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ON NONPARAMETRIC AND SEMIPARAMETRIC TESTING
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We formulate nonparametric and semiparametric hypothesis testing of
multivariate stationary linear time series in a unified fashion and propose new
test statistics based on estimators of the spectral density matrix. The limiting
distributions of these test statistics under null hypotheses are always normal
distributions, and they can be implemented easily for practical use. If null hy-
potheses are false, as the sample size goes to infinity, they diverge to infinity
and consequently are consistent tests for any alternative. The approach can
be applied to various null hypotheses such as the independence between the
component series, the equality of the autocovariance functions or the autocor-
relation functions of the component series, the separability of the covariance
matrix function and the time reversibility. Furthermore, a null hypothesis with
a nonlinear constraint like the conditional independence between the two se-
ries can be tested in the same way.

1. Introduction. One of the main purposes of multivariate stationary time se-
ries analysis is to elucidate intrinsic relationships between different component
series. Frequently, these relationships can be expressed in terms of specific con-
straints imposed on the spectral density matrix. For instance, the spectral density
matrix of a separable time series is a product of the contemporaneous covariance
matrix of the component series and the scalar spectral density function, which is
common to them (see, e.g., Haslett and Raftery [14], Martin [23], Cressie [6],
Guyon [13], Shitan and Brockwell [36] and Matsuda and Yajima [25]). If the un-
derlying time series is Gaussian, the independence between the component series is
equivalent, so that the spectral density matrix is diagonal for all frequencies (see,
e.g., Wahba [40]). The conditional independence of two components, given the
others, is equivalent, so that the corresponding partial spectral coherence is iden-
tical to zero (see, e.g., Dahlhaus [7]). The time reversibility is characterized by
the spectral density matrix being real-valued (see, e.g., Chan, Ho and Tong [3]).
Furthermore, the equality of the autocovariance functions or the autocorrelation
functions of the component series implies that their spectral density functions are
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equal to each other with an appropriate scale-shift for the latter case (see, e.g.,
Coates and Diggle [5] and Diggle and Fisher [10]).

In this paper, we formulate nonparametric and semiparametric hypothesis test-
ing on multivariate linear time series in a unified fashion and propose new test
statistics based on estimators of the spectral density matrix. First, we construct
two estimators of the spectral density matrix, of which the first is always consis-
tent and the latter is consistent only when the null hypothesis is true, and, next, we
introduce a function to measure the discrepancy between these estimators. Then,
the discrepancy is asymptotically standard normally distributed under the null hy-
pothesis as the sample size goes to infinity, whereas, if the null hypothesis is false,
it diverges to infinity. Related ideas are applied for discriminant analysis of time se-
ries by Kakizawa, Shumway and Taniguchi [18] and for nonparametric testing on
univariate time series by Taniguchi and Kondo [38] and multivariate time series by
Taniguchi, Puri and Kondo [39], respectively (see Taniguchi and Kakizawa [37]
for a comprehensive exposition). Hong and White [17] considered specification
testing on nonparametric and semiparametric regression models in a similar way.

On the other hand, for parametric models, Paparoditis [29] and [30] and Del-
gado, Hidalgo and Velasco [8] considered test statistics based on another discrep-
ancy measure between the hypothesized spectral density function (or matrix) and
their estimators.

The advantages of our test statistics are as follows. First, our test statisctics can
be applied to both nonparametric and semiparametric hypotheses on multivariate
linear time series in a unified way. They are robust against wrong decisions caused
by misspecification, which parametric approaches often suffer.

Second, under the null hypothesis, the limiting distributions of the test statistics
are always normal distributions. Moreover, since they are scale invariant, that is,
independent of the unit of measurement for the observations, the expectations and
variances of the limiting distributions can be expressed in a simple form, inter-
estingly, some of them are known constants in the preceding examples. Hence,
they can be implemented easily for practical use. In contrast, the limiting dis-
tributions of some test statistics, which have already been proposed for specific
hypotheses mentioned above, are unknown or have rather complicated forms, par-
ticularly when a nonlinear constraint is imposed on the null hypothesis, which
makes it difficult to show the appropriate validity of their significance tests (see,
e.g., Dahlhaus [7]).

Finally, if the statistics are normalized to be standard normal asymptotically
under the null hypothesis, then, under any alternative, they diverge to infinity and
consequently are consistent tests. However, a trade-off for this advantage is that our
test can only detect local alternatives of O(n−(1+β)/4) with 1/2 < β < 3/4 being
slightly slower than n−1/2, which is shared with the test for regression models
proposed by Hong and White [17].

The paper is organized as follows. We introduce the mathematical formulation
of the null hypothesis and the test statistics in Section 2. In Section 3, we derive
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the theorems on limiting properties of the test statistics. In Section 4, we apply the
theorems to the examples mentioned above. Some simulation results are shown in
Section 5. Section 6 is devoted to prove the theorems. The technical lemmas are
listed in Section 7.

The mathematical details on the lemmas, the theorems, the examples and the
computational simulations are available from the authors upon request.

2. Null hypotheses and test statistics. Let Zt = (Z1t , . . . ,Zrt )
′ be an r-di-

mensional zero-mean stationary Gaussian time series possessing a spectral density
matrix f (λ). f (λ) is defined as periodic with the period 2π for λ /∈ (−π,π ].

Throughout this paper, Aab and Aab are generic symbols for the (a, b)th ele-
ment of matrices A and A−1, respectively. A′ is the transposed matrix of A.

Let g(θ, y) = (gab(θ, y)) be an r × r matrix-valued function, where y = (yαβ)

is an r × r matrix and θ = (θ1, . . . , θv)
′ is a v-dimensional vector of parameters.

We assume that, under the null hypothesis, f (λ) satisfies the equation

f (λ) = g(θ, f (λ))(1)

for all λ ∈ (−π,π ].
If gab(θ, y) = yab, for all a and b, it implies that there is no constraint imposed

on f (λ). Otherwise, (1) introduces some relationship between the components
of f (λ). The hypothesis is semiparametric for v > 0 and is nonparametric for
v = 0, respectively.

Now, we define the test statistics. Given n observations Z1, . . . ,Zn, introduce
the discrete Fourier transform Wa(λ) = 1√

2πn

∑n
t=1 Zat exp(itλ) for a = 1, . . . , r.

The cross periodogram of Zat and Zbt is

IZ,ab(λ) = Wa(λ)Wb(λ), a, b = 1, . . . , r,

and the periodogram matrix is IZ(λ) = (IZ,ab(λ)). IZ(λ) is defined as periodic
with the period 2π for λ /∈ (−π,π ]. Denote the Fourier frequency 2πj

n
as λj for

j = 0,±,1, . . . . For notational simplicity, Wa(λj ), IZ,ab(λj ) and IZ(λj ) are de-
noted by Wa,j , IZ,ab,j and IZ,j , respectively. Actually, they depend on the sample
size n but we suppress it.

Put ft = f (λt ), and define the unrestricted estimator of ft by the smoothed
periodogram matrix f̂U,t = (f̂U,ab,t ), where

f̂U,t = 1

w∗
m/2∑

j=−m/2

wjIZ,t+j , t = 1, . . . , [n/2],(2)

and wj (j = −m/2, . . . ,m/2) is a weight sequence with w∗ = ∑m/2
j=−m/2 wj

and [x] is the integer part of x.
Under the null hypothesis, we define the estimator f̂R,t = (f̂R,ab,t ) by

f̂R,t = g(θ̂n, f̂U,t ), t = 1, . . . , [n/2],
where θ̂n = (θ̂1n, . . . , θ̂vn)

′ is an estimator of θ .



