LOG-SOBOLEV INEQUALITIES: DIFFERENT ROLES OF RIC AND HESS

By Feng-Yu WANG ${ }^{1}$
Beijing Normal University and Swansea University

Abstract

Let P_{t} be the diffusion semigroup generated by $L:=\Delta+\nabla V$ on a complete connected Riemannian manifold with Ric $\geq-\left(\sigma^{2} \rho_{o}^{2}+c\right)$ for some constants $\sigma, c>0$ and ρ_{o} the Riemannian distance to a fixed point. It is shown that P_{t} is hypercontractive, or the log-Sobolev inequality holds for the associated Dirichlet form, provided $-\operatorname{Hess}_{V} \geq \delta$ holds outside of a compact set for some constant $\delta>(1+\sqrt{2}) \sigma \sqrt{d-1}$. This indicates, at least in finite dimensions, that Ric and $-\mathrm{Hess}_{V}$ play quite different roles for the log-Sobolev inequality to hold. The supercontractivity and the ultracontractivity are also studied.

1. Introduction. Let M be a d-dimensional completed connected noncompact Riemannian manifold and $V \in C^{2}(M)$ such that

$$
\begin{equation*}
Z:=\int_{M} e^{V(x)} d x<\infty \tag{1.1}
\end{equation*}
$$

where $d x$ is the volume measure on M. Let $\mu(d x)=Z^{-1} e^{V(x)} d x$. Under (1.1) it is easy to see that $H_{0}^{2,1}(\mu)=W^{2,1}(\mu)$, where $H_{0}^{2,1}(\mu)$ is the completion of $C_{0}^{1}(M)$ under the Sobolev norm $\|f\|_{2,1}:=\mu\left(f^{2}+|\nabla f|^{2}\right)^{1 / 2}$, and $W^{2,1}(\mu)$ is the completion of the class $\left\{f \in C^{1}(M): f+|\nabla f| \in L^{2}(\mu)\right\}$ under $\|\cdot\|_{2,1}$. Then the L-diffusion process is nonexplosive and its semigroup P_{t} is uniquely determined. Moreover, P_{t} is symmetric in $L^{2}(\mu)$ so that μ is P_{t}-invariant. It is well known by the Bakry-Emery criterion (see [4]) that

$$
\begin{equation*}
\text { Ric }-\operatorname{Hess}_{V} \geq K \tag{1.2}
\end{equation*}
$$

for some constant $K>0$ implies the Gross log-Sobolev inequality [14],

$$
\begin{align*}
\mu\left(f^{2} \log f^{2}\right):=\int_{M} f^{2} \log f^{2} d \mu \leq C \mu\left(|\nabla f|^{2}\right) & \tag{1.3}\\
& \mu\left(f^{2}\right)=1, f \in C^{1}(M)
\end{align*}
$$

[^0]for $C=2 / K$. This result was extended by Chen and the author [9] to the situation that Ric - Hess ${ }_{V}$ is uniformly positive outside a compact set. In the case that Ric - Hess V_{V} is bounded below, sufficient concentration conditions of μ for (1.3) to hold are presented in $[1,19,20]$. Obviously, in a condition on Ric - Hess ${ }_{V}$ the Ricci curvature and $-\operatorname{Hess}_{V}$ play the same role.

What can we do when Ric - Hess_{V} is unbounded below? It seems very hard to confirm the log-Sobolev inequality with the unbounded below condition of Ric - Hess_{V}. Therefore, in this paper we try to clarify the roles of Ric and - Hess ${ }_{V}$ in the study of the log-Sobolev inequality. Let us first recall the gradient estimate of P_{t}, which is a key point in the above references to prove the log-Sobolev inequality.

Let x_{t} be the L-diffusion process starting at x, and let $v \in T_{x} M$. Due to Bismut [6] and Elworthy-Li [11], under a reasonable lower bound condition of Ric - Hess_{V}, one has

$$
\left\langle\nabla P_{t} f, v\right\rangle=\mathbb{E}\left\langle\nabla f\left(x_{t}\right), v_{t}\right\rangle, \quad t>0, f \in C_{b}^{1}(M)
$$

where $v_{t} \in T_{x_{t}} M$ solves the equation

$$
D_{t} v_{t}:=/ /_{t \rightarrow 0}^{-1} \frac{d}{d t} / / t \rightarrow 0 v_{t}=-\left(\operatorname{Ric}-\operatorname{Hess}_{V}\right)^{\#}\left(v_{t}\right)
$$

for $/{ }_{t \rightarrow 0}: T_{x_{t}} M \rightarrow T_{x} M$ the associated stochastic parallel displacement, and $\left(\operatorname{Ric}-\operatorname{Hess}_{V}\right)^{\#}\left(v_{t}\right) \in T_{x_{t}} M$ with

$$
\left\langle\left(\operatorname{Ric}-\operatorname{Hess}_{V}\right)^{\#}\left(v_{t}\right), X\right\rangle:=\left(\operatorname{Ric}-\operatorname{Hess}_{V}\right)\left(v_{t}, X\right), \quad X \in T_{x_{t}} M .
$$

Thus, for the gradient of P_{t}, which is a short distance behavior of the diffusion process, a condition on Ric - Hess V_{V} appears naturally.

On the other hand, however, Ric and - Hess_{V} play very different roles for long distance behaviors. For instance, Let ρ_{o} be the Riemannian distance function to a fixed point $o \in M$. If Ric $\geq-k$ and $-\operatorname{Hess}_{V} \geq \delta$ for some $k \geq 0, \delta \in \mathbb{R}$, the Laplacian comparison theorem implies

$$
L \rho_{o} \leq \sqrt{k(d-1)} \operatorname{coth}\left[\sqrt{k /(d-1)} \rho_{o}\right]-\delta \rho_{o}
$$

Therefore, for large ρ_{o}, the Ric lower bound leads to a bounded term while that of - Hess_{V} provides a linear term. The same phenomena appears in the formula on distance of coupling by parallel displacement (cf. [3], (2.3), (2.4)), which implies the above Bismut-Elworthy-Li formula by letting the initial distance tend to zero (cf. [15]). Here, $k \geq 0$ is essential for our framework, since the manifold has to be compact, if Ric is bounded below by a positive constant.

Since the log-Sobolev inequality is always available on bounded regular domains, it is more likely a long-distance property of the diffusion process. So, Ric and $-\operatorname{Hess}_{V}$ should take different roles in the study of the log-Sobolev inequality. Indeed, it has been observed by the author [20] that (1.3) holds for some
$C>0$, provided Ric is bounded below and $-\operatorname{Hess}_{V}$ is uniformly positive outside a compact set. This indicates that for the log-Sobolev inequality, the positivity of - Hess_{V} is a dominative condition, which allows the Ricci curvature to be bounded below by an arbitrary negative constant, and hence, allows Ric - Hess V to be globally negative on M.

The first aim of this paper is to search for the weakest possibility of curvature lower bound for the log-Sobolev inequality to hold under the condition

$$
\begin{equation*}
-\operatorname{Hess}_{V} \geq \delta \quad \text { outside a compact set } \tag{1.4}
\end{equation*}
$$

for some constant $\delta>0$. This condition is reasonable as the log-Sobolev inequality implies $\mu\left(e^{\lambda \rho_{o}^{2}}\right)<\infty$ for some $\lambda>0$ (see, e.g., [2, 17]).

According to the following Theorem 1.1 and Example 1.1, we conclude that under (1.4) the optimal curvature lower bound condition for (1.3) to hold is

$$
\begin{equation*}
\inf _{M}\left\{\operatorname{Ric}+\sigma^{2} \rho_{o}^{2}\right\}>-\infty \tag{1.5}
\end{equation*}
$$

for some constant $\sigma>0$, such that $\delta>(1+\sqrt{2}) \sigma \sqrt{d-1}$. More precisely, let $\theta_{0}>0$ be the smallest positive constant, such that for any connected complete noncompact Riemannian manifold M and $V \in C^{2}(M)$, such that $Z:=$ $\int_{M} e^{V(x)} d x<\infty$, the conditions (1.4) and (1.5) with $\delta>\sigma \theta_{0} \sqrt{d-1}$, implies (1.3) for some $C>0$. Due to Theorem 1.1 and Example 1.1 below, we conclude that

$$
\theta_{0} \in[1,1+\sqrt{2}] .
$$

The exact value of θ_{0} is however unknown.
THEOREM 1.1. Assume that (1.4) and (1.5) hold for some constants c, δ, $\sigma>0$ with $\delta>(1+\sqrt{2}) \sigma \sqrt{d-1}$. Then (1.3) holds for some $C>0$.

