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NONLINEAR STOCHASTIC WAVE EQUATIONS: BLOW-UP OF
SECOND MOMENTS IN L2-NORM
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The paper is concerned with the problem of explosive solutions for a
class of nonlinear stochastic wave equations in a domain D ⊂ R

d for d ≤ 3.
Under appropriate conditions on the initial data, the nonlinear term and the
noise intensity is proved in Theorem 3.1 that the L2-norm of the solution will
blow up at a finite time in the mean-square sense. An example is given to
show an application of the theorem.

1. Introduction. Consider the Cauchy problem for a nonlinear wave equation{
∂2
t u(x, t) = ∇2u + f (u), t > 0,

u(x,0) = g(x), ∂tu(x,0) = h(x), x ∈ R
d ,

(1.1)

where ∂t = ∂
∂t

, ∇2 is the Laplacian operator, and the functions f,g and h are given
such that the Cauchy problem (1.1) has a unique local solution. It was first shown
by Keller [6] in 1957 that, for a certain class of nonlinear functions f (u), the
solution of equation (1.1) becomes infinite or explodes at a finite time, provided
that the initial data satisfies appropriate conditions. His result was later generalized
by Glassey [4] and others. Since then, it has become known that solutions to more
general nonlinear hyperbolic equations may develop singularities in finite time
[5], physically manifested as shock waves, tsunami or explosion. It is therefore of
interest to examine the effect of a random perturbation to equation (1.1) on the
existence of an explosive solution. To study this type of problem, it is necessary
to employ some analytical tools from the theory of stochastic partial differential
equations (see, e.g., [3]).

In our previous papers [1, 2], we considered the local and global solutions of a
certain class of nonlinear stochastic wave equations and their asymptotic behavior.
As an example of the nonexistence of a global solution, we showed that, under
some explicit conditions on the initial data and the noise term, the solution of a
cubically nonlinear wave equation perturbed by an additive noise will blow up at
a finite time in the mean-square sense. In the present paper, it will be shown that
this blowup result can be extended to a general class of nonlinear stochastic wave
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equations given by (2.2). Related to our work, we should mention an earlier paper
of Mueller [7] who investigated the global solution of the stochastic wave equation{

∂2
t u(x, t) = ∇2u + a(u) ∂tW(x, t), t > 0,

u(x,0) = g(x), ∂tu(x,0) = h(x), x ∈ R
d(1.2)

for d = 1,2, where W(x, t) is a Wiener random field. He found a growth con-
dition on a(u), so equation (1.2) has a unique global solution. But the existence
of explosive solutions was not considered there. Notice that, in contrast with our
equation (2.2), the equation (1.2) is a random perturbation of a linear wave equa-
tion. However, its noise amplitude a(u) may be unbounded.

In what follows, we shall first recall some basic results for nonlinear stochastic
wave equations in Section 2. Then, in Section 3, we prove the main theorem (The-
orem 3.1) which states that, under some sufficient conditions on the initial data
and the noise term, the solutions to a class of nonlinear stochastic wave equations
whose L2-norms will explode at a finite time in the mean-square sense. Finally, in
Section 4, we apply the theorem to a two-dimensional problem to obtain a set of
explicit conditions for explosive solutions. In passing, it should be pointed out that
we have only obtained the blowup result in a mean-square-L2 sense. The question
concerning the existence of explosive solutions, in the almost sure sense and at
each point in space, is a challenging problem which remains open.

2. Preliminaries. Let D ⊂ R
d be a bounded domain with a smooth boundary

∂D. We set H = L2(D) with the inner product and norm are denoted by (·, ·) and
‖ · ‖, respectively. Let H 1 = H 1(D) be the L2-Sobolev space of first order and de-
note by H 1

0 the closure in H 1 the space of C1-functions with compact support in
D. Let W(x, t) be a continuous Wiener random field defined in a complete prob-
ability space (�, F ,P) with a filtration Ft ([3], p. 38). It has mean EW(x, t) = 0
and covariance function defined by

