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On a one-dimensional model of infection spreading

Marco Antônio Giacomelli
Universitade Federal do rio

Abstract. We study sequential infection spreading models on Z, where
healthy particles stay inactive and infected particles have positive displace-
ment rate. When one infected particle reaches a healthy site, all particles con-
tained there become infected. The main focus of our study is the speed of
infection spreading.

1 Introduction

The model that we are considering here is similar to the frog model, see Alves,
Machado and Popov (2001, 2002), Fontes, Machado and Sarkar (2004), Lebensz-
tayn, Machado and Popov (2005) and Popov (2001). In the basic version of the
frog model only the origin contains one infected particle, with positive rate of dis-
placement. In the other sites the particles are healthy and do not move. When an
infected particle reaches a site only with healthy particles, all particles contained
there become infected and start moving. Moreover, particles of the same kind do
not interact with each other. In our model particles are allocated on Z and can
only move to the right, and besides the conditions above, we admit the existence
of more than one site with infected particles in the initial configuration, that is, at
time 0, particles at x ≤ 0 are considered infected. The model described above is
called the general model.

The number of particles at site x ∈ Z, at moment t , will be denoted by ηt (x).
Thus, for the initial moment, {η0(x) :x ∈ Z} is called the initial configuration.
In our model the configuration in the origin will be η0(0) = 1 + ν, ν ∼ Pois(λ),
where Pois(λ) stands for the Poisson distribution with parameter λ > 0. Note that
the origin necessarily contains at least one particle at time 0. In the other sites
η0(x) ∼ Pois(λ), and moreover {η0(x) :x ∈ Z} is a sequence of independent ran-
dom variables.

By convention, in the beginning the negative sites, and also the origin, will be
infected, while the positive ones are healthy. For each infected particle we asso-
ciate a homogeneous Poisson process of rate 1, whose we call the clock of the
process. The clocks are mutually independent. Thus, infected particles move to
the right, and the intervals between jumps are independent random variables with
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exponential distribution of parameter 1, denoted by Expon(1). The healthy parti-
cles stay sleeping (displacement rate equal to zero), until awakened by an infected
particle.

The model that we deal in this paper is a discrete approach to one-dimensional
diffusion process, see Itô and McKean (1974). In a diffusion process particles move
on a continuous state space I ⊂ R, moreover they have a lifetime m ≤ ∞ (also
called killing time), but here we will not assume this.

Our main result is about the speed of infection spreading, that is, we have:

Theorem 1. Let v := limt→∞ Zt

t
be the speed of infection spreading, being Zt

the current boundary, that is, the rightmost site at time t which contains infected
particles. Then, v > 1.

It is worth noting that there is a substantial difference between this paper and the
previous work on the frog model: in Alves, Machado and Popov (2001, 2002) the
coupling used to prove the subadditivity is particle-oriented (particles are distin-
guishable and the sequence of particles’ jumps is fixed). In this paper, the coupling
is site-oriented (particles are indistinguishable and the sequences of jump moments
are attached to the sites).

2 Preliminaries

In this section we present some preliminaries, allowing prove the crucial Theo-
rem 1 later.

The following theorem guarantees the existence of v and also supplies a lower
bound. We use the version of Liggett (1985).

Theorem 2 (Subadditive Ergodic Theorem). Let {X(m,n) : 0 ≤ m ≤ n; m,n ∈
N} be a sequence of positive random variables such that:

(i) X(0, n) ≤ X(0,m) + X(m,n) for all 0 ≤ m < n;
(ii) the joint distribution {X(m + 1,m + k + 1) :k ≥ 1} is the same that

{X(m,m + k) :k ≥ 1}, ∀m ≥ 0;
(iii) for each k ≥ 1 the sequence {X(nk, (n + 1)k) :n ≥ 1} is a ergodic station-

ary process;
(iv) E(X(0,1)) < ∞.

