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ASYMPTOTIC NORMALITY OF A NONPARAMETRIC ESTIMATOR
OF SAMPLE COVERAGE

BY CUN-HUI ZHANG1 AND ZHIYI ZHANG

Rutgers University and University of North Carolina at Charlotte

This paper establishes a necessary and sufficient condition for the asymp-
totic normality of the nonparametric estimator of sample coverage proposed
by Good [Biometrica 40 (1953) 237–264]. This new necessary and sufficient
condition extends the validity of the asymptotic normality beyond the previ-
ously proven cases.

1. Introduction. Suppose that a random sample of size n is drawn (with re-
placement) from a population of infinitely many species. Let Xi(n) be the fre-
quency of the ith species in the sample. Let pn = (pin, i ≥ 1) with

∑∞
i=1 pin = 1

and Pn be probability measures under which the ith species has probability pin of
being sampled. The infinite sequence X(n) = (Xi(n), i ≥ 1) can be viewed as a
multinomial (n,pn) vector under Pn. For all integers m ≥ 1

Pn{Xi(n) = xi, i = 1, . . . ,m} = n!(1 − ∑m
i=1 pin)

n−x1−···−xm
∏m

i=1 p
xi

in

(n − x1 − · · · − xm)!x1! · · ·xm! .

Let Qn be the total probability of unobserved species and Fj (n) be the total
number of species represented j times in the sample. These random variables can
be written as

Qn =
∞∑
i=1

pinδi0(n), Fj (n) =
∞∑
i=1

δij (n), δij (n) = I {Xi(n) = j}.(1.1)

Good [10], while attributing an essential element of his proposal to A. M. Turing,
carefully developed and studied the estimation of Qn by

Q̂n = F1(n)

n
.(1.2)

The total proportion of the species not represented in the sample Qn and its esti-
mate Q̂n have many interesting applications. For examples, Efron and Thisted [4]
and Thisted and Efron [19] discuss two applications related to Shakespeare’s gen-
eral vocabulary and authorship of a poem; Good and Toulmin [11] and Chao [1],

Received April 2008; revised September 2008.
1Supported in part by NSF Grants DMS-05-04387, DMS-06-04571 and DMS-08-04626 and NSA

Grant MDS 904-02-1-0063.
AMS 2000 subject classifications. Primary 62f10, 62F12, 62G05, 62G20; secondary 62F15.
Key words and phrases. Sample coverage, Turing’s formula, asymptotic normality.

2582

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/08-AOS658
http://www.imstat.org
http://www.ams.org/msc/


ASYMPTOTIC NORMALITY OF SAMPLE COVERAGE 2583

among many others, discuss the probability of discovering new species of animals
in a population; and, more recently, Mao and Lindsay [15] study a genomic ap-
plication in gene-categorization, and Zhang [20] considers applications to network
species and data confidentiality problems. In addition, many authors have written
about the statistical properties of Q̂n. Among others, Harris [12, 13], Robbins [17],
Starr [18], Holst [14], Chao [2], Esty [5–9] and Chao and Lee [3] are frequently
referenced. However, of special relevance to the issue of concern here is Esty [6],
in which the asymptotic distributional behavior of the coverage estimate under in-
finite dimensional probability vectors is discussed. Esty [6] gives a sufficient con-
dition for the asymptotic normality of a

√
n-normalized coverage estimate. More

specifically, Esty [6] proved that

lim
n→∞Pn{Zn ≤ t} = P {N(0,1) ≤ t},(1.3)

where

Zn = n(Q̂n − Qn)

{EnF1(n)(1 − EnF1(n)/n) + 2EnF2(n)}1/2

for all real t under the sufficient condition

EnF1(n)/n → c1 ∈ (0,1), EnF2(n)/n → c2 ≥ 0.(1.4)

Esty [6] also proved that (1.4) implies

n(Q̂n − Qn)

{F1(n)(1 − F1(n)/n) + 2F2(n)}1/2
D−→ N(0,1)(1.5)

under Pn.
In this paper, we extend the result of Esty [6] by establishing a necessary and

sufficient condition for the asymptotic normality of the sample coverage. The fam-
ily of distributions under the condition of this paper includes that of Esty [6] as a
proper subset.

There are three sections in the remainder of the paper. The main results and
proofs are given in Section 2. Several examples, including a few cases satisfying
and a few cases not satisfying the new necessary and sufficient condition of the
paper and a genomic application, are given in Section 3. The proofs of several
lemmas are included in the Appendix.

