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HIGH-DIMENSIONAL VARIABLE SELECTION

BY LARRY WASSERMAN AND KATHRYN ROEDER1

Carnegie Mellon University

This paper explores the following question: what kind of statistical guar-
antees can be given when doing variable selection in high-dimensional mod-
els? In particular, we look at the error rates and power of some multi-stage
regression methods. In the first stage we fit a set of candidate models. In
the second stage we select one model by cross-validation. In the third stage
we use hypothesis testing to eliminate some variables. We refer to the first
two stages as “screening” and the last stage as “cleaning.” We consider three
screening methods: the lasso, marginal regression, and forward stepwise re-
gression. Our method gives consistent variable selection under certain condi-
tions.

1. Introduction. Several methods have been developed lately for high-
dimensional linear regression such as the lasso [Tibshirani (1996)], Lars [Efron
et al. (2004)] and boosting [Bühlmann (2006)]. There are at least two different
goals when using these methods. The first is to find models with good prediction
error. The second is to estimate the true “sparsity pattern,” that is, the set of co-
variates with nonzero regression coefficients. These goals are quite different and
this paper will deal with the second goal. (Some discussion of prediction is in the
Appendix.) Other papers on this topic include Meinshausen and Bühlmann (2006),
Candes and Tao (2007), Wainwright (2006), Zhao and Yu (2006), Zou (2006), Fan
and Lv (2008), Meinshausen and Yu (2008), Tropp (2004, 2006), Donoho (2006)
and Zhang and Huang (2006). In particular, the current paper builds on ideas in
Meinshausen and Yu (2008) and Meinshausen (2007).

Let (X1, Y1), . . . , (Xn,Yn) be i.i.d. observations from the regression model

Yi = XT
i β + εi,(1)

where ε ∼ N(0, σ 2), Xi = (Xi1, . . . ,Xip)T ∈ R
p and p = pn > n. Let X be

the n × p design matrix with j th column X•j = (X1j , . . . ,Xnj )
T and let Y =

(Y1, . . . , Yn)
T . Let

D = {j :βj �= 0}
be the set of covariates with nonzero regression coefficients. Without loss of gen-
erality, assume that D = {1, . . . , s} for some s. A variable selection procedure D̂n

maps the data into subsets of S = {1, . . . , p}.
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The main goal of this paper is to derive a procedure D̂n such that

lim sup
n→∞

P(D̂n ⊂ D) ≥ 1 − α,(2)

that is, the asymptotic type I error is no more than α. Note that throughout the
paper we use ⊂ to denote nonstrict set-inclusion. Moreover, we want D̂n to have
nontrivial power. Meinshausen and Bühlmann (2006) control a different error mea-
sure. Their method guarantees lim supn→∞ P(D̂n ∩V �= ∅) ≤ α where V is the set
of variables not connected to Y by any path in an undirected graph.

Our procedure involves three stages. In stage I we fit a suite of candidate models,
each model depending on a tuning parameter λ,

S = {Ŝn(λ) :λ ∈ �}.
In stage II we select one of those models Ŝn using cross-validation to select λ̂. In
stage III we eliminate some variables by hypothesis testing. Schematically,

data
stage I−→ S

stage II−→︸ ︷︷ ︸
screen

Ŝn
stage III−→ D̂n︸ ︷︷ ︸

clean

.

Genetic epidemiology provides a natural setting for applying screen and clean.
Typically, the number of subjects, n, is in the thousands, while p ranges from
tens of thousands to hundereds of thousands of genetic features. The number of
genes exhibiting a detectable association with a trait is extremely small. Indeed,
for type I diabetes only ten genes have exhibited a reproducible signal [Wellcome
Trust (2007)]. Hence, it is natural to assume that the true model is sparse. A com-
mon experimental design involves a 2-stage sampling of data, with stages 1 and 2
corresponding to the screening and cleaning processes, respectively.

In stage 1 of a genetic association study, n1 subjects are sampled and one or
more traits such as bone mineral density are recorded. Each subject is also mea-
sured at p locations on the chromosomes. These genetic covariates usually have
two forms in the population due to variability at a single nucleotide and hence are
called single nucleotide polymorphisms (SNPs). The distinct forms are called al-
leles. Each covariate takes on a value (0, 1 or 2) indicating the number of copies
of the less common allele observed. For a well-designed genetic study, individ-
ual SNPs are nearly uncorrelated unless they are physically located in very close
proximity. This feature makes it much easier to draw causal inferences about the
relationship between SNPs and quantitative traits. It is standard in the field to in-
fer that an association discovered between a SNP and a quantitative trait implies
a causal genetic variant is physically located near the one exhibiting association. In
stage 2, n2 subjects are sampled at a subset of the SNPs assessed in stage 1. SNPs
measured in stage 2 are often those that achieved a test statistic that exceeded a pre-
determined threshold of significance in stage 1. In essence, the two stage design
pairs naturally with a screen and clean procedure.
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For the screen and clean procedure, it is essential that Ŝn has two properties as
n → ∞ as follows:

P(D ⊂ Ŝn) → 1(3)

and

|Ŝn| = oP (n),(4)

where |M| denotes the number of elements in a set M . Condition (3) ensures the
validity of the test in stage III while condition (4) ensures that the power of the
test is not too small. Without condition (3), the hypothesis test in stage III would
be biased. We will see that the power goes to 1, so taking α = αn → 0 implies
consistency: P(D̂n = D) → 1. For fixed α, the method also produces a confidence
sandwich for D, namely,

lim inf
n→∞ P(D̂n ⊂ D ⊂ Ŝn) ≥ 1 − α.

To fit the suite of candidate models, we consider three methods. In method 1,

Ŝn(λ) = {j : β̃j (λ) �= 0},
where β̃j (λ) is the lasso estimator, the value of β that minimizes

n∑
i=1

(Yi − XT
i β)2 + λ

p∑
j=1

|βj |.

In method 2, take Ŝn(λ) to be the set of variables chosen by forward stepwise
regression after λ steps. In method 3, marginal regression, we take

Ŝn = {j : |μ̂j | > λ},
where μ̂j is the marginal regression coefficient from regressing Y on Xj . (This
is equivalent to ordering by the absolute t-statistics since we will assume that the
covariates are standardized.) These three methods are very similar to basis pursuit,
orthogonal matching pursuit and thresholding [see, e.g., Tropp (2004, 2006) and
Donoho (2006)].

