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BAYESIAN ANALYSIS IN MOMENT INEQUALITY MODELS

BY YUAN LIAO AND WENXIN JIANG

Northwestern University

This paper presents a study of the large-sample behavior of the posterior
distribution of a structural parameter which is partially identified by moment
inequalities. The posterior density is derived based on the limited information
likelihood. The posterior distribution converges to zero exponentially fast on
any δ-contraction outside the identified region. Inside, it is bounded below
by a positive constant if the identified region is assumed to have a nonempty
interior. Our simulation evidence indicates that the Bayesian approach has ad-
vantages over frequentist methods, in the sense that, with a proper choice of
the prior, the posterior provides more information about the true parameter in-
side the identified region. We also address the problem of moment and model
selection. Our optimality criterion is the maximum posterior procedure and
we show that, asymptotically, it selects the true moment/model combination
with the most moment inequalities and the simplest model.

1. Introduction.

1.1. Formulation of the problems. Let (�̄, A,P ) denote a probability space.
Suppose that we are interested in some structural parameter θ0 ∈ R

d that satisfies
a set of moment inequality conditions:

Emj(X, θ0) ≥ 0, j = 1, . . . , p,(1.1)

where mj(·, θ), i = 1, . . . , p, are known real-valued moment functions. X is an ob-
servable random vector defined on (�̄, A,P ) and we assume that we observe i.i.d.
or stationary realizations Xn = {X1, . . . ,Xn} of X. A model that is characterized
by moment inequalities (1.1) is usually called a moment inequality model.

A key feature of moment inequality models is that θ0 is not necessarily point
identified: there exists more than one solution to the inequalities in (1.1) if
Emj(X, θ0) is viewed as a function of θ0. In other words, if we let � be the para-
meter space that contains θ0 and define

� = {θ ∈ �,Emj(X, θ) ≥ 0, j = 1, . . . , p},(1.2)

then � can be a nonsingleton set. In this case, we say that θ0 is partially identified
on � and � is called the identified region.
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Many partially identified models are characterized by such moment inequalities,
where the parameter of interest is only partially identified and therefore cannot
possibly be consistently estimated. In this framework, since the identified region
captures all of the information about the parameter, it becomes one of the most in-
teresting subjects of study in moment inequality models [see, e.g., Chernozhukov,
Hong and Tamer (2007), CHT, hereafter].

In addition to the problem of studying the identified region, there is also a mo-
ment/model selection problem in moment inequality models. Suppose that we have
p candidate moment inequalities

Emj(X, θ) ≥ 0, j = 1, . . . , p,

with a k-dimensional parameter vector θ = (θ1, . . . , θk)
T that belongs to the para-

meter space �1 × · · · × �k . The moment selection problem refers to selecting the
best subset of the moment inequalities among all of the possible candidates, while
the model selection procedure addresses the problem of selecting the best model
that is characterized by setting some components of the parameter to be zero. Such
a candidate model can be a parameter subspace like {0} × �2 × · · · × �k . There-
fore, the moment/model selection procedure produces a combination of moment
inequalities and a parameter subspace. For instance, in Example 1.3 regarding the
instrumental variable regression with interval censoring model, the moment selec-
tion problem can correspond to selecting the instrumental variables (components
of Z), while the model selection problem is related to selecting the useful ex-
planatory variables (components of X) that have nonzero regression coefficients.
Ultimately, the selected combination should achieve some sense of optimality.

1.2. Some motivating examples. There are several interesting examples for
the moment inequality models described above, where the parameter of interest
is identified on a nonsingleton set.

EXAMPLE 1.1 [Interval censored data; see, e.g., Example 1 of CHT (2007)].
Let Y be a real-valued random variable which lies in [Y1, Y2] almost surely; Y1
and Y2 are observed random variables, but Y is not observed. (Sometimes one
may assume that Y2 = Y1 + 1, as in the case where Y1 is the recorded integer part
of Y .) The parameter of interest is θ0 = E(Y ). We then have the following moment
inequalities:

E(Y2 − θ0) ≥ 0, E(θ0 − Y1) ≥ 0.

Then θ0 is partially identified on � = [EY1,EY2].

EXAMPLE 1.2 [Missing data; see, e.g., Example 1 of Canay (2008)]. Assume
that (Y,Z) ∈ [0,1] × {0,1} and that Y is observed only when Z = 1. Suppose that
we are interested in the parameter θ0 = EY , which corresponds to E[ZY + (1 −
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Z)Y −θ0] = 0, where ZY is known, but not (1−Z)Y . Noting that 0 ≤ (1−Z)Y ≤
1 − Z, we have moment inequalities

E(θ0 − ZY) ≥ 0, E(ZY − θ0 + 1 − Z) ≥ 0.

Then θ0 is partially identified on � = [E(ZY),E(ZY) + 1 − EZ].

EXAMPLE 1.3 [Interval regression model; see, e.g., Example 2 of CHT (2007)].
Consider Y,Y1, Y2, as in the setup of Example 1.1, assuming that the conditional
mean of the unobserved Y is XT θ0, where θ0 is the parameter of interest and X is
a regressor vector. Due to Y1 ≤ Y ≤ Y2, we then have moment inequalities

EZ(Y2 − XT θ0) ≥ 0, EZ(XT θ0 − Y1) ≥ 0,

where Z is a vector of positive functions of X or positive instrumental variables.

1.3. Literature review and contributions of this paper. Many frequentist infer-
ence procedures for the identified region as well as the true parameter have been
developed in this growing area of interest. For example, Chernozhukov, Hong and
Tamer (2007) construct an econometric criterion function so that its set of mini-
mizers form the identified region. They consider consistent estimation of the iden-
tified region and have shown that their set estimator is consistent in Hausdorff
distance. Additionally, they derive the convergence rate of their estimator and con-
struct the confidence set for the identified region. Moreover, Andrews and Soares
(2007) develop confidence sets of the identified region and a test of the moment in-
equalities/equalities based on generalized moment selection. Among others, Rosen
(2008) provides a formulation of criterion functions that differ from CHT and de-
rives analytical critical values of the confidence region. Beresteanu and Molinari
(2008) recently proposed inference procedures when the identified region can be
written as a transformation of the Aumann expectation based on random set theory.
Some additional papers in the literature that consider inference with partially iden-
tified models include Pakes et al. (2006), Andrews and Jia (2008), Romano and
Shaikh (2008), Bugni (2007), Horowitz and Manski (2000), Manski and Tamer
(2002), Canay (2008) and Liu and Shao (2003).

This paper studies a Bayesian approach to the moment inequality models. The
Bayesian procedure provides distributional information for the partially identified
parameter, both inside and outside the identified region, through its posterior dis-
tribution. The advantages of using posterior distributions to characterize the para-
meters are many. First, as pointed out by Poirier (1998), a Bayesian analysis of
partial identification models is always possible if a proper prior for the parameters
is specified. If we have some a priori information on θ0, then, by using a prop-
erly chosen prior distribution, the resulting posterior density may not be flat within
the identified region; this provides evidence that the parameter is more likely to
lie in some particular area. Second, even with a flat prior distribution, when θ0 is
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multidimensional, the posterior density of some components of θ0 may no longer
be flat, due to the shape of the identified region. Hence, if we are interested in
these components of θ0, then the posterior density can still provide extra informa-
tion on their locations within the identified region. As a third advantage, it can be
shown asymptotically that the posterior density has support only on the identified
region. Containing more information, a posterior density can always be used to
estimate the identified region, but not vice versa. Finally, the MCMC method is
a very powerful method to draw samples from the posterior, which can be used
for approximations of the calculation of the posterior statistics. In addition, those
posterior samples can also be used in frequentist methods to estimate the identified
region, by, for example, minimizing an econometric criterion function in CHT.

In fact, Bayesian methods have been extensively applied to nonidentified sit-
uations. Gelfand and Sahu (1999) have studied issues surrounding nonidentifia-
bility and improper priors in the context of generalized linear models. Neath and
Samaniego (1997) consider Bayesian updating for a nonidentified two-parameter
binomial model. Gustafson (2005) studies Bayesian inference in nonidentified sce-
narios involving misclassification and measurement errors, which was discussed
by a number of prominent researchers. Recently, Moon and Schorfheide [(2009),
hereafter, MS] have considered the Bayesian approach to partially identified mod-
els when the model can involve three types of parameters: the structural parameters
of interest, a reduced-form parameter vector that is point-identified by data and
also a vector of auxiliary parameters which links the structural and reduced-form
parameters via some known function. They also derive the Bayesian credible sets
and compare them with frequentist confidence intervals for a number of particu-
lar models. All of these papers use traditional posteriors based on the likelihood
function instead of the moment inequalities.

Our Bayesian approach proceeds within a more general framework. In con-
trast to the previous work, we do not need to have a full probability model
for the observed data. Starting from moment inequalities Em(X, θ0) ≥ 0, where
m(X, ·) is a known function of θ0, we introduce a bias parameter λ0 ≥ 0 so that
Em(X, θ0) = λ0 and place prior distributions on (θ0, λ0). The posterior density of
θ0 can then be derived based on a limited information likelihood function, which
is generated by the conditional asymptotic distribution of 1

n

∑n
i=1 m(Xi, θ0) − λ0

given (θ0, λ0), integrating out λ0. We study in detail the frequentist behavior of the
posterior density function of θ0. We derive the bounds of convergence rates of the
posterior density, both inside and outside of the identified region. We show that
there is a large “gap” between them. Once the posterior density and its frequentist
properties are obtained, it is easy to derive consistent estimators for the identified
region. However, we point out that a posterior density provides more information
than a region estimation since it can also incorporate prior information and de-
scribe how likely the true parameter is to be distributed both inside and outside the
identified region.
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In addition to studying the identified region, we also consider the problem of
selecting moments and models in the context of (1.1), where only a subset of the
moment inequalities are to be used and the true parameter vector θ0 is assumed to
follow a submodel allowing only some selected components to be nonzero (which
can be, e.g., the regression coefficients of some selected explanatory variables).
Andrews and Soars (2007) employ a modified moment selection procedure to de-
termine which moment inequalities are not binding, by minimizing an information-
type criterion. The moment/model selection problem we consider here is different
from theirs. In this paper, we have two goals in the selection procedure: first, se-
lecting a true moment/model and second, among the true candidates, selecting the
“optimal” one, in a sense which will be described in Section 4. Since the true
parameter is not point-identified, it is impossible to test the moment inequalities
evaluated at the true parameter. Hence, the moment inequalities in this paper are
true in the sense that, fixing the dimension of the parameter vector and the parame-
ter space, the identified region defined by these moment inequalities on the fixed
parameter space is not empty. In addition, we observe that whether a set of moment
inequalities is satisfied or not also depends on the parameters that are included in
the model and hence is related to the parameter space. In some situations, a set of
moment inequalities defines a valid (nonempty) identified region on one parameter
space, but cannot if one or more of the parameters are excluded from the model.
This is a result of the reduction of the dimension of the parameter space. By treat-
ing the set of moments and the set of nonzero parameters as a combination, the
problems of moment selection and model selection are combined. In Section 4, we
propose the maximum posterior criterion (MPC) to select the combination that has
the largest posterior probability.

We are interested in examining the asymptotic properties of the model/moment
combinations proposed by the maximum posterior. We hope that the maximum
posterior criterion will produce a desirable combination in the following three
senses. First, asymptotically, it should be true. Second, it is desirable that it should
contain as many moment inequalities as possible since, intuitively, the more mo-
ment inequalities we have, the smaller the identified region is and hence we have
more information about the true parameter. Finally, the model should be as simple
as possible, that is, the parameter subspace should have the smallest dimension.
We show in Section 4 that, indeed, with suitable specifications on the prior, the
maximum posterior criterion can produce such a desirable combination with prob-
ability tending to one as the sample size increases to infinity. Such a result will be
referred to as the consistency of the MPC for model/moment selection.

The remainder of this paper is organized as follows. Section 2 describes a gen-
eral moment inequality model and the construction of the limited information like-
lihood. We also provide a general consistency theorem on set estimation based on
the posterior c.d.f. function. Section 3 provides a detailed large-sample analysis
of the behavior of the posterior distribution. In particular, we will derive the con-
vergence rates both within the interior of � and on any δ-contraction outside �.
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Section 4 studies the problem of moment/model selection. Section 5 displays some
simulation results. Finally, Section 6 concludes with a discussion. Proofs are given
in Appendices A–C.