2. Main results and proofs.

2.1. Main results. Define

s2
λn =

∞∑
i=1

[λpine
−λpin + (λpin)

2e−λpin], sn = snn.(2.1)

Since EnFj (n) = ∑∞
i=1

(n
j

)
p

j
in(1 − pin)

n−j and (1 − pin)
n ≈ e−npin , s2

n is an ap-
proximation of EnF1(n) + 2EnF2(n).
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THEOREM 1. Let Q̂n = F1(n)/n be the Good estimate of sample coverage
Qn as in (1.2) and (1.1). Let sn be as in (2.1). Suppose that

lim sup
n→∞

EnF1(n)/n < 1.(2.2)

Then, the central limit theorem (1.3) holds if and only if both

EnF1(n) + EnF2(n) → ∞(2.3)

and the Lindeberg condition

s−2
n

∞∑
i=1

(npin)
2e−npinI {npin > εsn} → 0 ∀ε > 0(2.4)

hold. In this case, (1.5) holds and

lim
n→∞Pn

{∣∣∣∣Q̂n

Qn

− 1
∣∣∣∣ > ε

}
= 0 ∀ε > 0.(2.5)

Moreover, if (1.5) holds, then (2.3) and (2.4) imply each other.

COROLLARY 1. If (2.2) and (2.3) hold, then (1.3), (1.5) and (2.4) are all
equivalent.

REMARK 1. If pin = pi do not depend on n (under a fixed probability mea-
sure Pn = P ), then EnF1(n)/n → 0 always holds. In this case, Esty’s [6] theorem
is not applicable.

REMARK 2. We call (2.4) the Lindeberg condition, since it is equivalent to
the standard Lindeberg condition when the sample size is a Poisson variable with
mean n. Due to

∞∑
i=1

(npin)
2e−npinI {npin ≥ M}

≤
∞∑

j=0

M2j+1e−M2j
∞∑
i=1

npinI {M2j ≤ npin < M2j+1}

= O(1)nMe−M

with M = εsn, the Lindeberg condition (2.4) holds if sn/ logn → ∞.

REMARK 3. We prove, in Lemma 1 below, that EnF1(n) + 2EnF2(n) and
s2
n are within an infinitesimal fraction of each other if one of these quantities are

bounded away from zero. Thus, condition (2.3) holds if and only if s2
n → ∞.
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REMARK 4. Theorem 1 is proved using Poisson approximation. The only case
not covered is EnF1(n)/n → 1, where the Poisson approximation fails and Esty’s
theorem does not apply.

THEOREM 2. Suppose (2.4) holds and EnF1(n) → c∗ ∈ (0,∞). Then,
EnF2(n) → 0,

En(nQn − c∗)2 → 0, nQ̂n = F1(n)
D−→ Nc∗

under Pn, where Nc∗ is a certain Poisson variable with mean c∗.

2.2. Poisson approximation and proofs of theorems. Suppose the population
is sampled sequentially, so that X(m) − X(m − 1), m ≥ 1, are i.i.d. multinomial
(1,pn) under Pn. Define

ξn =
∞∑
i=1

{δi1(n) − npinδi0(n)} = n(Q̂n − Qn).(2.6)

Let Nλ be a Poisson process independent of {X(m),m ≥ 1} with EnNλ = λ. Define

ζλn =
∞∑
i=1

Yiλn, Yiλn = δi1(Nλ) − λpinδi0(Nλ).(2.7)

Under probability Pn, {Xi(Nλ), i ≥ 1} are independent Poisson variables with
means λpin, so that {Yiλn, i ≥ 1} are independent zero-mean variables with

EnY
2
iλn = σ 2

iλn = λpine
−λpin + (λpin)

2e−λpin,
(2.8)

Enζ
2
λn =

∞∑
i=1

σ 2
iλn = s2

λn.

THEOREM 3. Suppose λ = λn → ∞. Then,

ζλn/sλn
D−→ N(0,1),(2.9)

if and only if both sλn → ∞ and

s−2
λn

∞∑
i=1

(λpin)
2e−λpinI {λpin > εsλn} → 0 ∀ε > 0.(2.10)

PROOF OF THEOREM 3. By the Lindeberg–Feller central limit theorem, (2.9)
holds if and only if

max
i≥1

σ 2
iλn/s

2
λn = max

i≥1
s−2
λn [λpine

−λpin + (λpin)
2e−λpin] → 0,(2.11)
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and the standard Lindeberg condition holds in the form

s−2
λn

∞∑
i=1

EY 2
iλnI {|Yiλn| > εsλn} → 0 ∀ε > 0.(2.12)

Since δij (Nλ) are 0–1 variables and Y 2
iλn = δi1(Nλ) + (λpin)

2δi0(Nλ),

2−1Y 2
iλnI {Y 2

iλn > 2(εsλn)
2}

≤ δi1(Nλ)I {1 > εsλn} + (λpin)
2δi0(Nλ)I {λpin > εsλn},

which is no greater than Y 2
iλnI {|Yiλn| > εsλn}. Thus, (2.12) is equivalent to

s−2
λn

∞∑
i=1

[λpine
−λpinI {1 > εsλn} + (λpin)

2e−λpinI {λpin > εsλn}] → 0

(2.13)
∀ε > 0.