3532 Y. YAJIMA AND Y. MATSUDA

We can expect that, under the null hypothesis (1), f̂U,t f̂
−1
R,t is close to Ir , the

r × r identity matrix, whereas they are far from each other if (1) is false. Hence,
we introduce a function that measures the discrepancy between f̂U,t f̂

−1
R,t and Ir .

Let K(A) be a nonnegative function defined on all r × r complex matrices that are
similar to a positive definite matrix, and let it be zero if and only if A = Ir . Note
that f̂U,t f̂

−1
R,t is similar to f̂

−1/2
R,t f̂U,t f̂

−1/2
R,t .

Then, we introduce the statistic

Tn =
[n/2]∑
t=1

K(Mt),

where Mt = (mab,t ) = f̂U,t f̂
−1
R,t .

Now, we give a few candidates for K(A) (see [18]). The first one is Kullback–
Leibler (KL) discrimination information defined by

KI(A) = tr(A) − log det(A) − r

(see Kullback and Leibler [20] and Kullback [19]). Next, the J divergence, which
is a symmetric version of the KL discrimination information, is

KJ (A) = KI(A) + KI(A
−1)

(see Kullback and Leibler [20] and Kullback [19]). Finally, using the Chernoff
information (see Chernoff [4] and Renyi [33]), Parzen [31] proposed

Kα(A) = log det
(
αA + (1 − α)Ir

) − α log det(A), 0 < α < 1.

We shall show in the subsequent section that, under the null hypothesis,√
m

n

(
Tn − n

m
η

)/
σ

is asymptotically standard normally distributed with some constants η and σ . Con-
sequently if η̂n and σ̂n are consistent estimators of η and σ , respectively, and
η̂n − η = op(m1/2/n1/2), then the test statistic

T̂n =
√

m

n

(
Tn − n

m
η̂n

)/
σ̂n

is also asymptotically standard normally distributed. Actually, η and σ 2 of some
nonparametric examples mentioned in Section 1 are known constants, and they
require no estimation procedure. On the other hand, T̂n diverges to infinity if (1) is
false and, hence, is a consistent test for any alternative.

3. Theorems. Before we proceed to show the main theorems, we introduce
some assumptions and notation. First, we introduce the following assumptions:
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(A1) Zt is an r-dimensional zero-mean stationary Gaussian process;
(A2) f (λ) is a positive definite matrix for all λ ∈ (−π,π ];
(A3) f (λ) is twice continuously differentiable for all λ ∈ (−π,π ];
(A4) m = O(nβ), 1

2 < β < 3
4 , and the weight sequence wj , j = −m/2, . . . ,

m/2 is

wj = u(j/m), j = −m/2, . . . ,m/2,

where u(x) is a positive continuously differentiable even function on [−1/2,1/2];
(A5) g(θ, y) is three times continuously differentiable for θ and y;
(A6) K(A) is four times continuously differentiable for A.
Next, put θ0 = (θ10, . . . , θv0)

′, ǧ(λ) = (g(θ0, f (λ)) and ǧt = ǧ(λt ) if the
null hypothesis (1) is true. Finally, let k

(2)
ab,cd be the second partial derivative

∂2K(A)/∂Aab ∂Acd evaluated at A = Ir . The third partial derivative k
(3)
ab,cd,ef is

defined similarly.
By the results in Appendix A.13 of Lütkepohl [22], for KI(A),

κ
(2)
ab,cd =

{
1, if a = d, b = c,
0, otherwise.

(3)

For KJ (A) and Kα(A), their second partial derivatives are given by 2κ
(2)
ab,cd and

(α − α2)κ
(2)
ab,cd , respectively.

From now on, to avoid abuse of notation and give the theoretical results in a
concise form, we consider KI(A) and assume (3), because, for other K(A)’s, the
corresponding results are given in the same way without any modification.

Then, our main results are the following.

THEOREM 1. Under assumptions (A1)–(A6) and (3), if the null hypothesis (1)
is true and θ̂n − θ0 = Op(n−1/2), then the limiting distribution of (m/n)1/2(Tn −
(n/m)η) is N(0, σ 2), where

η =
r∑

α,β,γ,ν=1

Cu

π

∫ π

0
μαβγ ν(λ)ǧαν(λ)ǧγβ(λ) dλ,

σ 2 =
r∑

α,β,γ,ν=1

r∑
α′,β ′,γ ′,ν′=1

Du

π

∫ π

0
μαβγ ν(λ)μα′β ′γ ′ν′(λ)

× (
ǧαα′(λ)ǧβ ′β(λ)ǧγ γ ′(λ)ǧν′ν(λ)

+ ǧαγ ′(λ)ǧν′β(λ)ǧγ α′(λ)ǧβ ′ν(λ)
)
dλ

and

μαβγ ν(λ) = 1

2
tr

[
ǧ(λ)

∂ǧ−1

∂yαβ

(λ)ǧ(λ)
∂ǧ−1

∂yγ ν

(λ)

]
+ 1

2

[
∂ǧ−1

∂yαβ

(λ)

]
νγ

+ 1

2

[
∂ǧ−1

∂yγ ν

(λ)

]
βα

+ 1

2
ǧβγ (λ)ǧνα(λ),
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and Cu and Du are defined in Lemmas 9 and 10, respectively.
Hence, if the null hypothesis (1) is true and η̂n − η = op(m1/2/n1/2) and σ̂ 2

n −
σ 2 = op(1), then the limiting distribution of T̂n is the standard normal distribution.

THEOREM 2. Under assumptions (A1)–(A6) and (3), if the null hypothesis (1)
is false, and θ̂n, η̂n and σ̂n converge in probability to some constants θ∗, η∗ and σ ∗,
respectively, so that g(θ∗, f (λ)) is a positive definite matrix for all λ in (−π,π ]
and σ ∗ is positive, then, for any sequence {Cn},Cn = o((nm)1/2),

lim
n→∞Pr[T̂n > Cn] = 1.

Theorems 1 and 2 assure that our test statistics are consistent for any alternative.
Furthermore, if we put

C∗ = 1

2πσ ∗
∫ π

0
K(f (λ)g(θ∗, f (λ))−1) dλ,

the proof of Theorem 2 shows that, if the null hypothesis is false, T̂n/
√

nm con-
verges in probability to C∗ as n → ∞.

Next consider asymptotic behavior of the test statistics under local alternatives.
To state our theorem, we define a class of local alternatives

Han :fn(λ) = f (λ) + 1

(mn)1/4 f ∗(λ),

where f (λ) satisfies (1) with θ = θ0 and f ∗(λ) is a spectral density matrix.
Then, we introduce the following assumptions, which specify the behaviors

of f ∗(λ) and the parametric estimator θ̂n:
(A7) f ∗(λ) is a positive definite matrix and twice continuously differentiable

for λ on (−π,π ];
(A8) Under the local alternative Han, there exists a nonstochastic sequence {θ∗

n }
such that θ̂n − θ∗

n = Op(n−1/2) and limn→∞(mn)1/4(θ∗
n − θ0) = ρ0 = (ρ10,

. . . , ρv0)
′.

