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Abstract: We analyse the properties of the Principal Fitted Components
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1. Introduction and notation

Cook [1] gives an extensive account of the history and controversy, dating back
at least to the work of Fisher [4], surrounding the question of whether the selec-
tion of regression variables should be based only on values of the predictor, or
whether the response should also be taken into account. For example, reduction
by Principal Components (PC), introduced by Hotelling [7] and reviewed by for
example Seber [12], only uses the sample covariance matrix of the predictors to
select the variables, ignoring the values of the response.

Cook [1] argues that, while PC can play a useful role in regression problems,
the analysis can also take account of the random response Y, and introduces

807

http://www.i-journals.org/ejs
http://dx.doi.org/10.1214/08-EJS255


O. Johnson/Theoretical properties of Cook’s PFC algorithm 808

the Principal Fitted Components (PFC) algorithm to do this. This algorithm
performs a principal components analysis on the fitted sample covariance matrix
obtained by projecting the predictor onto fy, a function of the response. Efficient
selection of variables can allow regression algorithms to operate in a space of
reduced dimension, making the resulting estimates potentially more accurate.

In this paper, we analyse the properties of the PFC algorithm, in the context
of a model given by Equation (5) of Cook [1], following the notation of [1]
throughout. Cook converts the more familiar forward linear model Y = Xβ +ε

into an equivalent inverse regression form:

Example 1.1. Consider a sample of n independent observations Xy in R
p

indexed by the responses y and generated as

Xy = µ + Γβfy + σǫ. (1)

Here, µ and each Xy are p × 1 matrices (column vectors), Γ is a full rank
p × d matrix (with d < p), β is a d × r matrix (with d ≤ r) and fy is an r × 1
matrix. The parameter σ gives the scale factor of ǫ, a p×1 matrix of errors. The
entries of ǫ will often (but not always) be assumed to be independent standard
normals. We will estimate the span of the columns of the rank d matrix Γ,
where by assumption, ΓTΓ = Id (we can reparameterize the model to achieve
this). Having estimated Γ, we can work in a space of smaller dimension, using
whatever techniques are appropriate.

The fy is a vector-valued function of the random response Y, and for sim-
plicity we assume throughout that

∑
y fy = 0. Further we assume that ǫ is

independent of Y, and hence of fy. (Note that we use different symbols, ǫ and
ε, for the error terms in Equation (1) and the forward regression Y = Xβ+ε. We
do not claim that ε is independent of Y). The fy can be constructed in a variety
of ways, depending on the exact form of the data. For example, Cook mentions
that if the conditional mean E(X|Y = y) can be modelled by a polynomial of
degree r, then it is appropriate to take fy = (y − m1, y

2 − m2, . . . , y
r − mr)

T ,
where mu is the sample mean of the uth power of y. Alternatively, in the spirit
of the Sliced Inverse Regression algorithm of Li [10], fy can be constructed by
slicing the range of Y into (r + 1) disjoint bins.

For ease of calculation we convert the model from Example 1.1 into matrix
form. We write X for the n×p centred matrix of predictors, with rows (Xy−X)T

(where X is the sample mean of X), write F for the n× r matrix with rows fT
y ,

and E for the n × p error matrix with rows σǫT . Given a full rank matrix G
we write PG = G(GTG)−1GT for the matrix which projects orthogonally onto
the span of the columns of G.

Definition 1.2. Cook [1] defines the fitted matrix of predictors X̂ = PFX and

proposes the PFC algorithm; an estimate Γ̂PFC of Γ is given by the set of d
eigenvectors of the fitted sample covariance matrix X̂

T
X̂ which correspond to

the largest eigenvalues.

Cook contrasts this with the PC algorithm of Hotelling [7], which performs
the corresponding calculation for the sample covariance matrix X

T
X. That is,
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an estimate Γ̂PC of Γ is given by the set of d eigenvectors of X
T

X corresponding
to the largest eigenvalues. Note that we refer to Γ̂PFC and Γ̂PC as estimates of
Γ for the sake of brevity; in fact, the span of the columns of Γ̂PFC and Γ̂PC

form estimates of the span of the columns of Γ.
Theorem 2.4 of this paper gives a distributional result for the accuracy of

PFC estimation. This allows us to explain the simulations relating to PFC
estimation in Section 5 of Cook’s paper [1], and to bound confidence intervals
for the accuracy of the estimation, see Theorem 3.3 below. In Section 3 we
give sufficient conditions for Γ̂PFC to be a

√
n-consistent estimator of Γ, in the

case d = r. In Section 4, we use results from perturbation and random matrix
theory to consider the more general case d ≤ r and consider the order of the
errors that arise. In Theorem 4.3, we give sufficient conditions for Γ̂PFC to be a√

n-consistent estimator of Γ in this more general case.
Model (1) represents a problem in dimension reduction. The PC model is

given as Equation (2) of [1] as

Xy = µ + Γνy + σǫ. (2)

where d× 1 vector νy satisfies
∑

y νy = 0. Hence the model (1) is a special case
of (2), where the βfy replaces νy. As Cook remarks, in the PFC model (1) we
aim to estimate β, which contains dr parameters, whereas the PC model (2)
contains the (n−1)d parameters of νy. Hence, the PFC model has the attractive
feature that the number of parameters to be estimated does not grow with n.

In Section 5 we argue that the PFC algorithm should perform strictly better
than the PC algorithm, if the errors ǫ are normally distributed. Specifically,
Lemma 5.1 shows that in this case the sample covariance matrix X

T
X is the

fitted covariance matrix X̂
T

X̂ perturbed by random noise independent of X̂

and Γ. Hence inference about Γ using X (PC algorithm) will be necessarily

less accurate than inference using X̂ (PFC algorithm). Proposition 5.4 gives

bounds in certain parameter regimes that imply that the PC estimate Γ̂PC is
also OP(1/

√
n), approximately explaining simulations relating to PC estimation

in Section 5 of [1]. All the proofs of this paper are presented in Appendix A.
It is of course important to consider the validity of the model given by Equa-

tion (1), in order to understand the significance of these results. The key is the
reversal of the conditional distribution for Y|X implied by the linear model
Y = Xβ + ε to give a conditional distribution for X|(Y = y), as in Equa-
tion (2). Such a reversal is not new, arising for example in the work of Oman
[11]. If the X and ε are each multivariate normal, then (X, Y) will be jointly
multivariate normal, and we can move between Y = Xβ + ε and Equation (2)
by parameterizing appropriately. The question of the validity of the full PFC
model Equation (1) amounts to the issue of how accurately the βfy models νy.
Presumably for real data there will be a trade-off between improved accuracy
arising from PFC estimation and errors introduced by βfy not adequately ex-
plaining νy. Implicitly, model (2) requires that the X should be random and
take continuous values. Hence X should come from measurements rather than
designed experiments, and the case of factor variables is excluded.
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In future work, we hope to explain the performance (in the sense of Mean
Squared Error) of prediction errors shown in Figure 1(d) of Cook’s paper [1],
and to investigate the theoretical properties of the PFCPC algorithm described
in Section 6 of [1].