If sλn → ∞, then (2.10) implies (2.13) immediately and (2.11) via (λpin)
j e−λpin ≤

j !, j = 1,2.
It remains to prove that (2.11) and (2.13) together imply sλn → ∞ and (2.10). In

fact, (2.11) is not even needed. If sλn ≤ M along a subsequence, then, for ε < 1/M ,

s2
λn ≤

∞∑
i=1

[2λpine
−λpin + (λpin)

2e−λpinI {λpin > 1 > εsλn}]

≤ 2
∞∑
i=1

[λpine
−λpinI {1 > εsλn} + (λpin)

2e−λpinI {λpin > εsλn}],

so that (2.13) fails. Thus, (2.13) implies sλn → ∞. This completes the proof, since
(2.13) implies (2.10) immediately. �

We prove Theorems 1 and 2 via Theorem 3 and the Poisson approximation

ξn − ζnn

sn
= oPn(1).(2.14)

We need three lemmas.

LEMMA 1. (i) Let s2
n be as in (2.1). For ε/n ≤ 1/4,

(1 − 1/n)e−εs2
n − n2e−√

εn ≤ EnF1(n) + 2EnF2(n) ≤ e2εs2
n + n(n + 1)e−(n−2)ε.

Consequently, if lim infn min{s2
n,EnF1(n) + EnF2(n)} > 0, then

{EnF1(n) + 2EnF2(n)}/s2
n → 1.

(ii) Let s2
λn and s2

n be as in (2.1). For all λ′ < λ and ε > 0,

(λ′/λ)2s2
λn ≤ s2

λ′n ≤ eεs2
λn + λ(1 + λ) exp

(−λ′ε/(λ − λ′)
)
.(2.15)
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Consequently, s2
λnn = (1 + o(1))s2

n if n2e−εn/|λn−n| = o(s2
n) for all ε > 0 and

λn/n → 1.

LEMMA 2. Let ζλn be as in (2.7). Then,

En max
λ≤t≤λ+�

|ζtn − ζλn|

≤ 2

{ ∞∑
i=1

λpin(1 + λpin)e
−λpin(1 − e−�pin)

}1/2

+ 2
∞∑
i=1

�pine
−λpin .

LEMMA 3. If lim infn s2
n > 0 and s2

n/n = o(1), then (2.14) holds.

PROOF OF THEOREM 2. It follows, from (1.1) and (2.4), that 2EnF2(n) is
bounded by

∞∑
i=1

2

(
n

2

)
p2

in(1 − pin)
n−2 ≤

∞∑
i=1

(npin)
2{(1 − pin)

n−1 + pin}I {npin ≤ εsn}

+
∞∑
i=1

(npin)
2e−(n−2)pinI {npin > εsn}(2.16)

≤ εsnEnF1(n) + (εsn)
2 + o(s2

n),

so that, due to EnF1(n) = O(1), s2
n = O(1) by Lemma 1(i). Thus, by (2.1) and

(2.4),
∞∑
i=1

(npin)
2e−npin ≤

∞∑
i=1

(npin)
2e−npinI {npin > εsn} + εs3

n → 0(2.17)

as n → ∞ and then ε → 0+. Since Enδij (n) = (n
j

)
p

j
in(1 −pin)

n−j , (2.17) implies

0 ≤ En{F1(n) − nQn} =
∞∑
i=1

npin{(1 − pin)
n−1 − (1 − pin)

n}

≤ e

∞∑
i=1

np2
ine

−npin → 0,

so that nEnQn → c∗. Since {δi0(n), i ≥ 1} have negative correlation, (2.17) also
implies

Varn(nQn) ≤
∞∑
i=1

Var(npinδi0(n)) ≤
∞∑
i=1

(npin)
2e−npin → 0.

Thus, En(nQn − c∗)2 → 0. Similarly, EnF2(n) ≤ (e2/2)
∑∞

i=1(npin)
2e−npin → 0.