Notation. Let ψ = minj∈D |βj |. Define the loss of any estimator β̂ by

L(β̂) = 1

n
(β̂ − β)T XT X(β̂ − β) = (β̂ − β)T 	̂n(β̂ − β),(5)

where 	̂n = n−1XT X. For convenience, when β̂ ≡ β̂(λ) depends on λ we
write L(λ) instead of L(β̂(λ)). If M ⊂ S, let XM be the design matrix with
columns (X•j : j ∈ M) and let β̂M = (XT

MXM)−1XT
MY denote the least-squares
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estimator, assuming it is well defined. Note that our use of X•j differs from stan-
dard ANOVA notation. Write Xλ instead of XM when M = Ŝn(λ). When conve-
nient, we extend β̂M to length p by setting β̂M(j) = 0, for j /∈ M . We use the
norms

‖v‖ =
√∑

j

v2
j , ‖v‖1 = ∑

j

|vj | and ‖v‖∞ = max
j

|vj |.

If C is any square matrix, let φ(C) and �(C) denote the smallest and largest
eigenvalues of C. Also, if k is an integer, define

φn(k) = min
M : |M|=k

φ

(
1

n
XT

MXM

)
and �n(k) = max

M : |M|=k
�

(
1

n
XT

MXM

)
.

We will write zu for the upper quantile of a standard normal, so that P(Z > zu) = u

where Z ∼ N(0,1).
Our method will involve splitting the data randomly into three groups D1, D2

and D3. For ease of notation, assume the total sample size is 3n and that the sample
size of each group is n.

Summary of assumptions. We will use the following assumptions throughout
except in Section 8:

(A1) Yi = XT
i β + εi where εi ∼ N(0, σ 2), for i = 1, . . . , n.

(A2) The dimension pn of X satisfies pn → ∞ and pn ≤ c1e
nc2 , for some

c1 > 0 and 0 ≤ c2 < 1.
(A3) s ≡ |{j :βj �= 0}| = O(1) and ψ = min{|βj | :βj �= 0} > 0.
(A4) There exist positive constants C0,C1 and κ such that

P(lim supn→∞ �n(n) ≤ C0) = 1 and P(lim infn→∞ φn(C1 logn) ≥ κ) = 1. Also,
P(φn(n) > 0) = 1, for all n.

(A5) The covariates are standardized: E(Xij ) = 0 and E(X2
ij ) = 1. Also, there

exists 0 < B < ∞ such that P(|Xjk| ≤ B) = 1.

For simplicity, we include no intercepts in the regressions. The assumptions
can be weakened at the expense of more complicated proofs. In particular, we can
let s increase with n and ψ decrease with n. Similarly, the normality and constant
variance assumptions can be relaxed.

2. Error control. Define the type I error rate q(D̂n) = P(D̂n ∩ Dc �= ∅)

and the asymptotic error rate lim supn→∞ q(D̂n). We define the power π(D̂n) =
P(D ⊂ D̂n) and the average power

πav = 1

s

∑
j∈D

P(j ∈ D̂n).
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It is well known that controlling the error rate is difficult for at least three rea-
sons: correlation of covariates, high-dimensionality of the covariate and unfaith-
fulness (cancellations of correlations due to confounding). Let us briefly review
these issues.

It is easy to construct examples where q(D̂n) ≤ α implies that π(D̂n) ≈ α. Con-
sider the following two models for random variables Z = (Y,X1,X2):

Model 1
X1 ∼ N(0,1),
Y = ψX1 + N(0,1),

X2 = ρX1 + N(0, τ 2).

Model 2
X2 ∼ N(0,1),
Y = ψX2 + N(0,1),

X1 = ρX2 + N(0, τ 2).

Under models 1 and 2, the marginal distribution of Z is P1 = N(0,	1) and
P2 = N(0,	2), where

	1 =
⎛⎝ψ2 + 1 ψ ρψ

ψ 1 ρ

ρψ ρ ρ2 + τ 2

⎞⎠ , 	2 =
⎛⎝ψ2 + 1 ρψ ψ

ρψ ρ2 + τ 2 ρ

ψ ρ 1

⎞⎠ .

Given any ε > 0, we can choose ρ sufficiently close to 1 and τ sufficiently close
to 0 such that 	1 and 	2 are as close as we like, and hence, d(P n

1 ,P n
2 ) < ε where d

is total variation distance. It follows that

P2(2 /∈ D̂) ≥ P1(2 /∈ D̂) − ε ≥ 1 − α − ε.

Thus, if q ≤ α, then the power is less than α + ε.
Dimensionality is less of an issue thanks to recent methods. Most methods,

including those in this paper, allow pn to grow exponentially. But all the methods
require some restrictions on the number s of nonzero βj ’s. In other words, some
sparsity assumption is required. In this paper we take s fixed and allow pn to grow.

False negatives can occur during screening due to cancellations of correlations.
For example, the correlation between Y and X1 can be 0 even when β1 is huge.
This problem is called unfaithfulness in the causality literature [see Spirtes, Gly-
mour and Scheines (2001) and Robins et al. (2003)]. False negatives during screen-
ing can lead to false positives during the second stage.

Let μ̂j denote the regression coefficient from regressing Y on Xj . Fix j ≤ s and
note that

μj ≡ E(μ̂j ) = βj + ∑
k �=j

1≤k≤s

βkρkj ,

where ρkj = corr(Xk,Xj ). If ∑
k �=j

1≤k≤s

βkρkj ≈ −βj ,
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then μj ≈ 0 no matter how large βj is. This problem can occur even when n is
large and p is small.

For example, suppose that β = (10,−10,0,0) and that ρ(Xi,Xj ) = 0 except
that ρ(X1,X2) = ρ(X1,X3) = ρ(X2,X4) = 1 − ε, where ε > 0 is small. Then,

β = (10,−10,0,0), but μ ≈ (0,0,10,−10).

Marginal regression is extremely susceptible to unfaithfulness. The lasso and for-
ward stepwise, less so. However, unobserved covariates can induce unfaithfulness
in all the methods.

3. Loss and cross-validation. Let Xλ = (X•j : j ∈ Ŝn(λ)) denote the design
matrix corresponding to the covariates in Ŝn(λ) and let β̂(λ) be the least-squares
estimator for the regression restricted to Ŝn(λ), assuming the estimator is well
defined. Hence, β̂(λ) = (XT

λ Xλ)
−1XT

λ Y . More generally, β̂M is the least-squares
estimator for any subset of variables M . When convenient, we extend β̂(λ) to
length p by setting β̂j (λ) = 0, for j /∈ Ŝn(λ).

3.1. Loss. Now we record some properties of the loss function. The first part
of the following lemma is essentially Lemma 3 of Meinshausen and Yu (2008).