2. Theoretical PFC performance when d = r

In this section, we analyse the performance of the PFC algorithm in the case
d = r. In Lemma 2.2 we give explicit expressions for the matrices involved,
and define a matrix V which gives the span of the PFC directions. In Lemma
2.3, we deduce distributional results for V, which we use to prove Theorem 2.4.
Finally, we show how Theorem 2.4 explains some of the simulation results given
in Section 5 of [1].

To measure the accuracy of our estimates, we consider the distribution of a
normalised version of the quantity m(Γ̂, Γ) = ‖(Ip − PΓ)Γ̂‖ used, for example,
by Xia, Tong, Li and Zhu [15]. We have a choice of which matrix norm ‖ · ‖ to
use; we shall use the Frobenius norm ‖ · ‖F defined by

‖A‖2
F = tr (AAT ) = tr (ATA) =

∑

k

∣∣∣A(k)
∣∣∣
2

,

where A(k) is the kth column of A and |·| represents the vector norm. This choice
of matrix norm has the attractive feature that ‖A‖F = ‖AP‖F for orthogonal

P, so that we can make orthogonal changes of basis without affecting m(Γ̂, Γ).

Definition 2.1. For true Γ and estimated value Γ̂, we define

C(Γ̂, Γ) =
‖PΓΓ̂‖2

F

‖(Ip − PΓ)Γ̂‖2
F

.

In the case d > 1, the quantity C(Γ̂, Γ) will change on rescaling columns of

the matrix Γ̂ by different amounts (that is, on multiplying Γ̂ by diagonal D not
proportional to I). We do not have a priori estimates for the true scalings of the
eigenvectors, so use the scalings that arise from orthogonal transformations of
the columns of a matrix V arising from matrix factorization (see Lemma 2.2).
Lemma 2.3 shows that this choice has the attractive feature that the entries of
V have equal variance. There may exist better scalings in the sense of reduced
average angle, however this choice already has good properties, as the theorems
of this paper show.

Lemma 2.2. Under model (1) from Example 1.1, the span of the r largest

eigenvectors of X̂
T

X̂ is identical to the span of columns of the p × r matrix V
defined by

V = Γβ(FTF)1/2 + ET F(FTF)−1/2. (3)

In particular, in the case where d = r these columns define the PFC space. Note
that V can be found from known information and without calculating eigenval-
ues, by VT = (FTF)−1/2FT

X̂ = (FTF)−1/2FT
X.
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The proofs of all the results of this paper are given in Appendix A. Next we
give distributional results for V, by conditioning on the values of F.

Lemma 2.3. Assume that the errors ǫ have mean zero and are uncorrelated
with variance 1. Conditioned on the values of F, the entries of V have mean
Γβ(FTF)1/2 and variance σ2, and are uncorrelated.

Lemma 2.3 implies that if the errors ǫ are independent standard normals,
then the columns of V are independent multivariate normals, with means given
by the columns of Γβ(FTF)1/2 and with covariance matrix σ2Ip. Hence the p×p

matrix X̂
T

X̂ = VVT has a non-central Wishart distribution with r degrees of
freedom, scale parameter σ2Ip and non-centrality parameter Γβ(FTF)βTΓT .
This allows us to deduce a distributional result for C.

Theorem 2.4. Under the model given by Equation (1), assume that the errors

ǫ are independent standard normals, and consider the PFC estimator Γ̂PFC. In
the case d = r, conditional on (FT F), the term

(p − d)C(Γ̂PFC, Γ)

d
=

(p − d)‖PΓΓ̂PFC‖2
F

d‖(Ip − PΓ)Γ̂PFC‖2
F

∼ Frd,r(p−d)(Λ),

where Frd,r(p−d)(Λ) denotes a non-central F distribution with (rd, r(p− d)) de-
grees of freedom and non-centrality parameter given by the scaled trace Λ =
tr (β(FT F)βT )/σ2.

The quantity C(Γ̂, Γ) measures the proportion of the magnitude of the es-

timate Γ̂ which lies in the span of the columns of Γ, and hence measures how
good an estimate of the span of Γ is provided by Γ̂. In the case r = d = 1,
this is compatible with Cook’s plots of the angle Θ(Γ̂, Γ) between true Γ and

estimated Γ̂, in the sense that for any Γ̂ and Γ the C(Γ̂, Γ) = cot2 Θ(Γ̂, Γ).
Section 6 of Li, Zha and Chiaromonte [9] introduces a different measure of

similarity of subspaces as ‖PΓ −P
Γ̂
‖, where ‖ · ‖ represents the operator norm.

In the case d = r = 1, this again is compatible with the angle Θ(Γ̂, Γ), in

the sense that in this case ‖PΓ −P
Γ̂
‖ = | sinΘ(Γ̂, Γ)|. The use of the operator

norm means that the measure of [9] represents ‘worst case’ performance, whereas
using the Frobenius norm gives ‘average’ performance. Our techniques do not
at present give distributional results for ‖PΓ −P

Γ̂
‖, however, Frobenius norms

are typically easier to calculate than operator norms.
Theorem 2.4 shows that the distribution of C(Γ̂PFC, Γ) does not depend on

the value of Γ itself, helping to explain Cook’s remark [1, P.10] that “the value
of principal component estimators does not rest solely with the presence of
collinearity”. Further, using Theorem 2.4, we can better understand the simu-
lation graphs given in Section 5 of Cook [1].

Example 2.5. Figure 1 of [1] considers the model given by Equation (1) in
the case where p = 10, d = r = 1, β = 1. Further, the errors ǫ are nor-
mally distributed and Y is normal with variance σ2

Y , so that FT F =
∑n

i=1(yi −
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y)2 ∼ σ2
Y χ2

n−1. We consider the angle Θ(Γ̂PFC, Γ), where cot2 Θ(Γ̂PFC, Γ) =

C(Γ̂PFC, Γ).
In Figure 1 we simulate directly from the distribution given by Theorem 2.4

and vary parameters n, σ and σY . Based on a sample of size 50,000 for each set
of parameter values, we plot the sample mean as ◦, along with upper and lower
5% sample quantiles (plotted as △ and +). The sample means shown here in
Figure 1(a)-1(c) fit closely with those in Figure 1(a)–1(c) of [1].

3.
√

n-consistency of PFC estimates

The quantiles plotted in Figure 1 give some idea of the spread of likely val-
ues of the angle Θ(Γ̂PFC, Γ). Theorem 2.4 shows that the squared cotangent

C(Γ̂PFC, Γ) is a scalar multiple of a non-central F distribution with random
non-centrality parameter, a complicated hierarchical form of mixture distribu-
tion, meaning that it is not trivial to give confidence intervals for the angle
Θ(Γ̂PFC, Γ) in closed form.

In the case d = r we give probabilistic bounds in Theorem 3.3 demonstrating
that Θ(Γ̂PFC, Γ) decays like 1/

√
n (so Γ̂PFC is a

√
n-consistent estimator of

Γ), for a more general class of error models than simply assuming normality.
For simplicity of exposition, we restrict to the case where the distributions of
ǫ are symmetric, though this is not necessary for

√
n-consistency to hold –

see Appendix A for details. First we give two technical results, Lemmas 3.1 and
3.2, concerning the entries of the matrix V introduced in Lemma 2.2 and matrix
β(FTF)βT respectively.