Before we proceed to the theorem, we introduce some notation. Set ǧn(λ) =
g(θ∗

n , fn(λ)) and ǧt,n = ǧn(λt ). ηn and σ 2
n are defined by substituting ǧn(λ)

for ǧ(λ) in η and σ 2 of Theorem 1, respectively. Then, we have the following
result.

THEOREM 3. Under (A1)–(A8) and (3), if Han is true, η̂n − ηn = op(m1/2/

n1/2) and σ̂ 2
n −σ 2

n = op(1), then the limiting distribution of T̂n is N(ξ/σ,1), where

ξ = 1

4π

∫ π

0
tr

[(
v∑

i=1

ρi0

[
∂ǧ(λ)

∂θi

]
ǧ−1(λ)

+
r∑

α,β=1

f ∗
αβ(λ)

[
∂ǧ(λ)

∂yαβ

]
ǧ−1(λ) − f ∗(λ)ǧ−1(λ)

)2]
dλ.
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Theorem 3 implies that, although our test is consistent for any fixed alter-
native, a cost for this advantage is that it can only detect local alternatives
of O((nm)−1/4) = O(n−(1+β)/4), with 1/2 < β < 3/4 being slightly slower
than n−1/2. A similar feature is shared with the tests for regression models pro-
posed by Hong and White [17].

REMARK 1. We make several comments on the results.

(i) We make an explicit comparison of (A4), the bandwidth of smoothed peri-
odograms and the rate of convergence with those of related works. By replacing w∗
with the integral m

∫ 1/2
−1/2 u(x) dx and rewriting u(j/m) as u(nλj/(2πm)), we ob-

tain

wj

w∗ ∼ 1

m
∫ 1/2
−1/2 u(x) dx

u

(
nλj

2πm

)
.

On the other hand, some authors use K(λj/h)/(nh) (see, e.g., Paparoditis [29]
and [30]) or MnK(Mnλj )/n (see, e.g., Eichler [11]) with a kernel function K(x)

instead of wj/w
∗. h and Mn are called a smoothed bandwidth and an effective

number of frequencies, respectively. Then, we have the relation

m ∼ nh ∼ n/Mn

as n → ∞, and our
√

m/nTn corresponds to Tn of [30] and QT of [11], respec-
tively. In terms of m, (A4) is stronger than the assumptions like 0 < β < 1 (see [29]
and [30]) or 1/2 < β < 1 (see [11]), which is the cost for considering nonparamet-
ric and semiparametric testing hypotheses in a comprehensive way but not a spe-
cific one.

(ii) There are other test statistics alternative to Tn. First, in some applications,
it may be better to leave out the frequencies where the determinant of f (λ) is near
zero to make a test statistic more stable. It suggests modifying Tn to

Tn,φ =
[n/2]∑
t=1

φtK(Mt),

where φt = φ(λt ) and φ(λ) is a nonnegative weight function (see also [18]). The
limiting behaviors of Tn,φ are obtained in the same way as Tn.

Second, we introduce the quadratic function

TQ,n = 1

2

∑
t

tr[(Mt − Ir)
2]

and define the test statistic T̂Q,n by

T̂Q,n =
√

m

n

(
TQ,n − n

m
η̂n

)/
σ̂n.
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A similar idea is proposed by Kakizawa, Shumway and Taniguchi [18] for a dis-
criminant analysis of multivariate time series.

Finally, breaking up the frequency axis with nonoverlapping blocks and using
only M(t−1)(m+1)+m/2+1 (t = 1, . . . ,L), we define T ∗

n by

T ∗
n =

L∑
t=1

K
(
M(t−1)(m+1)+m/2+1

)
,

where L = [n/2]/(m + 1).
Then, the test statistic is given by

T̂ ∗
n = m

L1/2

(
T ∗

n − 2L

m
η̂n

)/(√
Bu/Duσ̂n

)
,

where Bu = (
∫ 1/2
−1/2 u(x)2 dx)2/

∫ 1/2
−1/2 u(x)4 dx. For instance, Wahba [40] ap-

plies T ∗
n to Example 2 of Section 4 by substituting KI(A) for K(A).

Similar to the proofs of Theorems 1 and 2, it is shown that the limiting dis-
tributions of T̂Q,n and T̂ ∗

n are N(0,1) under the null hypothesis (1), whereas, if
the null hypothesis is false, T̂Q,n/

√
nm and T̂ ∗

n /
√

nm converges in probability to
C∗

Q = 1
2

1
2πσ ∗

∫ π
0 tr[(f (λ)g(θ∗, f (λ))−1 − Ir)

2]dλ and
√

2Du/BuC
∗, respectively.

(iii) For practical use, we need a reasonable criterion to choose a specific test
statistic among K(A) mentioned above or their alternatives. Theoretically, various
concepts of asymptotic relative efficiency (ARE) of one test relative to the other
one have been proposed. They differ from each other in intuitive appeal, or the
availability of mathematical tools and efficiency comparison among tests cannot
be done in a single ARE (see Serfling [35] for a comprehensive survey of AREs).
Hence, the choice of a test statistic among candidates, from a practical point of
view, is left to future studies.

Here, we shall give a remark. According to Pitman’s ARE approach (see Pit-
man [32] and Noether [27]), we consider the asymptotic power function when
local alternatives converge to the null hypothesis as the sample size goes to infin-
ity. Because KI(A),KJ (A) and Kα(A) have the same κ

(2)
ab,cd up to the constants,

it follows from Theorem 3 that the expectations ξ/σ of their limiting distributions
under local alternatives are identical to each other, which means that they have the
same asymptotic efficiency in Pitman’s ARE sense. Similarly, T̂Q,n has the same
asymptotic efficiency, whereas T̂ ∗

n is less efficient than these test statistics, because
its expectation of the limiting distribution is

√
2Du/Buξ/σ and, by the Schwarz

inequality, 2Du/Bu ≤ 1.

4. Examples. First, we show some generic formulas, which are helpful for
deriving η and σ 2 in Theorem 1. Since

∂ǧ−1(λ)

∂yαβ

= −ǧ−1(λ)
∂ǧ(λ)

∂yαβ

ǧ−1(λ),(4)
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we can evaluate μαβγ ν(λ) without calculating ∂ǧ−1(λ)
∂yαβ

. By applying (4),

μαβγ ν(λ)

= 1

2
tr

[
∂ǧ(λ)

∂yαβ

ǧ−1(λ)
∂ǧ(λ)

∂yγ ν

ǧ−1(λ)

]
− 1

2

[
ǧ−1(λ)

∂ǧ(λ)

∂yαβ

ǧ−1(λ)

]
νγ

(5)

− 1

2

[
ǧ−1(λ)

∂ǧ(λ)

∂yγ ν

ǧ−1(λ)

]
βα

+ 1

2
ǧβγ (λ)ǧνα(λ)

=
4∑

i=1

μαβγ ν,i(λ), say.

Then, for the calculation of η, we have
r∑

α,β,γ,ν=1

1

π

∫ π

0
μαβγ ν,2(λ)ǧαν(λ)ǧγβ(λ) dλ

=
r∑

α,β,γ,ν=1

1

π

∫ π

0
μαβγ ν,3(λ)ǧαν(λ)ǧγβ(λ) dλ(6)

= − 1

2π

r∑
α,β=1

∫ π

0

[
∂ǧ(λ)

∂yαβ

]
αβ

dλ

and
r∑

α,β,γ,ν=1

1

π

∫ π

0
μαβγ ν,4(λ)ǧαν(λ)ǧγβ(λ) dλ = r2

2
.(7)

Hence, only
∫

μαβγ ν,1(λ)ǧαν(λ)ǧγβ(λ) dλ may requires a laborious evaluation.
A similar technique reduces the evaluation of σ 2 to a simpler one.