LEMMA 3.1. Let M+
m = {M ⊂ S : |M| ≤ m,D ⊂ M}. Then,

P

(
sup

M∈M+
m

L(β̂M) ≤ 4m logp

nφn(m)

)
→ 1.(6)

Let M−
m = {M ⊂ S : |M| ≤ m,D �⊂ M}. Then,

P

(
inf

M∈M−
m

L(β̂M) ≥ ψ2φn(m + s)

)
→ 1.(7)

3.2. Cross-validation. Recall that the data have been split into groups D1, D2
and D3 each of size n. Construct β̂(λ) from D1 and let

L̂(λ) = 1

n

∑
Xi∈D2

(
Yi − XT

i β̂(λ)
)2

.(8)

We would like L̂(λ) to order the models the same way as the true loss L(λ)

[defined after (5)]. This requires that, asymptotically, L̂(λ) − L(λ) ≈ δn, where δn

does not involve λ. The following bounds will be useful. Note that L(λ) and L̂(λ)

are both step functions that only change value when a variable enters or leaves the
model.

THEOREM 3.2. Suppose that maxλ∈�n |Ŝn(λ)| ≤ kn. Then, there exists a se-
quence of random variables δn = OP (1) that do not depend on λ or X, such that,
with probability tending to 1,

sup
λ∈�n

|L(λ) − L̂(λ) − δn| = OP

(
kn

n1−c2

)
+ OP

(
kn√
n

)
.(9)
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4. Multi-stage methods. The multi-stage methods use the following steps.
As mentioned earlier, we randomly split the data into three parts, D1, D2 and D3,
which we take to be of equal size:

1. Stage I. Use D1 to find Ŝn(λ), for each λ.
2. Stage II. Use D2 to find λ̂ by cross-validation, and let Ŝn = Ŝn(̂λ).
3. Stage III. Use D3 to find the least-squares estimate β̂ for the model Ŝn. Let

D̂n = {j ∈ Ŝn : |Tj | > cn},
where Tj is the usual t-statistic, cn = zα/2m and m = |Ŝn|.

4.1. The lasso. The lasso estimator [Tibshirani (1996)] β̃(λ) minimizes

Mλ(λ) =
n∑

i=1

(Yi − XT
i β)2 + λ

p∑
j=1

|βj |

and let Ŝn(λ) = {j : β̃j (λ) �= 0}. Recall that β̂(λ) is the least-squares estimator
using the covariates in Ŝn(λ).

Let kn = A logn where A > 0 is a positive constant.

THEOREM 4.1. Assume that (A1)–(A5) hold. Let �n = {λ : |Ŝn(λ)| ≤ kn}.
Then:

1. The true loss overfits: P(D ⊂ Ŝn(λ∗)) → 1 where λ∗ = arg minλ∈�n L(λ).
2. Cross-validation also overfits: P(D ⊂ Ŝn(̂λ)) → 1 where λ̂ =

arg minλ∈�n L̂(λ).
3. Type I error is controlled: lim supn→∞ P(Dc ∩ D̂n �= ∅) ≤ α.

If we let α = αn → 0, then D̂n is consistent for variable selection.

THEOREM 4.2. Assume that (A1)–(A5) hold. Let αn → 0 and
√

nαn → ∞.
Then, the multi-stage lasso is consistent,

P(D̂n = D) → 1.(10)

The next result follows directly. The proof is thus omitted.

THEOREM 4.3. Assume that (A1)–(A5) hold. Let α be fixed. Then, (D̂n, Ŝn)

forms a confidence sandwich

lim inf
n→∞ P(D̂n ⊂ D ⊂ Ŝn) ≥ 1 − α.(11)

REMARK 4.4. This confidence sandwich is expected to be conservative in the
sense that the coverage can be much larger than 1 − α.
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4.2. Stepwise regression. Let kn = A logn for some A > 0. The version of
stepwise regression we consider is as follows:

1. Initialize: Res = Y , λ = 0, Ŷ = 0 and Ŝn(λ) = ∅.
2. Let λ ← λ + 1. Compute μ̂j = n−1〈Xj,Res〉 for j = 1, . . . , p.
3. Let J = arg maxj |μ̂j |. Set Ŝn(λ) = {Ŝn(λ − 1), J }. Set Ŷ = Xλβ̂(λ) where

β̂λ = (XT
λ Xλ)

−1XT
λ Y , and let Res = Y − Ŷ .

4. If λ = kn, stop. Otherwise, go to step 2.

For technical reasons, we assume that the final estimator xT β̂ is truncated to be
no larger than B . Note that λ is discrete and �n = {0,1, . . . , kn}.

THEOREM 4.5. With Ŝn(λ) defined as above, the statements of Theorems 4.1,
4.2 and 4.3 hold.

4.3. Marginal regression. This is probably the oldest, simplest and most com-
mon method. It is quite popular in gene expression analysis. It used to be regarded
with some derision but has enjoyed a revival. A version appears in a recent paper
by Fan and Lv (2008). Let Ŝn(λ) = {j : |μ̂j | ≥ λ} where μ̂j = n−1〈Y,X•j 〉.

Let μj = E(μ̂j ), and let μ(j) denote the value of μ ordered by their absolute
values,

|μ(1)| ≥ |μ(2)| ≥ · · · .

THEOREM 4.6. Let kn → ∞ with kn = o(
√

n). Let �n = {λ : |Ŝn(λ)| ≤ kn}.
Assume that

min
j∈D

|μj | > |μ(kn)|.(12)

Then, the statements of Theorems 4.1, 4.2 and 4.3 hold.

Assumption (12) limits the degree of unfaithfulness (small partial correla-
tions induced by cancellation of parameters). Large values of kn weaken assump-
tion (12), thus making the method more robust to unfaithfulness, but at the expense
of lower power. Fan and Lv (2008) make similar assumptions. They assume that
there is a C > 0 such that |μj | ≥ C|βj | for all j , which rules out unfaithfulness.
However, they do not explicitly relate the values of μj for j ∈ D to the values
outside D as we have done. On the other hand, they assume that Z = 	−1/2X has
a spherically symmetric distribution. Under this assumption and their faithfulness
assumption, they deduce that the μj ’s outside D cannot strongly dominate the μj ’s
within D. We prefer to simply make this an explicit assumption without placing
distributional assumptions on X. At any rate, any method that uses marginal re-
gressions as a starting point must make some sort of faithfulness assumptions to
succeed.
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4.4. Modifications. Let us now discuss a few modifications of the basic
method. First, consider splitting the data only into two groups, D1 and D2. Then
do the following steps:

1. Stage I. Find Ŝn(λ) for λ ∈ �n, where |Ŝn(λ)| ≤ kn for each λ ∈ �n using D1.
2. Stage II. Find λ̂ by cross-validation, and let Ŝn = Ŝn(̂λ) using D2.
3. Stage III. Find the least-squares estimate β̂Ŝn

using D2. Let D̂n = {j ∈
Ŝn : |Tj | > cn}, where Tj is the usual t-statistic.