Lemma 3.1. If the errors ǫ are independent and symmetric with variance 1
and finite 4th moment m4 then writing N = ‖(I −PΓ)V‖2

F we know that

EN = tr (β(FTF)βT )+rdσ2 and Var (N) ≤ dT +4σ2tr (β(FTF)βT ), (4)

where T = σ4r(m4 − 1) does not depend on n. Similarly, writing D = ‖PΓV‖2
F

we know that under the same conditions

ED = r(p − d)σ2 and Var (D) ≤ (p − d)T. (5)

In the case where the errors ǫ are standard normal, Lemma 3.1 simplifies,
since the Cik become independent and identically distributed normals. Thus
D/σ2 is central χ2 with r(p−d) degrees of freedom. Similarly N/σ2 is non-central
χ2 with rd degrees of freedom and non-centrality parameter tr (β(FTF)βT )/σ2,
and T = 2rσ4, with equality holding in the bounds on Var (N) and Var (D) in
Equations (4) and (5).

We will write λ1(X) ≥ λ2(X) ≥ . . . ≥ λp(X) for the ordered sequence of
eigenvalues of a real symmetric p × p matrix X.
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0 2 4 6 8 10

0
1

0
2

0
3

0
4

0
5

0
6

0
sigma_Y

a
n

g
le

(b) Angle Θ(Γ̂PFC,Γ) vs σY

0 1 2 3 4 5

0
1

0
2

0
3

0
4

0
5

0
6

0

sigma

a
n

g
le

(c) Angle Θ(Γ̂PFC, Γ) vs σ

Fig 1. Simulation of angle Θ(Γ̂PFC,Γ) between Γ̂PFC and Γ, in setting of Example 2.5. We
plot the sample mean as ◦, and the upper and lower 5% sample quantiles as △ and +. (a)
Angle vs n, with σY = σ = 1; (b) Angle vs σY , with n = 40, σ = 1; (c) Angle vs σ, with
n = 40, σY = 1.
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Lemma 3.2. There exists a sequence (φi : 1 ≤ i ≤ d) such that given ǫ > 0 and
δ > 0, there exists n∗ = n∗(δ, ǫ) such that the eigenvalues satisfy

P

(
φi − δ ≤ λi(β(FTF)βT )

n
≤ φi + δ ḟor all i = 1, . . . , d, and n ≥ n∗

)
≥ 1− ǫ.

Theorem 3.3. In the case where d = r and errors ǫ are independent and sym-
metric with variance 1 and finite 4th moment, then we can construct confidence
intervals such that

P

(
Θ(Γ̂PFC, Γ) ≥ Θ∗

+(α)
)
≤ α and P

(
Θ(Γ̂PFC, Γ) ≤ Θ∗

−(α)
)
≤ α,

where for any fixed α, the Θ∗
±(α) = O(1/

√
n).

Using Theorem 3.3, we can consider the case analysed in Example 2.5 and
Figure 1, where β = 1, r = d = 1, p = 10 and the errors ǫ and Y are normal.
In this case, (FTF) ∼ σ2

Y χ2
n−1, so we can take K1 = σ2

Y − ǫ and K2 = σ2
Y + ǫ.

Equations (26) and (27) below show that confidence intervals for the angle

Θ(Γ̂PFC, Γ) decay asymptotically as c/
√

n, c/σY or cσ respectively, as the other
terms are kept constant, as Figure 1 may suggest.

4. Random matrices and perturbation

In this section, we analyse the general case d ≤ r of the model given by Equation
(1) under the assumption that the errors ǫ are Gaussian, using a perturbation
argument. We first review some results from random matrix theory, which we
use to deduce the order of Θ(Γ̂PFC, Γ) in Theorem 4.3.

Proposition 4.1. Write Xu,v for a u × v matrix with entries that are inde-
pendent standard Gaussians, and consider the largest eigenvalue of the Wishart
matrix Xu,vX

T
u,v.

1. For a sequence of matrices Xuv ,v, in the regime where v → ∞ and uv/v →
β,

1

v
λ1(Xuv ,vX

T
uv ,v) −→ (1 +

√
β)2 almost surely. (6)

2. In the same regime

λ1(Xuv ,vX
T
uv ,v) − (

√
v − 1 +

√
uv)2

σuvv

D−→ F1, (7)

where σuv = (
√

v − 1 +
√

u)(1/
√

v − 1 + 1/
√

u)1/3, and where F1 is the
Tracy–Widom law of order 1.

3. For any u and v and for any t > 0,

P
(
λ1(Xu,vX

T
u,v) ≥ (

√
u +

√
v + t)2

)
< exp(−t2/2). (8)
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Part 1 of Proposition 4.1 is due to Geman [6], who does not require that
the entries of the matrix Xu,v be Gaussian (finiteness of moments of all orders
will suffice). However, Equation (8) does require Gaussian entries, which is the
reason for the assumption that ǫ has Gaussian entries in the rest of this paper.
Johnstone [8] proved Part 2, giving simulation results suggesting that this ap-
proximation is accurate for uv, v as small as 5. Part 3 is implied by Theorem
II.13 of Davidson and Szarek [3].

We combine the random matrix results of Proposition 4.1 with a perturbation
argument based on that given by Sibson [13] and used by Critchley [2] in a
related context. As in Sibson [13], the perturbed eigenvectors are given in terms
of generalized inverse matrices M+. If Mx = λx, the linear map M+ is defined
using the property that

M+x =

{
λ−1x if λ 6= 0,

0 if λ = 0.

To motivate the proof of
√

n-consistency in Theorem 4.3, we change basis to
the orthogonal set {b(i)} used in the proof of Theorem 2.4. Equations (17) and

(19) below mean that in this new basis, X̂
T

X̂ = (U+σS)(U+σS)T . Here UUT

has a d× d block of the form β(FTF)βT with the remaining entries being zero,
and S is a p × r matrix whose entries are independent standard Gaussians.

Hence if σ = 0 then X̂
T

X̂ has d positive eigenvalues with eigenvectors lying
in the space spanned by the columns of Γ, and the remaining eigenvalues are
zero. Using perturbation theory, we bound how large σ would have to be before
one of the zero eigenvalues could become one of the d largest ones.

Definition 4.2. For σ 6= 0, we take B = UUT and L = σ(SUT + UST ) +

σ2SST , so that X̂
T

X̂ = B + L. We define the first level crossing event

L1 = {λ1(L) − λp(L) ≥ λd(β(FTF)βT )}.

Since λi(UUT ) = 0 for i ≥ d + 1, results of Weyl (see Lemma A.1 below)
imply that

λi(X̂
T

X̂) ≥ λd(β(FT F)βT ) + λp(L) for i ≤ d,

λi(X̂
T

X̂) ≤ λ1(L) for i ≥ d + 1.

Hence, if L1 does not occur, the d largest eigenvalues of X̂
T

X̂ correspond to the
perturbed values of the original eigenvalues of β(FTF)βT . Proposition 4.1 gives
probabilistic bounds on λ1(L) − λp(L), allowing us to control P(L1).