Now, we only consider the three examples of those mentioned in Section 1 and
proceed to calculate η and σ 2 of them. For simplicity, we assume that u(x) ≡ 1 on
[−1/2,1/2] and wj ≡ 1. Then, Cu = 1/2 and Du = 1/3.

EXAMPLE 1 (A separable model). The spectral density matrix of a separable
stationary process is expressed in the form

f (λ) = �f̃ (λ),

where � is an r × r positive definite matrix and f̃ (λ) is a scalar-valued
nonnegative integrable function in (−π,π ] (see Matsuda and Yajima [25]).
Set v = r2 and θ = vec(�), where vec transforms an r × r matrix into an
r2-dimensional vector by stacking the columns of the matrix underneath each
other. If we define g(θ, y) = 1

r
(
∑r

α=1 yαα/σαα)�, then f (λ) = g(θ, f (λ)) =
1
r
(
∑r

α=1 fαα(λ)/σαα)� = �f̃ (λ).



3538 Y. YAJIMA AND Y. MATSUDA

Next, we observe that g−1(θ, y) = r(
∑r

α=1 yαα/σαα)−1�−1 and ∂g(θ, y)/

∂yαβ = δαβ/(rσαα)�, where δαβ is the Kronecker delta. Let �0 = (σab,0) and
�−1

0 = (σ ab
0 ) be the true matrices of � and �−1, respectively. Then, since ǧ(λ) =

�0f̃ (λ), ∂ǧ(λ)/∂yαβ = δαβ/(rσαα,0)�0 and ǧ−1(λ) = �−1
0 /f̃ (λ), from (5),

μαβγ ν(λ) = 1

2f̃ (λ)2

(
δαβδγ ν

rσαα,0σγγ,0
− δαβσ

νγ
0

rσαα,0
− δγ νσ

βα
0

rσγ γ,0
+ σ

βγ
0 σνα

0

)

=
4∑

i=1

μαβγ ν,i(λ), say.

Thus, ∑
αβγμ

1

π

∫ π

0
μαβγ ν,1(λ)ǧαν(λ)ǧγβ(λ) dλ = τ

2r
,

where τ = ∑r
a,b=1 σ 2

ab,0/(σaa,0σbb,0).
Next, from (6), ∑

αβγμ

1

π

∫ π

0
μαβγ ν,2(λ)ǧαν(λ)ǧγβ(λ) dλ

= ∑
αβγμ

1

π

∫ π

0
μαβγ ν,3(λ)ǧαν(λ)ǧγβ(λ) dλ

= − 1

2r

∑
αβ

δαβ

= −1

2
.

Finally, from (7),

η = 1

4

(
τ

r
− 2 + r2

)
.

Similarly,

σ 2 = 1

6

(
τ 2

r2 − 2 + r2
)
.

Consistent estimators of θ , η and σ 2 are obtained by substituting �̂n = (σ̂ab,n) =
1
n

∑n
t=1 ZtZ′

t for �.

EXAMPLE 2 (The independence between the component time series). The in-
dependence between the component time series of a stationary Gaussian multivari-
ate time series is equivalent to

fab(λ) = 0, a �= b,
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for all λ and a, b = 1,2, . . . , r . Thus, v = 0 and g(y) = diag(y11, . . . , yrr ).
Hence, g−1(y) = diag(y−1

11 , . . . , y−1
rr ) and ∂g(y)/∂yαβ = δαβ diag(δ1α, . . . ,

δrα). Then, since ǧ(λ) = diag(f11(λ), . . . , frr (λ)), ∂ǧ(λ)/∂yαβ = δαβ diag(δ1α,

. . . , δrα) and ǧ−1(λ) = diag(f −1
11 (λ), . . . , f −1

rr (λ)), from (5),

μαβγ ν(λ) = 1

2

(
δανδβγ

fαα(λ)fββ(λ)
− δαβδαγ δγ ν

fαα(λ)2

)
.

Thus, η and σ 2 are the known constants expressed as

η = 1
4(r2 − r), σ 2 = 1

6(r2 − r).

Hong [16] and Eichler [11] consider the same problem for the bivariate time series
including non-Gaussian time series. Our result is a generalization to a multivariate
one, though being derived under Gaussian assumption.

Finally, we consider an example where a nonlinear constraint is imposed on the
null hypothesis.

EXAMPLE 3 (The conditional independence). Set Za = {Zat ,−∞ < t <

∞}, Yab = {Yab,t ,−∞ < t < ∞} where Yab,t = {Zjt , j �= a, b} is an (r − 2)-
dimensional random vector. Then, the conditional independence between Za

and Zb given Yab is defined by

Cov
(
εa|{a,b}c (s), εb|{a,b}c (t)

) = 0(8)

for all s, t ∈ Z = {0,±1,±2, . . .}, where

εa|{a,b}c (t) = Zat −
∞∑

u=−∞
d∗
a (t − u)′Yab,u,

and d∗
a (t − u) is the (r − 2)-dimensional vector which minimizes

E

(
Zat −

∞∑
u=−∞

da(t − u)′Yab,u

)2

.

Then, the relation (8) is equivalent to

f ab(λ) = 0, −π ≤ λ ≤ π

(see, e.g., Dahlhaus [7]).
Now, let V = {1, . . . , r} and E be a subset of V × V . Consider the null hypoth-

esis

f ab(λ) = 0, (a, b) /∈ E

for all λ ∈ (−π,π ]. Then, v = 0 and

gab(y) = yab, (a, b) ∈ E,
(9)

gab(y) = 0, (a, b) /∈ E.
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A graph G = (V ,E) is the partial correlation graph of a time series Zt if (a, b) /∈
E ⇔ f ab(λ) = 0,∀λ ∈ (−π,π ] (see Dahlhaus [7]). It is proved by the implicit
function theorem, in the same way as Lemma 7 of Matsuda, Yajima and Tong [26],
that the constraint (9) is expressed in the form (1).

Next, we show the outline of the derivations of η and σ 2, because it is given in
the same way as Theorem 3 of Matsuda, Yajima and Tong [26] and Theorem 2 of
Matsuda [24] by applying Lemma 8 of Matsuda, Yajima and Tong [26].

Let M = #{(a, b)|(a, b) /∈ E,a < b} and IC be the indicator function which is 1
if the condition C is true and 0 otherwise. Then, we have

μαβγ ν,1(λ)

= 1

2
I(α,β)∈EI(γ,ν)∈E

∑
ab

(∑
e

I(a,e)/∈E

[
∂ǧ(λ)

∂yαβ

]
ae

ǧeb(λ) + Ia=αǧβb(λ)

)

×
(∑

e′
I(b,e′)/∈E

[
∂ǧ(λ)

∂yγ ν

]
be′

ǧe′a(λ) + Ib=γ ǧνa(λ)

)
.

Thus,
r∑

α,β,γ,ν=1

1

π

∫ π

0
μαβγ ν,1(λ)ǧαν(λ)ǧγβ(λ) dλ

= −M + 1

2π

∫ π

0
[tr(Ir)]2 dλ

= −M + 1

2
r2.