EW(x, t)W(y, s) = (t ∧ s)r(x, y), x, y ∈ D,

where (t ∧ s) = min(t, s) for 0 ≤ t, s ≤ T . In this paper, the spatial correlation
function r(x, y) is assumed to be bounded and continuous for x, y ∈ D and, if D

is unbounded, ∫
D

r(x, x) dx < ∞.(2.1)

Let f (μ) and σ(μ, ξ, x, t) be two nonlinear continuous functions for μ ∈ R,
ξ ∈ R

d, x ∈ D and t ≥ 0. We consider the initial-boundary value problem for the
nonlinear stochastic wave equation:⎧⎪⎪⎨

⎪⎪⎩

∂2
t u(x, t) = (c2∇2 − α)u + f (u)

+ σ(u,Du,x, t) ∂tW(x, t), t > 0,
u(x,0) = g(x), ∂tu(x,0) = h(x), x ∈ D,
u(·, t)|∂D = 0,

(2.2)
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with g ∈ H 1, h ∈ H , where c and α are positive parameters, and D = ∂x denotes
the gradient operator.

To consider (2.2) as an Itô equation in H , we set ut = u(·, t), vt = v(·, t) and so
on, and rewrite it as⎧⎨

⎩
dut = vt dt,

dvt = [(∇2 − α)ut + f (ut )]dt + dMt(u), 0 < t < T,

u0 = g, v0 = h,

(2.3)

which can be written as the integral equation⎧⎪⎪⎨
⎪⎪⎩

ut = u0 +
∫ t

0
vs ds,

vt = v0 +
∫ t

0
(∇2 − α)us ds +

∫ t

0
f (us) ds + Mt(u),

(2.4)

where we set

Mt(u) =
∫ t

0
σs(us) dWs,(2.5)

and σt (u) = σ(u,Du, ·, t). The stochastic integral (2.5) exists under the above
conditions on r(x, y) (see [1], the Appendix).

Suppose that the nonlinear functions f (μ) and σ(μ, ξ, x, t) are locally Lip-
schitz continuous with a polynomial growth. In addition, assume that d ≤ 3 and
there exists an energy bound for equation (2.2):∫ t

0
(vs, f (us)) ds +

∫ t

0
TrQs(us) ds

(2.6)

≤ c1e(ut ;vt ) + c2

∫ t

0
e(us;vs) ds + c3 for 0 ≤ t ≤ T ,

where c1, c2, c3 are some constants with c1 < 1; e(u;v) is the energy function
defined by

e(u;v) = c2‖Du‖2 + α‖u‖2 + ‖v‖2 for u ∈ H 1, v ∈ H,(2.7)

and

TrQt(u) =
∫

D
r(x, x)σ 2(u,Du,x, t) dx.(2.8)

Then, by [2], Theorem 3.1, it has a unique continuous global solution ut ∈ H 1
0

with ∂tut ∈ H , t ∈ [0, T ], for any T > 0. Moreover, the following energy equation
holds

e(ut ;vt ) = e(u0;v0) + 2
∫ t

0
(vs, f (us)) ds +

∫ t

0
TrQs(us) ds

(2.9)

+ 2
∫ t

0
(vs, σs(us) dWs) a.s., for 0 ≤ t ≤ T .
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We remark that, in order to allow a polynomial nonlinearity, the restriction d ≤ 3
is needed to prove the theorem cited above. Now, we define

φ(t) = 1
2E[(ut , ut )] = 1

2E‖ut‖2.(2.10)

Then, similar to [1], Lemma 3.1, we can compute its first two derivatives

φ′(t) = E[(ut , vt )] = (u0, v0) + E

∫ t

0
{‖vs‖2 − c2‖Dus‖2

(2.11)
− α‖us‖2 + (us, f (us))}ds,

φ′′(t) = E{‖vt‖2 − c2‖Dut‖2 − α‖ut‖2 + (ut , f (ut ))}.(2.12)

On the other hand, without the energy bound, one can only assert the existence
of a unique local solution. That is, there exist a unique solution ut as before for t <

τ and a sequence of stopping times {τn} such that τn ↑ τ < ∞ and the following
holds for any n: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut∧τn = u0 +
∫ t∧τn

0
vs∧τn ds,

vt∧τn = v0 +
∫ t∧τn

0
(∇2 − α)us∧τn ds

+
∫ t∧τn

0
f (us∧τn) ds + Mt∧τn(u).