EXAMPLE 1.1. Let $M=\mathbb{R}^{2}$ be equipped with the rotationally symmetric metric

$$
d s^{2}=d r^{2}+\left\{r e^{k r^{2}}\right\}^{2} d \theta^{2}
$$

under the polar coordinates $(r, \theta) \in[0, \infty) \times \mathbb{S}^{1}$ at 0 , where $k>0$ is a constant, then (see, e.g., [13])

$$
\operatorname{Ric}=-\frac{\left(d^{2} / d r^{2}\right)\left(r e^{k r^{2}}\right)}{r e^{k r^{2}}}=-4 k-4 k^{2} r^{2}
$$

Thus, (1.5) holds for $\sigma=2 k$. Next, take $V=-k \rho_{o}^{2}-\lambda\left(\rho_{o}^{2}+1\right)^{1 / 2}$ for some $\lambda>0$. By the Hessian comparison theorem and the negativity of the sectional curvature, we obtain (1.4) for $\delta=2 k$. Since $d=2$ and

$$
\begin{equation*}
e^{V(x)} d x=r e^{-\lambda\left(1+r^{2}\right)^{1 / 2}} d r d \theta \tag{1.6}
\end{equation*}
$$

one has $Z<\infty$ and $\delta=2 k=\sigma \sqrt{d-1}$. But the log-Sobolev inequality is not valid since by Herbst's inequality it implies $\mu\left(e^{r \rho_{o}^{2}}\right)<\infty$ for some $r>0$, which is, however, not the case due to (1.6). Since in this example one has $\delta>\sigma \theta \sqrt{d-1}$ for any $\theta<1$, according to the definition of θ_{0}, we conclude that $\theta_{0} \geq 1$.

Following the line of $[19,20]$, the key point in the proof of Theorem 1.1 will be a proper Harnack inequality of type

$$
\left(P_{t} f(x)\right)^{\alpha} \leq C_{\alpha}(t, x, y) P_{t} f^{\alpha}(y), \quad t>0, x, y \in M
$$

for any nonnegative $f \in C_{b}(M)$, where $\alpha>1$ is a constant and $C_{\alpha} \in C((0, \infty)$, M^{2}) is a positive function. Such an inequality was established in [19] for Ric - Hess_{V} bounded below and extended in [3] to a more general situation with Ric satisfying (1.5).

The Harnack inequality presented in [3] contains a leading term $\exp \left[\rho(x, y)^{4}\right]$, which is, however, too large to be integrability w.r.t. $\mu \times \mu$ under our conditions. So, to prove Theorem 1.1, we shall present a sharper Harnack inequality in Section 3 by refining the coupling method introduced in [3] (see Proposition 3.1 below). This inequality, together with the concentration of μ ensured by (1.4) and (1.5), will imply the hypercontractivity of P_{t}. To establish this new Harnack inequality, some necessary preparations are presented in Section 2.

Finally, in the same spirit of Theorem 1.1, the supercontractivity and ultracontractivity of P_{t} are studied in Section 4 under explicit conditions on Ric and - Hess ${ }_{V}$.
2. Preparations. We first study the concentration of μ by using (1.4) and (1.5), for which we need to estimate $L \rho_{o}$ from above according to [5] and references within.

Lemma 2.1. If (1.4) and (1.5) hold, then there exists a constant $C_{1}>0$ such that

$$
\begin{equation*}
L \rho_{o}^{2} \leq C_{1}\left(1+\rho_{o}\right)-2(\delta-\sigma \sqrt{d-1}) \rho_{o}^{2} \tag{2.1}
\end{equation*}
$$

holds outside $\operatorname{cut}(o)$, the cut-locus of o. If moreover $\delta>\sigma \sqrt{d-1}$ then $Z<\infty$ and $\mu\left(e^{\lambda \rho_{o}^{2}}\right)<\infty$ for all $\lambda<\frac{1}{2}(\delta-\sigma \sqrt{d-1})$.

Proof. By (1.5) we have Ric $\geq-\left(c+\sigma^{2} \rho_{o}^{2}\right)$ for some constant $c>0$. By the Laplacian comparison theorem this implies that

$$
\Delta \rho_{o} \leq \sqrt{\left(c+\sigma^{2} \rho_{o}^{2}\right)(d-1)} \operatorname{coth}\left[\sqrt{\left(c+\sigma^{2} \rho_{o}^{2}\right) /(d-1)} \rho_{o}\right]
$$

holds outside $\operatorname{cut}(o)$. Thus, outside $\operatorname{cut}(o)$ one has

$$
\begin{align*}
\Delta \rho_{o}^{2} & \leq 2 \rho_{o} \sqrt{\left(c+\sigma^{2} \rho_{o}^{2}\right)(d-1)} \operatorname{coth}\left[\sqrt{\left(c+\sigma^{2} \rho_{o}^{2}\right) /(d-1)} \rho_{o}\right]+2 \tag{2.2}\\
& \leq 2 d+2 \rho_{o} \sqrt{\left(c+\sigma^{2} \rho_{o}^{2}\right)(d-1)}
\end{align*}
$$

where the second inequality follows from the fact that

$$
r \cosh r \leq(1+r) \sinh r, \quad r \geq 0 .
$$

On the other hand, for $x \notin \operatorname{cut}(o)$ and U the unit tangent vector along the unique minimal geodesic ℓ form o to x, by (1.4) there exists a constant $c_{1}>0$ independent of x such that

$$
\left\langle\nabla V, \nabla \rho_{o}\right\rangle(x)=\langle\nabla V, U\rangle(o)+\int_{0}^{\rho_{o}(x)} \operatorname{Hess}_{V}(U, U)\left(\ell_{s}\right) d s \leq c_{1}-\delta \rho_{o}(x)
$$

Combining this with (2.2) we prove (2.1).
Finally, let $\delta>\sigma \sqrt{d-1}$ and $0<\lambda<\frac{1}{2}(\delta-\sigma \sqrt{d-1})$. By (2.1) we have

$$
\begin{aligned}
L e^{\lambda \rho_{o}^{2}} & \leq \lambda e^{\lambda \rho_{o}^{2}}\left(C_{1}\left(1+\rho_{o}\right)-2(\delta-\sigma \sqrt{d-1}) \rho_{o}^{2}+4 \lambda \rho_{o}^{2}\right) \\
& \leq c_{2}-c_{3} \rho_{o}^{2} e^{\lambda \rho_{o}^{2}}
\end{aligned}
$$

for some constants $c_{2}, c_{3}>0$. By [5], Proposition 3.2, this implies $Z<\infty$ and

$$
\int_{M} \rho_{o}^{2} e^{\lambda \rho_{o}^{2}} d \mu \leq \frac{c_{2}}{c_{3}}<\infty
$$

LEMMA 2.2. Let x_{t} be the L-diffusion process with $x_{0}=x \in M$. If (1.4) and (1.5) hold with $\delta>\sigma \sqrt{d-1}$, then for any $\delta_{0} \in(\sigma \sqrt{d-1}, \delta)$ there exists a constant $C_{2}>0$ such that

$$
\begin{aligned}
& \mathbb{E} \exp \left[\frac{\left(\delta_{0}-\sigma \sqrt{d-1}\right)^{2}}{4} \int_{0}^{T} \rho_{o}\left(x_{t}\right)^{2} d t\right] \\
& \quad \leq \exp \left[C_{2} T+\frac{1}{4}\left(\delta_{0}-\sigma \sqrt{d-1}\right) \rho_{o}(x)^{2}\right], \quad T>0, x \in M .
\end{aligned}
$$

