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EXISTENCE AND CONSTRUCTION OF RANDOMIZATION
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Regular factorial designs with randomization restrictions are widely used
in practice. This paper provides a unified approach to the construction of such
designs using randomization defining contrast subspaces for the representa-
tion of randomization restrictions. We use finite projective geometry to de-
termine the existence of designs with the required structure and develop a
systematic approach for their construction. An attractive feature is that com-
monly used factorial designs with randomization restrictions are special cases
of this general representation. Issues related to the use of these designs for
particular factorial experiments are also addressed.

1. Introduction. The use of factorial experiments in situations which require
randomization restrictions (e.g., block designs or split-plot designs) has been il-
lustrated in the literature for many years [see, e.g., Cochran and Cox (1957),
Chapters 6–8 and Addelman (1964)]. More recently, the construction of designs
under various optimality and efficiency criteria has been discussed for blocked
factorial and fractional factorial designs by Bisgaard (1994), Sitter, Chen and
Feder (1997), Sun, Wu and Chen (1997), Chen and Cheng (1999) and Cheng,
Li and Ye (2004); for factorial and fractional factorial split-plot designs by Huang,
Chen and Voelkel (1998), Bingham and Sitter (1999) and Stapleton, Lewis and
Dean (2009); for strip-plot designs by Miller (1997); and for split-lot designs by
Mee and Bates (1998) and Butler (2004). Although these various designs maintain
the same factorial treatment structure, their randomization structures are different.

Bingham et al. (2008) proposed the use of randomization defining contrast sub-
groups (RDCSGs) to describe the randomization structure of factorial designs.
These can be viewed as generalizations of block defining contrast subgroups [see,
e.g., Sun, Wu and Chen (1997)]. In this article, we propose a projective geomet-
ric generalization of the RDCSGs, which we refer to as randomization defining
contrast subspaces (RDCSSs).

For complicated randomization structures, the existence of desirable designs
can be difficult to determine; for example, Bingham et al. (2008) were forced to
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search over the set of all possible designs to find those satisfying the required re-
strictions. Here, we develop theoretical results for the existence of factorial designs
with given randomization restrictions within a unified framework, and we provide
a direct method of construction of such designs. The theory for the existence and
construction of such designs is given in terms of full factorial designs, but we show
in Section 6 that the results apply equally well to fractional factorial designs.

In the next section, a brief description of RDCSSs is presented. Section 3 con-
siders the impact of the randomization restrictions on data analysis and motivates
the preference for nonoverlapping RDCSSs over the various stages of randomiza-
tion. In Section 4, theoretical results for the existence of designs with randomiza-
tion restrictions are developed. The theoretical framework is constructive, thereby
allowing for the identification of designs in practical settings. Methods of construc-
tion of such designs for specific factorial experiments are developed in Section 5.
The article finishes with a discussion of fractional factorial designs in Section 6
and concluding remarks in Section 7.

2. Randomization-defining contrast subspaces. A natural design choice for
a p-factor experiment is a completely randomized design with trials performed in
a random order. However, this is not always feasible as, for example, when the
experimental units are not homogeneous (as in block designs), the levels of some
factors cannot be changed as rapidly as that of others (as in split-plot designs) or
when subsets of factors must be held fixed at different stages of experimentation
(as in split-lot designs).

Several different approaches have been taken in the construction of factorial
designs with randomization restrictions. For example, blocking in factorial and
fractional factorial experiments have been studied using Abelian groups and vector
spaces [see, e.g., Dean and John (1975), Bailey (1977) and Voss and Dean (1987)],
and using finite geometries [see, e.g., Bose (1947), Srivastava (1987) and Mukerjee
and Wu (1999)]; the construction of strip-plot designs via latin square fractions has
been discussed by Miller (1997); split-plot designs for factorial treatments have
been constructed using computer search and group theory by Addelman (1964),
Bingham and Sitter (1999), Bisgaard (2000), Huang, Chen and Voelkel (1998)
and Stapleton, Lewis and Dean (2009). For the construction of split-lot designs,
linear graphs were used by Taguchi (1987), combinations of linear graphs and
cyclic groups by Mee and Bates (1998) and a grid-representation technique by
Butler (2004). In this paper, we use finite projective geometry to study qp factorial
designs with randomization restrictions for prime or prime power q .

As in Dey and Mukerjee (1999), Chapter 8, let b be a p-dimensional pencil over
the Galois field GF(q). For α(�= 0) ∈ GF(q), b and αb represent the same pencil
carrying q − 1 degrees of freedom. A pencil b represents an r-factor interaction
if b has exactly r nonzero elements. The set of all p-dimensional pencils over
GF(q) forms a (p − 1)-dimensional finite projective geometry and is denoted by
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PG(p − 1, q). There are (qp − 1)/(q − 1) points in PG(p − 1, q), where points
correspond to pencils.

Since two-level factorial designs are the most common in practice, we focus on
q = 2, although most of the results in this article hold for a prime or prime power q .
For q = 2, a pencil b with r nonzero elements corresponds to a unique r-factor
interaction in a 2p factorial design with a single degree of freedom. Thus, the set
of all effects (excluding the grand mean) of a 2p factorial design is equivalent to
the set of points in PG(p − 1,2) and will be referred to as the effect space P .

The restrictions on the randomization of experimental runs is equivalent to the
grouping of experimental units into sets of trials. We consider the usual approach
of using independent effects from P to define the groupings. Blocked factorial de-
signs, for example, use 2t (t < p) combinations of t independent effects from P
to divide 2p treatment combinations into 2t blocks. These factorial effects are then
completely confounded with block effects and represent t randomization restric-
tion “factors.” The set S of all nonnull linear combinations of these t randomiza-
tion restriction factors in P , over GF(2), forms a (t − 1)-dimensional projective
subspace of P = PG(p − 1,2), which we call a randomization defining contrast
subspace (RDCSS).