(2.13)

In particular, the limiting stopping time τ may be a positive constant. It is clear
that if P {τ = ∞} = 1, then the local solution becomes a global solution.

3. Explosive solutions. Consider the local solution of the problem (2.2) in
D ∈ R

d with d ≤ 3. We shall show that, under a set of sufficient conditions, the
second-moment E‖ut‖2 of the local solution will explode at a finite time in the
L2-norm. To this end, we first impose the following conditions:

(A1) The function f (μ), for μ ∈ R, is locally Lipschitz continuous and may be of
polynomial growth.

(A2) For μ ∈ R, ξ ∈ R
d, x ∈ D and t ≥ 0, the function σ(μ, ξ, x, t) is continuous

in x, t and it is locally Lipschitz continuous in μ and ξ .
(A3)

∫ ∞
0

∫
D r(x, x)q(x, t) dx dt < ∞, where q(x, t) = supμ,ξ σ 2(μ, ξ, x, t), for

μ ∈ R and ξ ∈ R
d .

We will state and prove the following theorem concerning explosive solutions.

THEOREM 3.1. Let conditions (A1)–(A3) hold true. Suppose that, for u0 ∈
H 1, v0 ∈ H , the problem (2.2), or the system (2.3) has a unique continuous local
solution ut ∈ H 1

0 with ∂tut ∈ H . Then there exists a time Te > 0 such that

lim
t→T −

e

E‖ut‖2 = +∞,(3.1)

provided that the following conditions are satisfied:
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(B1) The inner product (u0, v0) > 0.

(B2) (F (u0),1) >
1

2

{
e(u0;v0) +

∫ ∞
0

∫
D

r(x, x)q(x, t) dx dt

}
.

(B3) (u, f (u)) ≥ 1
2(F (u),1), for any bounded continuous function u on D, where

F(u) = ∫ u
0 f (μ)dμ and (F (u),1) = ∫

D F(u(x)) dx.

PROOF. We shall prove the theorem by contradiction. Suppose the solution is
global so that, for any T > 0,

E‖ut‖2 < ∞ for 0 ≤ t ≤ T .(3.2)

Define φ(t) = 1
2E‖ut‖2 by (2.10). We will show that φ(t) becomes unbounded in

finite time, or the inequality (3.2) is false. Alternatively, for any λ > 0, it suffices
to show that

ψ(t) = φ−λ(t)(3.3)

goes to zero in finite time. To proceed we first compute the first two derivatives of
ψ to obtain

ψ ′(t) = −λφ−(λ+1)(t)φ′(t) = −λφ−(λ+1)(t)E[(ut , vt )](3.4)

and

ψ ′′(t) = −λφ−(λ+1)(t)

{
φ′′(t) − (λ + 1)

[φ′(t)]2

φ(t)

}

(3.5)
≤ −λφ−(λ+1)(t){φ′′(t) − 2(λ + 1)E‖vt‖2},

where use was made of (2.11) and the inequality: [φ′(t)]2 ≤ E‖ut‖2E‖vt‖2.
Notice that∫ t

0
(vs, f (us)) ds =

∫
D
[F(ut ) − F(u0)]dx = (

F(ut ) − F(u0),1
)
.

From this equation together with the energy equations (2.9) and (2.7), we can
deduce that

E‖vt‖2 =
{

e(u0;v0) − 2(F (u0),1) + E

∫ t

0
TrQs(us) ds

}

(3.6)
+ E{2(F (ut ),1) − c2‖Du‖2 − α‖u‖2} for 0 ≤ t ≤ T .

