrix A such that —g*(0)/2 = PAP . The columns
of P are the orthonormal eigenvectors, and the diagonal elements of A are the
eigenvalues of the matrix —g*(0)/2. Let 73 be a transformation that maps R” to
R? defined by

(8) T:z2+ (Z1,nl/(p+1)z2TPA1/2)T.

T2_1:Z|—> )(Xo—i-QZz)-
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Note that this transformation does not change z1, the first component of z. Also,
define a map 74 :R” x R — R by

©  Ti:(y) e a2/ [y(ﬁ) _ g0 — g*(ﬂfzz]
o+ %ol

The transformation we apply to the data (X;, Y;) is now defined by

T:(x,y) > (T30 Tr(x), Tw(T2r(x), ¥)).

We explain how the equation y = g(x) can be approximated, locally at (xg, yo),
by a (p — 1)-dimensional quadratic function in the new coordinate system trans-
formed by T. Let (v, w) € R” x R represent the new coordinate system obtained
by the transformation 7. Write vl = (v, V;—) with vy being a (p — 1)-dimensional
vector. Then, the inverse transform of 7 maps v and w, respectively, to

V1 + [[X
X:< 1”X””O”)[Xo+n_l/(p+l)QPA_l/2V2],
0

B (v1 + [Ixol
Xl

Thus, for arbitrary compact sets C; C R?~! and C; C R, we obtain using the CRS
property (5) that, uniformly for vi e Ry, vo € Cy and w € C3,

)[g*(ﬂ) D g 0) T PA~ 2y, 4 n =2/ 0Dy,

y=8(x
- g*(o) + n—l/(p+1)g‘*(0)TPA—l/2V2 + n—2/(p+1)w
= g*(n_l/(P+1)PA—1/2V2)

<« w= —V2TV2+0(1)

as n tends to infinity, provided that g* is continuous at 0.
Now we give a representation of the limit distribution of g as given in (7). Define

o0
(10) 0= IIXOII/O u? f (uxo, ug(xo)) du,
(11) ik =0 det(A)” /2.
Define a set R, (k) C R? of points (v, w) such that

vy €| L=/ p+D, 1/(p+1) %K—l/(p+1)n1/(p+1)]l’—1’

w e [—v) vp — kPR TD [y v,

The volume of this set in R” equals ni 1. Let (V2i, W;) be a random sample from
the uniform distribution on Ry, (k). This random sample can be generated once we
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know «. Let Z,,(-) be defined as g in (7) with U being replaced by the convex-hull
of (Vy;, W;); that said,

n n n
(12) Zn<V2>=sup{Zini:vz=Zy,-V2,-,Zy,- =1y >0i=1,....n{.
i=1 i=1 i=1

For a small ¢ > 0, define a set on ]Rfrl by

03 H,(x0) = {(u(x0 + Qz2), u(g(x0 + 0z2) — y)) :u >0,

22 <e,0<y<e}.

In the theorem below and those that follow, we will measure the distance be-
tween two distributions by the following modification of the Mallows distance:

d(pr, po) = inf {E(Z; — Z5)* AN L(Zy) = i, L(Z2) = pa).
1,42
Convergence in this metric is equivalent to weak convergence.

THEOREM 2. Assume (Al) and (A2). In addition, assume that —g* is positive
definite and continuous at 0 and that the density f of (X, Y) is uniformly continu-
ous on H.(Xq) for an arbitrarily small ¢ > 0. Let L,;1 and L, denote the distrib-
utions ofnz/(p+1)[§(xo) — g(x0)] and Z,(0), respectively. Then, d(L,1, Lp2) — 0
as n tend to infinity.

Computation of the distribution of Z, solely depends on knowledge of «. Thus
one can approximate the distribution of g(X¢) by estimating « and then simulating
Z, with the estimated «. The approximation enables one to correct the downward
bias of g(xp) and get an improved estimator of g(xp). Estimation of « and bias-
correction for g(xg) will be discussed in Section 4.