Proof. By Lemma 2.1, we have

$$
L \rho_{o}^{2} \leq C-2\left(\delta_{0}-\sigma \sqrt{d-1}\right) \rho_{o}^{2}
$$

outside $\operatorname{cut}(o)$ for some constant $C>0$. Then the Itô formula for $\rho_{o}\left(x_{t}\right)$ due to Kendall [16] implies that

$$
\begin{equation*}
d \rho_{o}^{2}\left(x_{t}\right) \leq 2 \sqrt{2} \rho_{o}\left(x_{t}\right) d b_{t}+\left[C-2\left(\delta_{0}-\sigma \sqrt{d-1}\right) \rho_{o}^{2}\left(x_{t}\right)\right] d t \tag{2.3}
\end{equation*}
$$

holds for some Brownian motion b_{t} on \mathbb{R}. This implies that the L-diffusion process is nonexplosive so that

$$
T_{n}:=\inf \left\{t \geq 0: \rho_{o}\left(x_{t}\right) \geq n\right\} \rightarrow \infty
$$

as $n \rightarrow \infty$. Indeed, (2.3) implies that

$$
n \mathbb{P}\left(T_{n} \leq t\right) \leq \mathbb{E} \rho_{o}\left(x_{t \wedge T_{n}}\right)^{2} \leq \rho_{o}(x)^{2}+C t, \quad n \geq 1, t>0
$$

Hence, $\mathbb{P}\left(T_{n} \leq t\right) \rightarrow 0$ as $n \rightarrow \infty$ for any $t>0$. This implies $\lim _{n \rightarrow \infty} T_{n}=\infty$ a.s.
For any $\lambda>0$ and $n \geq 1$, it follows from (2.3) that

$$
\begin{aligned}
\mathbb{E} \exp & {\left[2 \lambda\left(\delta_{0}-\sigma \sqrt{d-1}\right) \int_{0}^{T \wedge T_{n}} \rho_{o}^{2}\left(x_{t}\right) d t\right] } \\
& \leq e^{\lambda \rho_{o}^{2}(x)+C \lambda T} \mathbb{E} \exp \left[2 \sqrt{2} \lambda \int_{0}^{T \wedge T_{n}} \rho_{o}\left(x_{t}\right) d b_{t}\right] \\
& \leq e^{\lambda \rho_{o}^{2}(x)+C \lambda T}\left(\mathbb{E} \exp \left[16 \lambda^{2} \int_{0}^{T \wedge T_{n}} \rho_{o}^{2}\left(x_{t}\right) d t\right]\right)^{1 / 2},
\end{aligned}
$$

where in the last step we have used the inequality

$$
\mathbb{E} e^{M_{t}} \leq\left(\mathbb{E} e^{2\langle M\rangle_{t}}\right)^{1 / 2}
$$

for $M_{t}=2 \sqrt{2} \lambda \int_{0}^{t \wedge T_{n}} \rho_{o}\left(X_{s}\right) d b_{s}$. This follows immediately from the Schwartz inequality and the fact that $\exp \left[2 M_{t}-2\langle M\rangle_{t}\right]$ is a martingale. Thus, taking

$$
\lambda=\frac{1}{8}\left(\delta_{0}-\sigma \sqrt{d-1}\right),
$$

we obtain

$$
\begin{aligned}
& \mathbb{E} \exp \left[\frac{1}{4}\left(\delta_{0}-\sigma \sqrt{d-1}\right)^{2} \int_{0}^{T \wedge T_{n}} \rho_{o}^{2}\left(x_{t}\right) d t\right] \\
& \quad \leq \exp \left[\frac{1}{4}\left(\delta_{0}-\sigma \sqrt{d-1}\right) \rho_{o}^{2}(x)+C_{2} T\right]
\end{aligned}
$$

for some $C_{2}>0$. Then the proof is completed by letting $n \rightarrow \infty$.

Finally, we recall the coupling argument introduced in [3] for establishing the Harnack inequality of P_{t}.

Let $T>0$ and $x \neq y \in M$ be fixed. Then the L-diffusion process starting from x can be constructed by solving the following Itô stochastic differential equation:

$$
d_{I} x_{t}=\sqrt{2} \Phi_{t} d B_{t}+\nabla V\left(x_{t}\right) d t, \quad x_{0}=x
$$

where d_{I} is the Itô differential on manifolds introduced in [12] (see also [3]), B_{t} is the d-dimensional Brownian motion, and Φ_{t} is the horizontal lift of x_{t} onto the orthonormal frame bundle $O(M)$.

To construct another diffusion process y_{t} starting from y such that $x_{T}=y_{T}$, as in [3], we add an additional drift term to the equation (as explained in [3], Section 3, we may and do assume that the cut-locus of M is empty)

$$
d_{I} y_{t}=\sqrt{2} P_{x_{t}, y_{t}} \Phi_{t} d B_{t}+\nabla V\left(y_{t}\right) d t+\xi_{t} U\left(x_{t}, y_{t}\right) 1_{\{t<\tau\}} d t, \quad y_{0}=y
$$

where $P_{x_{t}, y_{t}}$ is the parallel transformation along the unique minimal geodesic ℓ from x_{t} to $y_{t}, U\left(x_{t}, y_{t}\right)$ is the unit tangent vector of ℓ at $y_{t}, \xi_{t} \geq 0$ is a smooth function of x_{t} to be determined, and

$$
\tau:=\inf \left\{t \geq 0: x_{t}=y_{t}\right\}
$$

is the coupling time. Since all terms involved in the equation are regular enough, there exists a unique solution y_{t}. Furthermore, since the additional term containing $1_{\{t<\tau\}}$ vanishes from the coupling time on, one has $x_{t}=y_{t}$ for $t \geq \tau$ due to the uniqueness of solutions.

Lemma 2.3. Assume that (1.4) and (1.5) hold with $\delta \geq 2 \sigma \sqrt{d-1}$. Then there exists a constant $C_{3}>0$ independent of x, y and T such that $x_{T}=y_{T}$ holds for $\xi_{t}:=C_{3}+2 \sigma \sqrt{d-1} \rho_{o}\left(x_{t}\right)+\frac{\rho(x, y)}{T}$.

Proof. According to Section 2 in [3], we have

$$
\begin{align*}
& d \rho\left(x_{t}, y_{t}\right)=\left\{I\left(x_{t}, y_{t}\right)+\left\langle\nabla V, \nabla \rho\left(\cdot, y_{t}\right)\right\rangle\left(x_{t}\right)\right. \tag{2.4}\\
& \left.\quad+\left\langle\nabla V, \nabla \rho\left(x_{t}, \cdot\right)\right\rangle\left(y_{t}\right)-\xi_{t}\right\} d t, \quad t<\tau,
\end{align*}
$$

where

$$
I_{Z}\left(x_{t}, y_{t}\right)=\sum_{i=1}^{d-1} \int_{0}^{\rho\left(x_{t}, y_{t}\right)}\left(\left|\nabla_{U} J_{i}\right|^{2}-\left\langle R\left(U, J_{i}\right) U, J_{i}\right\rangle\right)\left(\ell_{s}\right) d s
$$

for R the Riemann curvature tensor, U the unit tangent vector of the minimal geodesic $\ell:\left[0, \rho\left(x_{t}, y_{t}\right)\right] \rightarrow M$ from x_{t} to y_{t}, and $\left\{J_{i}\right\}_{i=1}^{d-1}$ the Jacobi fields along ℓ, which, together with U, consist of an orthonormal basis of the tangent space at x_{t} and y_{t} and satisfy

$$
J_{i}\left(y_{t}\right)=P_{x_{t}, y_{t}} J_{i}\left(x_{t}\right), \quad i=1, \ldots, d-1
$$

By (1.5) we take a constant $c \geq 0$ such that Ric $\geq-\left(c+\sigma^{2} \rho_{o}^{2}\right)$. Letting

$$
K\left(x_{t}, y_{t}\right)=\sup _{\ell\left(\left[0, \rho\left(x_{t}, y_{t}\right)\right]\right)}\left\{c+\sigma^{2} \rho_{o}^{2}\right\}
$$

we obtain from Wang [21], Theorem 2.14 (see also [7, 8]), that

$$
\begin{equation*}
I\left(x_{t}, y_{t}\right) \leq 2 \sqrt{K\left(x_{t}, y_{t}\right)(d-1)} \tanh \left[\frac{\rho\left(x_{t}, y_{t}\right)}{2} \sqrt{K\left(x_{t}, y_{t}\right) /(d-1)}\right] \tag{2.5}
\end{equation*}
$$