EXAMPLE 1. Consider an experiment arranged as a 25 factorial split-plot de-
sign, where A, B are whole-plot factors and C, D, E are sub-plot factors. The
effect space is P = 〈A,B,C,D,E〉 and the RDCSS that imposes the random-
ization restrictions is S = 〈A,B〉 = {A,B,AB}, where the notation 〈a1, . . . , ak〉
denotes the projective space spanned by a1, . . . , ak (or, for two-level factorial de-
signs, the set of all interactions of a1, . . . , ak). The notation A, AB , and so on,
represent the main effect of A, the interaction of A and B , and so on. Since there
are t = 2 whole-plot factors, the set of all experimental units is partitioned into
2t = 4 subsets (batches, whole-plots, etc.), and each subset consists of 25/22 = 8
experimental units. The four subsets, say B1, B2, B3 and B4, consist of experi-
mental units corresponding to (θA(i), θB(i)) = (0,0), (0,1), (1,0) and (1,1), re-
spectively, where, θδ(i) is the ith row of the column corresponding to the factorial
effect δ in the model matrix X [see, e.g., Bingham et al. (2008) and page 26 in
Ranjan (2007)].

There may be more than one stage of randomization restriction in a factorial ex-
periment where the randomization structure can be characterized by its RDCSSs.
For a 2p factorial design with m stages of randomization, the m RDCSSs can be
denoted by the projective subspaces S1, . . . , Sm contained in the effect space P .
For each i = 1, . . . ,m, the size of Si is 2ti − 1 with 0 < ti < p. Then, at stage i,
the experimental units are partitioned into |Si | + 1 sets (e.g., batches, whole-plots
and blocks) due to Si , where the size of each set is (|P | + 1)/(|Si | + 1) = 2p−ti .
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EXAMPLE 2. Consider a 25 factorial experiment with randomization structure
defined by a strip-plot design [Miller (1997)], where the row configurations are
defined by a 22 design in factors A, B and the column configurations by a 23

design in factors C, D, E. In this setting, the two RDCSSs are S1 = 〈A,B〉 and
S2 = 〈C,D,E〉, and the effect space is P = 〈A,B,C,D,E〉.

Although the treatment structure for Examples 1 and 2 are the same, the ran-
domization restrictions induce different error structures, thereby having an impact
on the analysis [see, e.g., Milliken and Johnson (1984), Chapter 4].

3. Modeling issues. In this section, we show how the distribution of the least
squares estimator of a factorial effect is related to the RDCSSs. This motivates
a design strategy and, in particular, suggests a preference for nonoverlapping
RDCSSs.

3.1. Model. Consider a single-replicate 2p factorial design with the linear re-
gression model as the response model of interest; that is,

Y = Xβ + ε,(1)

where X denotes the n × 2p model matrix and β = (β0, β1, . . . , β2p−1)
′ is the

2p × 1 vector of parameters corresponding to the grand mean, the factorial main
effects and interactions. In this section, the factor levels 0 and 1 are recoded as +1
and −1, respectively. For a single-replicate 2p factorial experiment, n = 2p , and
the model matrix, X, is a Hadamard matrix which satisfies X′X = nIn, where In

is an n× n identity matrix. Without loss of generality, any p independent columns
of X can be selected to represent the main effect contrasts of the p factors [see,
e.g., Dean and Voss (1999), Section 15.6]. On rearranging the columns of X, let X

be {c0, c1, . . . , cp, cp+1, . . . , cn−1}, where the column vector, c0, consists of all 1’s
corresponding to the grand mean, columns c1, . . . , cp refer to the independent main
effect contrasts of the p factors and the remaining columns, cp+1, . . . , cn−1, rep-
resent the interaction contrasts obtained as element-wise products of subsets of
c1, . . . , cp . The vector Y denotes the vector of response variables and ε the error
vector, whose distribution is discussed below.

For a factorial design with m stages of randomization and RDCSSs denoted
by Si , i = 1, . . . ,m, the error vector ε can be written as a sum of m + 1 inde-
pendent error vectors, ε = ε0 + ε1 + · · · + εm. The n × 1 vector ε0 denotes the
replication error vector, and εi (1 ≤ i ≤ m) is the error vector associated with the
randomization restriction characterized by Si . Since Si creates a partition of the n

experimental units into 2ti batches (blocks, whole-plots, etc.), the error vector εi

can be written as Niεi , where εi is a 2ti × 1 vector of errors associated with each
of the 2ti batches; the n × 2ti matrix Ni is called the ith incidence matrix and has
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elements defined as follows:

(Ni)rl = 1, if the rth experimental unit belongs to the lth batch
at the ith stage of randomization,(2)

= 0, otherwise,

for r = 1, . . . , n and l = 1, . . . ,2ti . Thus, ε can be written as

ε = ε0 + ε1 + · · · + εm = ε0 + N1ε1 + · · · + Nmεm,(3)

where ε0, ε1, . . . , εm are independent, and ε0 = ε0 ∼ N(0n, Inσ
2), where 0n is an

n × 1 vector of zeros and In is an n × n identity matrix. For i = 1, . . . ,m, we
assume that εi ∼ N(02ti , I2ti σ

2
i ), where 02ti is a vector of 2ti zero elements. It

follows that ε ∼ N(0n,	y), where

	y = σ 2In +
m∑

i=1

σ 2
i NiN

′
i .(4)

Lemma 1 gives some properties of the incidence matrices which are needed for
subsequent results. The proof of Lemma 1 is straightforward and omitted.

LEMMA 1. Consider a 2p factorial design with n = 2p runs and m levels of
randomization restrictions defined by RDCSSs S1, . . . , Sm. Let N1, . . . ,Nm be the
incidence matrices corresponding to Si’s as defined in (2). Then, N ′

iNi = niI2ti ,
where ni = 2p−ti is the number of 1’s in each column of Ni , and I2ti is a 2ti × 2ti

identity matrix.

3.2. Distribution of effect estimators. The most natural way to estimate the
factorial effect parameters is to use the generalized least squares (GLS) esti-
mator β̂ = (X′	−1

y X)−1X′	−1
y Y . Due to the assumptions on the error vectors,

β̂ ∼ N(β,Var(β̂)). For a single-replicate 2p factorial design, the GLS estimator
coincides with the ordinary least squares (OLS) estimator β̃ = (X′X)−1X′Y . This
follows since X is an n × n matrix and, consequently, X′X = nI implies that
X′ = nX−1. Then, β̃ = n−1X′Y , and

β̂ = (X′	−1
y X)−1X′	−1

y Y = X−1	y(X
′)−1X′	−1

y Y = n−1X′Y = β̃.