From (6),
r∑

α,β,γ,ν=1

1

π

∫ π

0
μαβγ ν,2(λ)ǧαν(λ)ǧγβ(λ) dλ = −1

2
(r2 − 2M).

Then, it follows from (7) that η = M/2. Similarly, σ 2 = M/3.

REMARK 2. All of the g(θ, y) in Examples 1–3 map the space of positive
definite matrices into itself (see Dempster [9] for Example 3). However, it is not
necessary for g(θ, y) to satisfy this condition under alternatives, because Theo-
rems 1 and 3 depend only on the behavior of g(θ, f (λ)) in the neighborhood of
the null hypothesis, and Theorem 2 still holds by assigning a sufficiently large
value to T̂n if f̂R,t is not positive definite, and, consequently, K(Mt) cannot be
defined. For practical use, being not positive definite, f̂R,t gives strong evidence
against the null hypothesis, and, consequently, we can reject it without causing any
serious problem.
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5. Simulation results. We conduct some computational simulations to see the
performance of the test statistics. Consider the following three-dimensional model
for testing the independence between the component series:

Zt =
⎛
⎝ 0.7 φ 0.0

0.0 −0.5 φ

0.0 0.0 0.6

⎞
⎠ Zt−1 + εt ,(10)

where εt are independent normal variables with mean 0 and covariance matrix I3.
The component series of (10) are mutually independent if φ = 0.0 and are depen-
dent otherwise.

Applying our test statistic T̂n with KI(A) and u(x) ≡ 1 on [−1/2,1/2], we
test the independence between the component series mentioned in Example 2 of
Section 4. We also considered Wahba’s test statistic T̂ ∗

n and the quadratic test sta-
tistic T̂Q,n for comparison. We examine performances of the tests under the null
and alternative hypotheses in Tables 1 and 2, respectively.

Table 1 shows mean, variance, skewness, kurtosis, 5% upper quantile of the
null distributions and the empirical sizes under 5% asymptotic significance level
based on the 1000 replications of the process (10) with φ = 0. We find that all
the quantities except for skewness converge to the asymptotic limits relatively fast.
However, it should be pointed out that bias exists in every test statistic in the small
sample size, which causes nonnegligible size distortions. Hence, for fair power
comparison, all the sizes of the test statistics are adjusted to be exactly 0.05 in
the same way as Haug [15] and Saikkonen and Luukkonen [34]. Table 2 shows
the empirical powers of the three statistics based on the 1000 replications of the

TABLE 1
Comparison of the null distribution of the tests for independence where 5% size is the empirical

frequency of the rejection by the asymptotic 5% critical point

Test Sample size m Mean Var Skew Kurt 5% qtl 5% size

T̂n 101 16 0.163 1.04 0.66 4.01 1.94 0.075
201 30 0.097 1.02 0.62 3.61 1.94 0.083
501 60 0.073 0.94 0.59 3.62 1.74 0.059

1001 120 0.069 0.94 0.44 3.09 1.75 0.064

T̂Q,n 101 16 −0.163 0.78 0.59 3.70 1.44 0.036
201 30 −0.084 0.87 0.59 3.56 1.63 0.048
501 60 −0.028 0.87 0.59 3.63 1.60 0.045

1001 120 0.020 0.90 0.42 3.06 1.67 0.053

T̂ ∗
n 101 16 0.161 1.14 0.76 3.91 2.07 0.095

201 30 0.073 1.00 0.69 3.43 1.91 0.075
501 60 0.067 1.01 0.64 3.41 1.80 0.070

1001 120 0.050 1.01 0.47 3.08 1.89 0.072

∞ 0.0 1.0 0.0 3.0 1.64 0.050
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TABLE 2
Power comparisons of the size adjusted tests for independence under 5%

empirical significance level

Sample size φ T̂n T̂Q,n T̂ ∗
n T̂n T̂Q,n T̂ ∗

n

m = 16 CVLL

101 0.1 0.130 0.118 0.097 0.110 0.118 0.098
0.2 0.503 0.482 0.275 0.451 0.451 0.276

m = 30 CVLL

201 0.1 0.231 0.231 0.163 0.206 0.232 0.145
0.2 0.858 0.859 0.719 0.831 0.840 0.621

process (10) with φ = 0.1 and 0.2. We show the results when the bandwidth is
predetermined as n = 101,m = 16 and n = 201,m = 30 and is selected by cross
validation, which minimizes

CVLL(m) = 1

n

[n/2]∑
j=1

(
tr(IZ,j f̂

−1
U,j,−j ) + log det(f̂U,j,−j )

)
,

where

f̂U,j,−j = 1

m

m/2∑
k=−m/2,k �=0

IZ,j+k.

Alternatives to CVLL can be the methods proposed by Lee [21] and Ombao et
al. [28]. For tentative comparison between the performance of the fixed bandwidth
selection and the data driven one, we adopt CVLL. However, we should remark
that CVLL can select the bandwidth minimizing the mean squared error asymptot-
ically if we put β = 4/5, which lies outside the interval of (A4) (see, e.g., Beltrao
and Bloomfield [1], Matsuda and Yajima [25]). This issue often emerges in non-
parametric hypothesis testing (see, e.g., Zhang [41] and the references therein and
Fan and Yao [12], Section 9.2.7) and more rigorous consideration is left to future
studies.

We find from Table 2 that our statistic has almost the same power as the
quadratic one, whereas the Wahba’s is significantly less powerful than the oth-
ers, which reinforces that Wahba’s statistic is less efficient than the others in Pit-
man’s ARE sense as mentioned in Remark 1(iii), because 2Du/Cu = 2/3 is less
than 1.

6. Proofs of theorems.

PROOF OF THEOREM 1. Applying the Taylor expansion and Lemma 2 to
K(Mt) and noting that the first-order terms of the expansion vanish, we ob-
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tain

Tn = 1

2

[n/2]∑
i=1

tr[(Mt − Ir)
2]

+ 1

6

r∑
a,b,c,d,e,f =1

k
(3)
ab,cd,ef

(11)

×
[n/2]∑
t=1

(mab,t − δab)(mcd,t − δcd)(mef,t − δef )

+ op(1).

It is shown later that the second term on the right-hand side of (11) is op(1). Hence,
we shall consider the limiting distribution of the first term.

Note that f (λ) = ǧ(λ) if the null hypothesis (1) is true. Then, it follows from
Lemma 2 and θ̂n − θ0 = Op(n−1/2), by the Taylor expansion, that

Mt − Ir

= f̂U,t (f̂
−1
R,t − ǧ−1

t ) + (f̂U,t − ǧt )ǧ
−1
t

= ǧt {g−1(θ̂n, f̂U,t ) − g−1(θ0, ft )}
+ (f̂U,t − ǧt ){g−1(θ̂n, f̂U,t ) − g−1(θ0, ft )} + (f̂U,t − ǧt )ǧ

−1
t

(12)

=
r∑

α,β=1

ǧt (∂ǧ−1
t /∂yαβ)(f̂U,αβ,t − fαβ,t ) +

v∑
i=1

ǧt (∂ǧ−1
t /∂θi)(θ̂in − θi0)

+ 1

2

r∑
α,β,γ,ν=1

ǧt (∂
2ǧ−1

t /∂yαβ∂yγ ν)(f̂U,αβ,t − fαβ,t )(f̂U,γ ν,t − fγν,t )

+ op(n−3/4) + (f̂U,t − ǧt ){g−1(θ̂n, f̂U,t ) − g−1(θ0, ft )}
+ (f̂U,t − ǧt )ǧ

−1
t .