Let Q̃n = ∑∞
i=1 pinδi0(Nn). By (2.17), Varn(nQ̃n) = ∑∞

i=1(npin)
2e−npin =

o(1). By (2.17) and then Lemma 1(i), nEQ̃n = ∑∞
i=1 npine

−npin = s2
n + o(1) =
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c∗ + o(1). These imply nQ̃n = c∗ + oPn(1). Thus, by Lemma 3,

F1(n) − F1(Nn) = ξn + nQn − (ζnn + nQ̃n) = ξn − ζnn + oPn(1) = oPn(1).

Since F1(Nn) = ∑∞
i=1 δi1(Nn) are independent Bernoulli variables with uniformly

small probabilities Enδi1(Nn) = npine
−npin ≤ {∑n

i=1(npin)
2e−npin}1/2 = o(1),

F1(n) = F1(Nn)+oPn(1) converges in distribution to a Poisson variable with mean
EnF1(Nn) = nEQ̃n → c∗. �

PROOF OF THEOREM 1. Assume, without loss of generality, that

EnFj (n)/n → cj , j = 1,2, EnF1(n) + 2EnF2(n) → c∗,
with c1 ∈ [0,1), c2 ∈ [0,1] and c∗ ∈ [0,∞] (taking subsequence if necessary).

Case 1. c1 > 0. It follows from the theorem of Esty [6] that (1.3) holds. More-
over, since s2

n/n → c1 +2c2 > 0 by Lemma 1(i), (2.4) holds as in Remark 2. Thus,
(1.3), (2.3) and (2.4) all hold.

Case 2. c1 = c∗ = 0. Since EnF1(n) → 0 and Zn ≤ 0 for F1(n) = 0,

Pn(Zn ≤ 0) ≥ Pn

(
F1(n) = 0

) → 1.

Thus, (1.3) does not hold. Similarly, (1.5) does not hold. Since c∗ = 0, (2.3) does
not hold.

Case 3. c1 = 0 < c∗. By (1.1), 2EnF2(n)/(n − 1) is bounded by
∞∑
i=1

np2
in(1 − pin)

n−2 ≤ M

1 − M/n

∞∑
i=1

pin(1 − pin)
n−1 + sup

p≥M/n

np(1 − p)n−2.

Since
∑∞

i=1 pin(1 − pin)
n−1 = EnF1(n)/n → c1 = 0, we find EnF2(n)/n → 0 =

c2, which then implies s2
n/n → 0 by Lemma 1(i). In addition, Lemma 1(i) im-

plies {EnF1(n) + 2EnF2(n)}/s2
n → 1, so that s2

n → c∗ > 0. Thus, (2.14) holds by
Lemma 3, and (1.3) holds if and only if ζnn/sn → N(0,1) in view of (2.6). There-
fore, by Theorem 3 with λ = n, (1.3) holds if and only if both (2.3) and (2.4) hold.

We have proved the first assertion of the theorem, since (1.3) holds if and only if
both (2.3) and (2.4) hold in all the three cases. It remains to prove that (1.3) implies
(1.5) and (2.5), and that (2.3) and (2.4) are equivalent under (1.5).

We first prove the equivalence of (1.3) and (1.5) under (2.3). For fixed
(j, n), δij (n) are Bernoulli variables with Covn(δij (n), δi′j (n)) ≤ 0, so that
Varn(Fj (n)) ≤ EnFj (n) and

Varn
(
F1(n) + 2F2(n)

) ≤ 2{EnF1(n) + 4EnF2(n)}.
Since EnF1(n)+2EnF2(n) → ∞, {F1(n)+2F2(n)}/{EnF1(n)+2EnF2(n)} → 1
in Pn by the above inequality. Similarly, F 2

1 (n)/n = (1 + oPn(1)){EnF1(n)}2/n.
Moreover, since {EnF1(n)}2/n = (c1 + o(1))EnF1(n) with c1 < 1, EnF1(n){1 −
EnF1(n)/n} + 2F2(n) is of the same order as EnF1(n) + 2EnF2(n). Thus, (1.3)
and (1.5) are equivalent under (2.3).
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Assume (1.3) holds. Since (2.3) holds, (1.5) holds. Since the Lindeberg (2.4)
holds,

2EnF2(n) = o(sn)EnF1(n) + o(s2
n)(2.18)

by (2.16). Thus, (2.3) and Lemma 1(i) provide

s2
n = (

1 + o(1)
){EnF1(n) + 2EnF2(n)} = (

1 + o(sn)
)
EnF1(n) + o(s2

n) → ∞,

which implies sn = o(1)EnF1(n) and Varn(F1(n)) ≤ EnF1(n) → ∞. Con-
sequently, sn = oPn(F1(n)), and then, by (1.3), nQn − nQ̂n = OPn(sn) =
oPn(F1(n)) = oPn(nQ̂n). Thus, (1.3) implies (2.5) as well as (1.5).