Thus, the variance–covariance matrix of the factorial effect estimator β̂ is
Var(β̂) = Var(β̃) = (X′	yX)/n2, and

β̂ ∼ N(β,X′	yX/n2),(5)

where 	y is defined in (4).
If Si ’s are projective subspaces in P , it is sometimes possible to select the

RDCSSs S1, . . . , Sm so that Sij = Si ∩ Sj = φ for all i �= j . It will become clear
later that these cases are of specific interest to practitioners since, in this case, all
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the effects in Si have variances that are functions of σ 2
i only. However, when this

condition does not hold (see Theorem 2, below), the variance of the effects in Sij

are impacted by both σ 2
i and σ 2

j .

THEOREM 1. In a single-replicate 2p factorial design, let the randomization
restrictions be defined by S1, . . . , Sm contained in P . Then, for any two effects Ej

and Ek in the effect space P , the corresponding parameter estimators β̂Ej
and

β̂Ek
have independent normal distributions.

PROOF. Since β̂ has a multivariate normal distribution, it is enough to show
that cov(β̂Ej

, β̂Ek
) = 0. Let Ej denote the factorial effect corresponding to j th

column cj (j ≥ 1) of X, and let S1, . . . , Sm be subspaces in P . If column cj of X

is orthogonal to the randomization restrictions in Si , then c′
jNi = 0. Whereas, for

each i = 1, . . . ,m, if Ej ∈ Si , then, as in Dean (1978), cj may be expressed as

cj = Nia
(i)
j , where a

(i)
j is a 2ti × 1 vector, and a

(i)′
j 1 = 0 with 1 a vector of 1’s.

Also, since c′
j ck = 0 for all j �= k, it follows from Lemma 1 that a

(i)′
j a

(i)
k = 0 for

all j �= k and i = 1, . . . ,m.
Define the index set Tjk = {i : 1 ≤ i ≤ m,Ej ∈ Si and Ek ∈ Si}. Then, using

the equivalence of the GLS and OLS estimators for β together with (4), (5) and
Lemma 1, we have

n2 Cov(β̂Ej
, β̂Ek

) = σ 2c′
j ck +

m∑
i=1

σ 2
i c′

jNiN
′
i ck

= ∑
i∈Tjk

σ 2
i a

(i)′
j N ′

iNiN
′
iNia

(i)
k = ∑

Tjk

σ 2
i n2

i a
(i)′
j a

(i)
k = 0

and the proof follows. �

Next, the main result of this section establishes the link between the variances
of the effect estimators for a 2p full factorial design and the RDCSSs.

THEOREM 2. In a single-replicate 2p factorial design, let the randomization
restrictions be defined by S1, . . . , Sm in P . For an effect E ∈ P , define an index
set {TE,E ∈ P } such that TE = {i : 1 ≤ i ≤ m,E ∈ Si}. Then,

Var(β̂E) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ 2

n
+ ∑

i∈TE

ni

n
σ 2

i , if E ∈ {S1 ∪ · · · ∪ Sm},

σ 2

n
, if E ∈ P \ {S1 ∪ · · · ∪ Sm},

where σ 2 and σ 2
i are the variances corresponding to ε0 and εi , respectively.
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PROOF. Let E be the effect corresponding to column c in X. Following argu-
ments similar to those of the proof of Theorem 1, if E ∈ Si , we have

c′c = a(i)′N ′
iNia

(i) = nia
(i)′a(i) = n(6)

and, if E /∈ Si , then c′Ni = 0. Thus,

n2 Var(β̂E) = nσ 2 + ∑
i∈TE

σ 2
i a(i)′N ′

iNiN
′
iNia

(i)

= nσ 2 + ∑
i∈TE

σ 2
i n · ni [using Lemma 1 and (6)]

as required. On the other hand, if E ∈ P \ {S1 ∪ · · · ∪ Sm}, TE is the empty set and
Var(β̂E) = σ 2/n. �

We note that the results in Theorems 1 and 2 can be extended to regular designs
with factors having q levels for prime or prime power q . This is done by including
in the model matrix a set of orthogonal contrasts for each effect, with each contrast
scaled so that c′c = n.

A common strategy for the analysis of unreplicated factorial designs is the use
of half-normal plots [Daniel (1959)]. These require that effects whose estimates
appear on the same plot must be independent and have the same variance. By The-
orems 1 and 2, when Sij = Si ∩Sj = φ,∀i �= j , m separate half-normal plots (plus
an additional plot if P \ {⋃m

i=1 Si} �= φ) can be constructed to assess the signifi-
cance of the effects. On the other hand, if Sij �= φ for some i, j , then the effects
in Sij will have variances that are linear combinations of σ 2

i and σ 2
j , creating a

larger number of smaller sets of effects having the same variance. In this case,
assessment of the significance of effects in Sij may have to be sacrificed due to
lack of degrees of freedom [Schoen (1999)]. Thus, designs with disjoint RDCSSs
(Sij = φ for all i �= j ) are preferred. From a practical standpoint, determining
whether or not a design with nonoverlapping RDCSSs exists is challenging [see,
e.g., Bingham et al. (2008)] and actually finding such a design when it exists can
be difficult. In the next section, we develop conditions for the existence of such
designs.

4. Existence of RDCSS. In Section 4.1, results are given that focus on the
maximum number of disjoint subspaces of equal size that are contained in the ef-
fect space P = PG(p − 1,2). New results are developed in Section 4.2 for the
more general setting of unequal sized RDCSSs. This latter case is important in
multistage experiments where the number of units (ni) in a batch at stage i is not
the same for all i = 1, . . . ,m. The results are constructive and thus allow experi-
menters to find designs in practice.
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4.1. RDCSSs, spreads and disjoint subspaces. In most applications, the num-
ber of stages, m, of randomization is pre-specified by the experimenter. Thus, if a
set, S, of disjoint subspaces can be obtained, with |S| > m, an appropriate subset
of S can be chosen to construct the RDCSSs.

DEFINITION 1. For 1 ≤ t ≤ p, a (t − 1)-spread of the effect space P is a set,
S, of (t − 1)-dimensional subspaces of P , which partitions P .

In a (t − 1)-spread, S, every element of P is contained in exactly one of the
(t − 1)-dimensional subspaces of S. A (t − 1)-spread is said to be nontrivial if
t > 1. Given that a (t − 1)-spread, S, of P exists, the size of S is |S| = (2p −
1)/(2t − 1). A necessary and sufficient condition for the existence of a (t − 1)-
spread is that t divides p [André (1954)]. As a result, if p is a prime number, there
does not exist any nontrivial (t − 1)-spread. Nevertheless, since we are interested
in only m disjoint subspaces, we need only for the maximum number of disjoint
(t − 1)-dimensional subspaces contained in P to be at least m. This is called a
partial (t − 1)-spread in finite projective geometry settings.