2. Moment inequality models.

2.1. Limited information likelihood. Suppose that for θ ∈ R
d , we have mo-

ment inequality conditions

Emj(Xi, θ) ≥ 0, j = 1, . . . , p.

Let

m(X,θ) = (m1(X, θ),m2(X, θ), . . . ,mp(X, θ))T .

The moment inequalities can then be rewritten as

Em(X, θ) = λ for some λ ∈ [0,∞)p.(2.1)

Here, θ is the structural parameter of interest, for example, θ = EY , the mean
of the unobserved random variable Y in Examples 1.1 and 1.2, and λ is the bias
parameter of Em(X, θ), for example, λ = (EY2 − θ, θ − EY1)

T in Example 1.1.
Let θ0 be the true parameter value of θ and λ0 be the true bias parameter when
θ = θ0. Suppose that the prior of θ0 is supported on a large enough compact set
that contains the identified region. We are interested in constructing the marginal
posterior for θ0.

In addition, let m̄(θ) = 1
n

∑n
i=1 m(Xi, θ) and G(θ,λ) = m̄(θ) − λ. Then, after

the bias parameter λ is introduced, G can be considered as the “de-biased” sam-
ple moment. In other words, G is an estimating function with EG(θ,λ) = 0. It is
overparametrized, meaning that the dimension of (θ, λ) is greater than the dimen-
sion of G, and, hence, we cannot consistently estimate θ0 by solving G(θ,λ) = 0
directly.

Under some regularity conditions, by the central limit theorem,
√

nG(θ,λ)|θ=θ0,λ=λ0

d→ Np(0,V0),(2.2)

where V0 = Var(m(X, θ0)). We can therefore formally construct a “likelihood”
function:

p(Xn|θ, λ) = 1√
det(2π/nV0)

e−n/2G(θ,λ)T V −1
0 G(θ,λ).(2.3)

Note that for θ �= θ0, (2.2) is not true in general. In fact, we cannot find a
λ ∈ [0,∞)p such that Em(X, θ) = λ for θ /∈ �. Hence, (2.3) is not the large-
sample conditional p.d.f. of G for general (θ, λ). The asymptotic result (2.2) alone
would not allow us to derive a likelihood function over the entire � × [0,∞)p .
To solve this problem, Kim (2002) introduced the concept of limited information
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likelihood. For each parameter θ ∈ �, although (2.3) may not be the true probabil-
ity density of Xn, it is shown to be proportional to the density that is closest to the
true density in the Kullback–Leibler distance, among a family of densities satisfy-
ing the moment condition EG(θ,λ) = 0. The “likelihood” in (2.3) is therefore the
limited information likelihood of θ and λ, which is the best approximation to the
true density that satisfies the moment restrictions. The concept of the Kullback–
Leibler information distance and applications of it can be found in a number of
works, such as Cover and Thomas (1991) and Zellner (1994).

Let p(λ) be the marginal prior of λ. Assume that λ and θ are independent, that
is, the conditional prior of λ given θ is equal to the marginal prior of λ. Since we
are only interested in θ , we thus integrate out λ to obtain the limited information
likelihood function for θ :

L(θ) = p(Xn|θ)

=
∫
[0,∞)p

p(Xn|θ, λ)p(λ|θ) dλ(2.4)

=
∫
[0,∞)p

p(Xn|θ, λ)p(λ)dλ.

The fact that λ is a location parameter of (2.3) makes the problems solvable. This
will be described in detail in Section 3.1.

In practice, the asymptotic variance V0 in (2.3) is not known, but it can be shown
to have very little influence on the inference about θ in the current situation of par-
tially identified moment inequality models. In future expositions, we will replace
V0 by a prespecified nonsingular matrix V and show that L(θ) has good (and very
similar) frequentist properties for inference on θ , whatever V is chosen. (A more
delicate treatment would be to approximate V0 by a sample analog and replace the
true parameter θ0 in V0 by the unknown argument θ . This will be left for future
work. We expect that similar techniques will lead to similar results in this treat-
ment, but the technical details can be much more complicated.)

2.2. A general result on the posterior set estimation. We first define some no-
tation that will be used subsequently. Throughout this paper, let Ac and int(A)

denote the complement and interior of a set A, respectively. In addition, following
CHT’s notation, ∀δ > 0, let (�c)−δ be the δ-contraction of �c:

(�c)−δ = {θ ∈ � :d(θ,�) ≥ δ}.
Let B(ω, r) denote an open ball around ω :B(ω, r) = {θ :d(ω, θ) < δ}, where
d(ω, θ) denotes the Euclidean distance between ω,θ . Let dH (A,B) denote the
Hausdorff distance between sets A and B:

dH (A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}
,
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where d(a,B) = infb∈B d(a, b). We say that a set estimator An consistently esti-
mates � if

dH (An,�) → 0 in probability.

Moreover, for two sequences {an}∞n=1 and {bn}∞n=1, we write an 
 bn if an

bn
→ ∞.

Finally, we write “w.p.a.1” as shorthand for “with probability approaching one in
the probability distribution of Xn as n → ∞.”

Let p(θ) be the prior of θ . By Bayes’ rule, the posterior of θ then satisfies

p(θ |Xn) ∝ p(θ)L(θ).(2.5)

It is desirable for the posterior to possess some “good” frequentist properties.
Roughly speaking, we want to see that the posterior density of θ concentrates near
� and drops dramatically to zero outside �, with a high probability as n increases.
The significant difference of such asymptotic behavior between the inside and out-
side of the identified region implies that the resulting posterior has the capability
to produce consistent set estimation for �. Such a relation between a “good” pos-
terior and its capability to estimate � is demonstrated below for a scalar function
of �. (A more general estimation of � itself will also be discussed in Section 3.)

The posterior probability that θ belongs to a set A is

P(θ ∈ A|Xn) =
∫
A

p(θ |Xn)dθ.

DEFINITION 2.1 (Dense). A subset A ⊂ � is said to be dense in � if ∀ω ∈
� \ A and any neighborhood Uw of ω, we have Uw ∩ A �= φ.

An equivalent definition of dense subsets in real analysis is that the closure
of A is �, that is, cl(A) = �. We will consider the large-sample behavior of the
posterior distribution on a dense subset of �.

Suppose that, instead of θ , we are interested in the functions of θ , g(θ), where
g :� → R is some known continuous mapping. For instance, if we are interested
in the ith component of θ , then g(θ) = θi . Let g(�) = {g(θ) : θ ∈ �}, the image
of g. We are interested in estimating g(�) directly. We impose the following as-
sumptions.

ASSUMPTION 2.1. � is compact.

ASSUMPTION 2.2. � is compact and connected.

In moment inequality models, the compactness of � follows from assuming
Emj(X, ·) :� → R to be continuous for each j . We assume � to be connected so
that the intermediate value theorem on a topological space holds.

ASSUMPTION 2.3. g :� → R is continuous on �.
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The estimation of g(�) to be constructed is based on the inverted posterior c.d.f.
of g(θ). Let Fg(x) = P(g(θ) ≤ x|Xn), the posterior c.d.f. of g(θ). Let

F−1
g (y) = inf{x :Fg(x) ≥ y}.

Then x ≥ F−1
g (y) if and only if Fg(x) ≥ y. The following theorem provides a

general consistency result of a set estimator of g(�) based on the posterior c.d.f.
Note that since it can be shown that g(�) = [infθ∈� g(θ), supθ∈� g(θ)], one might
think that a more natural set estimator can be constructed by finding estimators for
the end points of the interval g(�). This idea works, for example, in Example 1.1,
where [EY1,EY2] can be estimated by [Ȳ1, Ȳ2], as both Y1 and Y2 are observ-
able. However, in a more general setting, estimating the end points infθ∈� g(θ)

and supθ∈� g(θ) would require estimating � first. The estimator proposed in the
following theorem provides a way of estimating the interval directly.

THEOREM 2.1. Under Assumptions 2.1–2.3, assume that there exists {πn}∞n=1,
πn → 0, such that:

1. ∀δ > 0, P(θ ∈ (�c)−δ|Xn) = op(πn);
2. there exists a dense subset A ⊂ � such that ∀ω ∈ A, ∃Rw > 0 such that when

ρ < Rw , P(θ ∈ B(ω,ρ)|Xn) 
 πn w.p.a.1.

If we let ĝ = [F−1
g (πn),F

−1
g (1 − πn)], then

dH (ĝ, g(�)) → 0 in probability.

REMARK 2.1.

1. The consistent set estimator depends on the choice of πn. However, we do not
pursue an operational way of constructing the estimator based on the poste-
rior distribution in this paper because there are many frequentist methods to
achieve this purpose, for instance, CHT, Beresteanu and Molinari (2008), etc.
This paper is more focused on the posterior distribution itself. The purpose of
this theorem is to demonstrate that the posterior can be used to consistently es-
timate the identified region, if needed. The posterior distribution can actually
provide more information than the identified region when taking into account
the prior.

2. We can also provide an exact credible region (based on, say, setting πn = 0.025,
for instance) for the true parameter, conditional on the observed data. This
is parallel to the provision of the confidence intervals with required coverage
probabilities in the frequentist approaches of Imbens and Manski (2004), Rosen
(2008), etc.

3. It is possible to get an optimal rate of πn for optimal convergence rate in Haus-
dorff distance. We leave this for future work.
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In the next section, we will see that, under some regularity conditions, the pos-
terior distribution of θ satisfies conditions 1 and 2 of this theorem, which describe
the frequentist properties of the posterior. In addition, we will also propose a con-
sistent estimator for �, directly based on the log-posterior density.

3. Posterior properties of moment inequality models. In this section, we
assume that the identified region contains a nonempty interior int(�). Assuming
it is dense in �, it is then of interest to study the asymptotic properties of the
posterior distribution inside int(�).

3.1. The posterior density. Following the discussions in Section 2.1, we will
study a limited information likelihood for θ defined by

L(θ) =
∫
[0,∞)p

1√
det(2πV /n)

e−n/2(m̄(θ)−λ)T V −1(m̄(θ)−λ)p(λ)dλ,(3.1)

where V is some preselected positive definite matrix that does not depend on θ .
We will use a multivariate exponential distribution as the prior on λ throughout
this paper:

p(λ) =
( p∏

i=1

ψi

)
e−ψT λ, ψ = (ψ1, . . . ,ψp)T ∈ [0,∞)p, λ ∈ [0,∞)p,

where ψ is prespecified. We use the exponential prior for ease of integration over λ.
More general choices of p(λ) may not allow the integration to be carried out ana-
lytically, but the large-sample behavior of the posterior should remain unchanged.

Let Zθ be a p-dimensional multivariate normal random vector with mean
(m̄(θ) − V ψ

n
) and variance-covariance matrix V

n
. A straightforward calculation of

(3.1) then leads to

L(θ) = P(Zθ ≥ 0)e−ψT m̄(θ)+1/(2n)ψT V ψ

( p∏
i=1

ψi

)
(3.2)

and we have p(θ |Xn) ∝ p(θ)L(θ).
For large values of n, by the uniform weak law of large numbers, m̄(θ) is

bounded on � w.p.a.1. Thus, for fixed ψ and V , e−ψT m̄(θ)+1/(2n)ψT V ψ(
∏p

i=1 ψi)

is bounded away from zero and infinity. Therefore, the only term that character-
izes the large-sample properties of the posterior should be P(Zθ ≥ 0). Moreover,
the variance-covariance matrix of Z has order Op(n−1), so we would expect that
limn→0 P(Zθ ≥ 0) = 1 in probability if and only if m̄(θ) − V ψ

n
≥ 0 w.p.a.1. This

depends on whether or not θ belongs to �. For large n, the posterior density is
positive inside � and drops to zero exponentially fast as θ goes away from �. We
will formally examine these asymptotic properties in the next section and will also
derive the convergence rate of the posterior probabilities.
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3.2. Large-sample analysis. We now provide a large-sample analysis of the
posterior distribution of the parameter θ .

ASSUMPTION 3.1. int(�) is nonempty and is dense in �.