By applying Lemmas 2, 6 and 7 and θ̂n − θ0 = Op(n−1/2) to (12),∑
t

tr[(Mt − Ir)
2]

= ∑
t

tr

[(∑
αβ

ǧt (∂ǧ−1
t /∂yαβ)(f̂U,αβ,t − fαβ,t ) + (f̂U,t − ǧt )ǧ

−1
t

)2]

(13)
+ op(n1/2/m1/2)

= T (1)
n + op(n1/2/m1/2) say.
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Next, define T
(2)
n by replacing f̂U,t − ǧt and f̂U,t − ft of T

(1)
n with f̂ ε

t − E(f̂ ε
t )

of Section 7. Then, from Lemma 8, it suffices to derive the limiting distribution
of 1

2T
(2)
n .

By an elementary calculation,

1

2
T (2)

n =
r∑

α,β,γ,ν=1

∑
t

μαβγ ν,t,nŷ
ε
αβ,t ŷ

ε
γ ν,t ,

where μαβγ ν,t,n = μαβγ ν(λt ). Then, if we define T̃n by

T̃n =
√

m

n

(
1

2
T (2)

n − n

m
η

)
,

it follows from Lemmas 9, 10 and 11 that limn E(T̃n) = 0, limn Var(T̃n) = σ 2 and
for k ≥ 3, the kth order cumulant of T̃n converges to 0 as n → ∞. Hence, the
limiting distribution of T̃n is N(0, σ 2).

Finally, by the same argument as (12), it is shown that the second term on the
right-hand side of (11) is negligible. �

PROOF OF THEOREM 2. T̂n is written as
√

nm

(
Tn

n
− 1

m
η̂n

)/
σ̂n.

Then, it follows from Lemma 2 and Exercise 1.7.4 of Brillinger [2] that Tn/(nσ̂n)

converges in probability to 1
2πσ ∗

∫ π
0 K(f (λ)g(θ∗, f (λ))−1) dλ as n → ∞. Thus,

the assertion is shown immediately. �

PROOF OF THEOREM 3. First, we note that, under Han, Lemmas 1–11 of
Section 7 are still true if we substitute ft,n for ft in the definitions of yt and yε

t

and add the term of O(1/(mn)1/4) to the right-hand side of Lemma 9. Next, since
Mt − Ir = op(n−1/4) is also true under Han, analogous to (13), we have∑

t

tr[(Mt − Ir)
2]

= ∑
t

tr

[(∑
αβ

ǧt,n(∂ǧ−1
t,n /∂yαβ)(f̂U,αβ,t − fαβ,t,n) + (f̂U,t − ft,n)ǧ

−1
t,n

)2]

+ ∑
t

tr
[(

(ft − ǧt,n)ǧ
−1
t,n + 1

(nm)1/4 f ∗
t ǧ−1

t,n

)2]
+ op(n1/2/m1/2)

= T
(1)

n + ξn + op(n1/2/m1/2), say.

Then, by the Taylor expansion and Exercise 1.7.14 of Brillinger [2],

ξn = n1/2

m1/2 (2ξ) + o(n1/2/m1/2).
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Hence,

T̂n =
√

m

n

(
Tn − n

m
η̂n

)/
σ̂n

=
√

m

n

(
1

2
T

(1)

n − n

m
η

)/
σ̂n(14)

+ ξ/σ̂n +
√

n

m
{(η − ηn) + (ηn − η̂n)}/σ̂n + op(1).

The limiting distribution of the first term on the right-hand side of (14) is the
standard normal distribution. Then, the assertion is obtained, because ηn − η =
O(1/(mn)1/4) and σ 2

n − σ 2 = O(1/(mn)1/4). �

7. Lemmas. First, we introduce some random variables, notation and techni-
cal remarks. Define yt = (yab,t ), ŷt = (ŷab,t ), t = 1, . . . , [n/2], by yt = f̂U,t − ft

and ŷt = f̂U,t − E(f̂U,t ), respectively.
(A2) and (A3) assure that

∫ π
−π log detf (λ)dλ > −∞. Then, under (A1), Zt is

expressed as

Zt =
∞∑

j=0

�jεt−j ,

where �j is an r × r matrix and
∑∞

j=0 tr(�j�
′
j ) < ∞ and εt = (ε1t , . . . , εrt )

′ is
a mutually independent zero-mean Gaussian process with covariance matrix Ir .
Then, denote the discrete Fourier transform of εat by Wε

a (λ) = 1√
2πn

∑n
t=1 εat ×

exp(itλ) for a = 1, . . . , r and the cross periodogram of εat and εbt and the peri-
odogram matrix by I ε

ab(λ) = Wε
a (λ)Wε

b (λ) and I ε(λ) = (I ε
ab(λ)), respectively.

Next, define the r × r matrix f̂ ε
t = (f̂ ε

ab,t ) by

f̂ ε
ab,t = 1

w∗
m/2∑

j=−m/2

wj�a(exp(iλt+j ))I
ε
t+j�

′
b(exp(−iλt+j )), 1 ≤ t ≤ [n/2],

where I ε
j = I ε(λj ) and �a(e

iλ) is the ath row vector of �(eiλ) = ∑∞
j=0 �je

ijλ.

Then, define yε
t = f̂ ε

t − ft and ŷε
t = f̂ ε

t − E(f̂ ε
t ), respectively. We shall derive

the main results by showing that the limiting behaviors of T̂n remain unchanged if
we substitute yε

t (ŷ
ε
t ) for yt (ŷt ). yε

t and ŷε
t are more tractable than yt and ŷt , be-

cause 2πIε
j , j = 0,1, . . . , [n/2], are mutually independent random variables with

Wishart distributions and, consequently, yε
t (ŷ

ε
t ) and yε

s (ŷ
ε
s ) are mutually indepen-

dent for |t − s| > m.

LEMMA 1. Under (A3),

E(Wa,jWb,j ) − fab,j = O

(
logn

n

)
, −m/2 + 1 ≤ j ≤ [n/2] + m/2,
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E(Wa,jWb,k) = O

(
logn

n

)
, −m/2 + 1 ≤ j ≤ k ≤ [n/2] + m/2,

j + k �= 0, n,

E(Wa,jWb,k) − fab,j = O

(
logn

n

)
, −m/2 + 1 ≤ j ≤ k ≤ [n/2] + m/2,

j + k = 0, n,

E(Wa,jWb,k) = O

(
logn

n

)
, −m/2 + 1 ≤ j < k ≤ [n/2] + m/2,

uniformly in j and k for a, b = 1,2, . . . , r.

PROOF. The assertion is shown in the same way as Lemma 1 of Matsuda and
Yajima [25] by noting that Wa,jWb,k = Wa,jWb,j for j + k = 0, n. �

LEMMA 2. Under (A1)–(A4),

sup
t=±1,...,±[n/2]

|f̂U,ab,t − fab,t | = op(n−1/4).

PROOF. Applying Lemma 1, we see that Lemmas 2 and 3 of Matsuda and
Yajima [25] are still true for f̂U,ab,t and f̂ ε

ab,t . Then, the assertion is proved in the
same way as Proposition 1 of Matsuda and Yajima [25]. �

LEMMA 3. Under (A3),

E(yab,t ) = O(m2/n2),

uniformly in t = 1,2, . . . , [n/2], for a, b = 1,2, . . . , r.