Now, we assume (1.5). If (2.3) holds, then (1.3) holds due to its equivalence to
(1.5), so that (2.4) must hold. It remains to prove (2.3); that is, c∗ = ∞ under (2.4).
Since (1.5) holds, Case 2 is ruled out, so that c∗ > 0. If 0 < c∗ < ∞, Lemma 1(i)
implies s2

n = (1 + o(1)){EnF1(n) + 2EnF2(n)} = O(1), and then (2.18) implies
EnF2(n) = o(1), so that EnF1(n) → c∗. Thus, by Theorem 2, 0 < c∗ < ∞ would
imply the convergence of

√
c∗Zn in distribution to Nc∗ −c∗ and the convergence of

F1(n)(1 −F1(n)/n)+ 2F2(n) to Nc∗ . This is impossible since (1.5) holds. Hence,
c∗ = ∞. �

3. Examples. We provide three theoretical examples and describe one real ap-
plication. In all theoretical examples, we define pin ∝ pn(i) with

∫ ∞
0 pn(x) dx = 1.

The density functions pn(x) are decreasing in x > 0 and sufficiently regular to al-
low the following approximations within an infinitesimal fraction:

EnF1(n) ≈
∫ ∞

0
npn(x)e−npn(x) dx,

(3.1)
s2
n ≈

∫ ∞
0

npn(x){1 + npn(x)}e−npn(x) dx.

EXAMPLE 1 (Fixed discrete Paretos). In this example, Theorem 1 provides the
asymptotic normality, but the Esty’s [6] condition EnF1(n)/n → c1 ∈ (0,1) does
not hold. Let pn(x) = p(x) = a/(x + 1)b with a > 0 and b > 1. Condition (2.2)
is satisfied, since EnF1(n)/n ≈ ∫ ∞

0 p(x)e−np(x) dx → 0. For large n, changing
variable t = np(x) = na/(x + 1)b yields

EnF1(n) ≈ −
∫ na

0
te−t d(na/t)1/b ≈ (na)1/b

b

∫ ∞
0

t−1/be−t dt ∝ n1/b,

so that (2.3) holds and sn/ logn → ∞ by Lemma 1(i). It follows that (2.4) holds by
Remark 2. Thus, the central limit theorems (1.3) and (1.5) both hold by Theorem 1.

EXAMPLE 2 (Dynamic discrete exponentials). In this example, (2.3) and (2.4)
are equivalent. Let pn(x) = a−1

n e−x/an with an/n ≤ M < ∞. Let t = npn(x).
By (3.1),

EnF1(n)

n
≈ n−1

∫ n/an

0
te−t d(an log t) =

∫ 1

0
e−yn/an dy < 1,
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so that (2.2) holds. Similarly, s2
n ≈ an

∫ n/an

0 {1 + t}e−t dt by (3.1), so that s2
n is of

the order an. Moreover, the Lindeberg condition (2.4) is equivalent to

o(1) = 1

an

∫
npn(x)>ε

√
an

{npn(x)}2e−npn(x) dx =
∫
ε
√

an<t<n/an

te−t dt,

which holds if and only if s2
n ∼ an → ∞, if and only if (2.3) holds by Lemma 1(i).

EXAMPLE 3 (Dynamic two-step functions). This example demonstrates
that the three conditions of Theorem 1 are not redundant. Let ajn → ∞ and
w1n + w2n = 1 with w1n/a1n ≥ w2n/a2n ≥ 0. Set pn(x) = ∑2

j=1 wjna
−1
jn I {0 <

(−1)j (x − a1n) ≤ ajn}. By (3.1),

EnF1(n) ≈ n

2∑
j=1

wjne
−bjn,

s2
n ≈ n

2∑
j=1

wjn(1 + bjn)e
−bjn, bjn = nwjn/ajn.

Moreover, the Lindeberg condition (2.4) holds if and only if

n

s2
n

2∑
j=1

wjnbjne
−bjnI {bjn > εsn} → 0 ∀ ε > 0.