PROOF OF THEOREM 2. We first give a geometric description of the estima-
tor g. Consider a hyperplane in R? defined by

(14) P(x0) = {x € R, :x] (x — x0) = 0}.

This hyperplane is perpendicular to the vector X and passes through xg. Let P; be
the point where the ray R; meets the hyperplane P’ (xg) = P(x0) x Ry in RPT1,
It follows that

%ol

(15) P, =

= ——X;, 7).
1 X(‘)er( 1 l)

Define \TJ(X()) to be the convex-hull of the points P;. We claim that

(16) U(xg) =P (xg) N .
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This means that WU(x) is a section of W obtained by cutting 7 by the hyper-
plane PT(x0). The fact that ¥ (xp) C P (xg) NV follows from convex1ty of PT (xq)
and . The reverse inclusion also holds. To see this, let (x, y) € P"(xg) N V. Since
U is the convex-hull of the rays Ry, it follows that there exist yl > 0 such that

ﬂ

x= v X;andy=>"7_,y"Y;. Since (x,y) € PT(x0), we have
17 Zy, x) Xi = [|xol|*.

Let & = (x) Xi/lIxolI*)y* >0 for 1 <i <n. By (17), Yitle = 1. By (15), we
get (x,y) =) ", &P; which shows (x, y) € U (X).
Since U,>0 aPT(xg) = Rﬁ“, the CRS property of U and (16) thus yield
(18) U= a¥(xo) = {(ax,ay): (x,y) € U(xo),a > O}.
a>0

Recall the definition ofA g in (7). Also, note that, for x € P(xp), we have (x, y) € U
if and only if (x, y) € W (xp). This follows from (18) and the fact that @ = 1 is the
only constant a > 0 such that (x, y) € aW(xg) if x € P(xp). This gives

(19) §(x) =sup{y:(x,y) e U(x0)}  ifxeP(xp).

See Figure 1 for an illustration in the case of p =2 and ¢ = 1.
Let Q be the matrix defined in the paragraph that contains the definition of
the transformation 77 early in this section. Since P(xo) = {xo + Qz> € ]R’jr 17y €

(0, 3(x0))

o)

FI1G. 1. An illustration of P(xq), P;, U and g in the case of p =2 and q = 1. The crosses are the
points P;, and the gray surface is the roof of the conical-hull estimator V.



1330 B. U. PARK, S.-O. JEONG AND L. SIMAR

]RP_I}, the set,
(20)  W(xg)={(X0+ 072, y) € Ac x Ry 1z e RP7 0 <y < g(x0 + Qm)},

equals the section of W obtained by cutting W by the hyperplane P (xo); that is,
W(xg) = PF (xp) N . In the new coordinate system

(z.y) = (), ylIxoll*/(x] %)),
the set W(xg) in (20) can be represented by {0} x ¥*(xg) where
1) W (x0) = {(22, y) :22 € R” 1 (x0),0 < y' < g*(22))

and R?~!(xg) denote the set of z such that xo + Qzs € A.. Also, in that new
coordinate system the points P; defined in (15) correspond to (0, P}) where P} =
(Z2i, Y]), Zoi = (IIx0l*/xg X)) QT X; and Y/ = (||xo]|?/x] X;)Y;. Since convex-
hulls are equivariant under linear transformations, this means that in the new coor-
dinate system, U (x) corresponds to {0} x U*(xq) where W*(x) is the convex-hull
of the points P}. Now define

8" (z2) = §(X0 + 01»)

on RP~! (xg). Since (xo + Qz3,y) € \TJ(XO) is equivalent to (z2, y) € \TJ*(XO), it
follows from (19) that