DEFINITION 2. A partial (t − 1)-spread S of the effect space P is a set of
(t − 1)-dimensional projective subspaces of P that are pair-wise disjoint.

Theorem 3 gives necessary and sufficient conditions for the existence of a set S
of disjoint subspaces, each of size 2t − 1, for t < p. It also provides the size of the
minimum overlap in the case where there are no two subspaces that are disjoint.
The proof of the theorem can be deduced from that of the more general setup of
Theorem 6.

THEOREM 3. Let P be a projective space PG(p − 1,2) and let S1 and S2 be
two distinct (t − 1)-dimensional projective subspaces of P of size |S1| = |S2| =
2t − 1 for 0 < t < p. Then:

(a) If t ≤ p/2, then subspaces S1 and S2 exist such that S1 ∩ S2 = φ;
(b) If t > p/2, then for any choice of S1, S2 in P , |S1 ∩ S2| ≥ 22t−p − 1, and

there exist subspaces S1, S2 such that the equality holds.

Theorem 3(a) guarantees that, when t ≤ p/2, one can obtain at least two disjoint
(t − 1)-dimensional subspaces of P . When p is not divisible by t , it can be ex-
pressed as p = kt + r for nonnegative integers k, t, r satisfying 0 < r < t < p and
k ≥ 1. Since t divides kt , there must exist a (t − 1)-spread, S0, of PG(kt − 1,2)

contained in P , where |S0| = (2kt − 1)/(2t − 1). Then, since S0 is a (t − 1)-
spread of a subspace in P , the set of disjoint (t − 1)-subspaces in P may be
expandable. The following result ensures the existence of a larger set of disjoint
(t − 1)-dimensional subspaces.



3588 P. RANJAN, D. R. BINGHAM AND A. M. DEAN

THEOREM 4 [Eisfeld and Storme (2000)]. Let P be a finite projective space
PG(p − 1,2), with p = kt + r for 0 < r < t < p. Then, there exists a partial

(t − 1)-spread S of P with |S| = 2r 2kt−1
2t−1 − 2r + 1.

Next, Theorem 5 summarizes results available on the maximum number of pair-
wise disjoint (t − 1)-dimensional subspaces of P for different combinations of t

and p.

THEOREM 5 [Govaerts (2005)]. Let P be a projective space PG(p − 1,2),
with p = kt + r for k ≥ 1, 0 < r < t < p, and let S be a partial (t − 1)-spread

of P with |S| = 2r 2kt−1
2t−1 − s, where s is known as the deficiency. Then:

(a) If r = 1, then s ≥ 2r − 1 = 1;
(b) If r > 1 and t ≥ 2r , then s ≥ 2r−1 − 1;
(c) If r > 1 and t < 2r , then s ≥ 2r−1 − 22r−t−1 + 1.

Although Theorem 5 provides an upper bound for the number of disjoint sub-
spaces in P , it does not guarantee their existence. As illustrated in the following
two examples, the bounds may not be tight.

EXAMPLE 3. Consider a single-replicate 25 factorial experiment with ran-
domization restrictions defined by S1, S2 and S3 such that S1 ⊃ {A,B}, S2 ⊃ {C}
and S3 ⊃ {D,E}. As discussed in Section 3.2, for analyzing this design, we need
at least three half-normal plots depending on the overlapping pattern among the
Si ’s. The half-normal plot approach requires at least seven effects for each plot
[Schoen (1999)]. Therefore, since the Si ’s are projective subspaces, the desired
features of the RDCSSs are that Si ∩ Sj = φ for all i �= j and |Si | ≥ 7 = 23 − 1
for all i. Since p = 5 is prime, there does not exist a nontrivial (t − 1)-spread
of P = PG(4,2) with t ≥ 3. However, p can be expressed as p = kt + r with
t = 3, k = 1, r = 2 and, from Theorem 5(c), |S| ≤ 2. There is no certainty from
Theorem 5 regarding the existence of even one pair of disjoint two-dimensional
subspaces. In fact, from Theorem 3(b), any pair of two-dimensional subspaces in
PG(4,2) has an overlap of at least 22t−p − 1 = 1 effect; hence, the bound is not
tight.

EXAMPLE 4. Consider a 28 full factorial design with m stages of random-
ization characterized by RDCSSs defined by S1, . . . , Sm. From Theorem 4, with
p = 8, t = 3, r = 2 and k = 2, we know that there exists a partial two-spread where
the number of disjoint two-dimensional subspaces of the effect space P is 33. The-
orem 5(c) gives the size of maximal partial two-spread of P to be bounded above
by 34. Thus, either the bound in Theorem 5(c) is again not tight or there exists
a larger number of disjoint two-spaces of P than guaranteed by Theorem 4.
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Although the results presented in Theorems 3, 4 and 5 focus on PG(p − 1,2),
they can easily be generalized to PG(p − 1, q), where q is a prime or prime
power. See Eisfeld and Storme (2000) and Govaerts (2005) for the generaliza-
tions of Theorems 4 and 5, respectively. Theorem 3(a) also holds for two (t − 1)-
dimensional subspaces of PG(p − 1, q). For the generalization of Theorem 3(b),
if t > p/2 and S1, S2 are two (t − 1)-dimensional subspaces of PG(p − 1, q), then
|S1 ∩ S2| ≥ (q2t−p − 1)/(q − 1) and there exist a pair such that the equality holds.

We note that, for the special case of 2-level factors, t = 2 and p odd, we have
p = 2k + 1 for positive integer k; so, r = 1 and Theorem 4 guarantees that the
bound of Theorem 5(a) is achieved and |S| = (2p − 5)/3. For this case, a con-
struction was proposed by Wu (1989) based on the existence of two permutations
of the effect space satisfying certain properties. The result of Theorem 4 is more
general since it holds for any integer t (0 < t < p) and is easily extendable for
arbitrary prime or prime power q in PG(p − 1, q).