Case 1. w1n = 1 and b1n �→ 0. The pn(x) are uniform densities in (0, a1n).
Condition (2.2) holds, since EnF1(n)/n ≈ e−b1n �→ 1. Since 1+b1n is of the same
order as b1n, (2.4) holds if and only if b1n/sn → 0, so that (2.4) implies (2.3). Let
b1n = logn − log logn. We find s2

n ≈ (1 + b1n) logn ≈ b2
1n → ∞. Thus, both (2.2)

and (2.3) hold but (2.4) does not.
Case 2. w1n = 1 and b1n → 0. The pn(x) are still uniform. Since EnF1(n)/n ≈

e−b1n → 1, (2.2) does not hold. On the other hand, s2
n ≈ n(1+b1n)e

−b1n → ∞ and
b1n/sn → 0. Thus, both (2.3) and (2.4) hold but (2.2) does not.

Case 3. w1n = (1 − 1/n), b1n = 2 logn and b2n → 0. Since EnF1(n)/n = o(1)

and s2
n = o(1) + nw2n(1 + o(1)) → 1, both (2.2) and (2.4) hold but (2.3) does not.

EXAMPLE 4 (A genomic application). Mao and Lindsay [15] studied a gene
expression problem based on a sample of n = 2568 expressed sequence tags from
a tomato flower cDNA library. The data came from the Institute for Genomic Re-
search. Detailed description of the data set may also be found in Quackenbush et
al. [16]. In this context, Qn is the probability that the next randomly selected ex-
pressed sequence tag will stand for a new gene. A quantification of Qn will then
be an informative indicator pertaining to the depth of the sample collected thus
far regarding the levels of expression of the genes in the library. For this partic-
ular data set, n = 2568, F1(n) = 1434, F2(n) = 253, F3(n) = 71, F4(n) = 33,
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F5(n) = 11, F6(n) = 6, F7(n) = 2, F8(n) = 3, F9(n) = 1, F10(n) = F11(n) = 1
and F12(n) = F13(n) = F14(n) = F16(n) = F23(n) = F27(n) = 1, resulting in
Q̂n = 0.5584. By (1.5), the 95% confidence interval for Qn is (0.5391,0.5777),
which incidentally is narrower than the 95% confidence interval produced by
Mao and Lindsay [15], (0.529,0.580). Our confidence interval is not new, since
it was based on an identical expression given by Esty [6]. However, we take a
bit more comfort in such applications, in knowing that the validity of the confi-
dence interval is supported by a larger family of distributions as a result of Theo-
rem 1.

REMARK 5. The procedure introduced by Mao and Lindsay [15] is applicable
to not only the total probability associated with nonrepresented genes but also that
associated with genes represented with frequencies lower than a threshold. They
took a different perspective to the problem from that of Esty [6] and, hence, ours.
Specifically, their derivation started by directly assuming (Xi(n), i ≥ 1), being
independent Poisson random variables with means (λi, i ≥ 1) which is itself an
i.i.d. sample from a latent distribution. Their results are based on an asymptotical
argument with the number of species (genes) approaching infinity.

APPENDIX: PROOFS OF LEMMAS

PROOF OF LEMMA 1. (i) Since 1 − p ≤ e−p ,

EnF1(n) + 2EnF2(n) =
∞∑
i=1

{npin(1 − pin)
n−1 + n(n − 1)p2

in(1 − pin)
n−2}

≤
∞∑
i=1

npin(1 + npin)e
−(n−2)pin

≤ e2εs2
n +

∞∑
i=1

npin(1 + n)e−(n−2)ε.

Since 1 − p ≥ e−p−p2
for 0 ≤ p ≤ 1/2 and 1 − p + (n − 1)p ≥ (1 − 1/n)(1 −

p)2(1 + np),

EnF1(n) + 2EnF2(n) =
∞∑
i=1

npin(1 − pni)
n−2(

1 − pni + (n − 1)pni

)

≥ (1 − 1/n)

∞∑
i=1

npin(1 + npin)e
−npin−εI {np2

in ≤ ε}

≥ (1 − 1/n)e−εs2
n − n2e−√

εn.
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(ii) For all λ′ < λ and ε > 0,

(λ′/λ)2s2
λn ≤ s2

λ′n

≤
∞∑
i=1

λpin(1 + λpin)e
−λ′pin

≤ eεs2
λn +

∞∑
i=1

λpin(1 + λpin)e
−λ′pinI {(λ − λ′)pin > ε}

≤ eεs2
λn + λ(1 + λ) exp

( − λ′ε/(λ − λ′)
)
.

This gives (2.15), and the rest follows easily. �

PROOF OF LEMMA 2. Let Yiλn = δi1(Nλ) − λpinδi0(Nλ) be as in (2.7). For
t > λ,

Yitn − Yiλn = δi1(Nt) − tpinδi0(Nt) − δi1(Nλ) + λpinδi0(Nλ)

= δi1(Nλ){δi1(Nt) − 1}
+ δi0(Nλ){δi1(Nt ) − tpinδi0(Nt) + λpinδi0(Nλ)}(A.1)

= −YiλnI {Xi(Nt) > Xi(Nλ)}
+ δi0(Nλ){δi1(Nt ) − (t − λ)pinδi0(Nt )}.