Theorem 4.3. In the case d ≤ r, if the errors ǫ are independent standard nor-
mals and the limiting matrix Φ = limn→∞(β(FTF)βT )/n has distinct eigenval-
ues, then there exist confidence intervals

P

(
Θ(Γ̂PFC, Γ) ≥ Θ∗(α)

)
≤ α,

where for any fixed α, the Θ∗(α) = O(1/
√

n).
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5. Theoretical performance of the PC algorithm

Finally we discuss the PC algorithm, arguing in Lemma 5.1 that, in the case of
normal errors ǫ, it will give inferior performance to the PFC algorithm. Propo-
sition 5.4 gives bounds on the performance of the PC algorithm, explaining the
simulation results of Cook [1].

Lemma 5.1. Under the model given by Equation (1), if the errors ǫ are nor-

mally distributed, then we can write X
T

X = X̂
T

X̂ + N , where N is independent
of X̂ and Γ.

This result allows us to argue that PFC estimation should out-perform PC
estimation, in several senses. Firstly, inference about random variable X through
random variable Y is better (in the sense of Minimum Mean Squared Error)
than inference about X through Y + N , if N is independent of X. This follows
since the best estimates are f(Y ) = E(X|Y ) and g(Y + N) = E(X|Y + N)
respectively. The fact that the MMSE is lower in the first case is equivalent to
the fact that Eg(Y + N)2 ≤ Ef(Y )2, which follows by the conditional Jensen
inequality. Similarly, the conditional entropy H(X|Y ) ≤ H(X|Y + N), showing
that there is less uncertainty about X on learning Y than on learning Y + N .

We use similar techniques to those in Section 4 to bound the PC angle
Θ(Γ̂PC, Γ). We regard the term N as a perturbation of order σ2 of the fit-

ted sample covariance matrix X̂
T

X̂, and thus regard Γ̂PC as a perturbation of
Γ̂PFC.

Definition 5.2. Writing λi(X) for the ith ordered eigenvalue of X, we define

M = min
i≤r

(
λi(X̂

T
X̂) − λi+1(X̂

T
X̂)
)

(9)

for the minimum level spacing (this includes the spacing between zero and the

non-zero eigenvalues, since λr+1(X̂
T

X̂) = 0). We define the second level crossing
event by

L2 =
{

λ1((X − X̂)T (X − X̂)) ≥ M
}

.

Lemma 5.3. If the errors ǫ are independent standard normals, and if
√

M/σ >√
n +

√
p then the probability

P(L2) ≤ exp

(
−1

2

(√
M/σ −

√
n −√

p
)2
)

.

If L2 does not occur, then there are exactly r eigenvalues of X
T

X larger than
λr(X̂

T
X̂), so the r largest eigenvalues must correspond to the perturbed values

of the original.

We now prove bounds on the angle Θ(Γ̂PC, Γ̂PFC) between the PC and PFC

directions, where C(Γ̂PC, Γ̂PFC) = cot2 Θ(Γ̂PC, Γ̂PFC) as before. Since M and

‖(X − X̂)T (X − X̂)‖ are OP(n), this angle is again of the order OP(1/
√

n).
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Proposition 5.4. In the case d = r, if the errors ǫ are independent standard
normals, the conditional expectation

E

(
Θ(Γ̂PC, Γ̂PFC)

∣∣∣L2

)
≤ arctan

(
σ2√np

M − ‖(X − X̂)T (X − X̂)‖

)
, (10)

where, as in Equation (9), M is the minimum eigenvalue spacing of X̂
T

X̂.

Using Proposition 5.4, we continue to explain the simulation graphs given in
Section 5 of Cook [1], consider the means of the angles Θ(Γ̂PC, Γ). Recall that
Example 2.5, based on Figure 1 of [1], considers normally distributed errors
ǫ with p = 10, d = r = 1, β = 1, and varies parameters n, σ and σY . For
simplicity, we replace some terms by their asymptotic limits to obtain more
heuristic results. We recall that βFTFβT ∼ σ2

Y χ2
n−1, so that asymptotically we

can take M = nσ2
Y . Similarly, we use the asymptotics given by Geman [6] and

replace ‖(X− X̂)T (X− X̂)‖ by σ2n. Combining Lemma 5.3 and Proposition 5.4,
we know that writing C for arctan(∞) (so that C = π/2 radians, or 90◦ for the
graphs plotted) gives

EΘ(Γ̂PC, Γ̂PFC)

= E

(
Θ(Γ̂PC, Γ̂PFC)

∣∣∣L2

)
P(L2) + E

(
Θ(Γ̂PC, Γ̂PFC)

∣∣∣Lc
2

)
P(Lc

2)

≤ C exp



−1

2

(√
M

σ
−

√
n −√

p

)2




+arctan

(
σ2√np

M − ‖(X − X̂)T (X − X̂)‖

)

≤ C exp

(
−1

2

(√
n(σY /σ − 1) −√

p
)2
)

+ arctan

(
σ2√p√

n(σ2
Y − σ2)

)
.

We ignore the first term (since it decays exponentially fast in n if σ2
Y > σ2).

In the case r = d = 1, angles satisfy a triangle inequality: that is, if the angle
between vectors Γ̂PFC and Γ is θ1 , and the angle between Γ̂PC and Γ̂PFC is θ2,
then the angle between Γ̂PC and Γ is ≤ θ1 + θ2. This means that, conditional
on Θ(Γ̂PFC, Γ), the angle between the PC directions and the true Γ is bounded
above by

EΘ(Γ̂PC, Γ) ≤ Θ(Γ̂PFC, Γ) + arctan

(
σ2√p√

n(σ2
Y − σ2)

)
, (11)

where the distribution of C = cot2 Θ(Γ̂PFC, Γ) is given in Theorem 2.4. In each
graph in Figure 2, we plot four curves, as follows:

1. We simulate directly from the distributions given by Theorem 2.4 and plot
the sample mean of the PFC angle Θ(Γ̂PFC, Γ) as ◦, as in Figure 1.
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Fig 2. Simulation of angle between Γ and both Γ̂PFC and Γ̂PC , in the setting of Example 2.5.

We plot the sample mean of the PFC angle Θ(Γ̂PFC, Γ) as ◦, the true PC angle Θ(Γ̂PC,Γ)
as ×, the bound on the expected angle from Equation (11) as + and the approximate expected
angle from Equation (12) as △. (a) Angle vs n, with σY = σ = 1; (b) Angle vs σY , with
n = 40, σ = 1; (c) Angle vs σ, with n = 40, σY = 1 (d) Angle vs n, with σY =

√
2, σ = 1.

2. Next, we plot the sample mean of the PC angle (based on direct simulation
of 2500 samples from the underlying distribution) as ×.