The assumption that int(�) is dense in � can be restated as follows: for any ω on
the boundary of � and any neighborhood Uw of ω, Uw contains points in int(�).
Most of the identified regions characterized by moment inequalities possess such
a property. We will comment on the case when int(�) is empty in the discussion
section.

ASSUMPTION 3.2. Emj(X, ·) :� → R is continuous for each j = 1, . . . , p.

This assumption guarantees that Em(X, θ) is bounded in any compact set and
that the uniform law of large number holds. The next assumption puts a regularity
condition on the prior of θ .

ASSUMPTION 3.3. p(θ) is continuous and bounded away from zero and in-
finity on �.

Let vjj be the j th diagonal element of V . We can write

�c =
{
θ : min

j
Emj (X, θ) < 0

}
=

{
θ : min

j

Emj (X, θ)√
vjj

< 0
}
.

For any δ > 0, let

Aδ =
{
θ : min

j

Emj (X, θ)√
vjj

< −δ

}
.

Apparently, Aδ ⊂ �c.

LEMMA 3.1. Under Assumptions 2.1, 2.2 and 3.2, if there exists some an → 0
such that ∀δ > 0, P(θ ∈ Aδ|Xn) = op(an), then ∀ε > 0, P(θ ∈ (�c)−ε|Xn) =
op(an).

THEOREM 3.1. Under Assumptions 2.1, 2.2 and 3.1–3.3:

1. ∀δ > 0, for some α > 0,

P
(
θ ∈ (�c)−δ|Xn) = op(e−αn);

2. ∀ nonempty open sets � ⊂ �, in probability,

lim inf
n→∞ P(θ ∈ �|Xn) > 0.
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Hence, we are able to distinguish the asymptotic behavior of the posterior: for
large values of n, the posterior density is only supported on a neighborhood of the
identified region and the posterior distribution drops to zero exponentially fast on
any subset that is separated from �. Based on these findings, we can construct
consistent estimators for both � and its continuous mappings. For the latter task,
we can now apply Theorem 2.1. Suppose that g(·) is a continuous real-valued
function on � and let F−1

g (y) be the y-quantile of the posterior c.d.f. of g(θ).

THEOREM 3.2. Under Assumptions 2.1–2.3 and 3.1–3.3, for any sequence
πn = op(1) such that ∀a > 0, e−an/πn → 0, we have

dH

([F−1
g (πn),F

−1
g (1 − πn)], g(�)

) → 0 in probability.

We can also consistently estimate � directly using the posterior density func-
tion. The consistency is based on the fact that the posterior density attains its peak
inside � and is asymptotically supported on the entire identified region. In ad-
dition, it drops to zero outside � at an exponential rate. Therefore, by properly
choosing a cut-off value εn, the region where the log-posterior p.d.f. exceeds its
peak minus εn should eventually converge to �.

THEOREM 3.3. Under Assumptions 2.1–2.3 and 3.1–3.3, let 1 ≺ εn ≺ n. If we
define

An =
{
θ : max

ω∈�
lnp(ω|Xn) − lnp(θ |Xn) ≤ εn

}
,

then

dH (An,�) → 0 in probability.

REMARK 3.1. The estimation established in Theorem 3.3 is easy to imple-
ment for the following reasons.

1. Note that

max
ω∈�

lnp(ω|Xn) − lnp(θ |Xn)

= max
ω∈�

(
lnp(ω)L(ω) − ln

∫
�

p(θ)L(θ) dθ

)

−
(

lnp(θ)L(θ) − ln
∫
�

p(θ)L(θ) dθ

)

= max
ω∈�

lnp(ω)L(ω) − lnp(θ)L(θ).

Therefore, there is no need to normalize p(θ)L(θ), avoiding numerical integra-
tion of p(θ)L(θ).
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2. Maximizing lnp(θ)L(θ) is computationally workable since the maxima is
attained only inside �, where p(θ)L(θ) is quite smooth. Hence, Newton–
Raphson’s algorithm can carry out the maximization.

3. If we set an = maxω∈� lnp(ω|Xn) − εn, then An = {θ : lnp(θ) ≥ an}. The
boundary {θ : lnp(θ) − an = 0} is a closed curve with dimension d − 1.

4. Moment and model selection. In this section, we discuss the problem of
moment and model selection. Suppose that we have p candidate moment inequal-
ities

Emj(X, θ) ≥ 0, j = 1, . . . , p,

with a k-dimensional parameter vector θ = (θ1, . . . , θk)
T ∈ �1 × · · · × �k . The

moment selection problem refers to selecting the best subset of the moment in-
equalities among all of the possible candidates (where there is some notion of op-
timality), while the model selection procedure addresses the problem of selecting
the best model among all subsets of the parameter space where some components
of the parameter are set to zero. The possible moment inequalities and correspond-
ing subsets of the parameter space are known. What is not known is which ones
are the best.

Instead of selecting the moment inequalities and the parameter subspace as two
separate procedures, we select them simultaneously, as a combination. However,
there are still two problems to consider: selecting the true combination and, among
the true combinations, selecting the optimal one, in the sense that it should contain
as many moment inequalities and as few structural parameters as possible. The
selection procedure is based on the maximum posterior criterion (MPC): we assign
prior probabilities to each candidate moment/model and then derive the posterior
probabilities based on the limited information likelihood described in Section 2, by
integrating out the structural and nuisance parameters (θ, λ). Finally, the optimal
combination is the one with the largest maximum posterior probability. We will
examine the asymptotic property of the optimal combination by establishing the
consistency of MPC. By consistency, we mean w.p.a.1, MPC will select the true
combination with the most moment inequalities and fewest structural parameters
(the simplest parameter subspace).

4.1. Selecting the true combination. Because of the feature of partial identifi-
cation, it is impossible to test whether each candidate moment inequality is true at
the true parameter. Given a set of moment inequalities and a parameter space, we
can tell whether the moment inequalities define a nonempty identified region on
the parameter space.

EXAMPLE 4.1 (Interval regression model). Suppose that an interval regres-
sion model provides moment inequalities as follows:

E(Z1Y1) ≤ E(Z1Y) ≤ E(Z1Y2);
E(Z2Y1) ≤ E(Z2Y) ≤ E(Z2Y2).
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We assume that the data-generating process is E(Y |X) = XT θ0, where θ0 =
(0.9,0)T is the true parameter and X1 ∼ uniform[−1,1], X2 = 1 a.s. Furthermore,
let

(Z1
Z2

) = (X1+1
1

)
and

(Y1
Y2

) = (Y+0.1(U1−1)
Y+0.1(U2+1)

)
, where U1 and U2 are uniform [−1,1]

independently. θ0 is not partially identified by the moment inequality models. If we
let (θ1, θ2)

T ∈ R
2 be the parameter vector, then we have four moment inequalities:

1
3θ1 + θ2 ≥ 0.2;(4.1)

1
3θ1 + θ2 ≤ 0.4;(4.2)

θ2 ≥ −0.1;(4.3)

θ2 ≤ 0.1.(4.4)

The region defined by (4.1)–(4.4) on R
2 gives the nonempty identified region for θ0

with a parallelogram boundary. However, if we set θ1 = 0, (4.1) contradicts (4.4).
Hence, in this case, (4.1)–(4.4) defines an empty region.

Let us define a combination Cs = (Ms1,�s2) with a vector index s = (s1, s2),
s1 ∈ {1,2, . . . ,2p − 1} and s2 ∈ {1, . . . ,2k}. Here, Ms1 denotes a subset of mo-
ments, for instance, Ms1 = {m1}, Ms1 = {m1,m2}, etc. There are then 2p − 1 such
possible subsets. In addition, we denote by �s2 the parameter subspace corre-
sponding to the selected model. By definition, �s2 is the subset of vectors with
one or more components fixed to be zero. There are 2k possible �s2 ’s. (Note that
we can select none of the parameters, in which case the model is a reduced model,
e.g., in Cox’s proportional hazard model; if all of the parameters are set to be zero,
we get the baseline model.) The combination Cs combines both the candidate mo-
ment functions and the parameter subspace. When selecting a subset of moment
inequalities, we also specify a subspace of the structural parameter.

EXAMPLE 4.2 (Example 4.1 continued). Let �1 ×�2 be the parameter space
for (θ1, θ2), chosen large enough so that {(θ1, θ2) : 0.2 ≤ 1

3θ1 + θ2 ≤ 0.4,−0.1 ≤
θ2 ≤ 0.1} ⊂ �1 × �2. A scope of candidate combinations can be any of the fol-
lowing:

{E(Z1X
T θ − Z1Y1)}, �1 × �2;

{E(Z1X
T θ − Z1Y1),E(Z1Y2 − Z1X

T θ)}, �1 × �2;
{E(Z2X

T θ − Z2Y1)}, {0} × �2;
{E(Z1X

T θ − Z1Y1),E(Z1Y2 − Z1X
T θ),E(Z2Y2 − Z2X

T θ)}, �1 × {0};
...

{E(Z2Y2 − Z2X
T θ)}, �1 × �2.
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DEFINITION 4.1. A combination Cs = (Ms1,�s2) is true if and only if

inf
θ∈�s2 ,λ∈[0,∞)m

‖EMs1(X, θ) − λ‖2 = 0,

where m denotes the number of candidate moment functions in Ms1 .

If we let �s = {θ ∈ �s2 :EMs1(X, θ) ≥ 0} be the identified region defined
by Cs , then this definition is equivalent to saying that �s is not empty.

We place a discrete prior p(Cs) on all of the candidate combinations. In prac-
tice, such a prior can be either uniform [i.e., p(Cs) = 1

2k(2p−1)
for all Cs ] or model-

dependent, or obtained from previous studies. As in the previous sections, let

λ = EMs1(X, θ)

with dim(λ) = m and use the following prior conditional on Cs :

p(λ|Cs) = ∏
i≤m

ψie
−ψT λ, λ > 0,

where the ψi’s are the prespecified second-stage parameters. Let p(θ |Cs) be the
conditional prior of the parameter θ ∈ �s2 . The conditional limited information
likelihood is given by

L(Xn|θ, λ,Cs) = 1√
det(2π/nV )

e−n/2(M̄s1 (θ)−λ)T V −1(M̄s1 (θ)−λ),

where M̄s1(θ) = 1
n

∑n
i=1 Ms1(Xi, θ). The posterior of Cs can then be obtained by

integrating out θ and λ, which is proportional to the “integrated likelihood,”

p(Cs |Xn) ∝
∫ ∫

�s2×[0,∞)m
L(Xn|θ, λ,Cs)p(θ |Cs)p(λ|Cs)p(Cs) dθ dλ.(4.5)

A remark on the “dθ” part of this integration: the integration is with respect
to the nonzero elements of θ ∈ �s2 , where �s2 is the parameter space of those
free parameters only. For instance, suppose that the full parameter is (θ1, θ2, θ3) ∈
�1 × �2 × �3. Once we set θ3 = 0, then �s2 = �1 × �2 and integrating over θ

becomes a two-dimensional integration (w.r.t. θ1, θ2). Otherwise, if we set �s2 =
�1 × �2 × {0} and still treat it as a three-dimensional integration, �s2 would have
a zero Lebesgue measure and, as a result, the integration would always be zero.

We make the following assumptions.

ASSUMPTION 4.1. The parameter space � of the full model is compact.

The next assumption is imposed on the prior of θ .

ASSUMPTION 4.2. If Cs is true, then p(θ ∈ �s |Cs) > 0.
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ASSUMPTION 4.3. p(Cs) > 0 for each combination Cs .

The following assumption implies that �s is nonempty and compact, given that
Cs is true.

ASSUMPTION 4.4. Emj(X, θ) is continuous on �s for each mj in Cs .

Intuitively, we should select as many moment inequalities as possible since the
more moment inequalities there are, the smaller the identified region is. However,
if one or more of the selected moment inequalities are false, the identified region
is empty. The following theorem illustrates that the posterior probability is expo-
nentially small if the selected combination is false.

THEOREM 4.1. For combination Cs = (Ms1,�s2), under Assumptions 4.1–
4.4:

1. if Cs is true, then, in probability

lim inf
n→∞ p(Cs |Xn) > 0;

2. if Cs is not true, then for some α > 0,

p(Cs |Xn) = op(e−αn)p(Cs).