(22) §*(z2) = sup{y: (z2, y) € U*(x0), 7 € RP 1},

Let f denote the density of the original random vector (X, Y) and f* denote
the density of the transformed vector (Z, Y’). The arguments in the preceding
paragraph imply that the distribution of g(xo) — g(Xg) equals that of g*(0) — g*(0)
where g* is the convex-hull estimator of g* constructed from a random sample of
size n generated from the density f*. Let k* = det(A)~ /2 £*(0, g*(0)) where A is
the diagonal matrix with its entries being the eigenvalues of —g*(0)/2. Define Z
as a version of ¢* constructed from a random sample from the uniform distribution
on R, (k*) C R? where R, is defined immediately after (11). Then one can proceed
as in the proof of Theorem 1 of Jeong and Park (2006) to show that the asymptotic
distribution of n%/(P*1 (g*(0) — g*(0)) is identical to that of Z7(0) where one uses
the transformations 75" and 7, defined by

T3z nl /(PO A2 pTg,
T (22, ) > n?/ PO (Y — g (0) — °(0) T22).
Recalling the definitions of the transformations 73 and 73 in (8) and (9), respec-
tively, T5'(z2) equals T3(z) without the first component, where 2" =(z1, z; ), and
T, (z2, ylIxoll/(z1 + IX0l)) = T4(z, y). Below, we prove that «* equals « defined

in (11) so that Z = Z,, in distribution which concludes the proof of the theorem.
Let T* denote the transformation that maps (x, y) to

(2, y') = (T2(x), ylIXoll*/(x] X))
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Let c(z1) = (z1 + IXoll)/IIXo||. The Jacobian of the inverse transform of 7* equals

J(z) = c(z1) det[|[xo || ™" (X0 + Q22), ¢(21) Q]

~ 2 Tzl /I%ol?  (cz)/Ixol)z] ]
= ela1) det [(C(Zl)/llxoll)lz el |

where I, denotes the identity matrix of dimension (p — 1). The second equality
in the above calculation follows from the fact that the columns of Q are perpen-
dicular to xg. Thus the joint density of 7*(X, Y) at the point (z, y’) is given by
J(z) f(c(z1)(Xo + Q22), c(z1)y'). The density f*(zp, y’) is simply the marginal-
ization of this joint density with respect to z; so that

Fr@,y) = / - I@F ()0t 0m). ey dz.
"
Now, since J(z1,0) = c¢(z1)?, we obtain

o

£50,*(0) = / c(21)? f(c(z1)x0, c(z1)g* (0)) dzy

=lIxoll

=0,

where 6 is defined in (10). [

To see how well the distribution of n%/(P+D {g(x0) — g(X0)} is approximated by
that of Z, (0), we took a Cobb—Douglas CRS production function g(x) = x?"‘ X
x3‘6 (p = 2). We generated 5000 random samples of size n = 100 and 400 from
f(x1,x2,y) = Axfo‘“xzfomyk_l supported on ¥ = {(x1,x2,y):0 < x1,x <
1,0 <y < g(x1,x2)}. This yielded i.i.d. copies of (X1, X5,Y) with X;| ~
Uniform[0, 1], X2 ~ Uniform[0, 1] and ¥ = g(X1, X2)e~"/* where V ~ Exp(1).
Figures 2 and 3 depict the empirical distributions of n?/ (”+1){§(x0) — g(xp)} and
Z,(0) based on these samples in the case where A = 3. The figures suggest that
the approximation is fairly good for moderate sample sizes and get better as the
sample size increases.

Theorem 2 excludes the case where g is linear; that is, g(x) = ¢ x for some
vector ¢. The latter case needs a different treatment. In the following theorem, we
give the limit distribution in this case. To state the theorem, let (V%l., WI.L) be a

random sample from the uniform distribution on the p-dimensional rectangle,

RE(8) = [~ 10~V /(4D 1g=1/(p+D, 1/ (4D ]p~1

(23)
x [_9—2/(p+1)n2/(p+q)’ 0],

where 6 is defined in (10). The volume of this set in R” equals no~!. Let Z,f (-) be
a version of Z,,(-) constructed from (V%i, Wl-L) replacing (Vo;, W;).
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F1G. 2. Solid curves are the empirical distribution functions of Z,(0), and the dotted curves are
those ofnz/([""l){g(xo) — g(xq)} in the case where n = 100 and A = 3.
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FI1G. 3. Solid curves are the empirical distribution functions of Z,(0), and the dotted curves are
those ofnz/(p""l){g(xo) — g(xq)} in the case where n =400 and A = 3.