4.2. RDCSSs with subspaces of different size. So far, the results have focused
on the existence of disjoint subspaces of the same size. However, it is not un-
usual for disjoint subspaces of different sizes to be required [see, e.g., Example 4
in Bingham et al. (2008) and the battery cells experiment in Vivacqua, Bisgaard
and Steudel (2003)], and we next prove a new result that gives conditions for the
existence of such a set of disjoint subspaces.

THEOREM 6. Let P be a projective space PG(p − 1,2) and Si be a (ti − 1)-
dimensional subspace of P , where 0 < ti < p for i = 1,2. Then:

(a) If t1 + t2 ≤ p, then there exist S1 and S2 such that S1 ∩ S2 = φ;
(b) If t1 + t2 > p, then for any choice of S1, S2 in P , |S1 ∩ S2| ≥ 2t1+t2−p − 1,

and there exist S1 and S2 such that the equality holds.

PROOF. (a) Define the effect space P = 〈F1, . . . ,Fp〉, where Fi’s denote
the main effects of the independent factors of a 2p factorial experiment. Since
t1 + t2 ≤ p, define S1 = 〈F1, . . . ,Ft1〉 and S2 = 〈Ft1+1, . . . ,Ft1+t2〉. Clearly, S1
and S2 are disjoint.

(b) For the case t1 + t2 > p, define the subspaces S1 and S2 to be S1 = 〈F1,

. . . ,Ft1〉 and S2 = 〈Fp−t2+1, . . . ,Ft1,Ft1+1, . . . ,Fp〉. Thus, S1 ∩ S2 = 〈Fp−t2+1,

. . . ,Ft1〉 with |S1 ∩ S2| = |PG(t1 + t2 − p − 1,2)| = 2t1+t2−p − 1. Now, if there
exist subspaces S∗

1 and S∗
2 for which t1 + t2 > p and |S∗

1 ∩ S∗
2 | < 2t1+t2−p − 1,

then it can be shown that |〈S1, S2〉| > 2p − 1 [see Ranjan (2007), Theorem 4.2
for details]. This contradicts the fact that if S∗

1 ⊂ P and S∗
2 ⊂ P , then 〈S∗

1 , S∗
2 〉 is

also a subspace in P . Thus, S1 and S2 provide the minimum possible overlap, as
required. �

For t1 = t2 = t , Theorem 6 simplifies to Theorem 3. When t1 + t2 ≤ p [as in
Theorem 6(a)], in addition to S1 and S2, one can expect mutually disjoint sub-
spaces of size 2t −1 that do not overlap with S1 and S2, where t < p−max(t1, t2).
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The next theorem, which is the main result of this section, establishes the existence
of a set of unequal sized subspaces of P , where tj + tk ≤ p for any pair of sub-
spaces Sj and Sk .

THEOREM 7. Let P be a projective space PG(p − 1,2) and S1 be a (t1 − 1)-
dimensional subspace of P . If p/2 < t1 < p, then there exist S2, . . . , Sm such that
Si ∩Sj = φ for all i, j ∈ {1, . . . ,m}, where |Si | = 2ti −1 for ti ≤ p − t1, 2 ≤ i ≤ m

and m = 2t1 + 1.

PROOF. Let p/2 < t1 < p and define t∗ = p − t1. Then, the effect space P
is a PG(t1 + t∗ − 1,2). Let P ′ = PG(2t1 − 1,2) be such that P ′ ⊇ P . Let S1 be
a (t1 − 1)-dimensional subspace of P , and let S′ be a (t1 − 1)-spread of P ′ that
contains S1. Then,

|S′| = m = |PG(2t1 − 1,2)|
|PG(t1 − 1,2)| = 22t1 − 1

2t1 − 1
= 2t1 + 1.

The set of disjoint (t∗ − 1)-spaces of P whose elements are disjoint from S1 is
given by S∗ = {S ∩ P :S ∈ S′ \ {S1}}. The elements of S∗ can be denoted by
S∗

2 , . . . , S∗
m. For every i = 2, . . . ,m, since the desired subspace Si is of size 2ti − 1

with ti ≤ p − t1 = t∗, one can construct Si by constructing a (ti − 1)-dimensional
subspace of S∗

i . �

This theorem is important as it guarantees the existence of 2t1 + 1 disjoint sub-
spaces of different sizes, with one (t1 − 1)-dimensional subspace (p/2 < t1 < p)
and 2t1 subspaces of dimension up to (t − 1) each, where t ≤ p − t1. Note that
the boundary conditions t1 = p and t1 = p/2 are uninteresting, as t1 = p im-
plies that S1 is the entire effect space, and t1 = p/2 guarantees the existence of
a (t1 − 1)-spread of P . The proof of Theorem 7 leads to a construction strategy
for m = 2t1 + 1 disjoint subspaces of unequal sizes, as illustrated in Section 5.3.
Although Theorem 4 is not a special case of Theorem 7, a similar construction is
applicable for equal sized RDCSSs and is discussed in Section 5.2.

Both Theorems 6 and 7 can be generalized to q-level designs for prime or
prime power q . Theorem 6(a) also holds for (ti − 1)-dimensional subspaces Si ’s
in PG(p − 1, q). For Theorem 6(b), if t1 + t2 > p, then |S1 ∩ S2| ≥ (qt1+t2−p −
1)/(q − 1), and there exists a pair S1, S2 such that the equality holds. The gener-
alization of Theorem 7 guarantees the existence of a set of m = qt1 + 1 disjoint
subspaces of different sizes, where |Si | = (qti − 1)/(q − 1) for p/2 < t1 < p and
ti ≤ p − t1. The proofs of results for arbitrary prime or prime power q are similar
to the q = 2 case shown above.

Thus far, we have established some necessary and some sufficient conditions for
the existence of a set of disjoint subspaces of the same size and also of different
sizes. If the desired number of stages of randomization is less than or equal to
the number of subspaces guaranteed to exist, we can obtain an appropriate subset
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satisfying the randomization restrictions required by the experimenter. Finding an
actual design with the required properties is the next issue for the experimenter,
and this is discussed in the next section.

5. Construction of disjoint subspaces. A construction approach is now pro-
posed for factorial designs with m levels of randomization. First, the construction
for equal sized disjoint subspaces is presented, followed by the construction of
disjoint subspaces of different sizes. The subspaces themselves have no statisti-
cal meaning until the factors have been assigned to columns of the model matrix
or, equivalently, to points in PG(p − 1,2). The set of disjoint subspaces obtained
from an arbitrary assignment may not directly satisfy the experimenter’s require-
ments for the factor levels. Consequently, we propose an algorithm that transforms
a set of subspaces obtained from the RDCSS construction to a set of subspaces
satisfying the desired restrictions on the factor levels.