4.2. Selecting the optimal combination. The maximum posterior procedure
provides an optimality criterion to select the combination with the largest posterior
probability

C∗ = arg max
Cs

p(Cs |Xn).(4.6)

We are interested in studying the asymptotic properties of the optimal C∗. We
hope that the MPC will produce a desirable combination in the following three
senses. First, asymptotically, C∗ should be true. Second, it is desirable that it
should contain as many moment inequalities as possible since, intuitively, the more
moment inequalities we have, the smaller the identified region is and hence we
have more information about the true parameter. Finally, the model should be as
simple as possible.

We impose the following assumption in addition to Assumptions 4.1–4.4.

ASSUMPTION 4.5. Each true candidate combination Cs defines a connect-
ed �s .

We first consider using a (discrete) uniform prior for the candidate combina-
tions: for all Cs ,

p(Cs) = 1

2k(2p − 1)
.(4.7)
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Although this seems to be a natural prior to use, we found examples where it ac-
tually functions undesirably for model or moment selection. For example, suppose
that we want to compare the posterior probabilities of two candidate combinations,
C1

s = (M1
s1

,�1
s2

) and C2
s = (M2

s1
,�2

s2
), using the Bayes factor

BF12 = p(C1
s |Xn)

p(C2
s |Xn)

.

We fix �1
s2

= �2
s2

and assume M1
s1

⊂ M2
s1

, that is, the moment inequalities of M1
s1

are strictly contained in the moment inequalities of M2
s1

. If both Ci
s , i = 1,2, are

true, then the identified region �2
s defined by C2

s should be a strict subset of �1
s

defined by C1
s . As explained before, a smaller identified region is preferable since

it provides more precise information about the true parameter. Hence, we hope
that BF12 is asymptotically less than one if the MPC criterion is consistent with
this intuition. However, the following theorem indicates that, if the uniform prior
(4.7) is specified, then the result is in exactly the opposite direction.

For a matrix M , define ‖H‖ = √
trace(HHT ).

THEOREM 4.2. Suppose that Assumptions 4.1–4.5 are satisfied and a uniform
prior (4.7) is applied. Suppose that both Ci

s , i = 1,2, are true, M1
s1

⊂ M2
s1

and
�1

s2
= �2

s2
, In addition, suppose that ψi satisfies ψi < e−‖ψ‖·sup� ‖Em(X,θ)‖, i =

1, . . . , p. Then, w.p.a.1,

BF12 > 1.

Here, ψi is the second-stage parameter of the exponential prior of λi . In practice,
a small ψ is preferable because it leads to a noninformative prior on λ. However,
Theorem 4.2 says that if ψ is small (satisfying ψi < e−‖ψ‖·sup� ‖Em(X,θ)‖, i =
1, . . . , p) and a uniform prior for the candidate combinations is used, then the
result will be negative: a candidate with fewer moment constraints has a larger
posterior distribution. However, this is not a warning about the method, but rather
about the potential danger of the seemingly innocent choice of the uniform prior
on the candidate combinations. With this prior, it will be shown in Appendix C
that the posterior of each true combination is of order Op(1) and, up to the leading
order, is proportional to the prior measure of the identified region, as well as the
product of the ψi’s. As more moment inequalities are added, the identified region
gets smaller. Also, more small ψi’s are added in the product term. Both of these
factors make the resulting posterior probability smaller.

We will address this problem either by using a more informative prior on the
candidate combinations (Approach 1) or by placing some uninformative priors
on some components of the parameters θ and λ (Approach 2). Either way, the
posterior of each candidate is no longer of order Op(1) and the order of the optimal
candidate’s posterior will be the largest, which overrides the effects from the prior
measure of the identified region and the product of the ψi’s.
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4.3. Prior selection for consistency of MPC. We propose two approaches to
address the problem illustrated in Theorem 4.2.

APPROACH 1. One approach is to change the priors of all the candidate com-
binations. Instead of the uniform (equally likely) priors, we use unequal priors.
Specifically, the priors are data-size-dependent and tend to encourage those com-
binations with more moment inequalities and simpler parameter structures. One
such prior could be

p(Cs) ∝ nα[dim(Ms)−dim(�s)](4.8)

for some α > 0. This choice of prior encourages Cs with large dim(Ms) −
dim(�s).

One needs be aware that although p(Cs) ∝ en(dim(Ms)−dim(�s) also reward large
values of dim(Ms) − dim(�s), we do not recommend its use. This is because we
have shown earlier that p(Cs |Xn) = op(e−αn)p(Cs), that is, the posterior proba-
bility of a false combination is exponentially small. However, if an exponentially
large prior is used, it may override the “big gap” between the false and true com-
bination posteriors.

The drawback of the unequal prior (4.8) is that it is not a uniform one. In
Bayesian analysis, it is usually the nature of the data that determines the prop-
erties of the posterior and the priors are usually chosen to be uninformative. One
may consider using another approach to deriving the priors.

APPROACH 2. In this approach, we still use the discrete uniform (equally
likely) prior for the candidate combinations. However, we partition the parame-
ters θ and λ into “restricted” and “unrestricted” parts, according to the biases of
the selected and unselected moment functions. Formally, let

λ = EM(X,θ),

where M(X,θ) = (m1(X, θ), . . . ,mp(X, θ))T , the vector of all the candidate
moments, and θ = (θ1, . . . , θk)

T , the vector of full parameters supported on
�1 × · · · × �k . Suppose that a combination Cs = (Ms1,�s2) selects m moment
conditions Ms1 and leaves the rest of the moments (denoted by Mc

s1
) unused, while

selecting a submodel parameterized by θs ∈ �s2 , setting all of the other compo-
nents of θ (denoted by θc

s ) to be zero. One can view model selection as placing a
restriction on θ , while moment selection can be viewed as placing a restriction on
the bias λ.

Let λs be the subvector of λ corresponding to the selected moments. Let λc
s

denote the remaining components of λ corresponding to Mc
s1

. We then have

EMs1(X, θs) = λs, λs ≥ 0,

EMc
s1

(X, θs) = λc
s, λc

s ∈ R
p−m.
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The bias λs for the selected moments is restricted to be nonnegative, while the
bias λc

s for the unselected moments is left unrestricted. Therefore, we can define
restricted parameters as (λs, θ

c
s ), with restrictions

λs ≥ 0, θc
s = 0.

In addition, we call the remaining parameters (λc
s , θs) unrestricted parameters be-

cause (λc
s , θs) ∈ R

p−m × �s2 . [We have thus partitioned the moment functions
into M(X,θs) = (Ms1(X, θs)

T ,Mc
s1

(X, θs)
T )T and parameters into λ = (λs, λ

c
s)

and θ = (θs, θ
c
s ).]

For the unrestricted (selected) parameter θs , let t = dim(θs). We release the
compactness assumption on the support of θs and assume it is supported on R

t .
We then place the following “working” priors on the unrestricted parameters:

p(λc
s |Cs) ∼ Np−m(0, σ 2

n Ip−m),(4.9)

p(θs |Cs) ∼ Nt(0, nσ 2
n It ),(4.10)

where Nt denotes t-dimensional multivariate normal distribution. We require that
σn → ∞ as n tends to infinity, but σn/e

αn → 0,∀α > 0. Here, It denotes the t × t

identity matrix. Since the variance of each component of λc
s and θs approaches

infinity as the sample size tends to infinity, (4.9) and (4.10) tend to be very flat.
Hence, this choice of prior is uninformative. In addition, we still assign an expo-
nential prior to the restricted parameter λs ,

We then include both selected Ms and unselected Mc
s to construct the limited

information likelihood, which depends only on the unrestricted θs since θc
s = 0:

L(Xn|θs, λ,Cs) = 1√
det(2π/nV )

e−n/2(M̄(θs)−λ)T V −1(M̄(θs)−λ),

where M̄(θs) = 1
n

∑n
i=1 M(Xi, θs). The posterior of Cs can then be obtained by

integrating out θs and λ = (λT
s , λcT

s )T , which is proportional to the “integrated
likelihood”:

p(Cs |Xn) ∝
∫ ∫

�s2×[0,∞)m×Rp−m
L(Xn|θs, λ,Cs)p(θs |Cs)p(λs |Cs)p(λc

s |Cs)

×p(Cs) dθs dλs dλc
s .

Note that since multivariate normal priors are placed on the unrestricted parame-
ters, the parameter vector θs is no longer supported on a compact set. As a result,
to derive the large-sample properties of p(Cs |Xn) becomes much harder than in
the previous sections because EM(X,θ) may not be bounded on the noncompact
parameter space. Instead of providing a general proof, we will study the problem
for a specific model of Example 1.3 because this is the most interesting example in
the Introduction where we consider model and moment selection. In this example,
the model selection can correspond to selecting the useful explanatory variables
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and the moment selection can correspond to selecting the valid instrumental vari-
ables. The key feature of this example is that the moment inequality functions are
linearly dependent on θ . We point out that to establish consistency of Approach 2
in a more general framework is possible, but would require additional assumptions
that are much more technical.

ASSUMPTION 4.6. Suppose that the moment inequalities are given by

EZ(Y2 − XT θ) ≥ 0, EZ(XT θ − Y1) ≥ 0,

where Y1 ≤ Y2, and Z is a vector of positive random variables. Assume that:

(i) rank(EZXT ) = dim(X);
(ii) there exists at least one true candidate combination;

(iii) each true candidate Cs defines a compact identified region.

This assumption rules out those candidates that lead to unbounded identified
regions, in which case integrals can be infinite.

The following theorem shows that with either one of the two approaches de-
scribed above, asymptotically, the optimal C∗ can have all of the desirable proper-
ties: it is true, it defines the smallest nonempty identified region and it corresponds
to the simplest model (with the smallest number of free parameters). We refer to
this result as the consistency of maximum posterior criterion for the Bayesian mo-
ment/model selection problem.

THEOREM 4.3 (Consistency of MPC). Let

C∗ = arg max
Cs

p(Cs |Xn),

where p(Cs |Xn) is obtained from either one of the following:

1. prior (4.8) for candidate combinations, with Assumptions 4.1–4.5;
2. flat prior for candidate combinations, and parameter priors (4.9) and (4.10),

with Assumptions 4.2–4.6 for the instrumental variable interval regression
model (Example 1.3).

Then, w.p.a.1, C∗ satisfies:

1. it is true;
2. among all of the true combinations, it has the largest dim(Ms) − dim(�s).

5. Monte Carlo experiments. This section presents some Monte Carlo sim-
ulation results. We first provide evidence for the finite-sample behaviors of the
consistent estimators described in the previous sections as well as the posterior dis-
tribution. We simulate the models described in Examples 1 and 2 in Chernozhukov,
Hong and Tamer (2007). We then show simulated evidence of the consistency of
MPC for the moment/model selection problem.
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TABLE 1
Estimation based on posterior density

εn
√

n lnn ln lnn

n = 500 [−0.2841,5.2634] [−0.123,5.113] [−0.0389,4.702]
n = 1000 [−0.2362,5.2267] [−0.1135,5.0977] [−0.0342,4.9110]
n = 5000 [−0.1158,5.1233] [−0.0477,5.0476] [−0.0202,4.9779]

EXAMPLE 5.1 (Interval data). Consider Example 1.1 described in Section 2.
The parameter of interest is θ = E(Y ) with moment inequalities

E(Y2 − θ) ≥ 0, E(θ − Y1) ≥ 0.

We set Y1 ∼ N(0,0.1) and Y2 ∼ N(5,0.1), then � = [0,5]. Y1 and Y2 are gen-
erated independently and observations with Y1 > Y2 are discarded. We also set
ψ1 = 0.1, ψ2 = 0.5 and V = I , the identity matrix in the likelihood function. In
addition, we place a flat prior on θ . We report the estimated identified interval of θ

described both in Theorem 3.2 with g(θ) = θ and in Theorem 3.3 for sample sizes
N = 500, 1000, 5000 and various choices of εn,πn.

Table 1 reports the estimation of � as in Theorem 3.3. To compare the results
corresponding to the choices of εn, for each interval [a, b], we calculate γ = (a −
0)2 + (b − 5)2. We find that ε = ln lnn performs better than the other two choices
since it has a lower γ value.