THEOREM 3. Assume (Al) and (A2). Assume further that ¥ = {(X,y) €
]Ri“ :0 < y < ¢'x} for some constant vector ¢ # 0 and that the density f of
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(X, Y) is uniformly continuous on Hg(Xg) for an arbitrarily small ¢ > 0. Let L,
and L;ﬂ denote the distributions of n?/ (p+1)[§(xo) —¢'x¢] and Z,f (0), respec-
tively. Then d(Ly1, L) ,) — 0 as n tends to infinity.

PROOF. In this case we consider the following transformation:
(24) Th: (%, y) = (T5 0 ), T (T2 (%), ),
where T :z 1+ (z1,n"/P™Dz])T and

[IXoll

TL \Z, = n2/(p+2)(
4 @y) 2+ ol

y — CTXo —c' sz>.

Let (VE, WLy = TE(X,Y). Then it can be shown as in the proof of Theorem 2
that the density of (V4, WE) is given by n=10{1 4 o(1)} uniformly for v} and w’
in any compact sets of respective dimension. The rest of the proof is the same as
that for Theorem 2. [J

In the special case where p = 1, we can derive the limit distribution explicitly.
In this case, the boundary function g is linear and takes the form g(x) = cx for
some constant ¢ > 0. The transformation 7% in (24) reduces to

TL(x, y) = <x — X0, n(zxo — cx0>).
by

The marginal density of W’, where (VL, Wt) = TL(X, Y), is approximated by
the constant n~'6 uniformly for w’ in any compact subset of R_ where 6 in this
case equals xg fooo uf (uxp, ucxg) du. According to Theorem 3, the limit distrib-
ution of n(g(xg) — g(xp)) equals the limit distribution of Z,f which is nothing
else than max?_, WiL in this simplest case where WI.L are a random sample from
the uniform distribution on [—n6~!, 0]. Since — max?_, WiL has the exponential
distribution with mean 8! in the limit, we have

Pln(g(xo) — §(x0)) < w] — 1 —exp(—bw)

for all w > 0.

3.2. The case where g > 1. In this section we extend the results in the previous
section to the case where g > 1 and W is a conical-hull of a convex set .4 in RfL+q.
For this we make a canonical transformation on y-space so that the problem for
g > 1 is reduced to the case where ¢ = 1. Again we fix the point (Xg, yo) where
we want to estimate the function A.

LetI" be a g x (g — 1) matrix whose columns form a basis for yé. Consider a
transformation 7 that maps y € Ri to (u, w) € R~ x R, where

Yoy

(25) u=T"y, = .
Iyoll
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Then, in the new coordinate system (X, u, ), the set W can be represented as

26) Wy = {(x, ww) eR? xR x Ry : (x, Fu—i—a)”y—O”> cw
Yo

Define a (p + g — 1)-dimensional function

g7(%. ) = g7 (X, U1 yo) = sup{“ -0 <X, Mu+a ||y0||> <V
Yo

This is a boundary function in the transformed space such that all points (x, u, @)
in W7 lie below the surface represented by the equation w = g(x, u).
Convexity of the function g7 follows from the fact that, due to convexity of W,

ag € {a>0:<x,Fu+a ¥o )elll}
Iyoll

and

ay € {a/>0:<x/,1“u’—|—a/”y—0”> elll},
Yo

together, imply

aag~+ (1 — a)a6

e {a ~0: <ax+ (1 —a)X,T(eu+ (1 —a)) +a ”)’0”) e qj}.
Yo
Also, it has the CRS property (5) since W satisfies (2). Furthermore, since (x,y) €
W if and only if (x, 7 (y)) € V7, and 7 (ayp) = or, oz||y0||)T for all « > 0, we
obtain

g7(X0,0) = sup{a >0: (xo, a ”y0”> € lIJ}
Yo

= sup{a > 0: (xg, (0,a)) € Y7}

(27) = llyoll sup{A > 0: (xo, (0, A[lyol})) € W7}
= [lyoll sup{A > 0: (X0, 7 (Ayo)) € ¥}
= [lyollA (X0, yo)-