Then:

lim
n→∞

X(0, n)

n
= γ almost surely,

where γ := infn≥0
E(X(0,n))

n
.
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Now, our goal is apply the subadditive ergodic theorem, so let us restrict to
a simplified model, which we call truncated model. This model has almost surely
the same speed of infection spreading than general model, as we will see in the
following section. In truncated model the sites are {0,1, . . .} and at time 0 only the
origin is infected. For the positive sites the configuration and the dynamics is the
same that in the general model. Through truncated model we obtain results that
will be applied to the general model. To apply Theorem 2 we construct a certain
two-parameter family of random variables, which correspond to certain hitting
times with respect to the truncated model, and prove that the subadditivity property
holds for this construction. So we introduce the process A which has no particles
in {0,1, . . . , x − 1}, and begins with η0(x) + 1 infected particles at x, η0(x) ∼
Pois(λ). Note that the truncated model can contain particles at {0,1, . . . , x − 1},
but at x should contain a greater or equal quantity of particles than the process A.
Now, for the process A, let T (x, y) be the time it takes for an infected particle
from site x to reach y, with 0 ≤ x < y < ∞, that is, the time so that the infection
reach y, leaving from a particle at x. The assumption of not having particles in
{0,1, . . . , x − 1} is to guarantee the subadditivity, that is, T (0, x) + T (x, y) ≥
T (0, y), allowing to apply Theorem 2.

We need to define NA
u and Nu as being the number of particles at site u, in

the process A and truncated model, respectively. Note that Nu ≥ NA
u , for any

x ≤ u < y. Moreover, let T A
n (u) and Tn(u) the instant when the nth particle left

site u.
Lemma 1 and 2 below are for the proof of Lemma 3, which ensure that

0 ≤ γ ≤ 1, when applied to the sequence {T (x, y) :x, y ∈ Z}. Later, through
Lemma 3, we will prove that v > 1 for the general model.

Lemma 1. Let x ≤ u < y and n ≤ NA
u . Then, T A

n (u) ≥ Tn(u).

Proof. We will use induction in n. First define {Ex
1 ,Ex

2 , . . .} to be an i.i.d. sequence
of random variables with law Expon(1) and assume x = u. Then

T A
1 (x) = min{Ex

j : j = 1, . . . ,NA
x } and T1(x) = min{Ex

j : j = 1, . . . ,Nx}.
It follows that T1(x) ≤ T A

1 (x). Now, we concentrate on the process A. For the
second particle at site x, T A

2 (x) = min{{Ex
j : j = 1, . . . ,NA

x } \ {T A
1 (x)}} and we

proceed in this way until obtaining T A
NA

x
(x). Note that through the site x + 1 will

pass m + NA
x particles, being m the initial number of particles which were present

in x + 1. Here we introduce the notation

CA(x + 1) = {T A
1 (x) + Ex+1

1 ,T A
1 (x) + Ex+1

2 , . . . ,

T A
1 (x) + Ex+1

m ,T A
1 (x) + Ex+1

m+1,

T A
2 (x) + Ex+1

m+2,T
A

3 (x) + Ex+1
m+3, . . . ,T

A
NA

x
(x) + Ex+1

m+NA
x
}.
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In the Process A, the instant when the first particle jumps from x + 1 to x + 2 will
be T A

1 (x +1) = min{CA(x +1)}. For the second particle, in CA(x +1) we exclude
T A

1 (x+1) and we take the next minor value, that is, T A
2 (x+1) = min{CA(x+1)\

{T A
1 (x + 1)}}. In this way we proceed until obtaining T A

m+NA
x
(x + 1). Assuming

that Nx = NA
x , similarly, in the truncated model we will have the set

C(x + 1) = {T1(x) + Ex+1
1 ,T1(x) + Ex+1

2 , . . . ,T1(x) + Ex+1
m ,T1(x) + Ex+1

m+1,

T2(x) + Ex+1
m+2,T3(x) + Ex+1

m+3, . . . ,TNA
x
(x) + Ex+1

m+NA
x
}.