Upon substituting equations (2.12) and (3.6) into the inequality (3.5) and after
some simplification, we can obtain

ψ ′′(t) ≤ −λφ−(λ+1)(t)

{
2λ

[
2(F (u0),1) − e(u0;v0) − E

∫ t

0
TrQs(us) ds

]

+ (2λ − 1)E(c2‖Du‖2 + α‖u‖2)(3.7)

+ E[(ut , f (ut )) − 4λ(F (ut ),1)]
}
.
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By choosing λ = 1/2 in (3.7) and making use of condition (A3), we get

ψ ′′(t) ≤ −1

2
φ−3/2(t)

{[
2(F (u0),1) − e(u0;v0)

−
∫ ∞

0

∫
D

r(x, x)q(x, t) dx dt

]
(3.8)

+ E[(ut , f (ut )) − 2(F (ut ),1)]
}
,

which, in view of conditions (B2) and (B3), implies that

ψ ′′(t) > 0 for 0 ≤ t ≤ T .(3.9)

In the meantime, by setting λ = 1/2 in (3.3) and (3.4) and taking (2.10) and (2.11)
into account, we can obtain

ψ(0) =
√

2

‖u0‖ > 0(3.10)

and

ψ ′(0) = −
√

2

‖u0‖3 (u0, v0) < 0,(3.11)

by invoking condition (B1). Take T > T0 = −ψ(0)/ψ ′(0) = ‖u0‖2/(u0, v0). We
can easily deduce from (3.9)–(3.11) that the function ψ(t) > 0 is convex, strictly
decreasing and it approaches zero at a time Te < T0. The theorem is thus proved.

�

REMARKS.

(1) In the theorem, the domain D may be unbounded or R
d , and the Laplacian ∇2

in equation (2.2) may be replaced by an uniformly elliptic self-adjoint operator∑d
i,j=1 ∂xi

(aij (x) ∂xj
) with smooth coefficients aij = aji , and

(2) the noise term σ(u,Du,x, t) ∂tW(x, t) can be replaced by
∑n

i=1 σi(u,Du,x,

t) ∂tWi(x, t), where σi(u,Du,x, t) are similar to σ(u,Du,x, t), and Wi(x, t)

are Wiener random fields with covariance functions EWi(x, t)Wj (y, s) = (t ∧
s)rij (x, y), for i, j = 1, . . . , n. In this case the expression r(x, x)q(x, t) in
condition (B2) should be changed to

∑n
i=1 rii(x, x)qi(x, t), where qi(x, t) =

supμ,ξ σ 2
i (μ, ξ, x, t).

4. An example. As an example, let us consider the following problem in the
half plane D = {x = (x1, x2) ∈ R

2|x1 > 0}:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2
t u(x, t) = (c2∇2 − α)u + λu2p−1

+ σ0 tan−1(1 + |Du|2)e−νt ∂tW(x, t), t > 0, x ∈ D,

u(x,0) = β

1 + |x|2 , ∂tu(x,0) = 1

1 + |x|2 ,

u(x, t)|x1=0 = 0,

(4.1)
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where W(x, t) is a Wiener random field with the covariance function

r(x, y) = r0 exp{−ρ(x · y)} for x, y ∈ D.(4.2)

In the above equations, λ,β,ρ, ν, σ0, r0 are all positive constants, p ≥ 2 is an
integer, and the dot product x · y = x1y1 + x2y2.

We can apply Theorem 3.1 to show that the equation (4.1) has an explosive
solution by choosing the above constants properly. To this end, it is easy to check
that the conditions (A1)–(A3) are satisfied. It remains to verify conditions (B1)–
(B3). Referring to equation (4.1), we have

(u0, v0) = β

∫
D

dx

(1 + |x|2)2 = 1

2
βπ,(4.3)

(u, f (u)) = λ

∫
D

u2p dx,(4.4)

F(u) = λ

∫ u

0
s2p−1 ds = λ

2p
u2p(4.5)

and

(F (u),1) = λ

2p

∫
D

u2p dx.(4.6)

In view of (4.3), (4.4) and (4.6), the conditions (B1) and (B3) are clearly met.
Finally, to enforce condition (B2), we must compute several integrals. From (4.6),
we get