Here and below, 0 denotes the (¢ — 1)-dimensional zero vector. Thus the problem
of estimating A(Xo, yo) using (X;, Y;) is reduced to that of estimating g7 (xg, 0) in
the transformed space using (X;, 7 (Y;)).

We note that in the proof of Theorem 2 we use only convexity and the CRS prop-
erty of g. Thus the theory we developed in the previous section is applicable to g7.
Let (U;, ;) = 7 (Y;) where U; is the vector of the first (¢ — 1) elements of 7 (Y;),



ASYMPTOTIC DISTRIBUTION OF CONICAL-HULL ESTIMATORS 1335

and €2; is the scalar-valued random variable. The joint density of (X;, U;, €2;) at
the point (X, u, w) is given by

= fr(xu.w) =det!2CTT) f ("» Fu+ wﬁ)
0

The constant € defined in (10) that corresponds to the density f7 equals

[ee]
o7 = (%0, 0)| /0 WP L (uxo, 0, ugr (xo, 0)) dut

o0
= det 2T D)ol [ Mp+q_1f(MX0,MgT(XO,O)”y—OH)dM
0 Yo

o0
— det' (T T Ixo /0 uP41 f (o, uh (%o, Y0)y0) dit,

where the last identity follows from (27). The determinant that corresponds to
det(A) in the definition of « in (11) is det(— Q}g’T(Xo, 0)07/2) where Q7 is a
(p+qg—1) x(p+ q — 2) matrix whose columns form an orthonormal basis for
(X0, 0). Thus we modify the definition of « as

k7 = O det(— Q;—gT(XO, 0) QT/2)_1/2'

Recall that the construction of Z,, defined in (12) depends only on x and p. Define
Z, 7 as a version of Z, with k7 and (p + ¢ — 1) replacing x and p, respectively.
Also, define a (p + g — 2)-dimensional function g5 (z2) = g7((X0,0) + Q722),
and H; 7(X0, 0) as H.(Xp) at (13) with (p +¢g — 1), g7, (X0, 0) and Q7 replacing
P, &, Xo and Q, respectively. Then we have the following theorem for the limit
distribution of A(xq, yo) for arbitrary dimensions p, g > 1.

THEOREM 4. Assume (Al) and (A2). In addition, assume that —g% is posi-
tive definite and continuous at 0, and that the density fr given at (28) is uniformly
continuous on H. 1(Xo,0) for an arbitrarily small ¢ > 0. Let L, and Ly, de-
note the distributions ofnz/(PM)[)t(xo, Yo) — A(X0,yo)l and Z, 7(0,14-2)/llyoll,
respectively. Then, d(Ly1, Ly2) — 0 as n tends to infinity.

Theorem 4 excludes the case where W = {(x,y) € Riﬂ :c?—x — c; y > 0} for

some constant vectors ¢, ¢; > 0. Below we treat this case. When g = 1, this cor-
responds to the case where the boundary function g is linear in x.
Define

o = 3ol ( c1 )
C;— Yo rt (=) /)’
Then W7 defined in (26) takes the form

\IJT:{(x,u,w):Ofwfc}(z)},
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and it holds that

ot (§) = Ivolia.yo).

Thus we can apply the arguments leading to Theorem 3 with p, ¢, Xo and Q being
replaced by (p +¢q — 1), e¢1, (X0, 0) and Q7, respectively.

Let R,ﬁ 7(6.T) be the rectangle defined in (23) with 6 and p being replaced by
61 and (p + g — 1). Define Z,fj as Z,f using a random sample from the uniform
distribution of the (p + g — 1)-dimensional rectangle R,f,T(@T)- By applying the
proof of Theorem 3 to ¢ replacing ¢, we get the following theorem.