PROOF. It follows from Lemma 1, by the Taylor expansion, that

E(yab,t ) = 1

w∗
m/2∑

j=−m/2

wj

(
fab,t+j + O(logn/n)

) − fab,t

= 1

w∗
m/2∑

j=−m/2

wj

(
fab,t + 2πj

n
f ′

ab,t + O(j2/n2)

)
+ O(logn/n) − fab,t

= O(m2/n2) + O(logn/n)

= O(m2/n2),

uniformly in t where f ′
ab,t = dfab(λ)/dλ|λ=λt . �
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LEMMA 4. Under (A1), (A3) and (A4),

Cov(yab,t , ycd,s) =
{

O(1/m), if |t − s| ≤ m,
O(log2 n/n2), if |t − s| > m,

uniformly in t, s = 1,2, . . . , [n/2], for a, b, c, d = 1,2, . . . , r .

PROOF. We observe that

Cov(yab,t , ycd,s)

= E(yab,t ycd,s) − E(yab,t )E(ycd,s)

= 1

(w∗)2

m/2∑
j,k=−m/2

wjwk[E(Wa,t+jWc,s+k)E(Wb,t+jWd,s+k)

+ E(Wa,t+jWd,s+k)E(Wb,t+jWc,s+k)].
Then, the assertion follows immediately from Lemma 1 by noting that t +j �= s+k

and t + j + s + k �= 0, n for any j and k if |t − s| > m. �

LEMMA 5. Under (A1), (A3) and (A4),

cum(ya1b1,t1, ya2b2,t2, . . . , yakbk,tk ) = O(m1−k),

uniformly in 1 ≤ ti ≤ [n/2] for any k ≥ 3 and 1 ≤ ai, bi ≤ r , i = 1, . . . , k.

PROOF. The assertion is obtained, in the same way as the proof of Theo-
rem 7.4.4 of Brillinger [2], by applying Lemma 1 and Theorems 2.3.1 and 2.3.2
of [2]. �

From now on, let μt,n, t = 1, . . . , [n/2], n = 1,2, . . . , be constants bounded in t

and n.

LEMMA 6. Under (A1), (A3) and (A4),
[n/2]∑
t=1

μt,nyab,t = Op(n1/2)

for a, b = 1, . . . , r .

PROOF. We may assume, without loss of generality, that μt,n ≡ 1. Then, it
follows from Lemmas 3 and 4 that

E

∣∣∣∣∣
∑
t

yab,t

∣∣∣∣∣
2

= ∑
s,t

Cov(yab,t , yab,s) +
∣∣∣∣∣
∑
t

E(yab,t )

∣∣∣∣∣
2

= O(n) + O(log2 n) + O(m4/n2)

= O(n),
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which implies the assertion. �

LEMMA 7. Under (A1), (A3) and (A4),

[n/2]∑
t=1

μt,nyab,t ycd,t yef,t = op(1)

for a, b, c, d, e, f = 1, . . . , r .

PROOF. We may assume, without loss of generality, that μt,n ≡ 1. It follows
from Lemmas 2 and 3 that

ŷab,t = yab,t + O(m2/n2) = op(n−1/4),

uniformly in t . Thus,∑
t

yab,t ycd,t yef,t = ∑
t

ŷab,t ŷcd,t ŷef,t + op(1).(15)

Now, we evaluate the first term on the right-hand side of (15). We have

E

∣∣∣∣∣
∑
t

ŷab,t ŷcd,t ŷef,t

∣∣∣∣∣
2

(16)

= ∑
s,t

Cov(ŷab,t ŷcd,t ŷef,t , ŷab,s ŷcd,s ŷef,s) +
∣∣∣∣∣
∑
t

E(ŷab,t ŷcd,t ŷef,t )

∣∣∣∣∣
2

.

Noting E(ŷab,t ) = 0 and applying Theorems 2.3.1 and 2.3.2 of Brillinger [2], we
observe that the first term on the right-hand side of (16) is equal to∑

s,t

cum(ŷab,t ŷcd,t ŷef,t , ŷba,s ŷdc,s ŷf e,s)

= ∑
s,t

[cum(yab,t , ycd,t , yef,t , yba,s, ydc,s, yf e,s)

+ cum(yab,t , ycd,t ) cum(yef,t , yba,s, ydc,s, yf e,s)

+ cum(yab,t , yba,s) cum(ycd,t , yef,t , ydc,s, yf e,s)
(17)

+ cum(yab,t , ycd,t , yba,s) cum(yef,t , ydc,s, yf e,s)

+ cum(yab,t , ycd,t ) cum(yba,s, ydc,s) cum(yef,t , yf e,s)

+ cum(yab,t , yba,s) cum(ycd,t , ydc,s) cum(yef,t , yf e,s)

+ the remainder terms].
Any term of the remainder ones on the right-hand side of (17) is expressed in the
same form as one of the preceding six terms. Hence, it suffices to evaluate these
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terms. It follows from Lemmas 4 and 5 that the first one is O(n2/m5), the second
and fourth ones are O(n2/m4), the third one is O(n/m3) and the fifth and sixth
ones are O(n/m2), respectively.

Similarly, the second term is equal to∣∣∣∣∣
∑
t

cum(ŷab,t , ŷcd,t , ŷef,t )

∣∣∣∣∣
2

=
∣∣∣∣∣
∑
t

cum(yab,t , ycd,t , yef,t )

∣∣∣∣∣
2

= O(n2/m4).

Thus, the proof is completed. �

LEMMA 8. Under (A1)–(A4),

T (1)
n − T (2)

n = op(n1/2/m1/2).

PROOF. It suffices to show that

[n/2]∑
t=1

μt,n(yαβ,tyγ ν,t − ŷε
αβ,t ŷ

ε
γ ν,t ) = op(n1/2/m1/2)(18)

for α,β, γ, ν = 1, . . . , r , because T
(1)
n − T

(2)
n is a summation of the terms ex-

pressed in the same form as (18). We may assume that μt,n ≡ 1 without loss of
generality. By the Schwarz inequality, the absolute value of the term on the left-
hand side of (18) is bounded by(∑

t

|yαβ,t − ŷε
αβ,t |2

)1/2(∑
t

|yγ ν,t |2
)1/2

(19)

+
(∑

t

|ŷε
αβ,t |2

)1/2(∑
t

|yγ ν,t − ŷε
γ ν,t |2

)1/2

.

The first term of (19) is bounded by(
2

∑
t

|yαβ,t − yε
αβ,t |2 + 2

∑
t

|yε
αβ,t − ŷε

αβ,t |2
)1/2(∑

t

|yγ ν,t |2
)1/2

.(20)

It follows, from Lemmas 3 and 4 and the assertion during the proof of Lemma 2 of
Matsuda and Yajima [25], that the first term of (20) is equal to Op((logn/m)1/2)+
O(m2/n3/2) and the second term is Op((n/m)1/2). The second term of (19) is
evaluated in the same way. Thus, the proof is complete. �

LEMMA 9. Let μ(λ) be a differentiable function in [0, π], and set μt,n =
μ(λt ), t = 1, . . . , [n/2].
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Then, under (A1)–(A4),

m

n

[n/2]∑
t=1

E(μt,nŷ
ε
ab,t ŷ

ε
cd,t ) = Cu

π

∫ π

0
μ(λ)fad(λ)fcb(λ) dλ + O(m/n)

for a, b, c, d = 1, . . . , r where

Cu = 1

2

∫ 1/2

−1/2
u(x)2 dx

/(∫ 1/2

−1/2
u(x) dx

)2

.