Proceeding as before we will obtain the instants

T1(x + 1),T2(x + 1), . . . ,Tm+NA
x
(x + 1).

If Nx > NA
x , we will have also

Tm+NA
x +1(x + 1), . . . ,Tm+Nx (x + 1).

Using the fact that T1(x) ≤ T A
1 (x) and the hypothesis Tn(x) ≤ T A

n (x) we have

T A
1 (x) + Ex+1

1 ≥ T1(x) + Ex+1
1 , T A

1 (x) + Ex+1
2 ≥ T1(x) + Ex+1

2 , . . . ,

T A
NA

x
(x) + Ex+1

m+NA
x

≥ TNA
x
(x) + Ex+1

m+NA
x
,

hence T A
n (x + 1) ≥ Tn(x + 1), for n ∈ {1, . . . ,m + NA

x }. In the same way one
obtains that T A

n (u) ≥ Tn(u) for x < u < y and n ≤ NA
u . �

Lemma 2. The sequence {T (x, y) :x, y ∈ Z and 0 ≤ x < y} satisfies the hypothe-
sis of Theorem 2.

Proof. (i) In Lemma 1 let n = 1 and u = y − 1. Then, T (x, y) = T A
1 (y − 1).

Also T (0, y) − T (0, x) = T1(y − 1). Thus, T (x, y) ≥ T (0, y) − T (0, x), that is,
T (0, y) ≤ T (0, x) + T (x, y).

(ii) We set Eη and Pη as being the expectation and probability, respectively,
for T (0, x) with fixed initial configuration η. In other words, Eη and Pη are the
expectation and probability conditioned on configuration η, the so-called quenched
probability and expectation. Moreover, we set E = EEη and P = PPη, that is, the
annealed expectation and probability, respectively. Here, E and P are expectation
and probability with respect to the initial configuration η.

Suppose that 0 ≤ x < y. Then, for m > 0,

P
(
T (x, x + 1) > t

) =
∞∑

k=m

P
(
η(x) = k

)
Pη

(
T (x, x + 1) > t |η(x) = k

)

=
∞∑

k=0

(
e−λ λk

k!
)
e−kt

= exp{λ(e−t − 1)}.
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In the same way we conclude that

P
(
T (y, y + 1) > t

) = exp{λ(e−t − 1)}.
Thus, we conclude that T (x, x + 1) and T (y, y + 1) have the same probability
law with respect to measure P. By the same kind of argument, {T (x, x + k) :k ≥
1} and {T (x + 1, x + k + 1) :k ≥ 1} also have the same annealed law, that is,
{T (x, x + k) :k ≥ 1} is stationary.

(iii) This is proved in the same way as in the item (ii). The ergodicity follows
from the fact that the sequence {T (nk, (n + 1)k :n ≥ 1}, for k positive integer, is
i.i.d.

(iv) The initial configuration at site zero is η(0)+ 1, with η(0) ∼ Pois(λ). Since
each infected particle jumps with rate 1, T (0,1) ∼ Expon(η(0) + 1). Thus,

EηT (0,1) = 1

η(0) + 1

and

ET (0,1) = EEηT (0,1) = E
(

1

η(0) + 1

)
=

∞∑
j=0

1

j + 1
e−λ

(
λj

j !
)

= 1 − e−λ

λ
< 1. �

Lemma 3. The sequence {T (0, x) :x, y ∈ Z and 0 ≤ x < y} is such that

0 < inf
x≥0

E(T (0, x))

x
< 1.

Proof. Let us denote by Nr
t the total number of infected particles up to time t . Set

H(t) := ENr
t . As the initial boundary is in the origin,

H(0) = ENr
0 = E

(
1 + η0(0)

) = 1 + λ.

For a small h,

H(t + h) = E

( Nr
t∑

i=1

Vi

)
, (2.1)

where

Vi :=
{

1, if the ith particle at Zt does not jump in the interval [0, h],
1 + λ, otherwise.