THEOREM 5. Assume (Al) and (A2). Assume further that ¥ = {(X,y) €
Riﬂ :c]—x — cg y > 0} for some constant vectors ¢y, ¢y > 0 and that the density
ST given at (28) is uniformly continuous on Hg (X0, 0) for an arbitrarily small
e > 0. Let L, and L;ﬂ denote the distributions ofnz/(”q)[i(xo, Yo) — A (X0, Yo)]
and Zf,T(0p+q_2)/||yo||, respectively. Then d(Ly, L;lz) — 0 as n tends to infin-

ity.

4. Estimation of ¥ and k7. We discuss how to estimate « as defined in (11)
for the case where g = 1. It is straightforward to extend the methods to the case
where g > 1 via the canonical transformation that we introduced in Section 3.2.

Consider the set H,(xg) C ]Rf;+1 defined in (13). The projection of this set on
the x-space is a conical hull around the vector Xo, and for each direction of the ray
X + Q17, determined by z, its section on that direction is also a conical hull of
single dimension under the boundary g. For each fixed u > 0, let

He(u;Xo) = {(u(x0 + 022), y) : |22 <&,
guxo+ 0m)) —ue <y < g(u(xo + 0m))}.
This is a section of H,(xg) obtained by cutting H(xg) perpendicular to xq at the
distance u||Xg|| from the origin. Its volume in the cutting hyperplane uP(x0),
where PT(x¢) is defined between (14) and (15), equals
Ve(u) =cp_1uPe?,

nr/2

where ¢, denote the volume of the r-dimensional unit ball, that is, ¢, = INGEESH]

with ['(z) = [§°t*~'e~"dt. Thus, as ¢ — 0 we have

PIX, Y) € H, (x0)] = fo /( e fxy)dxdydu
X,ye EM;XO
- fo £ (uxo, g (X0))ve () du (1 + (1))

=Cp—1€p/0 u? f(uxg, ug(xg)) du {1 +o(1)}.
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This consideration motivates the following estimator of 6:

n
(29) 0 = lIxollc,t;n~"'e™P Y " I((X;, i) € He(x0)),

i=1

where H,(xo) is the sample version of H,(xo) with g replaced by ¢ in its definition.
Note that, for implementing 6, it is convenient to use the fact,

Xi. Y) € Ho(xo) & |Zall<e. 8" (Zo) —e <Y/ <g"(Za).

It is straightforward to see that 6 is a consistent estimator of  under the conditions
of Theorem 2.

For estimating det(A), one can apply local polynomial fitting to {(Zy;,
8*(Z»))}. For a small § > 0, perform a second-order polynomial regression on
the set of the points

{(Zai, 8" (Z2i)) : | Zoi|| <8,i=1,2,...,n} U{(0, g"(0)},
to get
(30) §" (@) =g+ &z+7%e
Use det(gy) as an estimator of det(A). An estimator of « is then defined by k =
6 det(gy) /2.
Using the estimator of « one can obtain a bias-corrected estimator of the func-
tion g*. For this, one generates Z, repeatedly as described at (12) using the es-

timated «. Call them Z, 1, Z, 2, ..., Z,,B. A bias-corrected estimator is then de-
fined by

§H(0) —n=H D7, (0),

where Zn,.(O) =B! Zf:l Z, 5(0). Also, a 100 x (1 — )% confidence interval
is given by

[6%(0) —n= 2PtV Z, B1—g/2))(0), §%(0) —n= 2PtV 7, 5,12 (0)],

where Z, (;)(0) are the ordered values Z,, ;(0) such that Z, (1)(0) > Z, (2)(0) >
e > Zn,(B)(O).

5. Numerical study. In this section we investigate, by a Monte Carlo experi-
ment, the behavior of the sampling distribution of the DEA—CRS estimator in finite
samples. To be more specific we will compare if the bias-corrected estimator sug-
gested above has better properties than the original DEA—CRS estimator in terms
of median squared error.