The above identity can be verified by checking both the cases of δi0(Nλ) ∈ {0,1}
and by noticing that δij (Nλ){1 − δij (Nt )} = δij (Nλ)I {Xi(Nt) > Xi(Nλ)}.

Let Ti = min{t :Xi(Nt) > Xi(Nλ)}. Since {Yiλn, i ≥ 1} are independent vari-
ables with mean zero and independent of {X(Nt ) − X(Nλ), t ≥ λ}, by Doob’s in-
equality for martingales,

En max
λ<t≤λ+�

[ ∞∑
i=1

YiλnI {Xi(Nt) > Xi(Nλ)}
]2

= En max
λ<t≤λ+�

[∑
Ti≤t

Yiλn

]2

(A.2)

≤ 4
∞∑
i=1

EnY
2
in(λ)I {Xi(Nλ+�) > Xi(Nλ)}

= 4
∞∑
i=1

λpin(1 + λpin)e
−λpin(1 − e−�pin).
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For the second term on the right-hand side of (A.1), we have

En sup
λ<t≤λ+�

∣∣∣∣∣
∞∑
i=1

δi0(Nλ){δi1(Nt) − (t − λ)pinδi0(Nt)}
∣∣∣∣∣

≤
∞∑
i=1

Enδi0(Nλ)
(
Pn{Xi(Nλ+�) > Xi(Nλ)} + �pin

)

≤
∞∑
i=1

e−λpin2�pin.

This and (A.2) yield the conclusion in view of (A.1). �

PROOF OF LEMMA 3. Let tn be the arrival time of the nth event in the Poisson
process Nλ, with Ntn = n. Since ξn − ζtnn = (tn − n)

∑∞
i=1 pinδi0(n), we have

Pn{|ξn − ζnn| > εsn}
≤ Pn{|tn − n| > �/2}(A.3)

+ Pn

{
max

n−�/2<t<n+�/2
|ζn − ζtn| + (�/2)

∞∑
i=1

pinδi0(n) > εsn

}
.

Set λ = n − �/2. Since Enδi0(n) = (1 − pin)
n ≤ e−npin ≤ e−λpin , by Lemma 2,

En

{
max

n−�/2<t<n+�/2
|ζn − ζtn| + (�/2)

∞∑
i=1

pinδi0(n)

}

≤ 4

{ ∞∑
i=1

λpin(1 + λpin)e
−λpin(1 − e−�pin)

}1/2

(A.4)

+ (4 + 1/2)

∞∑
i=1

�pine
−λpin .

Since tn has the gamma(n,1) distribution, En(tn − n)2 = n. Thus, by (A.3) and
(A.4), (2.14) holds via the Markov inequality, provided that

s−2
n

∞∑
i=1

λpin(1 + λpin)e
−λpin(1 − e−�pin) → 0,

(A.5)
�

sn

∞∑
i=1

pine
−λpin → 0,

with n − λ = � = M
√

n = O(
√

λ) for all 0 < M < ∞.
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It remains to prove (A.5). Since lim infn s2
n > 0, sλn/sn → 1 by Lemma 1(ii).

Since s2
n/n = o(1), the second part of (A.5) holds due to (�/sn)

∑∞
i=1 pine

−λpin ≤
s2
λn�/λsn = O(1)sn/

√
n = o(1). For the first part of (A.5),

∞∑
i=1

λpin(1 + λpin)e
−λpin(1 − e−�pin)

≤ εs2
λn +

∞∑
i=1

λpin(1 + λpin)e
−λpinI {�pin > ε}

≤ εs2
λn + λ(1 + λ)e−λε/� ≤ (

1 + o(1)
)
εs2

n + o(1).

Thus, since lim infn s2
n > 0, the proof is complete. �

REFERENCES

[1] CHAO, A. (1981). On estimating the probability of discovering a new species. Ann. Statist. 9
1339–1342. MR0630117

[2] CHAO, A. (1984). Nonparametric estimation of the number of the classes in a population.
Scand. J. Statist. 11 265–270. MR0793175

[3] CHAO, A. and LEE, S. (1992). Estimating the number of classes via sample covergae. J. Amer.
Statist. Assoc. 87 210–217. MR1158639

[4] EFRON, B. and THISTED, R. (1976). Estimating the number of unseen species: How many
words did Shakespeare know? Biometrika 63 435–447.