THEOREM 4.7. Choosing

cn = log logn
√

2kn log(2pn)

α
(13)

controls asymptotic type I error.

The critical value in (13) is hopelessly large and it does not appear it can be
substantially reduced. We present this mainly to show the value of the extra data-
splitting step. It is tempting to use the same critical value as in the tri-split case,
namely cn = zα/2m where m = |Ŝn|, but we suspect this will not work in general.
However, it may work under extra conditions.

5. Application. As an example, we illustrate an analysis based on part of the
osteoporotic fractures in men study [MrOS, Orwoll et al. (2005)]. A sample of
860 men were measured at a large number of genes and outcome measures. We
consider only 296 SNPs which span 30 candidate genes for bone mineral density.
An aim of the study was to identify genes associated with bone mineral density that
could help in understanding the genetic basis of osteoporosis in men. Initial analy-
ses of this subset of the data revealed no SNPs with a clear pattern of association
with the phenotype; however, three SNPs, numbered (67), (277) and (289), exhib-
ited some association in the screening of the data. To further explore the effacacy
of the lasso screen and clean procedure, we modified the phenotype to enhance
this weak signal and then reanalyzed the data to see if we could detect this planted
signal.

We were interested in testing for main effects and pairwise interactions in these
data; however, including all interactions results in a model with 43,660 additional
terms, which is not practical for this sample size. As a compromise, we selected
2 SNPs per gene to model potential interaction effects. This resulted in a model
with a total of 2066 potential coefficients, including 296 main effects and 1770 in-
teraction terms. With this model, our initial screen detected 10 terms, including
the 3 enhanced signals, 2 other main effects and 5 interactions. After cleaning, the
final model detected the 3 enhanced signals and no other terms.
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6. Simulations. To further explore the screen and clean procedures, we con-
ducted simulation experiments with four models. For each model Yi = XT

i β + εi

where the measurement errors, εi and ε∗
ij , are i.i.d. normal(0,1) and the covari-

ates Xij ’s are normal(0,1) (except for model D). Models differ in how Yi is linked
to Xi and the dependence structure of the Xi’s. Models A, B and C explore sce-
narios with moderate and large p, while model D focuses on confounding and
unfaithfullness, as follows:

(A) Null model: β = (0, . . . ,0) and the Xij ’s are i.i.d.
(B) Triangle model: βj = δ(10 − j), j = 1, . . . ,10, βj = 0, j > 10 and Xij ’s are

i.i.d.
(C) Correlated Triangle model: as B, but with Xij (+1) = ρXij + (1 − ρ2)1/2ε∗

ij ,
for j > 1, and ρ = 0.5.

(D) Unfaithful model: Yi = β1Xi1 + β2Xi2 + εi , for β1 = −β2 = 10, where the
Xij ’s are i.i.d. for j = {1,5,6,7,8,9,10}, but Xi2 = ρXi1 + τε∗

i2, Xi3 =
ρXi1 + τε∗

i10, and Xi4 = ρXi2 + τε∗
i11, for τ = 0.01 and ρ = 0.95.

We used a maximum model size of kn = n1/2 which technically goes beyond
the theory but works well in practice. Prior to analysis, the covariates are scaled
so that each has mean 0 and variance 1. The tests were initially performed using
a third of the data for each of the 3 stages of the procedure (Table 1, top half,
3 splits). For models A, B and C, each approach has type I error less than α, ex-
cept the stepwise procedure which has trouble with model C when n = p = 100.
We also calculated the false positive rate and found it to be very low (about 10−4

when p = 100 and 10−5 when p = 1000) indicating that even when a type I er-
ror occurs, only a very small number of terms are included erroneously. The lasso
screening procedure exhibited a slight power advantage over the stepwise proce-
dure. Both methods dominated the marginal approach. The Markov dependence
structure in model C clearly challenged the marginal approach. For model D, none
of the approaches controlled the type I error.

To determine the sensitivity of the approach to using distinct data for each stage
of the analysis, simulations were conducted screening on the first half of the data
and cleaning on the second half (2 splits). The tuning parameter was selected using
leave-one-out cross validation (Table 1, bottom half). As expected, this approach
lead to a dramatic increase in the power of all the procedures. More surprising is
the fact that the type I error was near α or below for models A, B and C. Clearly
this approach has advantages over data splitting and merits further investigation.

A natural competitor to screen and clean procedure is a two-stage adaptive lasso
[Zou (2006)]. In our implementation, we split the data and used one half for each
stage of the analysis. At stage one, leave-one-out cross validation lasso screens the
data. In stage two, the adaptive lasso, with weights wj = |β̂j |−1, cleans the data.
The tuning parameter for the lasso was again chosen using leave-one-out cross
validation. Table 2 provides the size, power and false positive rate (FPR) for this
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TABLE 1
Size and power of screen and clean procedures using lasso, stepwise and marginal regression for
the screening step. For all procedures α = 0.05. For p = 100, δ = 0.5 and for p = 1000, δ = 1.5.

Reported power is πav. The top 8 rows of simulations were conducted using three stages as
described in Section 4, with a third of the data used for each stage. The bottom 8 rows of

simulations were conducted splitting the data in half, using the first portion with leave-one-out
cross validation for stages 1 and 2 and the second portion for cleaning

Size Power

Splits n p Model Lasso Step Marg Lasso Step Marg

2 100 100 A 0.005 0.001 0.004 0 0 0
2 100 100 B 0.01 0.02 0.03 0.62 0.62 0.31
2 100 100 C 0.001 0.01 0.01 0.77 0.57 0.21
2 100 10 D 0.291 0.283 0.143 0.08 0.08 0.04

2 100 1000 A 0.001 0.002 0.010 0 0 0
2 100 1000 B 0.002 0.020 0.010 0.17 0.09 0.11
2 100 1000 C 0.02 0.14 0.01 0.27 0.15 0.11
2 1000 10 D 0.291 0.283 0.143 0.08 0.08 0.04

3 100 100 A 0.040 0.050 0.030 0 0 0
3 100 100 B 0.02 0.01 0.02 0.91 0.90 0.56
3 100 100 C 0.03 0.04 0.03 0.91 0.88 0.41
3 100 10 D 0.382 0.343 0.183 0.16 0.18 0.09

3 100 1000 A 0.035 0.045 0.040 0 0 0
3 100 1000 B 0.045 0.020 0.035 0.57 0.66 0.29
3 100 1000 C 0.06 0.070 0.020 0.74 0.65 0.19
3 1000 10 D 0.481 0.486 0.187 0.17 0.17 0.13

procedure. Naturally, the adaptive lasso does not control the size of the test, but the
FPR is small. The power of the test is greater than we found for our lasso screen

TABLE 2
Size, power and false positive rate (FPR) of two-stage adaptive lasso procedure

n p Model Size Power FPR

100 100 A 0.93 0 0.032
100 100 B 0.84 0.97 0.034
100 100 C 0.81 0.96 0.031
100 10 D 0.67 0.21 0.114
100 1000 A 0.96 0 0.004
100 1000 B 0.89 0.65 0.004
100 1000 C 0.76 0.77 0.002

1000 10 D 0.73 0.24 0.013
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and clean procedure, but this extra power comes at the cost of a much higher type I
error rate.