Moreover, by (1.4) there exist two constants $r_{0}, r_{1}>0$ such that $-\operatorname{Hess}_{V} \geq \delta$ outside $B\left(o, r_{0}\right)$ but $\leq r_{1}$ on $B\left(o, r_{0}\right)$, where $B\left(o, r_{0}\right)$ is the closed geodesic ball
at o with radius r_{0}. Since the length of ℓ contained in $B\left(o, r_{0}\right)$ is less than $2 r_{0}$, we conclude that

$$
\begin{aligned}
\langle\nabla V & \left., \nabla \rho\left(\cdot, y_{t}\right)\right\rangle\left(x_{t}\right)+\left\langle\nabla V, \nabla \rho\left(x_{t}, \cdot\right)\right\rangle\left(y_{t}\right) \\
& =\int_{0}^{\rho\left(x_{t}, y_{t}\right)} \operatorname{Hess}_{V}(U, U)\left(\ell_{s}\right) d s \leq 2 r_{0} r_{1}-\left(\rho\left(x_{t}, y_{t}\right)-2 r_{0}\right)^{+} \delta \\
& \leq c_{1}-\delta \rho\left(x_{t}, y_{t}\right)
\end{aligned}
$$

for some constant $c_{1}>0$. Combining this with (2.4), (2.5) and

$$
\xi_{t}=C_{3}+2 \sigma \sqrt{d-1} \rho_{o}\left(x_{t}\right)+\frac{\rho(x, y)}{T}
$$

we arrive at

$$
\begin{aligned}
d \rho\left(x_{t}, y_{t}\right) \leq\{ & 2 \sqrt{K\left(x_{t}, y_{t}\right)(d-1)}+c_{1}-\delta \rho\left(x_{t}, y_{t}\right) \\
& \left.\quad C_{3}-2 \sigma \sqrt{d-1} \rho_{o}\left(x_{t}\right)-\frac{\rho(x, y)}{T}\right\} d t
\end{aligned}
$$

for $t<\tau$. Noting that

$$
\begin{aligned}
\sqrt{K\left(x_{t}, y_{t}\right)} & \leq\left(c+\sigma^{2}\left[\rho_{o}\left(x_{t}\right)+\rho\left(x_{t}, y_{t}\right)\right]^{2}\right)^{1 / 2} \\
& \leq \sqrt{c}+\sigma\left[\rho_{o}\left(x_{t}\right)+\rho\left(x_{t}, y_{t}\right)\right]
\end{aligned}
$$

and $\delta \geq 2 \sigma \sqrt{d-1}$, one has

$$
2 \sqrt{K\left(x_{t}, y_{t}\right)(d-1)}-\delta \rho\left(x_{t}, y_{t}\right)-2 \sigma \sqrt{d-1} \rho_{o}\left(x_{t}\right) \leq 2 \sqrt{c(d-1)}
$$

Thus, when $C_{3} \geq c_{1}+2 \sqrt{c(d-1)}$ we have

$$
d \rho\left(x_{t}, y_{t}\right) \leq-\frac{\rho(x, y)}{T} d t, \quad t<\tau
$$

so that

$$
0=\rho\left(x_{\tau}, y_{\tau}\right) \leq \rho(x, y)-\int_{0}^{\tau} \frac{\rho(x, y)}{T} d t=\frac{T-\tau}{T} \rho(x, y)
$$

which implies that $\tau \leq T$ and hence, $x_{T}=y_{T}$.
3. Harnack inequality and proof of Theorem 1.1. We first prove the following Harnack inequality using results in Section 2.

Proposition 3.1. Assume that (1.4) and (1.5) hold with $\delta>(1+\sqrt{2}) \sigma \times$ $\sqrt{d-1}$. Then there exist $C>0$ and $\alpha>1$ such that

$$
\begin{equation*}
\left(P_{T} f(y)\right)^{\alpha} \leq\left(P_{T} f^{\alpha}(x)\right) \exp \left[\frac{C}{T} \rho(x, y)^{2}+C\left(T+\rho_{o}(x)^{2}\right)\right] \tag{3.1}
\end{equation*}
$$

holds for all $x, y \in M, T>0$ and nonnegative $f \in C_{b}(M)$.

Proof. According to Lemma 2.3, we take

$$
\xi_{t}=C_{3}+2 \sigma \sqrt{d-1} \rho_{o}\left(x_{t}\right)+\frac{\rho(x, y)}{T}
$$

such that $\tau \leq T$ and $x_{T}=y_{T}$. Obviously, y_{t} solves the equation

$$
d_{I} y_{t}=\sqrt{2} \tilde{\Phi}_{t} d \tilde{B}_{t}+\nabla V\left(y_{t}\right) d t
$$

for $\tilde{\Phi}_{t}:=P_{x_{t}, y_{t}} \Phi_{t}$ being the horizontal lift of y_{t}, and \tilde{B}_{t} solving the equation

$$
d \tilde{B}_{t}=d B_{t}+\frac{1}{\sqrt{2}} \tilde{\Phi}_{t}^{-1} \xi_{t} U\left(x_{t}, y_{t}\right) 1_{\{t<\tau\}} d t
$$

By the Girsanov theorem and the fact that $\tau \leq T$, the process $\left\{\tilde{B}_{t}: t \in[0, T]\right\}$ is a d-dimensional Brownian motion under the probability measure $R \mathbb{P}$ for

$$
R:=\exp \left[-\frac{1}{\sqrt{2}} \int_{0}^{\tau}\left\langle P_{x_{t}, y_{t}} \Phi_{t} d B_{t}, \xi_{t} U\left(x_{t}, y_{t}\right)\right\rangle-\frac{1}{4} \int_{0}^{\tau} \xi_{t}^{2} d t\right]
$$

Thus, under this probability measure $\left\{y_{t}: t \in[0, T]\right\}$ is generated by L. In particular, $P_{T} f(y)=\mathbb{E}\left[f\left(y_{T}\right) R\right]$. Combining this with the Hölder inequality and noting that $x_{T}=y_{T}$, we obtain

$$
\begin{aligned}
P_{T} f(y) & =\mathbb{E}\left[f\left(y_{T}\right) R\right]=\mathbb{E}\left[f\left(x_{T}\right) R\right] \\
& \leq\left(P_{T} f^{\alpha}(x)\right)^{1 / \alpha}\left(\mathbb{E} R^{\alpha /(\alpha-1)}\right)^{(\alpha-1) / \alpha}
\end{aligned}
$$

That is,

$$
\begin{equation*}
\left(P_{T} f(y)\right)^{\alpha} \leq\left(P_{T} f^{\alpha}(x)\right)\left(\mathbb{E} R^{\alpha /(\alpha-1)}\right)^{\alpha-1} \tag{3.2}
\end{equation*}
$$

Since for any continuous exponential integrable martingale M_{t} and any $\beta, p>1$, the process $\exp \left[\beta p M_{t}-\frac{p^{2} \beta^{2}}{2}\langle M\rangle_{t}\right]$ is a martingale, by the Hölder inequality one has

$$
\begin{align*}
\mathbb{E} e^{\beta M_{t}-(\beta / 2)\langle M\rangle_{t}} & =\mathbb{E}\left[e^{\beta M_{t}-\left(\beta^{2} p / 2\right)\langle M\rangle_{t}} \cdot e^{(\beta(\beta p-1) / 2)\langle M\rangle_{t}}\right] \tag{3.3}\\
& \leq \mathbb{E}\left(e^{(\beta p(\beta p-1) /(2(p-1)))\langle M\rangle_{t}}\right)^{(p-1) / p}
\end{align*}
$$

By taking $\beta=\alpha /(\alpha-1)$ we obtain

$$
\begin{align*}
& \left(\mathbb{E} R^{\alpha /(\alpha-1)}\right)^{\alpha-1} \\
& \quad \leq\left\{\mathbb{E} \exp \left[\frac{p \alpha(p \alpha-\alpha+1)}{8(p-1)(\alpha-1)^{2}} \int_{0}^{T} \xi_{t}^{2} d t\right]\right\}^{(\alpha-1)(p-1) / p}, \quad p>1 \tag{3.4}
\end{align*}
$$