3. We plot the bound given by the right hand side of (11) as +, noting that
it is only useful when σ2

Y > σ2.
4. Finally, in the spirit of Sibson [13], we use △ to plot the angle correspond-

ing to the leading term in σ in the power series expansion in Equation (36)
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of the proof of Proposition 5.4, that is

Θ(Γ̂PFC, Γ) + arctan

(
σ2√p√

nσ2
Y

)
. (12)

Providing a more complete description of the distribution of Θ(Γ̂PC, Γ) than
that given in Proposition 5.4, and extending such results to the case d < r,
would require more advanced results from random matrix theory. However, the
results shown in Figure 2 give a good explanation of Figure 1 of [1], and indicate
parameter regions where the PFC and PC algorithms give close or differing re-
sults. In particular, the similarity of the plots in Figure 2 given by × and △ shows
that Equation (12) provides an accurate approximation to the PC performance.
(In fact, (12) should approximately give an upper bound to the performance
of this algorithm, because of the Jensen inequality used in Equation (37) of
the proof of Proposition 5.4. However, it appears that the resulting distribution
is sufficiently concentrated around its mean that the Jensen approximation is
asymptotically accurate).

Since the bound given by (11) is only valid where σ2
Y > σ2, we cannot plot it

for all ranges of parameters considered by Cook – not at all in Figure 2(a), and
only in a small region in Figure 2(c). We provide an extra series, Figure 2(d),
where σ2

Y = 2, to show the dependence of this bound on n.

Appendix A: Proofs

Proof of Lemma 2.2. As in [1], we write 1n for a n×1 matrix of 1s, so that if X
is a n×p matrix with rows given by XT

y then 1
n1n1

T
nX gives a matrix with rows

all equal to the sample mean X. The assumption that
∑

y fy = 0 means that

1T
nF = 0, which implies that PF1n = F(FTF)−1FT1n = 0 – that is, 1

n
1n1

T
n

and PF represent projections onto orthogonal subspaces. Hence the matrix X

defined to have rows (Xy−X)T can be expressed as (In− 1
n1n1T

n )X or, in terms
of the quantities in Equation (1), as

X =

(
In − 1

n
1n1

T
n

)(
1nµT + Fβ

TΓT + E
)

= Fβ
TΓT +

(
In − 1

n
1n1

T
n

)
E.

(13)
This means that the fitted matrix of predictors

X̂ = FβTΓT + PFE = F
(
βTΓT + (FTF)−1FTE

)
. (14)

Using Equation (14), we rewrite X̂ = FN where N = (βT ΓT + (FT F)−1FTE),

so that we can define VT = (FTF)−1/2FT
X̂ = (FTF)1/2N, and

X̂
T

X̂ = NTFT FN =
(
(FTF)1/2N

)T (
FTF)1/2N

)
= VVT . (15)

Any vector w orthogonal to the span of the columns of V is a 0-eigenvector of
X̂

T
X̂, since for such a vector Equation (15) shows that

X̂
T

X̂w = VVTw = V0 = 0,
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and similarly the span of the columns of V is preserved by X̂
T

X̂. Hence the r
columns of V span the same space as the eigenvectors of X̂

T
X̂ with the r largest

eigenvalues.

Proof of Lemma 2.3. For any matrix A, the entries of AE have mean E(AE) =
AE(E) = σAE(ǫ) = 0, allowing us to deduce the mean of V. Similarly, we use
the well-known fact that for any A and B:

Cov ((AE)ij, (BE)kl) =
∑

r,s

AirBksCov (Erj , Esl) = σ2(ABT )ikδjl. (16)

Taking A = B = (FTF)−1/2FT means that ABT = I, so by Equation (16) the
entries of V satisfy

Cov (Vij , Vkl) = Cov ((FTF)−1/2FTE)ij , (F
TF)−1/2FTE)kl) = σ2δikδjl,

and the result follows.

Proof of Theorem 2.4. In the case d = r, Lemma 2.2 tells us that we can choose
to take a PFC estimate Γ̂PFC given by an orthogonal transformation of the
columns of V defined in Equation (3). Write b(i), where i = 1, . . . , d, for the
columns of Γ, which form an orthonormal set since, by assumption, ΓTΓ = Id.
We extend this to create an orthonormal basis {b(1), . . . ,b(p)} for the whole of
R

p, and write G for the p × p matrix made up of the complete set of columns
b(i), with GTG = Ip.

We express V in this new basis, for k = 1, . . . , r we expand the kth column
of V as:

V(k) =

p∑

i=1

Aikb
(i), where Aik = (b(i))T V(k). (17)

Equivalently, we write the p × r matrix A = GTV = µ + C. Here µ =
GTΓβ(FTF)1/2, consists of a d×r block of the form β(FTF)1/2 and a (p−d)×r
zero block, and C = GTETF(FT F)−1/2. Equation (17) and Lemma 2.3 show
that A has mean µ, so that for i ≥ d +1 the Aik has mean 0, whereas for i ≤ d
the Aik has mean

µik = (β(FTF)1/2)ik. (18)

Using Lemma 2.3, we know that for any 1 ≤ i, j ≤ p and 1 ≤ k, l ≤ r:

Cov (Aik, Ajl) =

p∑

u=1

p∑

v=1

(b(i))u(b(j))vCov (Vuk, Vvl)

= σ2
p∑

u=1

p∑

v=1

(b(i))u(b(j))vδuvδkl = σ2δklδij. (19)
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The fact that ΓTΓ = Id implies that the projection PΓ = ΓΓT , so that the
projections of the kth column become

PΓV(k) = ΓΓTV(k) =

d∑

i=1

Aikb
(i),

(I −PΓ)V(k) = (Ip − ΓΓT )V(k) =

p∑

i=d+1

Aikb
(i).

Hence, the respective Frobenius norms become

‖PΓV‖2
F =

r∑

k=1

∣∣∣∣∣

d∑

i=1

Aikb
(i)

∣∣∣∣∣

2

=

r∑

k=1

d∑

i=1

A2
ik, (20)

‖(Ip − PΓ)V‖2
F =

r∑

k=1

∣∣∣∣∣

p∑

i=d+1

Aikb
(i)

∣∣∣∣∣

2

=

r∑

k=1

p∑

i=d+1

A2
ik. (21)

Note that the arguments so far do not require the assumption that the errors
ǫ are normal. Under this additional assumption, we deduce that the Aik are
normal and independent, with common variance σ2. In particular, under this
assumption the expressions (20) and (21) are independent of each other.

Further, if the errors are normal, Equation (21) means that ‖(I−PΓ)V‖2
F /σ2

has a central χ2 distribution with r(p−d) degrees of freedom. Similarly, Equation
(20) means that ‖PΓV‖2

F /σ2 has a non-central χ2 distribution with rd degrees
of freedom, and non-centrality parameter

Λ =
1

σ2

r∑

k=1

d∑

i=1

µ2
ik =

1

σ2
tr (β(FT F)βT ), (22)

and the proof is complete.

Proof of Lemma 3.1. We write Cik = Aik − µik, and use Equations (18)–(21).
In particular, Cik have mean zero and variance σ2, and Equation (18) implies

that
∑

k,i µ2
ik = tr (β(FT F)βT ). Hence we know that N =

∑r
k=1

∑d
i=1 A2

ik has

mean tr (β(FT F)βT ) + rdσ2 and D =
∑r

k=1

∑p
i=d+1 A2

ik has mean r(p− d)σ2.