7. Proofs. Recall that if A is a square matrix, then φ(A) and �(A) denote the
smallest and largest eigenvalues of A. Throughout the proofs we make use of the
following fact. If v is a vector and A is a square matrix, then

φ(A)‖v‖2 ≤ vT Av ≤ �(A)‖v‖2.(14)

We use the following standard tail bound: if Z ∼ N(0,1), then P(|Z| > t) ≤
t−1e−t2/2. We will also use the following results about the lasso from Meinshausen
and Yu (2008). Their results are stated and proved for fixed X but, under the condi-
tions (A1)–(A5), it is easy to see that their conditions hold with probability tending
to one and so their results hold for random X as well.

THEOREM 7.1 [Meinshausen and Yu (2008)]. Let β̃(λ) be the lasso estimator.

1. The squared error satisfies

P

(
‖β̃(λ) − β‖2

2 ≤ 2λ2s

n2κ2 + cm logpn

nφ2
n(m)

)
→ 1,(15)

where m = |Ŝn(λ)| and c > 0 is a constant.
2. The size of Ŝn(λ) satisfies

P

(
|Ŝn(λ)| ≤ τ 2Cn2

λ2

)
→ 1,(16)

where τ 2 = E(Y 2
i ).

PROOF OF LEMMA 3.1. Let D ⊂ M and φ = φ(n−1XT
MXM). Then,

L(β̂M) = 1

n
εT XM(XT

MXM)−1XT
Mε ≤ 1

n2φ
‖XT

Mε‖2 = 1

nφ

∑
j∈M

Z2
j ,

where Zj = n−1/2XT•j ε. Conditional on X, Zi ∼ N(0, a2
j ) where a2

j = n−1 ×∑n
i=1 X2

ij . Let A2
n = max1≤j≤pn a2

j . By Hoeffding’s inequality, (A2) and (A5),

P(En) → 1 where En = {An ≤ √
2}. So

P

(
max

1≤j≤pn

|Zj | >
√

4 logpn

)

= P

(
max

1≤j≤pn

|Zj | >
√

4 logpn,En

)
+ P

(
max

1≤j≤pn

|Zj | >
√

4 logpn,E
c
n

)

≤ P

(
max

1≤j≤pn

|Zj | >
√

4 logpn,En

)
+ P(Ec

n)
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≤ P

(
An max

1≤j≤pn

|Zj |
aj

>
√

4 logpn,En

)
+ o(1)

≤ P

(
max

1≤j≤pn

|Zj |
aj

>
√

2 logpn

)
+ o(1)

= E

(
P

(
max

1≤j≤pn

|Zj |
aj

>
√

2 logpn

)∣∣∣X)
+ o(1)

≤ O

(
1√

2 logpn

)
+ o(1) = o(1).

But
∑

j∈M Z2
j ≤ mmax1≤j≤pn Z2

j and (6) follows.
Now we lower bound L(β̂M). Let M be such that D �⊂ M . Let A = {j : β̂M(j) �=

0} ∪ D. Then, |A| ≤ m + s. Therefore, with probability tending to 1,

L(β̂M) = 1

n
(β̂M − β)T XT X(β̂M − β) = 1

n
(β̂M − β)T XT

AXA(β̂M − β)

≥ φn(m + s)‖β̂M − β‖2 = φn(m + s)
∑
j∈A

(
β̂M(j) − β(j)

)2

≥ φn(m + s)
∑

j∈D∩Mc

(
0 − β(j)

)2 ≥ φn(m + s)ψ2.
�

PROOF OF THEOREM 3.2. Let Ỹ denote the responses, and X̃ the design ma-
trix, for the second half of the data. Then, Ỹ = X̃β + ε̃. Now

L(λ) = 1

n

(
β̂(λ) − β

)T
XT X

(
β̂(λ) − β

) = (
β̂(λ) − β

)T
	̂n

(
β̂(λ) − β

)
and

L̂(λ) = n−1‖Ỹ − X̃β̂(λ)‖2 = (
β̂(λ)−β

)T
	̃n

(
β̂(λ)−β

)+δn + 2

n

〈̃
ε, X̃

(
β̂(λ)−β

)〉
,

where δn = ‖̃ε‖2/n, and 	̂n = n−1
1 XT X and 	̃n = n−1X̃T X̃. By Hoeffding’s in-

equality

P
(|	̂n(j, k) − 	̃n(j, k)| > ε

) ≤ e−ncε2

for some c > 0, and so

P

(
max
jk

|	̂n(j, k) − 	̃n(j, k)| > ε

)
≤ p2

ne
−ncε2

.

Choose εn = 4/(cn1−c2). It follows that

P

(
max
jk

|	̂n(j, k) − 	̃n(j, k)| > 4

cn1−c2

)
≤ e−2nc2 → 0.
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Note that

|{j : β̂j (λ) �= 0} ∪ {j :βj �= 0}| ≤ kn + s.

Hence, with probability tending to 1

|L(λ) − L̂(λ) − δn| ≤ 4

cn1−c2
‖β̂(λ) − β‖2

1 + 2ξn(λ)

for all λ ∈ �n, where

ξn(λ) = 1

n

∑
i∈I2

ε̃iμi(λ)

and μi(λ) = X̃T
i (β̂(λ) − β). Now ‖β̂(λ) − β‖2

1 = OP ((kn + s)2) since ‖β̂(λ)‖2 =
OP (kn/φ(kn)). Thus, ‖β̂(λ) − β‖1 ≤ C(kn + s) with probability tending to 1,
for some C > 0. Also, |μi(λ)| ≤ B‖β̂(λ) − β‖1 ≤ BC(kn + s) with probability
tending to 1. Let W ∼ N(0,1). Conditional on D1,

|ξn(λ)| d= σ√
n

√√√√ n∑
i=1

μ2
i (λ)|W | ≤ σ√

n
BC(kn + s)|W |,

so supλ∈�n
|ξn(λ)| = OP (kn/

√
n). �

PROOF OF THEOREM 4.1. 1. Let λn = τn
√

C/kn, M = Ŝn(λn) and m = |M|.
Then, P(m ≤ kn) → 1 due to (16). Hence, P(λn ∈ �n) → 1. From (15),

‖β̃(λn) − β‖2
2 ≤ O

(
1

kn

)
+ OP

(
kn logpn

n

)
= oP (1).