5.1. RDCSSs and (t − 1)-spreads. When t divides p, we know that there
exists a (t − 1)-spread of P = PG(p − 1,2) [André (1954)]. The construc-
tion of the spread starts with writing the 2p − 1 nonzero elements of GF(2p)

in cycles of length N [Hirschfeld (1998)]. An element w is called primitive if
{wi : i = 0,1, . . . , u − 2} = GF(u) \ {0}. Let w be a root of a primitive polynomial
of degree p for GF(2p). Then, the 2p −1 elements of the effect space P or, equiv-
alently, the nonzero elements of GF(2p) are wi , i = 0, . . . ,2p −2. The element wi

can be written as a linear combination of the basis monomials w0, . . . ,wp−1. The
element

wi = α0w
p−1 + α1w

p−2 + · · · + αp−2w + αp−1(7)

represents an r-factor interaction δ = (α0, α1, . . . , αp−1) for αi ∈ GF(2) if ex-
actly r elements in δ are nonzero. Following this representation for the facto-
rial effects in P , and using shorthand notation (iN + j) to denote wiN+j for
0 ≤ i ≤ θ − 1, 0 ≤ j ≤ N − 1 (where θ is the number of cycles), cycles of
length N can be written as in Table 1. The columns define the projective sub-
spaces S1, . . . , SN . A necessary and sufficient condition [Hirschfeld (1998), Chap-
ter 4] that there exists a (t − 1)-space of cycles of length N which is smaller than

TABLE 1
Cycles of length N

S1 S2 . . . . . . SN

0 1 . . . . . . N − 1
N N + 1 . . . . . . 2N − 1
...

...
...

...

(θ − 1)N (θ − 1)N + 1 . . . . . . θN − 1
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|PG(p − 1,2)| is that the greatest common divisor, gcd(t,p), of t and p is greater
than one. Then, N = |PG(p − 1,2)|/|PG(l − 1,2)|, where l = gcd(t,p)). Thus,
when t divides p, there exist 2t − 1 cycles each of length N which lead to the for-
mation of the required subspaces S1, . . . , SN of P with Si ∩ Sj = φ for i �= j ; that
is, S1, . . . , SN constitute a (t − 1)-spread S of the effect space P = PG(p − 1,2).

A (t − 1)-spread of PG(p − 1,2), obtained as above, distributes all the factor
main effects evenly among the |S| disjoint subspaces. However, restrictions on
the m stages of randomization are usually pre-specified by the experimenter and,
as illustrated in Example 5, an RDCSS for a block design will contain no main
effects whereas, for a split-lot design, several factor main effects may be assigned
to one or more RDCSS.

EXAMPLE 5. Consider a single-replicate 26 factorial experiment with the
randomization structure determined by a blocked split-lot design, where the
experiment has to be performed in blocks of size eight each. Suppose that the ex-
perimenter wishes to specify the factorial effects, ABC,BDE and CEF, to be con-
founded with the blocks (i.e., S∗

1 = 〈ABC,BDE,CEF〉). In addition, suppose the
trials proceed in a two-step process, where the restrictions imposed by the experi-
menter on the two steps of randomization are such that S∗

2 ⊃ {A,B} and S∗
3 ⊃ {D}.

As a result, there are three restrictions on the randomization of the experiment:
one due to blocking the experimental units (S∗

1 ) and the other two due to split-
ting the experimental units into sub-lots (S∗

2 , S∗
3 ). To use half-normal plots, it is

desirable to have three disjoint subspaces each of at least size seven (i.e., t = 3),
where the subspaces should satisfy the restrictions defined by S∗

1 , S∗
2 and S∗

3 . Here
gcd(t,p) = 3, so N = |PG(5,2)|/|PG(2,2)| = (26 − 1)/(23 − 1) = 9, and there
exist 7 cycles of length 9 or, equivalently, 9 disjoint subspaces of size 7 (i.e., a two-
spread of P ). The two-spread S = {S1, . . . , S9} obtained using the primitive poly-
nomial w6 + w + 1, root w and representation (7) is shown in Table 2. Notice that
each two-dimensional subspace of P in S contains at most one main effect, and
none matches the design requirements. It is shown below how to transform the

TABLE 2
The two-spread, S, of PG(5,2) using the primitive polynomial w6 + w + 1

S1 S2 S3 S4 S5 S6 S7 S8 S9

F E D C B A EF DE CD
BC AB AEF DF CE BD AC BEF ADE
CDEF BCDE ABCD ABCEF ABDF ACF BF AE DEF
CDE BCD ABC ABEF ADF CF BE AD CEF
BDE ACD BCEF ABDE ACDEF BCDF ABCE ABDEF ACDF
BCF ABE ADEF CDF BCE ABD ACEF BDF ACE
BDEF ACDE BCDEF ABCDE ABCDEF ABCDF ABCF ABF AF
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spread S to S∗, such that S∗ contains the three disjoint subspaces S∗
1 , S∗

2 and S∗
3

satisfying the experimenter’s requirement.

For the transformation of spreads, we use an appropriate collineation [see, e.g.,
Batten (1997)] of the projective space P . A collineation of PG(p − 1, q) is a per-
mutation f of its points such that (t − 1)-dimensional subspaces are mapped to
(t − 1)-dimensional subspaces for 1 ≤ t ≤ p. The existence of a collineation f

from S to S∗ is equivalent to the existence of a p × p matrix M such that, for
every given S ∈ S, there is a unique S∗ ∈ S∗ and, for every z ∈ S, there exists a
unique z∗ ∈ S∗ that satisfies z∗′ = z′M. Note that the transformation of a spread
amounts to relabelling the columns of the model matrix. As a result, one can-
not find a collineation matrix M if the experimenter’s requirement is not feasi-
ble. Moreover, if the desired set of subspaces is nonisomorphic to the spread we
started with, then also there does not exist any relabelling to obtain the desired
design. However, finding an appropriate collineation matrix, whenever it exists, is
also nontrivial. Next, we propose an algorithm that finds a collineation matrix M,
if it exists, and concludes the nonexistence if one does not exist.