For i ≤ d, we write Cik =
∑

r,s ΓriEsrWsk where W = F(FT F)−1/2, and

M = ΓΓT . We deduce that Var (N) equals

r∑

k=1



E

(
d∑

i=1

C2
ik

)2

+ 4

d∑

i,j=1

µikECikC
2
kj − d2σ4



+4tr (β(FTF)βT )σ2. (23)

In this expansion, we know that ECikC
2
jk = 0, since it can be written as a

linear combination of expectations of terms in Eij of degree 3. Each such term
contains a term of odd degree, so independence and symmetry means the re-
sulting expectation is zero. Similarly, using independence and symmetry, since
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only terms of the form EE4
ij and EE2

ijE
2
kl make a non-zero contribution, for any

k we can expand

E

(
d∑

i=1

C2
ik

)2

= E

(
∑

r,s,t,u

WskWtkEsrEtuMru

)2

= σ4
∑

r,s

W4
skM

2
rr(m4 − 3) + σ4

∑

r,s,t,u

W2
skW

2
tk(MrrMuu + 2MruMur)

≤ σ4

(
∑

r,s,t,u

W2
skW

2
tkMrrMuu + (m4 − 1)MruMur

)

= σ4
(
d2 + (m4 − 1)d

)

since
∑

s W2
sk =

∑
s WT

ksWsk = 1, the
∑

r Mrr = tr (ΓΓT ) = tr (ΓTΓ) = d,
and

∑
u MruMur = Mrr , so the result follows. Similarly we deduce Var (D) ≤

(p − d)T .

If ǫ are independent with mean zero and finite 4th moment, but no longer
symmetric, we can prove similar results. In this case, the

∑d
i,j=1 µikECikC

2
jk

term becomes OP(
√

n), which allows this proof to be adapted.
Fulton [5] reviews many facts concerning the eigenvalues of sums of matrices,

including the following result:

Lemma A.1 (Weyl [14]). For any real symmetric B and L:

λi(B) + λp(L) ≤ λi(B + L) ≤ λi(B) + λ1(L) for i = 1, 2, . . . , p.

Proof of Lemma 3.2. Since F has rows which correspond to independent sam-
ples of Y, the Law of Large Numbers means that (FTF)/n converges element-
wise almost surely to a real symmetric matrix Φ. Hence, using the union bound,

supi,j

∣∣∣(β(FTF)βT )ij/n − Φij

∣∣∣ can be made arbitrarily small for all n suffi-

ciently large with probability 1 − ǫ. This implies that the spectral norm of the
difference ‖(β(FTF)βT /n−Φ‖ can be made smaller than δ with the same prob-
ability. By Lemma A.1, this implies that the ith eigenvalue λi(β(FTF)βT /n) is
arbitrarily close to φi = λi(Φ).

Proof of Theorem 3.3. We write C(Γ̂PFC, Γ) = N/D, in the notation of Lemma
3.1 and define the event

BK1,K2,n∗ =

{
K1 ≤ tr (β(FTF)βT )

n
≤ K2 for all n ≥ n∗

}
.

By Lemma 3.2, given any α there exist K1, K2, n
∗ such that P(BK1,K2,n∗) ≥

1 − α/3. Note that on BK1,K2,n∗ , Lemma 3.1 implies that the mean EN ≥
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K1n and Var N ≤ Td + 4K2n. We use Chebyshev and choose N∗
+ = K1n −√

3(Td + 4K2n)/α to write that

P(N ≤ N∗
+|BK1,K2,n∗) ≤ Td + 4K2n

(N∗ − K1n)2
≤ α

3
. (24)

We bound an upper confidence interval by taking X+ = (3r(p − d)σ2/α) and
combining the fact that D is independent of the event BK1,K2,n∗ with Markov’s
inequality to obtain

P(Θ(Γ̂PFC, Γ) ≥ Θ∗
+)

= P(Θ(Γ̂PFC, Γ) ≥ Θ∗
+|BK1,K2,n∗)P(BK1 ,K2,n∗)

+P(Θ(Γ̂PFC, Γ) ≥ Θ∗
+|Bc

K1,K2,n∗)P(Bc
K1,K2,n∗)

≤ P
(
D/N ≥ tan2(Θ∗

+)|BK1,K2,n∗

)
+ P(Bc

K1,K2,n∗)

≤ P
(
D/N ≥ tan2(Θ∗

+), D ≤ X+|BK1,K2,n∗

)

+P
(
D/N ≥ tan2(Θ∗

+), D ≥ X+|BK1,K2,n∗

)
+ α/3

≤ P
(
N ≤ X+/ tan2(Θ∗

+)|BK1,K2,n∗

)
+ P (D ≥ X+|BK1,K2,n∗) + α/3

≤ P
(
N ≤ X+/ tan2(Θ∗

+)
)

+ 2α/3. (25)

We obtain the required bounds by equating N∗
+ and X+/ tan2(Θ∗

+), and using
Equation (24) and the fact that arctan (t) ≤ t. That is, we can take

Θ∗
+(α) = arctan

(√
X+

K1n −
√

3(T + 4K2n)/α

)
, (26)

and substitute the value X+ = (3r(p−d)σ2/α) given above. We can find a lower
confidence interval, since for any X−, a similar argument to Equation (25) gives

P(Θ(Γ̂PFC, Γ) ≤ Θ∗
−) ≤ P(D ≤ X−) + P

(
N ≥ X−/ tan2(Θ∗

−)
)

+ P(Bc
K1,K2,n∗).

By Chebyshev and Lemma 3.1, we can take X− = σ2r(p − d) −
√

3T (p − d)/α

to ensure that P(D ≤ X−) ≤ α/3, and N∗
− = K2n + rdσ2 +

√
3(Td + 4K2n)/α

to ensure that P(N ≥ N∗
−) ≤ α/3. Again, equating N∗

− and X−/ tan2(Θ∗
−), we

deduce that

Θ∗
−(α) = arctan

(√
X−

K2n + rdσ2 +
√

3(T + 4K2n)/α

)
, (27)

and the result follows in the same way.

Proof of Theorem 4.3. During this proof, for simplicity, we write λi for λi(UUT ),
which equals λi(β(FTF)βT ) if i ≤ d and zero otherwise. First, we introduce the
event

CΦ,n∗ =

{
λi(Φ) − δ ≤ λi

n
≤ λi(Φ) + δ for all i = 1, . . . , d, and all n ≥ n∗

}
,
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where δ is defined in terms of the interlevel spacing as δ = mini≤d(λi(Φ) −
λi+1(Φ))/10, writing λd+1(Φ) = 0. Note that δ > 0 by assumption.