Since $\delta>(1+\sqrt{2}) \sigma \sqrt{d-1}$, we may take $\delta_{0} \in((1+\sqrt{2}) \sigma \sqrt{d-1}, \delta)$, small $\varepsilon^{\prime}>0$ and large $C_{4}>0$, independent of T, x and y, such that

$$
\begin{aligned}
\xi_{t}^{2} & =\left(C_{3}+2 \sigma \sqrt{d-1} \rho_{o}\left(x_{t}\right)+\frac{\rho(x, y)}{T}\right)^{2} \\
& \leq\left(1-\varepsilon^{\prime}\right)\left[C_{4}+\frac{C_{4} \rho(x, y)^{2}}{T^{2}}+2\left(\delta_{0}-\sigma \sqrt{d-1}\right)^{2} \rho_{o}\left(x_{t}\right)^{2}\right]
\end{aligned}
$$

holds. Moreover, since

$$
\begin{equation*}
\lim _{p \downarrow 1 \alpha \uparrow \infty} \lim _{\alpha \uparrow} \frac{p \alpha(p \alpha-\alpha+1)}{8(p-1)(\alpha-1)^{2}}=\frac{1}{8}, \tag{3.5}
\end{equation*}
$$

there exist $p, \alpha>1$ such that

$$
\begin{aligned}
& \frac{p \alpha(p \alpha-\alpha+1)}{8(p-1)(\alpha-1)^{2}} \int_{0}^{T} \xi_{t}^{2} d t \\
& \quad \leq C_{4} T+\frac{C_{4} \rho(x, y)^{2}}{T}+\frac{\left(\delta_{0}-\sigma \sqrt{d-1}\right)^{2}}{4} \int_{0}^{T} \rho_{o}\left(x_{t}\right)^{2} d t
\end{aligned}
$$

Combining this with (3.4) and Lemma 2.2, we obtain

$$
\left(\mathbb{E} R^{\alpha /(\alpha-1)}\right)^{\alpha-1} \leq \exp \left[C_{5} T+\frac{C_{5} \rho(x, y)}{T}+C_{5} \rho_{o}(x)^{2}\right], \quad T>0, x \in M
$$

for some constant $C_{5}>0$. This completes the proof by (3.2).

Proof of Theorem 1.1. By Proposition 3.1, let $\alpha>1$ and $C>0$ such that (3.1) holds. Since $\delta>\sigma \sqrt{d-1}$, we may take $T>0$ such that

$$
\frac{C}{T} \leq \varepsilon:=\frac{1}{8}(\delta-\sigma \sqrt{d-1}) .
$$

Then for any nonnegative $f \in C_{b}(M)$ with $\mu\left(f^{\alpha}\right)=1$, since μ is P_{T}-invariant, it follows from (3.1) that

$$
\begin{aligned}
1 & =\int_{M} P_{T} f^{\alpha}(x) \mu(d x) \geq\left(P_{T} f(y)\right)^{\alpha} \int_{M} e^{-\varepsilon \rho(x, y)^{2}-C\left(1+\rho_{o}(x)^{2}\right)} \mu(d x) \\
& \geq\left(P_{T} f(y)\right)^{\alpha} \int_{\left\{\rho_{o} \leq 1\right\}} e^{-\varepsilon\left(1+\rho_{o}(y)\right)^{2}-2 C} \mu(d x) \\
& \geq \varepsilon^{\prime}\left(P_{T} f(y)\right)^{\alpha} \exp \left[-2 \varepsilon \rho_{o}(y)^{2}\right], \quad y \in M,
\end{aligned}
$$

for some constant $\varepsilon^{\prime}>0$. Thus,

$$
\int_{M}\left(P_{T} f(y)\right)^{2 \alpha} \mu(d y) \leq \frac{1}{\varepsilon^{\prime}} \int_{M} e^{4 \varepsilon \rho_{o}(y)^{2}} \mu(d y)<\infty
$$

according to Lemma 2.1. This implies that

$$
\left\|P_{T}\right\|_{L^{\alpha}(\mu) \rightarrow L^{2 \alpha}(\mu)}<\infty
$$

Therefore, the log-Sobolev inequality (1.3) holds for some constant $C>0$, due to the uniformly positively improving property of P_{t} (see [20], proof of Theorem 1.1, and [1]).
4. Supercontractivity and ultracontractivity. Recall that P_{t} is called supercontractive if $\left\|P_{t}\right\|_{2 \rightarrow 4}<\infty$ for all $t>0$ while ultracontractive if $\left\|P_{t}\right\|_{2 \rightarrow \infty}<\infty$ for all $t>0$ (see [10]). In the present framework these two properties are stronger than the hypercontractivity: $\left\|P_{t}\right\|_{2 \rightarrow 4} \leq 1$ for some $t>0$, which is equivalent to (1.3) due to Gross [14].

Proposition 4.1. Under (1.4) and (1.5), P_{t} is supercontractive if and only if $\mu\left(\exp \left[\lambda \rho_{o}^{2}\right]\right)<\infty$ for all $\lambda>0$, while it is ultracontractive if and only if $\left\|P_{t} \exp \left[\lambda \rho_{o}^{2}\right]\right\|_{\infty}<\infty$ for all $t, \lambda>0$.

Proof. The proof is similar to that of [18], Theorem 2.3. Let $f \in L^{2}(\mu)$ with $\mu\left(f^{2}\right)=1$. By (3.1) for $\alpha=2$ and noting that μ is P_{t}-invariant, we obtain

$$
\begin{aligned}
1 & \geq\left(P_{T} f(y)\right)^{2} \int_{M} \exp \left[-\frac{C}{T} \rho(x, y)^{2}-C\left(T+\rho_{o}(x)^{2}\right)\right] \mu(d x) \\
& \geq\left(P_{T} f(y)\right)^{2} \exp \left[-\frac{2 C}{T}\left(\rho_{o}(y)^{2}+1\right)-C(T+1)\right] \mu(B(o, 1))
\end{aligned}
$$

Hence, for any $T>0$ there exists a constant $\lambda_{T}>0$ such that

$$
\begin{equation*}
\left|P_{T} f\right| \leq \exp \left[\lambda_{T}\left(1+\rho_{o}^{2}\right)\right], \quad T>0, \mu\left(f^{2}\right)=1 \tag{4.1}
\end{equation*}
$$

(1) If $\mu\left(e^{\lambda \rho_{o}^{2}}\right)<\infty$ for any $\lambda>0$, (4.1) yields that

$$
\left\|P_{T}\right\|_{2 \rightarrow 4}^{4} \leq \mu\left(e^{4 \lambda_{T}\left(1+\rho_{o}^{2}\right)}\right)<\infty, \quad T>0
$$

Conversely, if P_{t} is supercontractive then the super log-Sobolev inequality (cf. [10])

$$
\mu\left(f^{2} \log f^{2}\right) \leq r \mu\left(|\nabla f|^{2}\right)+\beta(r), \quad r>0, \mu\left(f^{2}\right)=1
$$

holds for some $\beta:(0, \infty) \rightarrow(0, \infty)$. By [2] (see also [17, 18]), this inequality implies $\mu\left(e^{\lambda \rho_{o}^{2}}\right)<\infty$ for all $\lambda>0$.
(2) By (4.1) and the semigroup property,

$$
\left\|P_{T}\right\|_{2 \rightarrow \infty} \leq\left\|P_{T / 2} e^{\lambda_{T / 2}\left(1+\rho_{o}^{2}\right)}\right\|_{\infty}<\infty, \quad T>0
$$

provided $\left\|P_{t} e^{\lambda \rho_{o}^{2}}\right\|_{\infty}<\infty$ for any $t, \lambda>0$. Conversely, since the ultracontractivity is stronger than the supercontractivity, it implies that $e^{\lambda \rho_{o}^{2}} \in L^{2}(\mu)$ for any $\lambda>0$ as explained above. Therefore,

$$
\left\|P_{t} e^{\lambda \rho_{o}^{2}}\right\|_{\infty} \leq\left\|P_{t}\right\|_{2 \rightarrow \infty}\left\|e^{\lambda \rho_{o}^{2}}\right\|_{2}<\infty, \quad \lambda>0
$$

Then the proof is completed.