The proposed algorithm is illustrated through the setup of the 26 experiment
of Example 5. To obtain a set of disjoint subspaces satisfying the restrictions im-
posed on the three stages of randomization, we have to find an appropriate 6 × 6
collineation matrix M. The proposed algorithm for finding the matrix M is out-
lined as follows:

1. Select one of the
(9
3

)
possible choices from the spread S in Table 2 to be a set

of three disjoint subspaces. For example, suppose that S1, S3 and S7 are chosen
for S∗

2 , S∗
3 and S∗

1 , respectively.
2. Choose two effects from S1, one effect from S3 and three effects from S7

to relabel these to the desired effects (A,B),D and (ABC,BDE,CEF) in
S∗

2 , S∗
3 and S∗

1 , respectively. For example, one choice among the
(7
2

)(7
1

)(7
3

)
dif-

ferent options is {CDE,BCF,D,EF,AC,BF}. The collineation matrix is de-
fined by the mapping induced by CDE → A,BCF → B , D → D, . . . ,BF →
CEF.

3. Denote the (i, j)th entry of the p × p matrix M as xk for k = j + (i −
1)p (i.e., list the elements row by row). Construct a p2 × p2 matrix Q
and a p2 × 1 vector δ as follows. Define the rows of matrix Q and vec-
tor δ in the order of restrictions on the transformation. For the example un-
der consideration, the first transformation, (CDE)′M = (A)′, can be written
as

[ 0 0 1 1 1 0 ]M = [ 1 0 0 0 0 0 ] .(8)

In total, there are p (1 ≤ s ≤ p) independent transformations, and for each
transformation there are p (p(s − 1) ≤ i ≤ ps) rows of δ and Q. The first set
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(s = 1) of p = 6 elements of δ are given by the right-hand side of (8). The
corresponding rows of Q are defined as

Qil = 1, if l = (τ − 1)p + mod(i − 1,p) + 1
and the τ th entry of [ 0 0 1 1 1 0 ] is nonzero,

= 0, otherwise,

for 1 ≤ i ≤ p. Similarly, all the rows of the matrix Q and the vector δ can be
expressed using p restrictions on the transformation. For example, the sec-
ond set (s = 2) of p = 6 rows (δi,Qil for p + 1 ≤ i ≤ 2p) are given by
the right-hand side of (BCF)′M = (B)′; that is, [ 0 1 1 0 0 1 ]M =
[ 0 1 0 0 0 0 ], and so on for the remaining transformations.

4. If there exists a solution for Qx = δ, reconstruct the p × p matrix M (row by
row) from the p2 × 1 solution vector x = Q−Lδ, where Q−L is a left inverse
of Q. Exit the algorithm.

5. If there does not exist a solution then go to step 2 and, if possible, choose
a different set of effects from the subspaces selected in step 1.

6. If all possible choices for the set of effects from these three subspaces
have been exhausted, go to step 1 and choose a different set of three sub-
spaces.

7. If all the
(9
3

)
choices for a set of effects have been used and still a solution does

not exist, then either the two spreads S and S∗ are nonisomorphic or the ex-
perimenter’s requirement is not achievable. Thus, the desired spread cannot be
obtained from S.

In the illustration used above, the effects chosen for relabelling the columns
to achieve the desired design do provide a feasible solution to Qx = δ. The
collineation matrix M, obtained from the solution x = Q−Lδ, is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 1
0 0 1 1 0 0
0 1 1 0 1 1
0 0 0 1 0 0
1 1 1 1 1 1
0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In this example, an exhaustive search found that 45.7% of all possible choices
give a feasible solution to the equation Qx = δ. That is, an arbitrary choice of p

independent effects from S (according to steps 1 and 2) results in a feasible design
45.7% of the time. The rest of the time, the solution is infeasible since the full
factorial design becomes a replicated fraction.

The spread acts as a template which enables a faster search than the ex-
haustive relabelling of all the factorial effects to find the design satisfying the
experimenter’s requirement. For this example, our algorithm requires at most(9
3

)(7
2

)(7
1

)(7
3

) ≈ 5 × 105 different relabellings, whereas an exhaustive relabelling
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approach can require up to (26 − 1)! ≈ 2 × 1087 different relabellings. While
searching through each of the relabellings in the template can be time consum-
ing, our Matlab 7.0.4 implementation of the algorithm found the first feasible
collineation matrix in 5.34 seconds on a Pentium(R) 4 processor machine running
Windows XP.

5.2. Partial (t −1)-spreads. When t does not divide p, Theorem 4 guarantees
the existence of |S| = 2r 2kt−1

2t−1 − 2r + 1 disjoint subspaces, where p = kt + r .
For constructing these subspaces, one can use the existence proof of Eisfeld and
Storme (2000) for the most part. However, the proof assumes the existence of an
(si − 1)-spread S′

i of Pi that contains an (si − 1)-dimensional subspace, Ui , of
P ′

i+1, where si = it + r , Pi = PG(2si − 1,2) and P ′
i+1 = PG(si + t − 1,2) for

i = 1, . . . , k−1. This is nontrivial, and we propose a two-step construction method
to get this as follows: (a) construct an (si − 1)-spread S′′

i of Pi as described in
Section 5.1 and then (b) transform the spread S′′

i to S′
i by finding an appropriate

collineation such that Ui ∈ S′
i . Thus, we can construct a set of |S| disjoint (t − 1)-

dimensional subspaces. Finally, we find an appropriate collineation to transform
the partial (t − 1)-spread S to obtain the m RDCSSs satisfying the experimenter’s
requirement.

5.3. Disjoint subspaces of different sizes. A more general setting is when the
RDCSSs are allowed to have different sizes. For a 2p full factorial design, Theo-
rem 7 guarantees the existence of one subspace S1 of size 2t1 − 1 with t1 > p/2
and 2t1 subspaces of size at most 2p−t1 −1. For constructing these 2t1 +1 mutually
disjoint subspaces of P , the proof of Theorem 7 requires constructing a (t1 − 1)-
spread S′′ of PG(2t1 − 1,2) that contains S1. The spread S′′ can be obtained by
first constructing a (t1 − 1)-spread of PG(2t1 − 1,2) and then by applying the
appropriate collineation (M0) found by the algorithm described in Section 5.1 to
obtain S′ that contains S1. After S = {S ∩ P :S ∈ S′ \ {S1}} is obtained, one has
to find a suitable collineation (M1) so that the final set of subspaces satisfy the
experimenter’s restrictions on RDCSSs. The algorithm can be made more efficient
by combining the problem of finding the two collineation matrices into one. When
transforming the spread S′′ to S′ containing S1, we can impose other restrictions on
S2, . . . , Sm in this step itself. The steps of the construction are illustrated through
Example 6.