We mirror the proof of Theorem 3.3 by conditioning on whether CΦ,n∗ and
L1 occur, to obtain

P(Θ(Γ̂PFC, Γ) ≥ Θ∗)

= P(Θ(Γ̂PFC, Γ) ≥ Θ∗|Cc
Φ,n∗)P(Cc

Φ,n∗)

+P(Θ(Γ̂PFC, Γ) ≥ Θ∗|L1, CΦ,n∗)P(L1|CΦ,n∗)P(CΦ,n∗)

+P(Θ(Γ̂PFC, Γ) ≥ Θ∗|Lc
1, CΦ,n∗)P(Lc

1, CΦ,n∗)

≤ P(Cc
Φ,n∗) + P(L1|CΦ,n∗) + P(sin Θ(Γ̂PFC, Γ) ≥ sin Θ∗|Lc

1, CΦ,n∗). (28)

Lemma 3.2 means that the first term in Equation (28) is less than α/3 for n∗

sufficiently large. Next we bound the second term in Equation (28), using the
fact that λ1(L) − λp(L) ≤ 4σ

√
‖SST‖‖UUT‖ + σ2‖SST‖, where we write ‖ · ‖

for the spectral norm. Completing the square and using Equation (8), we deduce
that

P(L1|CΦ,n∗) = P(λ1(L) − λp(L) ≥ λd|CΦ,n∗)

≤ P

(
4σ
√
‖SST‖

√
‖UUT ‖ + σ2‖SST‖ ≥ λd

∣∣∣∣CΦ,n∗

)

= P

(
σ
√
‖SST‖ ≥

√
4λ1 + λd − 2

√
λ1

∣∣∣∣CΦ,n∗

)

= P

(√
‖SST‖ ≥

√
r +

√
p + u

∣∣∣∣CΦ,n∗

)

≤ exp(−u2/2)

where u = (
√

4λ1 + λd − 2
√

λ1)/σ −√
r −√

p. The last inequality uses the fact
that S is a p × r matrix of independent standard Gaussians, so we can apply
Equation (8). Conditioning on the event CΦ,n∗ ensures that

u ≥
√

n(
√

4λ1(Φ) + λd(Φ) − 5δ−2
√

λ1(Φ) + δ)/σ−
√

r−√
p = a

√
n−

√
r−√

p,

where the choice of δ ensures that a > 0, so the second term in Equation (28)
is less than α/3 for n sufficiently large.

Finally we condition on the event Lc
1 ∩ CΦ,n∗ The key result is (as in [13])

that if ei is a λi-eigenvector of UUT then if fi satisfies

fi = −(UUT − λiIp)
+(L − µiIp)(ei + fi), (29)

then ei + fi is a (λi + µi)-eigenvector of X̂
T

X̂ = UUT + L, with fi ⊥ ei. Hence,
Equation (29) tells us that, conditioned on Lc

1, these perturbed eigenvectors
form the PFC directions. Since we condition on the event CΦ,n∗ , the norm

‖(UUT − λiIp)+‖ ≤ 1

minj 6=i(λj − λi)
≤ 10

nδ
for all i. (30)
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We need to probabilistically bound the norm of (L− µiIp). Lemma A.1 implies
that λp(L) ≤ µi ≤ λ1(L), so that for all i the norm

‖(L − µiIp)‖ ≤ λ1(L) − λp(L) ≤ 4σ
√
‖SST‖‖UUT ‖ + σ2‖SST‖. (31)

Using Proposition 4.1, we know that since S is a p × r matrix of standard
Gaussians, there exists K1 such that P(‖SST‖ ≥ K1) ≤ α/3. Since we condition
on the event CΦ,n∗ , the ‖UUT‖ ≤ (λ1(Φ) + δ)n = K2n for n sufficiently large.
Overall, we deduce that

P

(
‖L − µiIp)‖ ≥ 4σ

√
K1K2n + σ2K1

∣∣∣Lc
1, CΦ,n∗

)
≤ α/3. (32)

Taking K = 10(4σ
√

K1K2 + σ2K1)/δ and using Equations (29) and (30), we

deduce that, since sin Θ(Γ̂PFC, Γ) represents a weighted average of sines of angles
between PFC and unperturbed eigenvectors, it is dominated by the maximum
sine of such an angle. In other words

P(sin Θ(Γ̂PFC, Γ) ≥ K/
√

n
∣∣∣Lc

1, CΦ,n∗)

≤ P

(
max

i

(
‖(UUT − λiIp)

+(L − µiIp)‖
)
≥ K/

√
n
∣∣∣Lc

1, CΦ,n∗

)

≤ P

(
max

i
‖L − µiIp‖ ≥

√
nδK

10

∣∣∣∣L
c
1, CΦ,n∗

)

= P

(
‖L − µiIp)‖ ≥ (4σ

√
K1K2 + σ2K1)

√
n
∣∣∣Lc

1, CΦ,n∗

)

≤ P

(
‖L − µiIp)‖ ≥ 4σ

√
K1K2n + σ2K1

∣∣∣Lc
1, CΦ,n∗

)
≤ α/3, (33)

by Equation (32). Taking sin Θ∗ = K/
√

n, Equation (33) tells us that the third
term of Equation (28) is less than α/3. The result follows using the fact that
Θ∗ = arcsin(K/

√
n) = O(1/

√
n).

Proof of Lemma 5.1. The key is to notice that using Equations (13) and (14),
and writing PG =

(
In − 1

n
1n1T

n − PF

)
for the projection onto the space or-

thogonal to the columns of F and to the column made up of 1s, we can express

X − X̂ =

(
In − 1

n
1n1

T
n −PF

)
E, (34)

which is not a function of Γ. As before, since PF and PG represent projection
onto orthogonal spaces, the PFPT

G
= 0. This means that

X̂
T (X − X̂) = X

TPFPT
GX = 0,

so, since the cross-term vanishes,

X
T

X = (X̂ + (X − X̂))T (X̂ + (X − X̂)) = X̂
T

X̂ + (X − X̂)T (X − X̂). (35)

Further, by Equation (16), the relation PFPT
G

= 0 means that the terms X̂

and X− X̂ are uncorrelated. Hence, if the errors ǫ are normally distributed, the
terms X̂ and X − X̂ are independent and the lemma follows.
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Proof of Lemma 5.3. Note that Equation (34) means that (X − X̂)T (X − X̂) =
σ2XTPGX, where X is an n×p Wishart matrix with standard Gaussian entries
independent of X̂

T
X̂. We take t =

√
M/σ − (

√
n +

√
p) and apply the result of

Davidson and Szarek, Equation (8).

Since (X − X̂)T (X − X̂) is positive-definite, λp((X − X̂)T (X − X̂)) ≥ 0, and

since λi(X̂
T

X̂) = 0 for i ≥ r + 1, Lemma A.1 and Equation (35) imply that

λi(X̂
T

X̂) ≤ λi(X
T

X) ≤ λi(X̂
T

X̂) + λ1((X − X̂)T (X − X̂))

Hence, if L2 does not occur, that is if λ1((X−X̂)T (X−X̂)) < M , there are exactly

r eigenvalues of X
T

X larger than λr(X̂
T

X̂), and the r largest eigenvalues must
correspond to the perturbed values of the original.

Next we prove another technical lemma:

Lemma A.2. Given n × n projection matrix PG and n × p matrix X with
independent standard Gaussian entries, consider matrices R = XW and S =
XV, where WTV = 0. Then

E
(
tr (RRTPGSSTPG)

)
= tr (WT W)tr (VTV)rank (G).