To construct the estimator based on the posterior c.d.f., we carry out the
Metropolis algorithm to draw B = 5000 samples from the posterior distribution,
then calculate the πn-quantile of the empirical c.d.f. with various choices of πn.
For the Metropolis algorithm, we set initial value θ0 = 1 and a jump distribu-
tion θ̃ ∼ N(θj ,0.5). Table 2 reports the findings with πn = e−√

n, n−1 and 1/ lnn.
πn = 1

n
appears to be a better choice compared with other two. We also note that

πn = 1/ lnn tends to zero too slow to fully estimate the entire identified interval:
the estimated interval shrinks too much inside �.

In addition, Figure 1 plots the posterior density function of θ with two choices
of priors: a flat prior and an N(0,0.25) prior. Theoretically, one needs to truncate

TABLE 2
Estimation based on empirical c.d.f.

πn e−√
n 1

n
1

lnn

n = 500 [−0.0716,5.0418] [−0.0498,5.0069] [0.4048,3.3447]
n = 1000 [−0.0422,4.9983] [−0.0383,5.0164] [0.3304,3.2542]
n = 5000 [−0.0155,5.0098] [−0.0063,4.9927] [0.2717,3.8012]
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FIG. 1. Example 5.1: the posterior density function of θ .

the normal distribution so that the priors are supported on a compact set. However,
since the tail of the normal density function is very thin and we can choose a very
large parameter space, we believe a normal prior is workable here. We see that
when a flat prior is used, the posterior density function is high on the entire identi-
fied interval [0,5], but when the prior is set to be N(0,0.25), most posterior mass
falls in [0,2], which tends to underestimate the true identified interval. However,
with this more informative prior, the posterior provides more information about
the location of θ .

EXAMPLE 5.2 (Interval outcomes in regression models). We simulate the in-
strumental inequality model described in Example 1.3,

E(ZY1) ≤ E(ZXT )θ ≤ E(ZY2),

where θ = (θ1, θ2)
T ,X = (X1,X2)

T and Y = (Y1, Y2)
T ∈ R

2. Generate X ∼
N2((1,1)T , I2). Let Z1 = X1 +X2 and Z2 = X1 + 2X2. Generate Y1 ∼ N(3,0.1),
Y2 ∼ N(6,0.1) independently. We discard a stack of generated data if either
Z1 or Z2 is negative. The identified region is f � = {θ : 2 ≤ θ1 + θ2 ≤ 4,9 ≤
4θ1 + 5θ2 ≤ 18}, a two-dimensional region with parallelogram boundary. To esti-
mate this model, set ψ = (0.1,0.1,0.5,0.5)T , V = I . Fixing sample size n = 500,
we implement the Metropolis algorithm to draw B = 5000 samples from the pos-
terior distribution.

We first put a flat prior on θ . Figure 2 (left) displays the parallelogram boundary
of �, as well as 5000 draws from the posterior distribution. Most of the draws fall
uniformly inside the identified set, except for those close to the two opposite angles
of the parallelogram. We can see that there is a small “bias” at the boundaries.

In order to show that when a more informative prior is applied, the posterior
distribution indeed provides more information about the location of the true para-
meter inside the identified region, we repeat the same MCMC procedure, but with
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FIG. 2. Example 5.2: the identified set and MCMC draws. Left: flat prior; right: prior (5.1).

prior distribution

θ1 ∼ N(10,122), θ2 ∼ N(−6,122),(5.1)

where θ1 and θ2 are a priori independent. This prior can be used when, for instance,
a previous study estimates that Eθ1 ≈ 10 and Eθ2 ≈ −6, with the same standard
deviation, 12. Figure 2 (right) displays 5000 MCMC draws from the posterior
derived from prior (5.1). We see that the draws mostly concentrate at the lower-
right corner inside the identified region, which is close to (10,−6), showing that
our Bayesian approach indeed provides more information on θ in this case than the
frequentist method; the latter would only estimate the identified region and provide
a confidence set, but not tell how θ is distributed inside it.

EXAMPLE 5.3 (Moment selection: interval censored data). Suppose θ ∈ � ⊂
R. We consider four moment conditions:

EY1 ≥ θ;(5.2)

EY2 ≤ θ;(5.3)

EY3 ≤ θ;(5.4)

EY4 ≥ θ.(5.5)

If we assume that � = [0,10] and EY1 < 0 < EY2 < EY3 < EY4 < 10, then for
fixed �, (5.2) is incorrect. We generate N i.i.d. data from Y1 ∼ N(−1,0.1), Y2 ∼
N(1,0.1), Y3 ∼ N(2,0.1) and Y4 ∼ N(3,0.1), with N = 100,1000 and 5000. We
fix θ ∈ � and use the prior described in Section 4.3, Approach 2 to construct the
posterior probabilities for 24 − 1 = 15 candidate combinations of moments. We
expect to see that each combination, including (5.2), should have a posterior close
to zero for large N and combination [(5.3), (5.4), (5.5)] should have the highest
posterior probability.
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TABLE 3
Posterior probabilities, σ 2

n = n. Set of true moments = {(5.3), (5.4), (5.5)}

Moments (5.3), (5.4), (5.5) (5.3), (5.4) (5.3), (5.5) (5.4), (5.5) (5.3) (5.4) (5.5)

n = 100 0.0076 0.0863 0.0398 0.0222 0.3564 0.3304 0.1572

n = 1000 0.0546 0.1979 0.0893 0.0502 0.2568 0.2387 0.1125

n = 5000 0.1645 0.2711 0.1230 0.0677 0.1580 0.1466 0.0691

The simulation result shows that if σ 2
n = n, then although the posterior of com-

binations including (5.2) goes to zero quickly, the posterior probability of [(5.3),
(5.4), (5.5)] is still quite small, even with N = 5000, and is not the largest one
among other true combinations (Table 3). Hence, the choice σ 2

n = n is too conser-
vative. However, when σ 2

n = n2, the simulation result is exactly as expected. For
N = 1000 and 5000, the combination [(5.3), (5.4), (5.5)] has the largest posterior
probability (Table 4). The combinations not listed are those including (5.2). They
all have almost zero posterior, as desired.

6. Discussion. In this paper, we assume that the interior of the identified re-
gion int(�) is not empty. The case when int(�) is empty is more complicated since
there is no open set contained by �. When � has no interior, moment inequality
models may contain exact moment conditions:

Em1j (X, θ0) ≥ 0, j = 1, . . . , r,

Em2j (X, θ0) = 0, j = 1, . . . , p.

The identified region is then defined by

� = {θ :Em1(X, θ) ≥ 0,Em2(X, θ) = 0}.
One of the problems one needs to take into account when considering the as-
ymptotic behaviors of the posterior distribution is that � has zero Lebesgue mea-
sure, due to the loss of dimensionality. Thus, integrating over � always produces
zero. For reasons of brevity, we do not provide a detailed discussion of this case.

TABLE 4
Posterior probabilities, σ 2

n = n2. Set of true moments = {(5.3), (5.4), (5.5)}

Moments (5.3), (5.4), (5.5) (5.3), (5.4) (5.3), (5.5) (5.4), (5.5) (5.3) (5.4) (5.5)

n = 100 0.2344 0.2879 0.1290 0.0682 0.1192 0.1104 0.0509

n = 1000 0.8286 0.0952 0.0428 0.0241 0.0039 0.0036 0.0017

n = 5000 0.9615 0.0223 0.0101 0.0056 0.0002 0.0002 0.0001
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We point out that in this case, a dense subset in � still plays an important role
in characterizing the large-sample behaviors of the posterior distribution. Define
� = {θ ∈ � :Em1(X, θ) > 0}. By assuming that � is dense in �, it can still be
shown that there is a large “gap” between the large-sample posterior behavior in-
side and outside the identified region. Inside �, instead of being bounded below
by a positive constant, we can show that the posterior density function is bounded
by a polynomial rate. However, it still goes to zero exponentially fast outside the
identified region. Interested readers are referred to our technical report Liao and
Jiang (2008).

In partially identified models, there are two different ways to make inferences:
one is studying the identified region (including consistent estimation and construct-
ing confidence regions), while the other is directly studying the true parameter. The
simulation results demonstrate that when dealing with the first goal, a flat prior is
appropriate; to achieve the second goal, an informative prior is preferable. Hence,
in this case, one should include as much information on the prior as possible. We
believe our Bayesian method is more advantageous than the frequentist method
when dealing with the second goal since the posterior distribution can provide
more information about the inside of the identified region because of the prior
distribution. The simulation results have verified our beliefs.

Recently, Moon and Schorfheide (2009) have considered the Bayesian approach
to partially identified models when the model can involve three types of parame-
ters: the structural parameters of interest θ , a reduced-form parameter vector φ that
is point-identified by data and also a vector of auxiliary parameters α which links
structural and reduced-form parameters via some known function θ = θ(φ,α). For
a particular value of φ, the auxiliary parameter takes its value in some set Aφ and
the identified set can then be written as

�(φ) = {θ = θ(φ,α) :α ∈ Aφ}.
After specifying a prior distribution for both φ and α, and combining with a likeli-
hood function of φ, a joint posterior of α and φ is derived, which also determines
the posterior of θ via θ = θ(φ,α). The authors also derive the Bayesian credible
sets and compare them with frequentist confidence intervals for a number of partic-
ular models where θ(φ,α) is linear in (φ,α) and does not involve other functions
of the unknown data distribution. However, one of the main challenges of their
approach is that it often requires reparametrizations between (θ,α) and (φ,α).
Initially, it is often more natural to place a prior on the structural parameter θ and
α|θ , but it may be inconvenient to derive the distribution p(φ) and p(α|φ) from
p(θ,α). Another challenge is that in some models that define the relation θ(φ,α)

implicitly, if dim(φ) > dim(θ), it is nontrivial to specify a prior distribution p(φ)

and p(α|φ) such that there is a solution θ = θ(φ,α). Also, if θ(φ,α) involves
an unknown distribution of the data-generating process, there is extra variance to
account for when estimating it.
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In contrast to Moon and Schorfheide (2009), we proceed in a different frame-
work of moment inequalities, one which does not require modelling the likelihood
function. We construct the posterior distribution of the structural parameter us-
ing the limited information likelihood and then study the frequentist properties of
the posterior. In addition, we also study the problem of model/moment selection,
which is not addressed by Moon and Schorfheide (2009).

Based on the posterior distribution, we can, in principle, construct a credible set
for the true parameter conditional on the data with a required coverage probability
using our method (this is beyond the scope of this paper, but it is straightforward,
using the posterior density function). Moon and Schorfheide (2009) have derived a
Bayesian credible set for the true parameter and then compared it with the frequen-
tist confidence interval and concluded that while frequentist confidence intervals
usually extend beyond the boundaries of the identified set, the Bayesian credible
sets tend to be located in the interior of the identified set. In the framework of this
paper, it is also possible to derive a Bayesian credible set for the identified region if
one can express the identified region explicitly in terms of θ and λ, an interesting
topic for future work.

APPENDIX A: PROOFS FOR SECTION 2

A.1. Proof of Theorem 2.1. Let g(�)−ε = {x ∈ g(�) :d(x, g(�)c) ≥ ε},
g(�)+ε = {x ∈ g(�) :d(x, g(�)) ≤ ε}.

For all ε > 0, we proceed in two steps: first, show ∃N ∈ N such that when
n > N , ∀ε > 0,

g(�)−ε ⊂ ĝ

and then show ∃N ∈ N such that when n > N , ∀ε > 0, ĝ ⊂ g(�)+ε .
Let infg(�) = infθ∈� g(θ) and supg(�) = supθ∈� g(θ).
Step I-1. Show that g(�) = [infg(�), supg(�)]: obviously, g(�) ⊂ [infg(�),

supg(�)]. On the other hand, ∀x ∈ [infg(�), supg(�)], since � is compact,
∃θ1, θ2 ∈ � so that g(θ1) ≤ x ≤ g(θ2). By assumptions, � is connected and g

is continuous. By the intermediate value theorem, ∃θ∗ ∈ �, x = g(θ∗). Hence,
x ∈ g(�).