To explain the definition of Vi , in the case when the ith particle from Zt jumps, the
site Zt + 1 will have, in average, 1 + λ particles (remember that before jumping,
in average, Zt + 1 was with λ normal particles). For small h, it is likely that on
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interval [h, t + h] only one particle will jump. Since each particle has a Poisson
clock, the jump probability is proportional to 1 × h + o(h). It follows that

EVi = 1 × (1 − h) + (1 + λ) × h + ō(h) ≈ 1 + λ × h.

Let us come back to the equation (2.1). Since Nr
t is independent of {Vi}i≥1, and

the latter is an i.i.d. sequence of random variables, from Wald formula we obtain

H(t + h) = ENr
t EV1 = H(t)(1 + hλ) = H(t) + λhH(t).

Hence,

H ′(t) = lim
h↓0

H(t + h) − H(t)

h

= lim
h↓0

H(t) + λhH(t) − H(t)

h
(2.2)

= λH(t).

With the initial condition H(0) = 1 + λ, the solution of this differential equation
is H(t) = (1 + λ)eλt . By Chebyshev inequality,

P
(
Nr

t > 2(1 + λ)eλt ) ≤ H(t)

2(1 + λ)eλt
= 1

2
,

therefore,

P
(
Nr

t ≤ 2(1 + λ)eλt ) ≥ 1

2
. (2.3)

Now, we come back to the truncated model and define

Nt := “total number of infected particles in the original model at time t”.

Thus,

P
(
Nt ≤ 2(1 + λ)eλt ) ≥ P

(
Nr

t ≤ 2(1 + λ)eλt ),
hence, by (2.3)

P
(
Nt ≤ 2(1 + λ)eλt ) ≥ 1

2
. (2.4)

Now, fix a particle and define

Yt := “number of jumps that this particle performes up to time t”.

Note that Yt ∼ Pois(t). For a, s > 0, from Chernoff upper bound,

P(Yt > at) = P(esYt > esat ) ≤ MYt (s)

esat

=
(

exp{es − 1}
exp{sa}

)t

(2.5)

= exp{−t (sa − es + 1)}.
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A direct computation shows that the minimum of (−t (sa − es + 1)) occurs for
s = ln(a). Thus, from (2.5) we obtain

P(Yt > at) ≤ exp
{−t

(
a ln(a) − a + 1

)}
. (2.6)

Let {Ui}i≥1 be i.i.d. random variables with distribution Pois(t). The interpre-
tation of Ui is the position that ith particle occupies, at time t . Also we set
Wt := max{Ui : i = 1, . . . ,Nt }. For b > 0, from the independence of {Ui}i≥1, and
using the fact that {Ui}i≥1 are independent from Nt for all i,

P
(
Wt ≤ bt |Nt ≤ 2(1 + λ)eλt ) = P

( ⋂
1≤i≤Nt

{Ui ≤ bt}∣∣Nt ≤ 2(1 + λ)eλt

)

≥ (
P(U1 ≤ bt)

)2(1+λ)eλt

.

By (2.6),(
P(U1 ≤ bt)

)2(1+λ)eλt ≥ (
1 − exp

{−t
(
b ln(b) − b + 1

)})2(1+λ)eλt

(2.7)
= exp

{
2(1 + λ) exp{λt}
× ln

(
1 − exp

{−t
(
b ln(b) − b + 1

)})}
.

Let us remember the fact ln(1 − α) ∼ −α, for α small enough. Then,

α = exp
{−t

(
b ln(b) − b + 1

)}
is small if b is large enough. Thus, for b large enough, (2.7) is close to

exp
{−2(1 + λ) exp

{−t
(
b ln(b) − b + 1

)}} ≥ c, 0 < c < 1. (2.8)

By (2.4) and (2.8),

P(Wt ≤ bt) ≥ P
(
Wt ≤ bt |Nt ≤ 2(1 + λ)eλt )P (

Nt ≤ 2(1 + λ)eλt ) ≥ c

2
.