EXAMPLE 6. Consider a single-replicate 27 factorial design with three stages
of randomization. Let the restrictions imposed by the experimenter on the three
RDCSSs be S1 ⊃ {A,B,C,D}, S2 ⊃ {E,F } and S3 ⊃ {G}. Following the notation
of Theorem 7, since p = 7 and t1 = 4, there exist m = 24 + 1 = 17 pair-wise
disjoint subspaces with |Si | = 2ti − 1 for i = 1, . . . ,17, where t1 = 4 and ti ≤ 3 for
i = 2, . . . ,17. First, we construct a three-spread S′′ of PG(7,2) using the method



3596 P. RANJAN, D. R. BINGHAM AND A. M. DEAN

TABLE 3
Three-spread of PG(7,2) containing S1 = 〈A,B,C,D〉, S2 ⊃ {E,F } and S3 ⊃ {G}

S1 S2 S3 S4 ··· S16 S17

A E BCFG DE · · · DEFH CE
B AEFH G BEFH · · · ACFG ADEFH
C CFG ADFH BFG · · · BCG ABCFG
D CG BCEGH DG · · · ACFH BG
AB AFH BCF BDFH · · · ACDEGH ACDFH
BC ACEGH ADFGH EGH · · · ABF BCDEGH
CD F ABCDEFG BDF · · · ABFGH ACF
ABD ACFGH EFGH BFGH · · · DEFG ABCDFGH
AC CEFG ABCDGH BDEFG · · · BCDEFGH ABEFG
BD ACEFGH BCEH BDEFGH · · · GH ABDEFGH
ABC ACGH ABCDH DGH · · · ABDEH BDGH
BCD AEH ABCDEF DEH · · · BCH CDEH
ABCD AH ADEG H · · · BCDEF DH
ACD EF ADE BEF · · · ABDEG AEF
AD CEG EFH EG · · · ACDE BCEG

described in Section 5.1, and then we find an appropriate collineation matrix M0
that transforms S′′ to S such that S contains S1 = 〈A,B,C,D〉, S2 ⊃ {E,F } and
S3 ⊃ {G}. Table 3 contains some of the elements of the transformed spread.

For this example, the three disjoint subspaces S1, S2 and S3 that satisfy the
experimenter’s requirements are obtained by deleting the elements of Si ’s in the
transformed spread that contains H . The collineation matrix M used for the trans-
formation is as follows:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 0
0 1 0 0 1 1 0 0
1 0 1 1 1 0 1 0
1 1 1 0 1 0 0 1
0 1 0 1 0 1 1 1
0 1 1 1 1 1 0 0
0 1 0 0 0 1 1 1
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, {S ∩ P :S ∈ S′ \ {S1}} ∪ S1 contains the required set of subspaces S1, S2
and S3 for the three stages of randomization.

6. Fractional factorial designs. Though the designs discussed in this article
are full factorial designs, the results also apply to FF designs with randomization
restrictions. The existence of regular FF designs with randomization restrictions is
equivalent to that of the full factorial design generated from the basic factors of
the FF design (base factorial design). One can find a 2r−s fractional factorial with
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randomization restrictions by first investigating the existence a 2u full factorial
design (u = r − s) with the appropriate randomization restrictions. If the design
exists, one can construct the 2u full factorial design with randomization restrictions
as outlined in Section 5 and then assign the added factors to the effects at the
appropriate level of randomization to get the desired design.

Consider, for example, a 28−2 fractional factorial experiment with randomiza-
tion structure characterized by a split-lot design. Suppose that the experiment has
to be run in four stages with randomization restrictions given by S1 ⊃ {A,B},
S2 ⊃ {C,D}, S3 ⊃ {E,F } and S4 ⊃ {G,H }. Then, the six independent basic fac-
tors (A,B,C,D,E,F ) with effect space P = 〈A,B, . . . ,F 〉 form a 26 full facto-
rial split-lot design. The results discussed in Section 4 guarantee the existence of a
two-spread of P , and the algorithm described in Section 5.1 shows the construc-
tion for obtaining three disjoint subspaces of size seven each satisfying the require-
ments of S1, S2 and S3. Moreover, we know that there exist nine disjoint subspaces
of size seven each. Therefore, S4 can be constructed by choosing a subspace from
the remaining six disjoint subspaces and then by aliasing two generators G and H

with effects in this subspace [Box, Hunter and Hunter (1978)].
Fractionation of the base factorial design can occur in a different scenario.

For example, consider a 28−2 experiment with the requirement of three stages
of randomization and the restrictions on the RDCSSs be defined by S1 ⊃ {A,B},
S2 ⊃ {C,D,E} and S3 ⊃ {F,G,H }. In this case, one can use the algorithm in
Section 5.1 to construct three disjoint subspaces satisfying S1 ⊃ {A,B}, S2 ⊃
{C,D,E} and S3 ⊃ {F }. Next, one can choose two generators (or points) from S3
that are assigned to G and H .

To rank the designs, one can use existing criteria such as minimum aberra-
tion [Fries and Hunter (1980)], maximum number of clear effects [Chen, Sun and
Wu (1993) and Wu and Chen (1992)] and V -criterion [Bingham et al. (2008)].
Thus, one can select an appropriate set of generators based on the experimenter’s
interest. The structure of a spread acts as a template to shorten the computer search
for good fractional factorial designs.

7. Concluding remarks. In this paper, we have demonstrated that the projec-
tive subspaces of the effect space P can be used to characterize the randomization
restrictions of factorial designs in block, split-plot, split-lot and other structures.
Under the assumptions of model (1), Theorem 2 summarizes the impact of ran-
domization restrictions on the distribution of factorial effect estimators and moti-
vates the search for disjoint randomization defining contrast subspaces. Obtaining
a set of disjoint subspaces of the effect space P is nontrivial. In the most general
case, Theorem 7 presents a necessary and sufficient condition for the existence
of disjoint subspaces of unequal sizes. Furthermore, the proof motivates strategies
for constructing these, and this makes a wide variety of designs accessible in this
unified framework.
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