Hence, ‖β̃(λn) − β‖2∞ = oP (1). So, for each j ∈ D,

|β̃j (λn)| ≥ |βj | − |β̃j (λn) − βj | ≥ ψ + oP (1)

and hence, P(minj∈D |β̃j (λn)| > 0) → 1. Therefore, �n = {λ ∈ �n :D ⊂ Ŝn(λ)} is
nonempty. By Lemma 3.1,

L(λn) ≤ cm logpn/(nφ(m)) = OP (kn logpn/n).(17)

On the other hand, from Lemma 3.1,

P

(
inf

λ∈�n∩�c
n

L(β̂λ) > ψ2φ(kn)

)
→ 1.(18)

Now, nφn(kn)/(kn logpn) → ∞, and so (17) and (18) imply that

P

(
inf

λ∈�n∩�c
n

L(β̂λ) > L(λn)

)
→ 1.

Thus, if λ∗ denotes the minimizer of L(λ) over �n, we conclude that P(λ∗ ∈
�n) → 1, and hence, P(D ⊂ Ŝn(λ∗)) → 1.
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2. This follows from part 1 and Theorem 3.2.
3. Let A = Ŝn ∩ Dc. We want to show that

P

(
max
j∈A

|Tj | > cn

)
≤ α + o(1).

Now,

P

(
max
j∈A

|Tj | > cn

)
= P

(
max
j∈A

|Tj | > cn,D ⊂ Ŝn

)
+ P

(
max
j∈A

|Tj | > cn,D �⊂ Ŝn

)

≤ P

(
max
j∈A

|Tj | > cn,D ⊂ Ŝn

)
+ P(D �⊂ Ŝn)

≤ P

(
max
j∈A

|Tj | > cn,D ⊂ Ŝn

)
+ o(1).

Conditional on (D1,D2), β̂A is normally distributed with mean 0 and variance
matrix σ 2(XT

AXA)−1 when D ⊂ Ŝn. Recall that

Tj (M) = eT
j (XT

MXM)−1XT
MY

σ̂
√

eT
j (XT

MXM)−1ej

= β̂M,j

sj
,

where M = Ŝn, s2
j = σ̂ 2eT

j (XT
MXM)−1ej and ej = (0, . . . ,0,1,0, . . . ,0)T , where

the 1 is in the j th coordinate. When D ⊂ Ŝn, each Tj , for j ∈ A, has a t-distribution
with n − m degrees of freedom where m = |Ŝn|. Also, cn/tα/2m → 1 where tu
denotes the upper tail critical value for the t-distribution. Hence,

P

(
max
j∈A

|Tj | > cn,D ⊂ Ŝn|D1,D2

)

= P

(
max
j∈A

|Tj | > tα/2m,D ⊂ Ŝn|D1,D2

)
+ an

≤ α + an,

where an = o(1), since |A| ≤ m. It follows that

P

(
max
j∈A

|Tj | > cn,D ⊂ Ŝn

)
≤ α + o(1). �

PROOF OF THEOREM 4.2. From Theorem 4.1, P(D̂n ∩ Dc �= ∅) ≤ αn and so
P(D̂n ∩ Dc �= ∅) → 0. Hence, P(D̂n ⊂ D) → 1. It remains to be shown that

P(D ⊂ D̂n) → 1.(19)

The test statistic for testing βj = 0 when Ŝn = M is

Tj (M) = eT
j (XT

MXM)−1XT
MY

σ̂
√

eT
j (XT

MXM)−1ej

.
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For simplicity in the proof, let us take σ̂ = σ , the extension to unknown σ being
straightforward. Let j ∈ D, M = {M : |M| ≤ kn,D ⊂ M}. Then,

P(j /∈ D̂n) = P(j /∈ D̂n,D ⊂ Ŝn) + P(j /∈ D̂n,D �⊂ Ŝn)

≤ P(j /∈ D̂n,D ⊂ Ŝn) + P(D �⊂ Ŝn)

= P(j /∈ D̂n,D ⊂ Ŝn) + o(1)

= ∑
M∈M

P(j /∈ D̂n, Ŝn = M) + o(1)

≤ ∑
M∈M

P
(|Tj (M)| < cn, Ŝn = M

) + o(1)

≤ ∑
M∈M

P
(|Tj (M)| < cn

) + o(1).

Conditional on D1 ∪ D2, for each M ∈ M, Tj (M) = (βj/sj ) + Z, where Z ∼
N(0,1). Without loss of generality, assume that βj > 0. Hence,

P
(|Tj (M)| < cn|D1 ∪ D2

) = P

(
−cn − βj

sj
< Z < cn − βj

sj

)
.

Fix a small ε > 0. Note that s2
j ≤ σ 2/(nκ). It follows that, for all large n, cn −

βj/sj < −ε
√

n. So,

P
(|Tj (M)| < cn|D1 ∪ D2

) ≤ P
(
Z < −ε

√
n
) ≤ e−nε2/2.

The number of models in M is
kn∑

j=0

(
pn − s

j − s

)
≤ kn

(
pn − s

kn − s

)
≤ kn

(
(pn − s)e

kn − s

)kn−s

≤ knp
kn
n ,

where we used the inequality (
n

k

)
≤

(
ne

k

)k

.

So, ∑
M∈M

P
(|Tj (M)| < cn|D1 ∪ D2

) ≤ knp
kn
n e−nε2 → 0

by (A2). We have thus shown that P(j /∈ D̂n) → 0, for each j ∈ D. Since |D| is
finite, it follows that P(j /∈ D̂n for some j ∈ D) → 0 and hence (19). �

PROOF OF THEOREM 4.5. A simple modification of Theorem 3.1 of Barron
et al. (2008) shows that

L(kn) = 1

n
‖Ŷkn − Xβ‖2 = oP (1).
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[The modification is needed because Barron et al. (2008) require Y to be bounded
while we have assumed that Y is normal. By a truncation argument, we can still
derive the bound on L(kn).] So

‖β̂kn − β‖2 ≤ L(kn)

φn(kn + s)
≤ L(kn)

κ
= oP (1).