To derive explicit conditions for the supercontractivity and ultracontractivity, we consider the following stronger version of (1.4):
(4.2) $\quad-\operatorname{Hess}_{V} \geq \Phi \circ \rho_{o} \quad$ holds outside a compact subset of M
for a positive increasing function Φ with $\Phi(r) \uparrow \infty$ as $r \uparrow \infty$. We then aim to search for reasonable conditions on positive increasing function Ψ such that

$$
\begin{equation*}
\operatorname{Ric} \geq-\Psi \circ \rho_{o} \tag{4.3}
\end{equation*}
$$

implies the supercontractivity and/or ultracontractivity.

THEOREM 4.2. If (4.3) and (4.2) hold for some increasing positive functions Φ and Ψ such that

$$
\begin{align*}
& \sqrt{\Psi(r+t)(d-1)} \\
& \quad \leq \theta \int_{0}^{r} \Phi(s) d s+\frac{1}{2} \int_{0}^{t / 2} \Phi(s) d s+C, \quad r, t \geq 0 \tag{4.5}
\end{align*}
$$

for some constants $\theta \in(0,1 /(1+\sqrt{2}))$ and $C>0$. Then P_{t} is supercontractive. Furthermore, if

$$
\begin{equation*}
\int_{1}^{\infty} \frac{d s}{\sqrt{s} \int_{0}^{\sqrt{r}} \Phi(u) d u}<\infty \tag{4.6}
\end{equation*}
$$

then P_{t} is ultracontractive. More precisely, for

$$
\Gamma_{1}(r):=\frac{1}{\sqrt{r}} \int_{0}^{\sqrt{r}} \Phi(s) d s, \quad \Gamma_{2}(r):=\int_{r}^{\infty} \frac{d s}{\sqrt{s} \int_{0}^{\sqrt{s}} \Phi(u) d u}, \quad r>0
$$

(4.6) implies

$$
\begin{equation*}
\left\|P_{t}\right\|_{2 \rightarrow \infty} \leq \exp \left[c+\frac{c}{t}\left(1+\Gamma_{1}^{-1}(c / t)+\Gamma_{2}^{-1}(t / c)\right)\right]<\infty, \quad t>0 \tag{4.7}
\end{equation*}
$$ for some constant $c>0$ and

$$
\Gamma_{1}^{-1}(s):=\inf \left\{t \geq 0: \Gamma_{1}(t) \geq s\right\}, \quad s \geq 0
$$

Proof. (a) Replacing $c+\rho_{o}^{2}$ by $\Psi \circ \rho_{o}$ and noting that $\operatorname{Hess}_{V} \leq-\Phi \circ \rho_{o}$ for large ρ_{o}, the proof of Lemma 2.1 implies

$$
\begin{equation*}
L \rho_{o}^{2} \leq c_{1}\left(1+\rho_{o}\right)-2 \rho_{o}\left(\int_{0}^{\rho_{o}} \Phi(s) d s-\sqrt{\Psi \circ \rho_{o}(d-1)}\right) \tag{4.8}
\end{equation*}
$$

for some constant $c_{1}>0$. Combining this with (4.5) and noting that $\frac{1}{\rho_{o}} \times$ $\int_{0}^{\rho_{o}} \Phi(s) d s \rightarrow \infty$ as $\rho_{o} \rightarrow \infty$, we conclude that for any $\lambda>0$,

$$
\begin{align*}
L e^{\lambda \rho_{o}^{2}} & \leq C-\frac{2 \lambda \rho_{o} \sqrt{2}}{1+\sqrt{2}} e^{\lambda \rho_{o}^{2}} \int_{0}^{\rho_{o}} \Phi(s) d s+4 \lambda^{2} \rho_{o}^{2} e^{\lambda \rho_{o}^{2}} \tag{4.9}\\
& \leq C+C(\lambda)-\lambda \rho_{o} e^{\lambda \rho_{o}^{2}} \int_{0}^{\rho_{o}} \Phi(s) d s,
\end{align*}
$$

where $C>0$ is a universal constant and

$$
\begin{align*}
C(\lambda) & :=\sup _{r>0} r e^{\lambda r^{2}}\left\{4 \lambda^{2} r-\frac{\lambda}{(1+\sqrt{2})^{2}} \int_{0}^{r} \Phi(s) d s\right\} \\
& =\sup _{r^{2} \leq \Gamma_{1}^{-1}\left(4(1+\sqrt{2})^{2} \lambda\right)} r e^{\lambda r^{2}}\left\{4 \lambda^{2} r-\frac{\lambda}{(1+\sqrt{2})^{2}} \int_{0}^{r} \Phi(s) d s\right\} \\
& \leq 4 \lambda^{2} \Gamma_{1}^{-1}\left(4(1+\sqrt{2})^{2} \lambda\right) \exp \left[\lambda \Gamma_{1}^{-1}\left(4(1+\sqrt{2})^{2} \lambda\right)\right] \tag{4.10}\\
& \leq \exp \left[4 \lambda+2 \lambda \Gamma_{1}^{-1}\left(4(1+\sqrt{2})^{2} \lambda\right)\right]<\infty .
\end{align*}
$$

Therefore, (1.1) holds and

$$
\begin{equation*}
\mu\left(e^{\lambda \rho_{o}^{2}}\right)<\infty, \quad \lambda>0 \tag{4.11}
\end{equation*}
$$

(b) By (4.5), (4.8) and Kendall's Itô formula [16] as in the proof of Lemma 2.2, we have

$$
d \rho_{o}^{2}\left(x_{t}\right) \leq 2 \sqrt{2} \rho_{o}\left(x_{t}\right) d b_{t}+\left(C_{1}-\frac{2 \sqrt{2} \rho_{o}\left(x_{t}\right)(1+\varepsilon)}{1+\sqrt{2}} \int_{0}^{\rho_{o}\left(x_{t}\right)} \Phi(s) d s\right) d t
$$

for some constants $\varepsilon, C_{1}>0$, where x_{t} and b_{t} are in the proof of Lemma 2.2. Let

$$
\begin{equation*}
\varphi(r)=\int_{0}^{r} \frac{d s}{\sqrt{s}} \int_{0}^{\sqrt{s}} \Phi(u) d u, \quad r \geq 0 \tag{4.12}
\end{equation*}
$$

We arrive at

$$
\begin{aligned}
d \varphi \circ \rho_{o}^{2}\left(x_{t}\right) \leq & 2 \sqrt{2} \rho_{o}\left(x_{t}\right) \varphi^{\prime} \circ \rho_{o}^{2}\left(x_{t}\right) d b_{t}+4 \rho_{o}^{2}\left(x_{t}\right) \varphi^{\prime \prime} \circ \rho_{o}^{2}\left(x_{t}\right) d t \\
& +\varphi^{\prime} \circ \rho_{o}^{2}\left(x_{t}\right)\left(C_{1}-\frac{2 \sqrt{2} \rho_{o}\left(x_{t}\right)(1+\varepsilon)}{1+\sqrt{2}} \int_{0}^{\rho_{o}\left(x_{t}\right)} \Phi(s) d s\right) d t
\end{aligned}
$$

From (4.4) we see that

$$
\frac{\rho_{o} \varphi^{\prime \prime} \circ \rho_{o}^{2}}{\varphi^{\prime} \circ \rho_{o}^{2} \int_{0}^{\rho_{o}} \Phi(s) d s} \leq \frac{\Phi \circ \rho_{o}}{2\left(\int_{0}^{\rho_{o}} \Phi(s) d s\right)^{2}},
$$

which goes to zero as $\rho_{o} \rightarrow \infty$. Then there exists a constant $C_{2}>C_{1}$ such that

$$
\begin{aligned}
d \varphi \circ \rho_{o}^{2}\left(x_{t}\right) \leq & 2 \sqrt{2}\left(\int_{0}^{\rho_{o}\left(x_{t}\right)} \Phi(s) d s\right) d b_{t} \\
& +C_{2} d t-\frac{2 \sqrt{2}}{1+\sqrt{2}}\left(\int_{0}^{\rho_{o}\left(x_{t}\right)} \Phi(s) d s\right)^{2} d t
\end{aligned}
$$