(F (u0),1) = λ

2p

∫
D

(
β

1 + |x|2
)2p

dx = λπβ2p

4p(2p − 1)
.(4.7)

Since σ = σ0 tan−1(1 + |Du|2)e−νt , we have

q(x, t) = σ 2
0 sup

ξ

[tan−1(1 + |ξ |2)]2e−2νt =
(

σ0π

2

)2

e−2νt ,(4.8)

so that
∫ ∞

0

∫
D

r(x, x)q(x, t) dx dt = r0

(
σ0

2
π

)2 ∫ ∞
0

∫
D

e−ρ|x|2−2νt dx dt

(4.9)

= r0σ0
2π3

16ρν
.

To obtain the initial energy e(u0;v0), we need to evaluate the following integrals

‖v0‖2 =
∫

D

dx

(1 + |x|2) = π

2
, ‖u0‖2 = β2‖v0‖2 = β2π

2
(4.10)
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and

‖Du0‖2 = 4β2
∫

D

|x|2
(1 + |x|2)4 dx = π

3
β2.(4.11)

By the definition of the energy function (2.7), we can obtain from (4.10) and (4.11)
that

e(u0;v0) = π

2
{1 + (α + 2c2/3)β2}.(4.12)

After substituting (4.7), (4.9) and (4.12) into the condition (B2) and simplifying
the result, it gives the following inequality

λ >
p(2p − 1)

β2p

{
1 + (α + 2c2/3)β2 + r0σ0

2π2

8ρν

}
.(4.13)

The above inequality shows that, for a sufficiently large amplitude λ of the non-
linear term, keeping all other constants fixed, the mean-square solution E‖ut‖2 of
equation (4.1) will explode at a finite time. Alternatively, regarding β as a para-
meter and fixing all other constants, then the solution will also explode if initial
displacement u0 is large enough.

Acknowledgments. The author wishes to thank Professor J. B. Keller of Stan-
ford University for suggesting this problem for investigation. He thanks Professors
Mike Cranston and John Lowengrub for their warm hospitality during the author’s
visit in Fall/2008 to University of California–Irvine, where this work was com-
pleted. The author is also grateful to the referee for several helpful suggestions for
improving the presentation of this paper.

REFERENCES

[1] CHOW, P.-L. (2002). Stochastic wave equations with polynomial nonlinearity. Ann. Appl.
Probab. 12 361–381. MR1890069

[2] CHOW, P.-L. (2006). Asymptotics of solutions to semilinear stochastic wave equations. Ann.
Appl. Probab. 16 757–789. MR2244432

[3] CHOW, P.-L. (2007). Stochastic Partial Differential Equations. Chapman & Hall/CRC Applied
Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, FL.
MR2295103

[4] GLASSEY, R. T. (1973). Blow-up theorems for nonlinear wave equations. Math. Z. 132 183–203.
MR0340799

[5] JOHN, F. (1990). Nonlinear Wave Equations, Formation of Singularities. University Lecture Se-
ries 2. Amer. Math. Soc., Providence, RI. MR1066694

[6] KELLER, J. B. (1957). On solutions of nonlinear wave equations. Comm. Pure Appl. Math. 10
523–530. MR0096889

[7] MUELLER, C. (1997). Long time existence for the wave equation with a noise term. Ann.
Probab. 25 133–151. MR1428503

DEPARTMENT OF MATHEMATICS

WAYNE STATE UNIVERSITY

DETROIT, MICHIGAN 48202
USA
E-MAIL: plchow@math.wayne.edu

http://www.ams.org/mathscinet-getitem?mr=1890069
http://www.ams.org/mathscinet-getitem?mr=2244432
http://www.ams.org/mathscinet-getitem?mr=2295103
http://www.ams.org/mathscinet-getitem?mr=0340799
http://www.ams.org/mathscinet-getitem?mr=1066694
http://www.ams.org/mathscinet-getitem?mr=0096889
http://www.ams.org/mathscinet-getitem?mr=1428503
mailto:plchow@math.wayne.edu

	Introduction
	Preliminaries
	Explosive solutions
	An example
	Acknowledgments
	References
	Author's Addresses