Proof. Using the representation R = XW and Equation (16) we deduce that
E(RRT )ij = δijtr (WTW). Similarly E(SST )ij = δijtr (VTV). The fact that
WT V = 0 makes R and S independent by Equation(16), so that:

E
(
tr (RRTPGSSTPG)

)
=

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

E(RRT )ij(PG)jkE(SS)kl(PG)li

= tr (WTW)tr (VTV)

n∑

i=1

n∑

k=1

(PG)ik(PG)ki

= tr (WTW)tr (VTV)tr (PT
GPG)

as required.

Proof of Proposition 5.4. During this proof, for simplicity, we write λi = λi(X̂
T

X̂)

and L = (X − X̂)T (X − X̂), where Equation (34) means that as before L =
σ2XTPGX, with PG = (I − 1

n1n1
T
n − PF). We condition on the r PFC direc-

tions being ui, where ui is a λi-eigenvector of X̂
T

X̂. As in Equation (29) and
[13], if the vectors vi satisfy

(
Ip + (X̂T

X̂ − λiIp)+(L − µiIp)
)

vi = −(X̂T
X̂ − λiIp)

+Lui. (36)

then ui+vi are (λi+µi)-eigenvectors of X
T

X, and give the r PC directions. This

definition of vi makes vi ⊥ ui, so that Pui
Γ̂PC,i = ui and (Ip−Pui

)Γ̂PC,i = vi.
As before, we know that for all i:

‖Ip + (X̂T
X̂ − λiIp)+(L − µiIp)‖ ≥ 1 − ‖(X̂T

X̂ − λiIp)
+‖ × ‖(L − µiIp)‖

≥ 1 − ‖L‖
M

.
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This means that, conditioned on L2,

‖(Ip −Pui
)Γ̂PC,i‖2

F

|ui|2
≤ |(X̂T

X̂ − λiIp)
+Lui|2

‖Ip + (X̂T X̂ − λiIp)+(L − µiIp)‖2

≤ |(X̂T
X̂ − λiIp)

+Lui|2

(1 − ‖L‖/M)
2 .

Writing U for the matrix made up of columns ui, using Jensen’s inequality

tan2
(

E

(
Θ(Γ̂PC, U)|L2

))
≤ E

(
tan2 Θ(Γ̂PC, U)|L2

)
(37)

= E

(∑
i |(Ip −PU)Γ̂PC,i|2∑

i |PUΓ̂PC,i|2

∣∣∣∣∣L2

)

≤ E

(∑
i |(Ip −Pui

)Γ̂PC,i|2∑
i |Pui

Γ̂PC,i|2

∣∣∣∣∣L2

)

≤
∑

i E(((X̂T
X̂ − λiIp)

+Lui)
2|L2)

(1 − ‖L‖/M)
2∑

i |ui|2
. (38)

Using Lemma A.2 and recalling the fact that L = σ2XTPGX, we know that
the numerator of Equation (38) satisfies

σ4
∑

i

EuT
i XTPGX(X̂T

X̂ − λiIp)
+(X̂T

X̂ − λiIp)
+XTPGXui

= σ4
∑

i

E
(
tr (ST

i PGRiR
T
i PGSi)

)

= σ4
∑

i

E
(
tr (RiR

T
i PGSiS

T
i PG)

)

= σ4rank (G)
∑

i

tr
(
(X̂T

X̂ − λiIp)
+2
)
|ui|2

≤ σ4np

M2

∑

i

|ui|2,

where Ri = X(X̂T
X̂−λiIp)

+, Si = Xui, so the conditions of Lemma A.2 apply.
Substituting into Equation (38), we deduce the result.

Acknowledgements

The author would like to thank Iain Johnstone for the reference to Davidson
and Szarek’s paper, and Richard Samworth for helpful advice.

References

[1] Cook, R. D. (2007). Fisher lecture: Dimension reduction in regression.
Statist. Sci. 22, 1, 1–26. MR2408655

http://www.ams.org/mathscinet-getitem?mr=2408655


O. Johnson/Theoretical properties of Cook’s PFC algorithm 828

[2] Critchley, F. (1985). Influence in principal components analysis.
Biometrika 72, 3, 627–636. MR0817577

[3] Davidson, K. R. and Szarek, S. J. (2001). Local operator theory, ran-
dom matrices and Banach spaces. In Handbook of the geometry of Banach
spaces, Vol. I. North-Holland, Amsterdam, 317–366. MR1863696

[4] Fisher, R. A. (1922). On the mathematical foundations of theoretical
statistics. Philos. Trans. Roy. Soc. London Ser. A 222, 309–368.

[5] Fulton, W. (2000). Eigenvalues, invariant factors, highest weights, and
Schubert calculus. Bull. Amer. Math. Soc. (N.S.) 37, 3, 209–249 (elec-
tronic). MR1754641

[6] Geman, S. (1980). A limit theorem for the norm of random matrices. Ann.
Probab. 8, 2, 252–261. MR0566592

[7] Hotelling, H. (1933). Analysis of a complex statistical variable into
principal components. J. Educational Psychology 24, 417–441.

[8] Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in
principal components analysis. Ann. Statist. 29, 2, 295–327. MR1863961

[9] Li, B., Zha, H., and Chiaromonte, F. (2005). Contour regression: a
general approach to dimension reduction. Ann. Statist. 33, 4. MR2166556

[10] Li, K.-C. (1991). Sliced inverse regression for dimension reduction. J.
Amer. Statist. Assoc. 86, 414, 316–342. With discussion and a rejoinder
by the author. MR1137117

[11] Oman, S. D. (1991). Random calibration with many measurements: An
application of stein estimation. Technometrics 33, 2, 187–195.

[12] Seber, G. A. F. (1984). Multivariate observations. Wiley Series in Prob-
ability and Mathematical Statistics. John Wiley & Sons Inc., New York.
MR0746474

[13] Sibson, R. (1979). Studies in the robustness of multidimensional scal-
ing: perturbational analysis of classical scaling. J. Roy. Statist. Soc. Ser.
B 41, 2, 217–229. MR0547248

[14] Weyl, H. (1912). Das asymptotische Verteilungsgesetz der Eigen-
werte linearer partieller Differentialgleichungen. Math. Ann. 71, 441–479.
MR1511670

[15] Xia, Y., Tong, H., Li, W. K., and Zhu, L.-X. (2002). An adaptive
estimation of dimension reduction space. J. R. Stat. Soc. Ser. B Stat.
Methodol. 64, 3, 363–410. MR1924297

http://www.ams.org/mathscinet-getitem?mr=0817577
http://www.ams.org/mathscinet-getitem?mr=1863696
http://www.ams.org/mathscinet-getitem?mr=1754641
http://www.ams.org/mathscinet-getitem?mr=0566592
http://www.ams.org/mathscinet-getitem?mr=1863961
http://www.ams.org/mathscinet-getitem?mr=2166556
http://www.ams.org/mathscinet-getitem?mr=1137117
http://www.ams.org/mathscinet-getitem?mr=0746474
http://www.ams.org/mathscinet-getitem?mr=0547248
http://www.ams.org/mathscinet-getitem?mr=1511670
http://www.ams.org/mathscinet-getitem?mr=1924297

	Introduction and notation
	Theoretical PFC performance when d=r
	n-consistency of PFC estimates
	Random matrices and perturbation
	Theoretical performance of the PC algorithm
	Proofs
	Acknowledgements
	References