This implies that for any $\lambda>0$,

$$
\begin{aligned}
\mathbb{E} \exp & {\left[\frac{2 \sqrt{2} \lambda}{1+\sqrt{2}} \int_{0}^{T}\left(\int_{0}^{\rho_{o}\left(x_{t}\right)} \Phi(s) d s\right)^{2} d t\right] } \\
& \leq e^{C_{2} \lambda T+\lambda \varphi \rho \rho_{o}^{2}(x)} \mathbb{E} \exp \left[2 \sqrt{2} \lambda \int_{0}^{T}\left(\int_{0}^{\rho_{o}\left(x_{t}\right)} \Phi(s) d s\right) d b_{t}\right] \\
& \leq e^{C_{2} \lambda T+\lambda \varphi \circ \rho_{o}^{2}(x)}\left(\mathbb{E} \exp \left[16 \lambda^{2} \int_{0}^{T}\left(\int_{0}^{\rho_{o}\left(x_{t}\right)} \Phi(s) d s\right)^{2} d t\right]\right)^{1 / 2} .
\end{aligned}
$$

Taking

$$
\lambda=\frac{\sqrt{2}}{8(1+\sqrt{2})},
$$

we arrive at

$$
\begin{align*}
& \mathbb{E} \exp \left[\frac{1}{2(1+\sqrt{2})^{2}} \int_{0}^{T}\left(\int_{0}^{\rho_{o}\left(x_{t}\right)} \Phi(s) d s\right)^{2} d t\right] \tag{4.13}\\
& \quad \leq e^{2 C_{2} T+\varphi \circ \rho_{o}^{2}(x) \sqrt{2} / 8(1+\sqrt{2})} .
\end{align*}
$$

(c) Let $\gamma:\left[0, \rho\left(x_{t}, y_{t}\right)\right] \rightarrow M$ be the minimal geodesic from x_{t} to y_{t}, and U its tangent unit vector. By (4.2), there exists a constant $C_{3}>0$ such that

$$
\begin{align*}
\langle\nabla V & \left., \nabla \rho\left(\cdot, y_{t}\right)\right\rangle\left(x_{t}\right)+\left\langle\nabla V, \nabla \rho\left(x_{t}, \cdot\right)\right\rangle\left(y_{t}\right) \\
& =\int_{0}^{\rho\left(x_{t}, y_{t}\right)} \operatorname{Hess}_{V}\left(U_{s}, U_{s}\right) d s \leq C_{3}-\int_{0}^{\rho\left(x_{t}, y_{t}\right) / 2} \Phi(s) d s \tag{4.14}
\end{align*}
$$

To understand the last inequality, we assume, for instance, that $\rho_{o}\left(x_{t}\right) \geq \rho_{o}\left(y_{t}\right)$ so that by the triangle inequality,

$$
\rho_{o}\left(\gamma_{s}\right) \geq \rho_{o}\left(x_{t}\right)-s \geq \rho\left(x_{t}, y_{t}\right) / 2-s, \quad s \in\left[0, \rho\left(x_{t}, y_{t}\right) / 2\right] .
$$

For the coupling constructed in Section 3, one concludes from (4.14) and the proof of Lemma 2.3 that

$$
\begin{align*}
d \rho\left(x_{t}, y_{t}\right) \leq & \left\{2 \sqrt{K\left(x_{t}, y_{t}\right)(d-1)}+C_{4}\right. \\
& \left.-\int_{0}^{\rho\left(x_{t}, y_{t}\right) / 2} \Phi(s) d s-\xi_{t}\right\} d t, \quad t<\tau \tag{4.15}
\end{align*}
$$

holds for some constant $C_{4}>0$, where

$$
K\left(x_{t}, y_{t}\right):=\sup _{\ell\left(\left[0, \rho\left(x_{t}, y_{t}\right)\right]\right)} \Psi \circ \rho_{o} \leq \Psi\left(\rho_{o}\left(x_{t}\right)+\rho\left(x_{t}, y_{t}\right)\right),
$$

and ℓ is the minimal geodesic from x_{t} to y_{t}. Combining (4.5) and (4.15), we obtain

$$
d \rho\left(x_{t}, y_{t}\right) \leq\left\{C_{4}+2 \theta \int_{0}^{\rho_{o}\left(x_{t}\right)} \Phi(s) d s-\xi_{t}\right\} d t, \quad t<\tau
$$

So, taking

$$
\xi_{t}=C_{4}+2 \theta \int_{0}^{\rho_{o}\left(x_{t}\right)} \Phi(s) d s+\frac{\rho(x, y)}{T}
$$

we arrive at

$$
d \rho\left(x_{t}, y_{t}\right) \leq-\frac{\rho(x, y)}{T} d t, \quad t<\tau .
$$

This implies $\tau \leq T$, and hence $x_{T}=y_{T}$ a.s.
Combining (4.5) with (3.4) and (3.5) we conclude that for the present choice of ξ_{t} there exist $\alpha, p, C_{5}>1$ such that

$$
\begin{aligned}
\left(\mathbb{E} R^{\alpha /(\alpha-1)}\right)^{p /(p-1)} \leq \mathbb{E} \exp \left[\frac{1}{2(1+\sqrt{2})^{2}} \int_{0}^{T}\right. & \left(\int_{0}^{\rho\left(x_{t}\right)} \Phi(s) d s\right)^{2} d t \\
& \left.+C_{5} T+\frac{C_{5}}{T} \rho(x, y)^{2}\right]
\end{aligned}
$$

Combining this with (4.13) and (3.2) we obtain

$$
\begin{equation*}
\left(P_{T} f(y)\right)^{\alpha} \leq\left(P_{T} f^{\alpha}(x)\right) \exp \left[C T+\frac{C}{T} \rho(x, y)^{2}+C \varphi \circ \rho^{2}(x)\right] \tag{4.16}
\end{equation*}
$$

holds for some $\alpha, C>1$, any positive $f \in C_{b}(M)$ and all $x, y \in M, T>0$.
(d) For any positive $f \in C_{b}(M)$ with $\mu\left(f^{\alpha}\right)=1$, (4.16) implies that

$$
\left(P_{T} f(y)\right)^{\alpha} \int_{B(o, 1)} \exp \left[-C T-\frac{C}{T} \rho(x, y)^{2}-C \varphi^{2}(x)\right] \mu(d x) \leq 1 .
$$

Therefore, there exists a constant $C^{\prime}>0$ such that

$$
\begin{equation*}
\left(P_{T} f(y)\right)^{\alpha} \leq \exp \left[C^{\prime}(1+T)+\frac{C^{\prime}}{T} \rho(y)^{2}\right], \quad y \in M, T>0 . \tag{4.17}
\end{equation*}
$$

Combining this with (4.11) we obtain

$$
\left\|P_{T}\right\|_{\alpha \rightarrow p \alpha}<\infty, \quad T>0, p>1
$$

This is equivalent to the supercontactivity by the Riesz-Thorin interpolation theorem and $\left\|P_{t}\right\|_{1 \rightarrow 1}=1$. Thus, the first assertion holds.
(e) To prove (4.7), it suffices to consider $t \in(0,1]$ since $\left\|P_{t}\right\|_{2 \rightarrow \infty}$ is decreasing in $t>0$. So, below we assume that $T \leq 1$. By (4.17) and the fact that $\left(P_{2 T} f\right)^{\alpha} \leq$ $P_{T}\left(P_{T} f\right)^{\alpha}$, we have

$$
\begin{equation*}
\left\|P_{2 T}\right\|_{\alpha \rightarrow \infty} \leq\left\|P_{T} e^{2 C^{\prime} \rho_{o}^{2} / T}\right\|_{\infty} e^{C^{\prime}(1+T)}, \quad T>0 \tag{4.18}
\end{equation*}
$$

Therefore, by the Riesz-Thorin interpolation theorem and $\left\|P_{t}\right\|_{1 \rightarrow 1}=1$, for the ultracontractivity it suffices to show that

$$
\begin{equation*}
\left\|P_{T} e^{\lambda \rho_{o}^{2}}\right\|_{\infty}<\infty, \quad \lambda, T>0 \tag{4.19}
\end{equation*}
$$