Hence, for any ε > 0, with probability tending to 1, ‖β̂(kn) − β‖2 < ε so that
|β̂j | > ψ/2 > 0, for all j ∈ D. Thus, P(D ⊂ Ŝn(kn)) → 1. The remainder of the
proof of part 1 is the same as in Theorem 4.1. Part 2 follows from the previous
result together with Theorem 3.2. The proof of part 3 is the same as for Theo-
rem 4.1. �

PROOF OF THEOREM 4.6. Note that μ̂j −μj = n−1 ∑n
i=1 Xijεi . Hence, μ̂j −

μj ∼ N(0,1/n). So, for any δ > 0,

P

(
max

j
|μ̂j − μj | > δ

)
≤

pn∑
j=1

P(|μ̂j − μj | > δ)

≤ pn

δ
√

n
e−nδ2/2 ≤ c1e

nc2

δ
√

n
e−nδ2/2 → 0.

By (12), conclude that D ⊂ Ŝn(λ) when λ = μ̂(kn). The remainder of the proof is
the same as the proof of Theorem 4.5. �

PROOF OF THEOREM 4.7. Let A = Ŝn ∩ Dc. We want to show that

P

(
max
j∈A

|Tj | > cn

)
≤ α + o(1).

For fixed A, β̂A is normal with mean 0 but this is not true for random A. Instead
we need to bound Tj . Recall that

Tj (M) = eT
j (XT

MXM)−1XT
MY

σ̂
√

eT
j (XT

MXM)−1ej

= β̂M,j

sj
,

where M = Ŝn, s2
j = σ̂ 2eT

j (XT
MXM)−1ej and ej = (0, . . . ,0,1,0, . . . ,0)T where

the 1 is in the j th coordinate. The probabilities that follow are conditional on D1
but this is supressed for notational convenience. First, write

P

(
max
j∈A

|Tj | > cn

)
= P

(
max
j∈A

|Tj | > cn,D ⊂ Ŝn

)
+ P

(
max
j∈A

|Tj | > cn,D �⊂ Ŝn

)

≤ P

(
max
j∈A

|Tj | > cn,D ⊂ Ŝn

)
+ P(D �⊂ Ŝn)

≤ P

(
max
j∈A

|Tj | > cn,D ⊂ Ŝn

)
+ o(1).
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When D ⊂ Ŝn,

β̂Ŝn
= βŜn

+
(

1

n
XT

Ŝn
XŜn

)−1 1

n
XT

Ŝn
ε = βŜn

+ QŜn
γŜn

,

where QŜn
= ((1/n)XT

Ŝn
XŜn

)−1, γŜn
= n−1XT

Ŝn
ε, and βŜn

(j) = 0, for j ∈ A. Now,

s2
j ≥ σ̂ 2/(nC) so that

|Tj | ≤
√

nC|β̂Ŝn,j |
σ̂

≤
√

n log logn|β̂Ŝn,j |
σ̂

for j ∈ Ŝn. Therefore,

P

(
max
j∈A

|Tj | > cn,D ⊂ Ŝn

)
≤ P

(
max
j∈A

|β̂Ŝn,j | >
σ̂cn√
nC

,D ⊂ Ŝn

)
.

Let γ = n−1XT ε. Then,

‖β̂A‖2 ≤ γ T
Ŝn

Q2
Ŝn

γŜn
≤ ‖γŜn

‖2

κ2 ≤ kn max1≤j≤pn γ 2
j

κ2 .

It follows that

max
j∈A

|β̂Ŝn,j | ≤
√

kn max1≤j≤pn |γj |
κ

≤
√

kn log logn max
1≤j≤pn

|γj |,

since κ > 0. So,

P

(
max
j∈A

|β̂Ŝn,j | >
σ̂cn√

n log logn
,D ⊂ Ŝn

)
≤ P

(
max

1≤j≤pn

|γj | > σ̂cn

log logn
√

nkn

)
.

Note that γj ∼ N(0, σ 2/n), and hence,

E

(
max

j
|γj |

)
≤

√
2σ 2 log(2pn)

n
.

There exists εn → 0 such that P(Bn) → 1 where Bn = {(1−εn) ≤ σ̂ /σ ≤ (1+ε)}.
So,

P

(
max

1≤j≤pn

|γj | > σ̂cn

log logn
√

nkn

)
≤ P

(
max

1≤j≤pn

|γj | > σcn(1 − εn)

log logn
√

nkn

,Bn

)

≤
√

nkn

σ(1 − εn)cn

√
log logn

E

(
max

j
|γj |

)
≤ α + o(1). �
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8. Discussion. The multi-stage method presented in this paper successfully
controls type I error while giving reasonable power. The lasso and stepwise have
similar performance. Although theoretical results assume independent data for
each of the three stages, simulations suggest that leave-one-out cross-validation
leads to valid type I error rates and greater power. Screening the data in one phase
of the experiment and cleaning in a followup phase leads to an efficient experi-
mental design. Certainly this approach deserves further theoretical investigation.
In particular, the question of optimality is an open question.

The literature on high-dimensional variable selection is growing quickly. The
most important deficiency in much of this work, including this paper, is the as-
sumption that the model Y = XT β + ε is correct. In reality, the model is at best
an approximation. It is possible to study linear procedures when the linear model
is not assumed to hold as in Greenshtein and Ritov (2004). We discuss this point
in the Appendix. Nevertheless, it seems useful to study the problem under the as-
sumption of linearity to gain insight into these methods. Future work should be
directed at exploring the robustness of the results when the model is wrong.

Other possible extensions include: dropping the normality of the errors, permit-
ting nonconstant variance, investigating the optimal sample sizes for each stage
and considering other screening methods besides cross-validation.

Finally, let us note that the example involving unfaithfulness, that is, cancel-
lations of parameters to make the marginal correlation much different than the
regression coefficient, pose a challenge for all the methods and deserve more at-
tention even in cases of small p.

APPENDIX: PREDICTION

Realistically, there is little reason to believe that the linear model is correct. Even
if we drop the assumption that the linear model is correct, sparse methods like the
lasso can still have good properties as shown in Greenshtein and Ritov (2004). In
particular, they showed that the lasso satisfies a risk consistency property. In this
appendix we show that this property continues to hold if λ is chosen by cross-
validation.

The lasso estimator is the minimizer of
∑n

i=1(Yi − XT
i β)2 + λ‖β‖1. This is

equivalent to minimizing
∑n

i=1(Yi − XT
i β)2 subject to ‖β‖1 ≤ �, for some �.

(More precisely, the set of estimators as λ varies is the same as the set of estimators
as � varies.) We use this second version throughout this section.