[5] ESTY, W. W. (1982). Confidence intervals for the coverage of low coverage samples. Ann.
Statist. 10 190–196. MR0642730

[6] ESTY, W. W. (1983). A normal limit law for a nonparametric estimator of the coverage of a
random sample. Ann. Statist. 11 905–912. MR0707940

[7] ESTY, W. W. (1985). Estimation of the number of classes in a population and the coverage of
a sample. Math. Sci. 10 41–50. MR0801156

[8] ESTY, W. W. (1986a). The size of a coinage. Numismatic Chronicle 146 185–215. MR0925622
[9] ESTY, W. W. (1986b). The efficiency of Good’s nonparametric coverage estimator. Ann. Statist.

14 1257–1260. MR0856822
[10] GOOD, I. J. (1953). The population frequencies of species and the estimation of population

parameters. Biometrika 40 237–264. MR0061330
[11] GOOD, I. J. and TOULMIN, G.H. (1956). The number of new species, and the increase in

population coverage, when a sample is increased. Biometrika 43 45–63. MR0077039
[12] HARRIS, B. (1959). Determining bounds on integrals with applications to cataloging problems.

Ann. Math. Statist. 30 521–548. MR0102876
[13] HARRIS, B. (1968). Statistical inference in the classical occupancy problem, unbiased estima-

tion of the number of classes. J. Amer. Statist. Assoc. 63 837–847. MR0231480
[14] HOLST, L. (1981). Some assymptotic results for incomplete multinomial or Poisson samples.

Scand. J. Statist. 8 243–246. MR0642805
[15] MAO, C. X. and LINDSAY, B. G. (2002). A Poisson model for the coverage problem with a

genomic application. Biometrika 89 669–681. MR1929171
[16] QUACKENBUSH, J., CHO, J., LEE, D., LIANG, F., HOLT, I., KARAMYCHEVA, S., PARVIZI,

B., PERTEA, G., SULTANA, R. and WHITE, J. (2001). The TIGR gene indices: Analysis
of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Res. 29
159–164.

http://www.ams.org/mathscinet-getitem?mr=0630117
http://www.ams.org/mathscinet-getitem?mr=0793175
http://www.ams.org/mathscinet-getitem?mr=1158639
http://www.ams.org/mathscinet-getitem?mr=0642730
http://www.ams.org/mathscinet-getitem?mr=0707940
http://www.ams.org/mathscinet-getitem?mr=0801156
http://www.ams.org/mathscinet-getitem?mr=0925622
http://www.ams.org/mathscinet-getitem?mr=0856822
http://www.ams.org/mathscinet-getitem?mr=0061330
http://www.ams.org/mathscinet-getitem?mr=0077039
http://www.ams.org/mathscinet-getitem?mr=0102876
http://www.ams.org/mathscinet-getitem?mr=0231480
http://www.ams.org/mathscinet-getitem?mr=0642805
http://www.ams.org/mathscinet-getitem?mr=1929171


ASYMPTOTIC NORMALITY OF SAMPLE COVERAGE 2595

[17] ROBBINS, H. E. (1968). Estimating the total probability of the unobserved outcomes of an
experiment. Ann. Statist. 39 256–257. MR0221695

[18] STARR, N. (1979). Linear estimation of probability of discovering a new species. Ann. Statist.
7 644–652. MR0527498

[19] THISTED, R. and EFRON, B. (1987). Did Shakespeare write a newly-discovered poem? Bio-
metrika 74 445–455. MR0909350

[20] ZHANG, C.-H. (2005). Estimation of sums of random variables: Examples and information
bounds. Ann. Statist. 33 2022–2041. MR2211078

DEPARTMENT OF STATISTICS

RUTGERS UNIVERSITY

NEW BRUNSWICK, NEW JERSEY 08903
USA
E-MAIL: czhang@stat.rutgers.edu

DEPARTMENT OF MATHEMATICS

AND STATISTICS

UNIVERSITY OF NORTH CAROLINA

AT CHARLOTTE

CHARLOTTE, NORTH CAROLINA 28223
USA
E-MAIL: zzhang@uncc.edu

http://www.ams.org/mathscinet-getitem?mr=0221695
http://www.ams.org/mathscinet-getitem?mr=0527498
http://www.ams.org/mathscinet-getitem?mr=0909350
http://www.ams.org/mathscinet-getitem?mr=2211078
mailto:czhang@stat.rutgers.edu
mailto:zzhang@uncc.edu

	Introduction
	Main results and proofs
	Main results
	Poisson approximation and proofs of theorems

	Examples
	Appendix: Proofs of lemmas
	References
	Author's Addresses