PROOF. Applying Lemma 1 to Wε
a,j , a = 1, . . . , r, and noting that the right-

hand side terms of the lemma are exactly equal to 0 for Wε
a,j , we obtain

m

n

[n/2]∑
t=1

E(μt,nŷ
ε
ab,t ŷ

ε
cd,t )

= m

n(w∗)2

(
1

2π

)2 [n/2]∑
t=1

m/2∑
j=−m/2

w2
jμt,n�a(exp(λt+j ))�

′
d(exp(−λt+j ))

× �c(exp(λt+j ))�
′
b(exp(−λt+j )) + O(m/n)

= m

n(w∗)2

[n/2]∑
t=1

m/2∑
j=−m/2

w2
jμt,nfad,t+j fcb,t+j + O(m/n)

= m

n(w∗)2

m/2∑
j=−m/2

w2
j

[n/2]∑
t=1

μt,nfad,tfcb,t + O(m/n).

The last equality is given by the Taylor expansion. Then, the assertion follows from
Exercise 1.7.14 of Brillinger [2]. �

LEMMA 10. Let μi(λ), i = 1,2, be differentiable functions in [0, π] and set
μi,t,n = μi(λt ). Then, under (A1)–(A4),

lim
n→∞

m

n
Cov

([n/2]∑
t=1

μ1,t,nŷ
ε
a1b1,t

ŷε
c1d1,t

,

[n/2]∑
s=1

μ2,s,nŷ
ε
a2b2,s

ŷε
c2d2,s

)

= Du

π

∫ π

0
μ1(λ)μ2(λ)

× (
fa1a2(λ)fb2b1(λ)fc1c2(λ)fd2d1(λ)

+ fa1c2(λ)fd2b1(λ)fc1a2(λ)fb2d1(λ)
)
dλ

for ai, bi, ci, di = 1, . . . , r, i = 1,2, where

Du = 1

2

∫ 1/2

−1/2
dx

∫ 1/2

−1/2
dy

∫ 1

−1
u(x)u(y)u(x + z)u(y + z) dz

/(∫ 1/2

−1/2
u(x) dx

)4

.
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PROOF. First, note that ŷε
ab,t and ŷε

cd,s are mutually independent for |t − s| >
m, because I ε

j , j = 0,1, . . . , [n/2], are mutually independent variables. Then, not-
ing that E(ŷε

ab,t ) = 0 and applying Lemmas 1 and 5 and Theorems 2.3.1 and 2.3.2
of Brillinger [2], we obtain

m

n
Cov

(∑
t

μ1,t,nŷ
ε
a1b1,t

ŷε
c1d1,t

,
∑
s

μ2,s,nŷ
ε
a2b2,s

ŷε
c2d2,s

)

= m

n

∑
t

∑
s

cum(μ1,t,nŷ
ε
a1b1,t

ŷε
c1d1,t

,μ2,s,nŷ
ε
b2a2,s

ŷε
d2c2,s

)

= m

n

∑
t

∑
s : |t−s|≤m

μ1,t,nμ2,s,n[cum(ŷε
a1b1,t

, ŷε
c1d1,t

, ŷε
b2a2,s

, ŷε
d2c2,s

)

+ cum(ŷε
a1b1,t

, ŷε
b2a2,s

) cum(ŷε
c1d1,t

, ŷε
d2c2,s

)

+ cum(ŷε
a1b1,t

, ŷε
d2c2,s

) cum(ŷε
c1d1,t

ŷε
b2a2,s

)]
= m

n(w∗)4

∑
t

∑
s,|t−s|≤m

∑
j1,j2,j3,j4

wj1wj2wj3wj4μ1,t,nμ2,s,n

× (fa1a2,tfb2b1,tfc1c2,tfd2d1,t

× δt+j1,s+j3δt+j2,s+j4

+ fa1c2,tfd2b1,tfc1a2,tfb2d1,t

× δt+j1,s+j4δt+j2,s+j3) + o(1)

= m

n(w∗)4

∑
t

∑
|t−s|≤m

∑
j1,j2

wj1wj2wj1+t−swj2+t−sμ1,t,nμ2,t,n

× (fa1a2,tfb2b1,tfc1c2,tfd2d1,t

+ fa1c2,tfd2b1,tfc1a2,tfb2d1,t ) + o(1).

The last two equalities follow from 2πji/n, i = 1, . . . ,4 and 2π(t − s)/n being of
order m/n, and, in the last summation, j1, j2, s and t must satisfy |j1 + t − s| ≤
m/2 and |j2 + t − s| ≤ m/2. Then, the assertion is obtained by Exercise 1.7.14 of
Brillinger [2]. �

LEMMA 11. Set

τabcd,n =
(

m

n

)1/2 [n/2]∑
t=1

cabcd,t,nŷ
ε
ab,t ŷ

ε
cd,t

for a, b, c, d = 1, . . . , r , where cabcd,t,n are the constants bounded in t and n.
Then, under (A1)–(A4),

cum(τa11b11a12b12,n, . . . , τak1bk1ak2bk2,n) = o(1)
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for k ≥ 3 and 1 ≤ aij , bij ≤ r, i = 1, . . . , k, j = 1,2.

PROOF. Applying Theorems 2.3.1 and 2.3.2 of Brillinger [2], we have

cum(τa11b11a12b12,n, . . . , τak1bk1ak2bk2,n)

=
(

m

n

)k/2 [n/2]∑
t1,t2,...,tk=1

k∏
i=1

cai1bi1ai2bi2,ti ,n

× cum(ŷε
a11b11,t1

ŷε
a12b12,t1

, . . . , ŷε
ak1bk1,tk

ŷε
ak2bk2,tk

)(21)

=
(

m

n

)k/2 [n/2]∑
t1,t2,...,tk=1

k∏
i=1

cai1bi1ai2bi2,ti ,n

× ∑
ν∗

p∏
l=1

cum(ŷε
aij bij ,ti

; ij ∈ νl),

where
∑

ν∗ is over all the indecomposable partitions ν∗ = ν1 ∪ · · ·∪ νp of the table

11 12
21 22
...

...

k1 k2.

Let l∗ be the number of elements of νl, l = 1, . . . , p. Since E(ŷε
ab,t ) = 0, any l∗ is

greater than 1, and, hence, p satisfies p ≤ k.
Now, applying Lemmas 4 and 5 to each cumulant on the right-hand side of (21)

and noting that
∑p

l=1 l∗ = 2k, we have

p∏
l=1

cum(ŷε
aij bij ,ti

, ij ∈ νl) = O

( p∏
l=1

m1−l∗
)

= O(mp−2k).

By Theorem 2.3.1(iii) of Brillinger [2], the number of the nonzero terms of the
summation

∑
t1,t2,...,tk

is O(nmk−1), since ŷε
aij bij ,ti

and ŷε
ai′j ′bi′j ′ ,ti′ are mutually

independent for |ti − ti′ | > m. Thus, the term on the right-hand side of (21)
is O(mp−k/2−1/nk/2−1), which is O((m/n)k/2−1) = o(1) for k ≥ 3. Hence, the
proof is complete. �
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