Since Φ is increasing, it is easy to check that

$$
\eta(r):=\sqrt{r} \int_{0}^{\sqrt{r}} \Phi(s) d s, \quad r \geq 0
$$

is convex, and so is $s \mapsto s \eta\left(\frac{\log s}{\lambda}\right)$ for $\lambda>0$. Thus, it follows from (4.9) and the Jensen inequality that

$$
h_{\lambda, x}(t):=\mathbb{E} e^{\lambda \rho_{o}^{2}\left(x_{t}\right)}<\infty, \quad x_{0}=x \in M, \lambda, t>0,
$$

and

$$
\frac{d^{+}}{d t} h_{\lambda, x}(t) \leq C+C(\lambda)-\lambda h_{\lambda, x}(t) \eta\left(\lambda^{-1} \log h_{\lambda, x}(t)\right), \quad t>0
$$

This implies (4.19), provided (4.6) holds. This can be done by considering the following two situations:
(1) Since $h_{\lambda, x}(t)$ is decreasing provided $\lambda h_{\lambda, x}(t) \eta\left(\lambda^{-1} \log h_{\lambda, x}(t)\right)>C+$ $C(\lambda)$, if

$$
\lambda h_{\lambda, x}(0) \eta\left(\lambda^{-1} \log h_{\lambda, x}(0)\right) \leq 2 C+2 C(\lambda)
$$

then

$$
h_{\lambda, x}(t) \leq \sup \left\{r \geq 1: \lambda r \eta\left(\lambda^{-1} \log r\right) \leq 2 C+2 C(\lambda)\right\} \leq \frac{1}{\lambda}(2 C+2 C(\lambda))+C^{\prime \prime}
$$

for some constant $C^{\prime \prime}>0$.
(2) If $\lambda h_{\lambda, x}(0) \eta\left(\lambda^{-1} \log h_{\lambda, x}(0)\right)>2 C+2 C(\lambda)$, then $h_{\lambda, x}(t)$ is decreasing in t up to

$$
t_{\lambda}:=\inf \left\{t \geq 0: \lambda h_{\lambda, x}(t) \eta\left(\lambda^{-1} \log h_{\lambda, x}(t)\right) \leq 2 C+2 C(\lambda)\right\} .
$$

Indeed,

$$
\frac{d^{+}}{d t} h_{\lambda, x}(t) \leq-\frac{\lambda}{2} h_{\lambda, x}(t) \eta\left(\lambda^{-1} \log h_{\lambda, x}(t)\right), \quad t \leq t_{\lambda}
$$

Thus,

$$
\int_{h_{\lambda, x}\left(T \wedge t_{\lambda}\right)}^{\infty} \frac{d r}{r \eta\left(\lambda^{-1} \log r\right)} \geq \frac{\lambda}{2}\left(T \wedge t_{\lambda}\right)
$$

This is equivalent to

$$
\Gamma_{2}\left(\lambda^{-1} \log h_{\lambda, x}\left(T \wedge t_{\lambda}\right)\right) \geq \frac{1}{2}\left(T \wedge t_{\lambda}\right)
$$

Hence,

$$
h_{\lambda, x}\left(T \wedge t_{\lambda}\right) \leq \exp \left[\lambda \Gamma_{2}^{-1}\left(\frac{1}{2}\left(T \wedge t_{\lambda}\right)\right)\right]
$$

Since it is reduced to case (1) if $T>t_{\lambda}$ by regarding t_{λ} as the initial time, in conclusion we have

$$
\sup _{x \in M} h_{\lambda, x}(T) \leq \max \left\{\exp \left[\lambda \Gamma_{2}^{-1}(T / 2)\right], C^{\prime \prime}+\frac{1}{\lambda}(2 C+2 C(\lambda))\right\} .
$$

Therefore, (4.7) follows from (4.18), (4.10) with $\lambda=2 C^{\prime} / T$, and the Riesz interpolation theorem.

Finally, we note that a simple example for conditions in Theorem 4.2 to hold is

$$
\Phi(s)=s^{\alpha-1}, \quad \Psi(s)=\varepsilon s^{2 \alpha}
$$

for $\alpha>1$ and small enough $\varepsilon>0$. In this case P_{t} is ultracontractive with

$$
\left\|P_{t}\right\|_{2 \rightarrow \infty} \leq \exp \left[c\left(1+t^{-(\alpha+1) /(\alpha-1)}\right)\right], \quad t>0
$$

for some $c>0$.
Acknowledgments. The author would like to thank the referees for their careful reading and valuable comments on an earlier version of the paper.

REFERENCES

[1] AIDA, S. (1998). Uniform positivity improving property, Sobolev inequalities, and spectral gaps. J. Funct. Anal. 158 152-185. MR1641566
[2] Aida, S., Masuda, T. and Shigekawa, I. (1994). Logarithmic Sobolev inequalities and exponential integrability. J. Funct. Anal. 126 83-101. MR1305064
[3] Arnaudon, M., Thalmaier, A. and Wang, F.-Y. (2006). Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below. Bull. Sci. Math. $130223-$ 233. MR2215664
[4] Bakry, D. and Émery, M. (1984). Hypercontractivité de semi-groupes de diffusion. C. R. Acad. Sci. Paris Sér. I Math. 299 775-778. MR772092
[5] Bogachev, V. I., Röckner, M. and Wang, F.-Y. (2001). Elliptic equations for invariant measures on finite and infinite dimensional manifolds. J. Math. Pures Appl. 80 177-221. MR1815741
[6] Bismut, J.-M. (1984). Large Deviations and the Malliavin Calculus. Progress in Mathematics 45. Birkhäuser Boston, Boston, MA. MR755001
[7] CHEN, M.-F. and WANG, F.-Y. (1994). Application of coupling method to the first eigenvalue on manifold. Sci. China Ser. A 37 1-14. MR1308707
[8] Cranston, M. (1991). Gradient estimates on manifolds using coupling. J. Funct. Anal. 99 110-124. MR1120916
[9] Chen, M.-F. and WANG, F.-Y. (1997). Estimates of logarithmic Sobolev constant: An improvement of Bakry-Emery criterion. J. Funct. Anal. 144 287-300. MR1432586
[10] Davies, E. B. and Simon, B. (1984). Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59 335-395. MR766493
[11] Elworthy, K. D. and Li, X.-M. (1994). Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125 252-286. MR1297021
[12] Émery, M. (1989). Stochastic Calculus in Manifolds. Springer, Berlin. MR1030543
[13] Greene, R. E. and Wu, H. (1979). Function Theory on Manifolds Which Possess a Pole. Lecture Notes in Math. 699. Springer, Berlin. MR521983
[14] Gross, L. (1975). Logarithmic Sobolev inequalities. Amer. J. Math. 97 1061-1083. MR0420249
[15] Hsu, E. P. (1997). Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds. Comm. Math. Phys. 189 9-16. MR1478528
[16] Kendall, W. S. (1987). The radial part of Brownian motion on a manifold: A semimartingale property. Ann. Probab. 15 1491-1500. MR905343
[17] Ledoux, M. (1999). Concentration of measure and logarithmic Sobolev inequalities. In Séminaire de Probabilités, XXXIII. Lecture Notes in Math. 1709 120-216. Springer, Berlin. MR1767995
[18] RÖCKNER, M. and WANG, F.-Y. (2003). Supercontractivity and ultracontractivity for (nonsymmetric) diffusion semigroups on manifolds. Forum Math. 15 893-921. MR2010284
[19] WANG, F.-Y. (1997). Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Related Fields 109 417-424. MR1481127
[20] WANG, F.-Y. (2001). Logarithmic Sobolev inequalities: Conditions and counterexamples. J. Operator Theory 46 183-197. MR1862186
[21] WANG, F.-Y. (2005). Functional Inequalities, Markov Properties, and Spectral Theory. Science Press, Beijing.

SCHOOL OF MATHEMATICS Beijing Normal University Beiding 100875
China
AND
SWANSEA UNIVERSITY
Singleton Park
SWANSEA, SA2 8PP
United Kingdom
E-MAIL: wangfy@bnu.edu.cn

[^0]: Received October 2007; revised August 2008.
 ${ }^{1}$ Supported in part by WIMCS, Creative Research Group Fund of the National Natural Science Foundation of China (No. 10721091) and the 973-Project.

 AMS 2000 subject classifications. 60J60, 58G32.
 Key words and phrases. Log-Sobolev inequality, Ricci curvature, Riemannian manifold, diffusion semigroup.