Step I-2. Show that ∃θ∗ ∈ A and a ball B(θ∗,R∗) such that B(θ∗,R∗) ⊂ {θ ∈
� :g(θ) ≤ infθ∈� g(�)−ε}: in fact, ∀ε > 0, it follows by step I-1 that g(�)−ε =
[infg(�) + ε, supg(�) − ε]. Hence, infθ∈� g(�)−ε = infg(�) + ε. Moreover,
∃θ1 ∈ �, g(θ1) < infg(�) + ε. By the continuity of g, there exists a ball B(θ1,R)

such that ∀ω ∈ B(θ1,R), g(ω) < infg(�) + ε. Hence, B(θ1,R) ⊂ {θ ∈ � :g(θ) ≤
infθ∈� g(�)−ε}.

If θ1 ∈ A, then let θ∗ = θ1, R∗ = R. If θ1 ∈ � \ A, since A is dense in
�, B(θ1,

R
2 ) ∩ A �= φ. Arbitrarily pick up an element θ2 ∈ A ∩ B(θ1,

R
2 ), ∀θ ∈

B(θ2,
R
4 ), then d(θ, θ1) ≤ d(θ, θ2)+d(θ2, θ1) ≤ R

4 + R
2 < R. Hence, θ ∈ B(θ1,R).

It follows that B(θ2,
R
4 ) ⊂ B(θ1,R) ⊂ {θ ∈ � :g(θ) ≤ infθ∈� g(�)−ε} and θ2 ∈ A.

Let θ∗ = θ2, R∗ = R
4 .
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Step I-3. Show that g(�)−ε ⊂ ĝ for large n: by assumption 2 of Theorem 2.1,
for θ∗, there exists Rθ∗ and N ∈ N such that when ρ < Rθ∗ and n > N , P(θ ∈
B(θ∗, ρ)|Xn) > πn w.p.a.1. If we let R1 = min{Rθ∗,R∗}, then B(θ∗,R1) ⊂ {θ ∈
� :g(θ) ≤ infθ∈� g(�)−ε}. Hence, when n > N , ∀x ∈ g(�)−ε ,

Fg(x) = P
(
g(θ) ≤ x|Xn) ≥ P

(
g(θ) ≤ infg(�)−ε|Xn)

≥ P
(
θ ∈ B(θ∗,R1)|Xn)

> πn.

Hence, x ≥ F−1
g (πn). Likewise, we can show that x ≤ F−1(1 − πn). Therefore,

g(�)−ε ⊂ [F−1
g (πn),F

−1
g (1 − πn)].

Step II. Show for large n that ĝ ⊂ g(�)+ε: step I-1 implies that g(�)+ε =
[infg(�) − ε, supg(�) + ε]. ∀x ∈ [g(�)+ε]c, either x < infg(�) − ε or x >

supg(�) + ε. If x < infg(�) − ε, then {θ ∈ � :g(θ) ≤ x} ⊂ {θ ∈ � :g(θ) ≤
infg(�) − ε}. In addition, since g is continuous on �, ∃δ > 0 such that when
d(θ,�) ≤ δ, g(θ) > infg(�) − ε. Therefore, ∀θ ∈ {θ :g(θ) ≤ infg(�) − ε},
d(θ,�) > δ, which implies that {θ :g(θ) ≤ infg(�) − ε} ⊂ (�c)−δ . By assump-
tion 1 of Theorem 2.1, ∃N ∈ N such that when n > N , P(θ ∈ (�c)−δ|Xn) < πn

w.p.a.1. It follows that

P
(
g(θ) ≤ x|Xn) ≤ P

(
g(θ) ≤ infg(�) − ε|Xn) ≤ P

(
θ ∈ (�c)−δ|Xn)

< πn.

Hence, x ≤ F−1
g (πn). If x > supg(�) + ε, then, by a similar argument, we can

show that x ≥ F−1
g (1−πn). Therefore, for n > N , if x ∈ [F−1

g (πn),F
−1
g (1−πn)],

then x ∈ g(�)+ε . This implies that ĝ ⊂ g(�)+ε .
Combining steps I and II, since ε is arbitrary, dH (ĝ, g(�)) → 0 in probability.

APPENDIX B: PROOFS FOR SECTION 3

Throughout the proofs, φ denotes the empty set and μ(A) denotes the Lebesgue
measure of set A.

B.1. Proof of Lemma 3.1. Recall that (�c)−ε = {θ :d(θ,�) ≥ ε},
which is compact. ∀θ ∈ (�c)−ε , minj

Emj (X,θ)√
vjj

< 0. ∃θ∗ ∈ (�c)−ε such that

supθ∈(�c)−ε minj
Emj (X,θ)√

vjj
= minj

Emj (X,θ∗)√
vjj

< 0. If we let

δ = − sup
θ∈(�c)−ε

min
j

Emj (X, θ)√
vjj

> 0,

then ∀θ ∈ (�c)−ε , minj
Emj (X,θ)√

vjj
≤ −δ < − δ

2 , which implies that (�c)−ε ⊂ Aδ/2.

Hence, P(θ ∈ (�c)−ε|Xn) ≤ P(θ ∈ Aδ/2|Xn) = op(an).
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B.2. Proof of Theorem 3.1. The following lemma is useful.

LEMMA B.1. With probability 1,

P(Z ≥ 0) ≥ 1 − p · �
(
−√

nmin
j

{
m̄j (θ) − (V ψ)j/n√

vjj

})
,(B.1)

P(Z ≥ 0) ≤ �

(√
nmin

j

{
m̄j (θ) − (V ψ)j/n√

vjj

})
.(B.2)

PROOF. Let Z = (Z1, . . . ,Zp)T .

(B.1): P(Z ≥ 0) = 1 − P

( ⋃
j≤p

Zj < 0
)

≥ 1 −
p∑

j=1

P(Zj < 0)

≥ 1 −
p∑

j=1

�

(
−√

n
m̄j (θ) − (V ψ)j/n√

vjj

)

≥ 1 − p · �
(
−√

nmin
j

{
m̄j (θ) − (V ψ)j/n√

vjj

})
.

(B.2): P(Z ≥ 0) ≤ min
j

P (Zj ≥ 0) = �

(√
nmin

j

{
m̄j (θ) − (V ψ)j/n√

vjj

})
. �

PROOF OF THEOREM 3.1. 1. According to Lemma 3.1, it suffices to show
that, w.p.a.1, for any δ > 0, P(θ ∈ Aδ|Xn) = op(e−αn) for some α > 0. De-
fine

Âδ =
{
θ : min

j

m̄j (X, θ)√
vjj

< −δ

}
.

Then

P(θ ∈ Aδ|Xn) ∝
∫
Aδ

p(θ)L(θ) dθ

=
∫
Aδ∩Âδ

p(θ)L(θ) dθ +
∫
Aδ∩Âc

δ

p(θ)L(θ) dθ

≤
∫
Âδ

p(θ)L(θ) dθ +
∫
Aδ∩Âc

δ

p(θ)L(θ) dθ,

Aδ ∩ Âc
δ =

{
θ : min

j

Emj (X, θ)√
vjj

< −δ

}

∩
{
θ :

m̄i(X, θ)√
vii

≥ −δ, i = 1, . . . , p

}
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=
( p⋃

j=1

{
θ :

Emj(X, θ)√
vjj

< −δ

})

∩
{
θ :

m̄i(X, θ)√
vii

≥ −δ, i = 1, . . . , p

}

=
p⋃

j=1

({
θ :

Emj(X, θ)√
vjj

< −δ

}

∩
{
θ :

m̄i(X, θ)√
vii

≥ −δ, i = 1, . . . , p

})

=
p⋃

j=1

Aj ,

where

Aj =
{
θ :

Emj(X, θ)√
vjj

< −δ

}
∩

{
θ :

m̄i(X, θ)√
vii

≥ −δ, i = 1, . . . , p

}
.

By the weak law of large numbers, Aj → φ. Hence, μ(Aj ) = 0 for any j .
Then μ(Aδ ∩ Âc

δ) = μ(
⋃

j Aj ) ≤ ∑
j μ(Aj ) = 0 w.p.a.1. Thus, w.p.a.1, P(θ ∈

Aδ|Xn) ≤ Const
∫
Âδ

p(θ)L(θ) dθ . In addition, w.p.a.1, for some ε > 0,

L(θ) = P(Z ≥ 0)e−ψT m̄(θ)+1/(2n)ψT V ψ
∏
i

ψi

≤ Const ·P(Z ≥ 0)e‖ψ‖(supθ∈� ‖Em(X,θ)‖+ε)+ε

≤ Const ·�
(√

nmin
j

m̄j (X, θ)√
vjj

+ Op

(
1√
n

))
.

Therefore, w.p.a.1,

P(θ ∈ Aδ|Xn) ≤ Const ·
∫
Âδ

p(θ)�

(√
nmin

j

m̄j (X, θ)√
vjj

+ Op

(
1√
n

))
dθ

≤ Const ·�
(
−δ

√
n + Op

(
1√
n

))

≤ Const ·�
(
−δ

2

√
n

)

= op(e−δ2/8n).

2. Define

�n =
{
θ : min

j

m̄j (θ)√
vjj

> 0
}
.
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By Fatou’s lemma, w.p.a.1,

lim inf
n→∞

∫
�

p(θ)L(θ) dθ

≥
∫
�

lim inf
n→∞ p(θ)L(θ) dθ ≥

∫
�∩�∩�n

lim inf
n→∞ p(θ)L(θ) dθ

≥
∫
�∩�∩�n

p(θ) lim inf
n→∞

(
1 − p · �

(
−√

nmin
j

m̄j (θ) − (V ψ)j/n√
vjj

))
dθ

≥
∫
�∩�∩�n

p(θ)

(
1 − p lim sup

n→∞
·�

(
−√

nmin
j

m̄j (θ)√
vjj

+ Op

(
1√
n

)))
dθ

≥
∫
�∩�∩�n

p(θ)

(
1 − p lim sup

n→∞
·�

(
−√

nmin
j

m̄j (θ)

2
√

vjj

))
dθ

≥ inf
θ∈�

p(θ)μ(� ∩ � ∩ �n),

μ(� ∩ � ∩ �n)

= μ(� ∩ �) − μ(� ∩ � ∩ �c
n) = μ(�) − μ(� ∩ � ∩ �c

n)

≥ μ(�) − μ(� ∩ �c
n),

where

� ∩ �c
n = � ∩

(⋃
j

{
θ :

m̄j (θ)√
vjj

≤ 0
})

= ⋃
j

(
� ∩

{
θ :

m̄j (θ)√
vjj

≤ 0
})

.

Therefore, w.p.a.1,

μ(� ∩ �c
n) ≤

p∑
j=1

μ

(
� ∩

{
θ :

m̄j (θ)√
vjj

≤ 0
})

≤
p∑

j=1

μ
(
θ :Emj(X, θ) = 0

) = 0.

It follows that μ(� ∩ � ∩ �n) ≥ μ(�) > 0. Since p(θ) is also bounded away
from zero on �, lim infn→∞ P(θ ∈ �|Xn) > 0 in probability. �

B.3. Proof of Theorem 3.2. In Theorem 2.1, let A = int(�), dense in �. ∀ω ∈
int(�), ∃R > 0 such that B(ω,R) ⊂ �. Since πn → 0 but P(θ ∈ B(ω,R)|Xn) is
bounded away from 0 according to part 2 of Theorem 3.1, we have that for large n,
P(θ ∈ B(ω,R)|Xn) > πn. Therefore, by Theorem 2.1,

[F−1
g (πn),F

−1
g (1 − πn)] → g(�) in probability.

B.4. Proof of Theorem 3.3. To show this theorem, the following lemmas are
useful.
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LEMMA B.2. In probability,

lim sup
n→∞

max
θ∈�

lnp(θ |Xn) < ∞.(B.3)

∀ε > 0,

lim inf
n→∞ inf

θ∈�−ε
p(θ |Xn) > 0.(B.4)

PROOF. (B.3): For some ε > 0,

lim sup
n→∞

sup
θ∈�

L(θ) ≤ ∏
j

ψje
‖ψ‖(supθ∈� ‖Em(X,θ)‖+ε)+ε < ∞.