The predictive risk of a linear predictor �(x) = xT β is R(β) = E(Y − �(x))2

where (X,Y ) denotes a new observation. Let γ = γ (β) = (−1, β1, . . . , βp)T and
let � = E(ZZT ) where Z = (Y,X1, . . . ,Xp). Then, we can write R(β) = γ T �γ .
The lasso estimator can now be written as β̂(�n) = arg minβ∈B(�n) R̂(β) where
R̂(β) = γ T �̂γ and �̂ = n−1 ∑n

i=1 ZiZ
T
i .

Define

β∗ = arg min
β∈B(�n)

R(β),
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where

B(�n) = {β :‖β‖1 ≤ �n}.
Thus, �∗(x) = xT β∗ is the best linear predictor in the set B(�n). The best linear
predictor is well defined even though E(Y |X) is no longer assumed to be linear.
Greenshtein and Ritov (2004) call an estimator β̂n persistent, or predictive risk
consistent, if

R(β̂n) − R(β∗)
P→ 0

as n → ∞.
The assumptions we make in this section are:
(B1) pn ≤ enξ

, for some 0 ≤ ξ < 1;
(B2) the elements of �̂ satisfy an exponential inequality

P(|�̂jk − �jk| > ε) ≤ c3e
−nc4ε

2

for some c3, c4 > 0;
(B3) there exists B0 < ∞ such that, for all n, maxj,k E(|ZjZk|) ≤ B0.
Condition (A2) can easily be deduced from more primitive assumptions as in

Greenshtein and Ritov (2004), but for simplicity we take (A2) as an assumption.
Let us review one of the results in Greenshtein and Ritov (2004). For the moment,
replace (A1) with the assumption that pn ≤ nb, for some b. Under these conditions,
it follows that

�n ≡ max
j,k

|�̂jk − �jk| = OP

(√
logn

n

)
.

Hence,

sup
β∈B(�n)

|R(β) − R̂(β)| = sup
β∈B(�n)

|γ T (� − �̂)γ |

≤ �n sup
β∈B(�n)

‖γ ‖2
1 = �2

nOP

(√
logn

n

)
.

The latter term is oP (1) as long as �n = o((n/ logn)1/4). Thus, we have the fol-
lowing.

THEOREM A.1 [Greenshtein and Ritov (2004)]. If �n = o((n/ logn)1/4),
then the lasso estimator is persistent.

For future reference, let us state a slightly different version of their result that
we will need. We omit the proof.
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THEOREM A.2. Let γ > 0 be such that ξ + γ < 1. Let �n = O(n(1−ξ−γ )/4).
Then, under (B1) and (B2),

P

(
sup

β∈B(�n)

|R̂(β) − R(β)| > 1

nγ/4

)
= O(e−cnγ/2

)(20)

for some c > 0.

The estimator β̂(�n) lies on the boundary of the ball B(�n) and is very sensitive
to the exact choice of �n. A potential improvement—and something that reflects
actual practice—is to compute the set of lasso estimators β̂(�), for 0 ≤ � ≤ �n and
then select from that set based on cross validation. We now confirm that the result-
ing estimator preserves persistence. As before, we split the data into D1 and D2.
Construct the lasso estimators {β̂(�) : 0 ≤ � ≤ �n}. Choose �̂ by cross validation
using D2. Let β̂ = β̂(�̂).

THEOREM A.3. Let γ > 0 be such that ξ + γ < 1. Under (A1), (A2)
and (A3), if �n = O(n(1−ξ−γ )/4), then the cross-validated lasso estimator β̂ is
persistent. Moreover,

R(β̂) − inf
0≤�≤�n

R(β̂(�))
P→ 0.(21)

PROOF. Let β∗(�) = arg minβ∈B(�) R(β). Define h(�) = R(β∗(�)), g(�) =
R(β̂(�)) and c(�) = L̂(β̂(�)). Note that, for any vector b, we can write R(b) =
τ 2 + bT 	b − 2bT ρ where ρ = (E(YX1), . . . ,E(YXp))T .

Clearly, h is monotone nonincreasing on [0,�n]. We claim that |h(� + δ) −
h(�)| ≤ c�nδ where c depends only on �. To see this, let u = β∗(�), v = β∗(�+ δ)

and a = �β∗(� + δ)/(� + δ) so that a ∈ B(�). Then,

h(� + δ) ≤ h(�)

= R(u) ≤ R(a)

= R(v) + R(a) − R(v)

= h(� + δ) + 2δ

� + δ
ρT v − δ(2� + δ)

(� + δ)2 vT 	v

≤ h(� + δ) + 2δC + δ(2�n + δ)C,

where C = maxj,k |�j,k| = O(1).
Next, we claim that g(�) is Lipschitz on [0,�n] with probability tending to 1.

Let β̂(�) = arg minβ∈B(�) R̂(β) denote the lasso estimator and set û = β̂(�) and
v̂ = β̂(� + δ). Let εn = n−γ /4. From (20), the following chain of equations hold
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except on a set of exponentially small probability:

g(� + δ) = R(v̂) ≤ R̂(v̂) + εn ≤ R̂(v) + εn

≤ R(v) + 2εn = h(� + δ) + 2εn

≤ h(�) + c�nδ + 2εn = R(u) + c�nδ + 2εn

≤ R(û) + c�nδ + 2εn = g(�) + c�nδ + 2εn.

A similar argument can be applied in the other direction. Conclude that

|g(� + δ) − g(�)| ≤ c�nδ + 2εn

except on a set of small probability.
Now let A = {0, δ,2δ, . . . ,mδ} where m is the smallest integer such that

mδ ≥ �n. Thus, m ∼ �n/δn. Choose δ = δn = n−3(1−ξ−γ )/8. Then, �nδn → 0 and
�n/δn ≤ n3(1−ξ−γ )/4. Using the same argument as in the proof of Theorem 3.2,

max
�∈A

|L̂(β̂(�)) − R(β̂(�))| = σn,

where σn = oP (1). Then,

R(β∗(�n)) ≤ R(β̂) ≤ L̂(β̂(�̂)) + σn

≤ L̂(mδn) + σn ≤ g(mδn) + 2σn ≤ g(�n) + 2σn + c�nδn

≤ h(�n) + 2σn + εn + c�nδn

= R(β∗(�n)) + 2σn + εn + c�nδn

and persistence follows. To show the second result, let β̃ = arg min0≤�≤�n g(�)

and β = arg min�∈A g(�). Then,

R(β̃) ≤ L̂(β̃) + σn ≤ L̂(β) + σn

≤ R(β) + 2σn ≤ R(β̃) + 2σn + cδn�n

and the claim follows. �
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