But this means that, with probability at least c
2 , the process does not reach bt ,

having Nt infected particles at time t . Since the event {Wt ≤ bt} is equivalent to
{T (0, bt) > t}, we have

P
(
T (0, bt) > t

) ≥ c

2
,

which implies that

E(T (0, bt)) ≥ c

2
t.

Hence, for t large enough,

E(T (0, bt))

bt
≥ c

2b
,

and therefore, γ > 0.
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In the following few lines we prove that γ < 1. By (i) and (ii) in Lemma 2,
ET (0, x) ≤ ET (0,1) + ET (1, x) and ET (1, x) = ET (0, x − 1), therefore,

ET (0, x) ≤ ET (0,1) + ET (1, x)

= ET (0,1) + ET (0, x − 1)

≤ ET (0,1) + ET (0,1) + ET (1, x − 1)

= 2ET (0,1) + ET (0, x − 2)

...

= xET (0,1), (2.9)

where the last equality was obtained by successive applications of Lemma 2.
By (2.9),

ET (0, x)

x
≤ ET (0,1). (2.10)

But, in the proof (iv) of Lemma 2 we saw that ET (0,1) = 1−e−λ

λ
. Since 1−e−λ

λ
is

monotonously decreasing function and limλ↓0
1−e−λ

λ
= 1, ET (0,1) < 1. Returning

to (2.10), by Theorem 2,

γ = inf
x≥0

ET (0, x)

x
< 1,

hence γ < 1. �

3 Existence of a lower bound for the speed of infection spreading

Initially we establish a lower bound for the speed of infection spreading in the
truncated model and then extend it to the general model.

Lemma 4. The speed of infection spreading in truncated model is greater than 1.

Proof. In Lemma 2 we saw that limx→∞ T (0,x)
x

= γ , almost surely. This means
that for any δ > 0, there exists random x0, such that for any x ≥ x0,

(γ − δ)x < T (0, x) < (γ + δ)x. (3.1)

Fix ε > 0. It follows that there exists t > 0 such that x = ( 1
γ

+ ε)t . From (3.1),

T

(
0,

(
1

γ
+ ε

)
t

)
> (γ − δ)

(
1

γ
+ ε

)
t.
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Since δ > 0 is arbitrary, taking it small enough,

(γ − δ)

(
1

γ
+ ε

)
> t,

therefore, for t large enough,

T

(
0,

(
1

γ
+ ε

)
t

)
> t.

But, the event {T (0, y) > t} implies that {Zt < y}, therefore we conclude that
Zt < ( 1

γ
+ ε)t . In a similar way, Zt > ( 1

γ
− ε)t , hence,

(
1

γ
− ε

)
t < Zt <

(
1

γ
+ ε

)
t.

Since ε is arbitrary, limt→∞ Zt

t
= 1

γ
> 1, hence in accordance with Lemma 3,

γ < 1. �

Now, we show that the speed in the general model is almost surely equal to
the speed in the truncated model. Empirically, although the general model have
negative sites, and therefore more particles, the speed of any individual particle is
equal to 1, and in the truncated model the speed of infection spreading is greater
than 1. Thus, it is unlikely that particles from negative sites reach Zt .

Proposition 1. In the general model, with positive probability, particles from neg-
ative sites do not reach the current boundary.

Proof. For the initial configuration,

Pη(particles from negative sites do not reach the current boundary)
(3.2)

= ∏
k<0

Pη(Ck),

where Ck := “particles from site k do not reach the boundary”. Note that the prod-
uct in (3.2) appears because of independence between particles originating in dif-
ferent sites.