For our Monte Carlo scenario, we adapted the scenario proposed in Kneip,
Simar and Wilson (2008) to our setup. The efficient frontier is defined with a CRS
generalized Cobb—Douglas production function,

Yie= X?"‘Xg'6 Ccos w,

Y2e = X293 X3 sinw,
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TABLE 1
Ratio R; 5 of the median of the squared errors of the bias-corrected estimator over the median of
the squared errors of the original DEA—CRS estimator

(n=100) (n =400)

Ratio of median Ratio of median
e=4 of squared errors e=39 of squared errors
3.50 0.7123 3.25 0.6500
3.75 0.6863 3.50 0.6402
4.00 0.7264 3.75 0.6965
4.25 0.8081 4.00 0.7026
4.50 0.8213 4.25 0.7734

where the random rays are generated through w ~ Uniform(é 5 g%) and the val-
ues of the inputs X by (X, X2) ~ Uniform[10, 20]%. Then inefficient firms are
generated below the efficient frontier by

(Y1, Y2) = (Yie, Yao)e™V/?  where V ~ Exp(1)

So we are in a situation with p = ¢ = 2, and we will analyze the estimation of
the efficiency score of the fixed point xg = (15, 15), yo = (10, 10). It is easy to
see that the true value of the parameter to estimate is Ao = A(Xg, Yo) = 1.0607. We
analyze the cases n = 100 and n = 400.

We performed 500 Monte Carlo simulations and computed the squared errors
of the original DEA-CRS estimator and of the bias-corrected estimator. Table 1
summarizes the results. It gives the ratios of the median of the squared error of the
two estimators,

med{(ko,j — 20)?, j =1,2,...,500}
§ = ~ )
med{()»oﬁj — )u())z, ] = 1, 2, ey 500}

where io, j and )10, j denote the original DEA—CRS estimate and the bias-corrected
estimate computed in the jth Monte Carlo replication, respectively. Note that the
bias-corrected estimator relies on the values of the smoothing parameters (¢, §)
which appear in the definitions (29) and (30), respectively.

It is observed from the table that the bias-correction works very well for a wide
range of the smoothing parameters, even though the smoothing parameters were
taken to be equal in the simulation study for saving computational costs. We see
also that the performance of the bias-corrected estimator gets better when com-
pared to the original DEA—CRS as the sample size increases.

6. Discussion. In this paper we developed the theoretical properties of the
DEA estimator defined in (3) in the case where the support W of the data (X;, Y;)
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satisfies the CRS condition (2). The assumption of CRS may be tested. In fact,
whether the underlying technology exhibits CRS or VRS is a crucial question in
studying productive efficiency. The question has important economic implications.
If the technology does not exhibit CRS, then some production units may be found
to be either too large or too small. Using the estimator at (3) in the case where
the true technology displays nonconstant returns to scale results in statistically
inconsistent estimates of efficiency and seriously distorts measures of efficiency.
One way to test CRS against VRS is to use the test statistic defined as

1 & AXi, Y

(SR
n i\ Avrs(X;, Y;)

where )ALVRS is a version of A for the case of VRS defined as in (3) but with U

replaced by the convex-hull of {(X;, Y;)}?_,. By construction,

AX;, Yi) = Avrs(Xi, Yi) > 0

so that p, > 0. A larger value of p, gives a stronger evidence against the null
hypothesis of CRS in favor of the alternative hypothesis of VRS. The test statistic
was considered by Simar and Wilson (2002). One may compute p-values or critical
values using a bootstrap method. For example, a subsampling scheme with the
subsample size determined by the procedure described in Politis, Romano and
Wolf (2001) might work for this problem. For testing CRS against nonconstant
returns-to-scale, which is broader than VRS, one may use the estimators analyzed
by Hall, Park and Stern (1998) and Park (2001) instead of )A\VRS. Theoretical and
numerical properties of these testing procedures are yet to be developed.
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