Thus,

lim sup
n→∞

max
θ∈�

lnp(θ |Xn) = Const · lim sup
n→∞

max
θ∈�

lnp(θ)L(θ)

≤ C · ln
(

sup
θ∈�

p(θ) · lim sup
n→∞

sup
θ∈�

L(θ)
)

< ∞.

(B.4): ∀ε > 0,

lim inf
n→∞ inf

θ∈�−ε
L(θ) ≥ Const · lim inf

n→∞ inf
θ∈�−ε

P (Zθ ≥ 0)e−‖ψ‖·(supθ∈� ‖Em(X,θ)‖+ε)

≥ C · lim inf
n→∞ inf

θ∈�−ε
P (Zθ ≥ 0) > 0.

Here, C denotes a positive constant. The last inequality follows since Zθ ∼
Np(m̄(θ) − V ψ/n,V/n), �−ε ⊂ � and Em(X, θ) ≥ 0 on �. �

LEMMA B.3. In probability,

1. for all ε > 0,

lim sup
n→∞

sup
θ∈�−ε

|max
ω∈�

lnp(ω|Xn) − lnp(θ |Xn)| < ∞;

2. if εn ≺ n, then ∀ε > 0,

εn

infθ∈(�c)−ε |lnp(θ |Xn)| → 0.

PROOF. 1. For each n,

sup
θ∈�−ε

|max
ω∈�

lnp(ω|Xn) − lnp(θ |Xn)| = max
θ∈�

lnp(θ |Xn) − inf
θ∈�−ε

lnp(θ |Xn).

The result follows immediate from Lemma B.2.
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2. W.p.a.1, lnp(θ |Xn) < 0 on (�c)−ε , hence

inf
θ∈(�c)−ε

|lnp(θ |Xn)|

= − sup
θ∈(�c)−ε

lnp(θ |Xn)

≥ −Const · ln sup
θ∈(�c)−ε

L(θ)

≥ −C · ln sup
θ∈(�c)−ε

P (Zθ ≥ 0)

≥ −C · ln sup
θ∈(�c)−ε

�

(√
nmin

j

m̄j (θ) − (V ψ)j/n√
vjj

)
.

As shown in the proof of Lemma 3.1, there exists some δ > 0 such that
(�c)−ε ⊂ Aδ , where Aδ = {θ : minj

Emj (X,θ)√
vjj

< −δ}. Thus, w.p.a.1,

inf
θ∈(�c)−ε

|lnp(θ |Xn)| ≥ −C · ln sup
θ∈Aδ

�

(√
nmin

j

m̄j (θ) − (V ψ)j/n√
vjj

)

≥ −C · ln sup
θ∈Aδ

�

(√
nmin

j

m̄j (θ)

2
√

vjj

)

≥ −C · ln�

(
−δ

2

√
n

)

≥ −C1 · n + C2 lnn + C3,

where C1 > 0,C2 and C3 denote finite constants. This implies that
infθ∈(�c)−ε |lnp(θ |Xn)| = Op(n). �

PROOF OF THEOREM 3.3. For all ε > 0, since εn → ∞, we have, by part 1 of
Lemma B.3, that ∃N ∈ N such that when n > N , for any θ ∈ �−ε ,

max
ω∈�

lnp(ω|Xn) − lnp(θ |Xn) < εn, w.p.a.1.

Therefore, when n > N , �−ε ⊂ An, which implies that lim supn→∞ supθ∈� d(θ,

An) ≤ ε.
On the other hand, let M = lim infn→∞ maxθ∈� lnp(θ |Xn). By (B.3) in Lem-

ma B.2, M < ∞. Moreover, by (B.4),

M ≥ lim inf
n→∞ inf

θ∈�−ε
lnp(θ |Xn) ≥ ln lim inf

n→∞ inf
θ∈�−ε

p(θ |Xn) > −∞.

Hence, M ∈ R and, by the definition of M , ∃N1 ∈ N such that when n > N1,

max
θ∈�

lnp(θ |Xn) > M − ε.
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In addition, ∀θ ∈ (�c)−ε , p(θ |Xn) → 0 in probability. Thus, for large n,
lnp(θ |Xn) < 0 on (�c)−ε . ∃N2 ∈ N such that when n > N2,

inf
θ∈(�c)−ε

|lnp(θ |Xn)| = − sup
θ∈(�c)−ε

lnp(θ |Xn) > εn − (M − ε),

where the inequality follows by part 2 of Lemma B.3. Therefore, when n > N2,

sup
θ∈(�c)−ε

lnp(θ |Xn) < −εn + (M − ε).(B.5)

However, when n > max{N1,N2}, ∀θ ∈ An = {θ : maxω∈� lnp(ω|Xn) − lnp(θ |
Xn) ≤ εn}, lnp(θ |Xn) ≥ maxω∈� lnp(ω|Xn) − εn > M − ε − εn. Comparing this
with (B.5), we see that θ /∈ (�c)−ε . In other words, d(θ,�) < ε. It follows that

lim sup
n→∞

sup
θ∈An

d(θ,�) ≤ ε.

Since ε is arbitrary, dH (An,�) → 0 in probability. �

APPENDIX C: PROOFS FOR SECTION 4

LEMMA C.1. If we suppose that Cs = (Ms,�s), �s = {θ ∈ �s :EMs(X, θ) ≥
0} and �s is compact, then, for some ξ ∈ �s and normalization parameter C,

p lim
n→∞p(Cs |Xn) = C

(∏
j∈S

)
p(Cs)P (θ ∈ �s |Cs)e

−ψT EMs(X,ξ).(C.1)

PROOF. By the integral intermediate value theorem, the right-hand side of
(C.1) can be written as

RHS = C

(∏
j∈S

)
p(Cs)

∫
�s

1�sp(θ |Cs)e
−ψT EMs(X,θ) dθ.(C.2)

On the other hand,

p(Cs |Xn) = C

∫ ∫
�s×[0,∞)m

1√
det((2π)/nV )

× e−n/2(M̄s (θ)−λ)T V −1(M̄s(θ)−λ)

×
(∏

j∈S

ψj

)
e−ψT λp(θ |Cs)p(Cs) dθ dλ(C.3)

= C

(∏
j∈S

)
p(Cs)

∫
�s

p(θ |Cs)p(Zθ ≥ 0)

× e−ψT M̄s(θ)+1/(2n)ψT V ψ dθ,
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where Zθ ∼ Nm(M̄s(θ) − V ψ
n

, V
n
). Take the difference between (C.2) and (C.3):

|p(Cs |Xn) − RHS|
≤ Const ·p(Cs)

(C.4)
×

∫
�s

p(θ |Cs)
∣∣1�sp(θ |Cs)e

−ψT EMs(X,θ)

− p(Zθ ≥ 0)e−ψT M̄s(θ)+1/(2n)ψT V ψ
∣∣dθ.

If we let �(θ) = p(θ |Cs)|1�sp(θ |Cs)e
−ψT EMs(X,θ) − p(Zθ ≥ 0) ×

e−ψT M̄s(θ)+1/(2n)ψT V ψ |, then (C.4) can be rewritten as

|p(Cs |Xn) − RHS|
≤ Const ·p(Cs)

(∫
U1

�(θ)dθ +
∫
U2

�(θ)dθ +
∫
U3

�(θ)dθ

)
,

where

U1 = {θ ∈ �s :EMs(X, θ) > 0},
U2 = {θ ∈ �s :EMs(X, θ) ≥ 0,Emj (X, θ) = 0 for some mj ∈ Ms},
U3 = {θ ∈ �s : for some mj ∈ Ms,Emj(X, θ) < 0}.

We next look at the integrations on Ui , i = 1,2,3.

U1: Note that �s = {θ ∈ �s :EMs(X, θ) ≥ 0} and Zθ ∼ Nm(M̄s(θ) − V ψ
n

, N
n
).

For any ε > 0, by the uniform weak law of large numbers, w.p.a.1, supθ∈U1
|P(Zθ ≥

0) − 1�s | < ε. Hence, for large n, w.p.a.1,

sup
θ∈U1

∣∣1�sp(θ |Cs)e
−ψT EMs(X,θ) − p(Zθ ≥ 0)e−ψT M̄s(θ)+1/(2n)ψT V ψ

∣∣ < ε.

Hence, ∫
U1

�(θ)dθ ≤ ε

∫
U1

p(θ |Cs)dθ ≤ ε.

U2: The Lebesgue measure of U2 = 0.
U3: ∀θ ∈ U3, 1θ∈�s = 0, hence,

�(θ) = p(θ |Cs)P (Zθ ≥ 0)

× e−ψT M̄s(θ)+1/(2n)ψT V ψ ∀ε > 0,

w.p.a.1, P(Zθ ≥ 0) < ε, thus, for large n, w.p.a.1,
∫
U3

�(θ)dθ ≤ ε

∫
U3

p(θ |Cs)e
−ψT M̄s(θ) dθ

≤ e‖ψ‖·(sup�s
‖EMs(X,θ)‖+ε)ε.
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We have thus shown that |p(Cs |Xn) − RHS| < Const ·p(Cs)ε, w.p.a.1, with arbi-
trarily small ε. �

C.1. Proof of Theorem 4.1.

1. The result follows immediately from Lemma C.1 and Assumption 4.2.
2. For some normalization parameter C,

p(Cs |Xn) = C

∫ ∫
�s×[0,∞)m

1√
det(2π/nV )

× e−n/2(M̄s(θ)−λ)T V −1(M̄s(θ)−λ)

×
(∏

j∈S

ψj

)
e−ψT λp(θ |Cs)p(Cs) dθ dλ.

Since V −1 is positive definite and Cs = (Ms,�s) is not true, ∃τ > 0 such that

inf
�s×[0,∞)m

(
EMs(X, θ) − λ

)T
V −1(

EMs(X, θ) − λ
)
> τ.

Hence, w.p.a.1, inf�s×[0,∞)m(M̄s(θ) − λ)T V −1(M̄s(θ) − λ) > τ . Therefore,
w.p.a.1,

p(Cs |Xn) ≤ C

(∏
j∈S

ψj

)
e−n/2τ

×
∫ ∫

�s×[0,∞)m

1√
det(2π/nV )

× e−ψT λp(θ |Cs)p(Cs) dθ dλ

≤ Const ·nme−n/2τp(Cs)

(∏
S

ψj

)∫
[0,∞)m

e−ψT λ dλ

≤ e−τ/4np(Cs).

C.2. Proof of Theorem 4.2. If we let � denote the index set corresponding
to the moment inequalities that are selected by C2

s but not by C1
s , then p(C2

s Xn)

has a
∏

j∈� ψj term that does not show up in p(C1
s |Xn). If p(C1

s ) = p(C2
s ), by

Lemma C.1,

p lim
n→∞ BF12 = P(θ ∈ �1

s |C1
s )

P (θ ∈ �2
s |C2

s )
· e−ψT

1 EM1
s (ξ1)

e−ψT
2 EM2

s (ξ2)
· ∏
j∈�

1

ψj

.
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Note that since Mi
s , i = 1,2, are both true, the integral intermediate value theorem

guarantees that ξi ∈ �i
s , hence EMi

s(ξi) ≥ 0 for i = 1,2. It follows that

p lim
n→∞ BF12 ≥ P(θ ∈ �1

s |C1
s )

P (θ ∈ �2
s |C2

s )
· e−ψT

1 EM1
s (ξ1) · ∏

j∈�

1

ψj

≥ P(θ ∈ �1
s |C1

s )

P (θ ∈ �2
s |C2

s )
· e−‖ψ1‖·supθ∈�s

‖Em(X,θ)‖ · ∏
j∈�

1

ψj

≥ P(θ ∈ �1
s |C1

s )

P (θ ∈ �2
s |C2

s )

≥ 1.

The third inequality is due to Assumption 4.6 and the last inequality follows from
�2

s ⊂ �1
s .

C.3. Proof of Theorem 4.3.

APPROACH 1. Suppose that p(Cs) ∝ nα[dim(Ms)−dim(�s)] for some α > 0.

1. If C∗ is false, then by part 2 of Theorem 4.1, ∃β > 0 such that

p(C∗|Xn) = op(e−βn)nα[dim(Ms)−dim(�s)],

which is exponentially small. However, there exists at least one true combina-
tion Cs , with posterior distribution bounded away from zero. Hence, w.p.a.1,
p(Cs |Xn) > p(C∗|Xn), a contradiction.