Remember that the initial configuration is such that η(k) ∼ Pois(λ), thus

P
(
η(k) ≥ |k|) = ∑

j≥|k|
e−λ

(
λj

j !
)

≤ e−λ λ|k|

|k|!
∑

j≥|k|

λj−|k|

(j − |k|)! = λ|k|

|k|!
and

∑
|k|>0

P
(
η(k) ≥ |k|) ≤ ∑

|k|≥0

λ|k|

|k|! = eλ < ∞.
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From Borel–Cantelli lemma, the event {η(k) ≥ |k|, infinitely often} has probability
zero. We set the event Ak := “a particle from site k do not meets the boundary ”.
The occurrence of the Ck implies that Ak occurs for each particle at k. Moreover,
particles on the same site are independent, and also have equal probability for the
event Ak , then

Pη(Ck) = (Pη(Ak))
η(k) ≥ (Pη(Ak))

|k|, (3.3)

since {η(k) < |k|} with probability 1.
It follows from Lemma 2(iv), without loss of generality, that Zt

t
> a > 1, for

any t > 0. Then,

Ak = {n ≤ |k| + at,∀n ≥ 1},
where t = ∑n

i=1 Ti , {Ti}ni=1 i.i.d. random variables with law Expon(1). Now, set

An
k :=

{
n − |k|

a
<

n∑
i=1

Ti

}
.

Therefore, Ak = ⋂
n≥1 An

k . For s > 0, from Chernoff upper bound,

Pη((A
n
k)

c) = Pη

(
n∑

i=1

Ti ≤ n − |k|
a

)

= Pη

(
exp

{
−s

n∑
i=1

Ti

}
≥ exp

{
−s

(
n − |k|

a

)})

(3.4)

≤ (E(exp{−sT1}))n
exp{−s(n − |k|)/a}

= exp
{
−

(
s

a

)
|k|

}(
exp

{
− ln(1 + s) + s

a

})n

.

Minimizing (− ln(1 + s) + s
a
) with respect to s in (3.4), we obtain s = a − 1 > 0.

Returning to (3.4),

Pη((A
n
k)

c) ≤ exp
{
−

(
a − 1

a

)
|k|

}(
exp

{
− lna +

(
a − 1

a

)})n

. (3.5)

By (3.5),

Pη(A
c
k) ≤

∞∑
n=1

P((An
k)

c) =
∞∑

n=1

exp
{
−

(
a − 1

a

)
|k|

}(
exp

{
− lna +

(
a − 1

a

)})n

= exp
{
−

(
a − 1

a

)
|k|

}
α,

therefore

Pη(Ak) ≥ 1 − exp
{
−

(
a − 1

a

)
|k|

}
α. (3.6)
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By (3.2), (3.3) and (3.6)

Pη(particles from negative sites do not reach the current boundary)
(3.7)

≥ ∏
k<0

(
1 − exp

{
−

(
a − 1

a

)
|k|

}
α

)|k|
.

We claim that the product in (3.7) is positive. In fact, from integral criterion,
∑
|k|≥0

α|k| exp
{
−

(
a − 1

a

)
|k|

}
< ∞,

allowing us to conclude that

Pη(particles from negative sites do not reach the current boundary) > 0,

and therefore the proposition is proved. �

Lemma 5. Let vg be the speed of infection spreading in the general model. Then,
v = vg almost surely.

Proof. It is trivial that vg ≥ v. To show that vg ≤ v we introduce couples of the

general model, that is, processes {Y (m)
t : t ≥ 0,m = 1,2, . . .} with the same config-

uration that general model, but with the difference that particles until site m are
infected and above m are healthy. For each fixed m we set

Bm := “no particle starting below m meets the boundary”.

The respective speed of infection is denoted by v
(m)
g . Note that v

(m)
g ≥ v

(0)
g = vg .

Now, according to Proposition 1,

E
(
I{Bm}

) = E
(
I{B0}

) = P(B0) > 0,

being I{·} indicator function. Applying the Birkhoff ergodic theorem,

lim
m→∞

1

m

m∑
j=1

I{Bj } = P(B0) almost surely,

implying the existence of m0 such that Bm0 occurs, so v
(m0)
g = v. Thus,

v = v(m0)
g ≥ v(0)

g = vg,

and we complete the proof of the fact that v = vg , therefore the proof of the Theo-
rem 1. �
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