2. Since C∗ is true, �∗, the identified region which is defined by it satisfies
p(θ ∈ �∗|C∗) > 0. By Lemma C.1, p(C∗|Xn) = Op(nα[dim(Ms)−dim(�s)]). It
follows immediately from the definition of C∗ that C∗ has the largest value of
dim(Ms) − dim(�s).

APPROACH 2. Suppose that p(Cs) is the uniform prior of Cs , and we put
multivariate normal priors on unrestricted parameters. For any candidate Cs ,

p(Cs |Xn) ∝
∫ ∫ ∫

�s×[0,∞)m×Rp−m
L(Xn|θs, λ,Cs)p(θs |Cs)p(λs |Cs)

× p(λc
s |Cs)dθs dλs dλc

s .

Let

L(Xn|θs, λs,Cs) =
∫

Rp−m
L(Xn|θs, λ,Cs)p(λc

s |Cs)dλc
s,(C.5)

L(Xn|θs,Cs) =
∫
[0,∞)m

L(Xn|θs, λs,Cs)p(λs |Cs)dλs.(C.6)
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A tedious calculation shows that

L(Xn|θs, λs,Cs) = 1√
det(2πSn)

× exp
{
−1

2

(
M̄s(θ) − λs, M̄

c
s (θ)

)
S−1

n

(
M̄s(θ) − λs

M̄c
s (θ)

)}
,

where

Sn = V

n
+

(
0 0
0 σ 2

n Ip−m

)
; we write S−1

n = n

(
�1 �3
�T

3 �2

)
.

We can then calculate (C.6):

L(Xn|θs,Cs) = Const · 1√
det(V2)

P (Zθ ≥ 0)eτ(θ),

where:

• V2 = V22 + nσ 2
n Ip−m, with V22 being the lower diagonal block of V ;

• Zθ ∼ Nm(M̄s(θ) + �−1
1 �T

3 M̄c
s (θ) − 1

n
�−1

1 ψ,
�−1

1
n

);
• τ(θ) = −n

2M̄c
s (θ)(V22 + nσ 2

n Ip−m)−1M̄c
s (θ) − ψT [�−1

1 �T
3 M̄c

s (θ) + M̄s(θ)] +
1

2n
ψT �−1

1 ψ .

Given that ‖V ‖ = O(1), one can show that ‖�1‖ = O(1),‖�2‖ = O( 1
nσ 2

n
) and

‖�3‖ = O( 1
nσ 2

n
).

Define an operator of n−1 and M̄(·),
g(n−1, M̄(θs)) = (nσ 2

n )(dim(θs)+p−m)/2L(Xn|θs,Cs)p(θs |Cs),

where L(Xn|θs,Cs) is the integrated limited information likelihood of (θs,Cs), by
integrating out λ. We use a factor (nσ 2

n )(dim(θs)+p−m)/2 for rescaling so that

g(n−1, M̄(θs)) = Op(1).

Hence, w.p.a.1, without changing the orders, we have

g(n−1, M̄(θs)) = (nσ 2
n )(dim(θs)+p−m)/2L(Xn|θs,Cs)p(θs |Cs)

= Const ·P(Zθ ≥ 0)eτ(θ)e−θT θ/(2nσ 2
n ).

This yields that

p(Cs |Xn) = Const ·
∫
�s

L(Xn|θs,Cs)p(θs |Cs)dθs

= (nσ 2
n )−(dim(θs)+p−m)/2 Const ·

∫
�s

g(n−1, M̄(θs)) dθs.

The following lemma is needed before proceeding.
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LEMMA C.2. Under Assumption 4.6, in probability,

lim
n→∞

∫
�s2

g(n−1, M̄(θs)) dθs =
∫
�s2

lim
n→∞g(n−1, M̄(θs)) dθs.

The proof is given at the end of this section.
Hence, by Lemma C.2, if Cs is true, then, in probability,

lim
n→∞

∫
�s

g(n−1, M̄(θs)) dθs =
∫
�s

lim
n→∞g(n−1, M̄(θs)) dθs

= Const ·
∫
{θ : EMs(θ)≥0}

e−ψT EMs(θ) dθ

= O(1).

The second equality is due to P(Zθ ≥ 0)
p→ 1{θ∈�s : EMs(θ)≥0} and τ(θ)

p→
ψT EMs(θ). The last equality follows since {θ ∈ �s :EMs(θ) ≥ 0} is the iden-
tified region of Cs and is assumed to be compact.

Hence, p(Cs |Xn) = Op((nσ 2
n )−(dim(θs)+p−m)/2), which follows from the fact

that the optimal C∗ that maximizes p(Cs |Xn) has the largest value of m−dim(θs).

PROOF OF LEMMA C.2. We apply the following theorem.

THEOREM C.1 [Billingsley (1986), Theorem 16.8]. Let f (t,w) : (T ×W) →
R be a real-valued function, absolutely integrable with respect to w. Suppose that:

1. f (t,w) is continuous on a neighborhood of t = t0 for almost all w ∈ W ;
2. there exists a function g :W → R

+ such that |f (t,w)| ≤ g(w) for any t ∈ T

and
∫
W g(w)dw < ∞.

Then

lim
t→t0

∫
W

f (t,w)dw =
∫
W

lim
t→t0

f (t,w)dw.

PROOF. g(n−1, M̄(θs)) = Const ·P(Zθ ≥ 0)eτ(θ)e−θT θ/(2σ 2
n ). Here, the sam-

ple moments and θs are separated. If we let W̄ denote a vector of all the sample mo-
ments W̄ = (ZY1,ZY2,ZXT ), then we can write g(n−1, M̄(θs)) = g(n−1, W̄ , θs).
It suffices to show that

lim
n→∞

∫
�s

g(n−1, W̄ , θs) dθs =
∫
�s

lim
n→∞g(n−1, W̄ , θs) dθs.

We proceed by verifying the conditions in Theorem C.1.

CONDITION 1. Note that P(Zθ ≥ 0) →p 1�s for almost all θs , except on a
zero-measure set {θ :∃j,Emsj (θ) = 0}. Hence, it is straightforward to verify that
g(n−1, W̄ , θs) is continuous on a small neighborhood of (0,EW) for almost all θs .
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CONDITION 2. In this case, the moment inequality functions are all linear
in θ , hence we can write M̄c

s (θ) = a1 + B1θ and M̄s(θ) = a2 + B2θ , where Bi are
matrices. We can then show that, w.p.a.1 (we omit some intermediate calculations),

eτ(θ) ≤ Ce−αT /(2nσ 2
n )θs−βT θs ,

where C > 0 and α, β are constant vectors. Hence, for large n,

eτ(θ)e−θT θ/(2nσ 2
n ) ≤ Ce−βT θ e−1/(2nσ 2

n )(θ+α/2)T (θ+α/2)eαT α/(8nσ 2
n )

(C.7)
≤ Const ·e−βT θ .

Furthermore, since rank(EZXT ) = dim(X), there exists c > 0 such that ∀θs ∈
�s , we can always find a component Emsk(θ) of EMs(θ) such that Emsk(θ) <

−c‖θ‖. Write θs = ωr , where ω and r denote the unit direction vector and the
radius of θs , respectively. Then Emsk(θ) < −cr (here, k and r depend on θ , but

c does not). For Zθ ∼ Nm(EMs(θ) + Op( 1√
n
),

�−1
1
n

), ∀ε > 0, w.p.a.1, for some
vk > 0,

P(Zθ ≥ 0) = P
(
Nm

(
M̄s(θ) + Op(n−1),�−1

1 /n
) ≥ 0

)
≤ P

(
N

(
m̄sk(θ) + Op(n−1), vk/n

) ≥ 0
)

≤ P
(
N

(
Emsk(θ) + ε, vk/n

) ≥ 0
)

(C.8)

= 1 − �

(
−√

n
Emsk(θ) + ε√

vk

)

≤ 1 − �

(√
n(cr − ε)√

vk

)

≤
√

vk

n

1√
2π(cr − ε)

e−(1/2)(n/vk)(cr−ε)2
.

The last inequality follows from Mill’s ratio inequality. We can choose ε = cr
2 ,

then, for large n, P(Zθ ≥ 0) ≤ Const ·e−c2r2/(8vk). Combining with (C.7), we ob-
tain an integrable function to upper bound g(n−1, M̄(θs)): for all n,

g(n−1, M̄(θs)) ≤ Const ·e−βT θ e−c2r2/(8vk)

= Const ·e−c2/(8vk)(r+4vkβ
T ω/c2)2

e2vk(β
T ω)2/c2

≤ Const ·e−c2/(8vk)(r+4vkβ
T ω/c2)2

.

To see that this upper bound function is integrable, write θ = rω, so∫
�s

e−c2/(8vk)(r+4vkβ
T ω/c2)2

dθs =
∫ ∞

0
e−c2/(8vk)(r+4vkβ

T ω/c2)2
dr

∮
{ω : ‖ω‖=1}

dω

≤
√

8πvk

c2 S({ω :‖ω‖ = 1}),
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where S({ω :‖ω‖ = 1}) denotes the surface area of the unit ball {ω :‖ω‖ = 1}.
�

Completion of the Proof of Theorem 4.3, Approach 2. It is left to show
that the posterior of a false combination is exponentially small. Let Cs =
(EMs,�s) be a false combination. Then, by definition, we can write ξ =
inf�s×[0,∞)dim(λ)‖EMs(X, θ)−λ‖2 > 0. Define a compact ball B(dn) = {θ :‖θ‖ ≤
dn} and Un = {θ :‖θ‖ > dn} for some radius dn → ∞, with the rate to be specified
below. Then

p(Cs |Xn) ∝
∫
B(dn)

L(Xn|θ,Cs)p(θs |Cs)dθs +
∫
Un

L(Xn|θ,Cs)p(θs |Cs)dθs.

On one hand, w.p.a.1, we can show that

L(Xn|θ,Cs) ≤ Const ·e−ξn/2 det(Sn)
−1/2e−nM̄c

s (θ)T �T
3 M̄s(θ)−n/2M̄c

s (θ)T �2M̄
c
s (θ)

×
∫
λs≥0

e−(ψ−n�3M̄
c
s (θ))T λs dλs

≤ Const ·e−ξn/2 det(Sn)
−1/2e−nM̄c

s (θ)T �T
3 M̄s(θ).

Hence,
∫
B(dn) L(Xn|θ,Cs)p(θs |Cs)dθs ≤ Const(nσ 2

n )−(dim(�s)+p−m)/2e−ξn/2 ·∫
B(ω,dn) e

−nM̄c
s (θ)T �T

3 M̄s(θ) dθ . Note that ‖�3‖ = O( 1
nσ 2

n
) and, in this example,

M̄(θ) is linear in θ , hence supθ∈B(dn) ‖nM̄c
s (θ)T �T

3 M̄s(θ)‖ ≤ Const(dn/σn)
2,

w.p.a.1. Assuming that (dn/σn)
2 = op(n), we have ξn 
 ( dn

σn
)2. Hence,∫

B(dn)
L(Xn|θ,Cs)p(θs |Cs)dθs

≤ (nσ 2
n )−(dim(�s)+p−m)/2e−ξn/2ec(dn/σn)2

ddim(�s)
n

≤ e−αn

for some α > 0. On the other hand,∫
Un

L(Xn|θ,Cs)p(θs |Cs)dθs

∝ (nσ 2
n )−(dim(�s)+p−m)/2

∫
Un

P (Zθ ≥ 0)eτ(θ)e−θT θ/(2nσ 2
n ) dθ.

We use (C.7), eτ(θ)e−θT θ/(2nσ 2
n ) ≤ Const ·e−βT θ , for some constant vector β . Com-

bining with (C.8) and using the same trick as before by writing θ = ω‖θ‖, we have∫
Un

L(Xn|θ,Cs)p(θs |Cs)dθs ≤ Const ·
∫ ∞
dn

e−an(r+b)2
dr · ddim(�s)

n ,

where a > 0, b ∈ R are constant. By Mill’s ratio inequality, it is less than e−αnd2
n

for some α > 0. �
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