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LOG-SOBOLEV INEQUALITIES: DIFFERENT ROLES
OF RIC AND HESS

BY FENG-YU WANG1

Beijing Normal University and Swansea University

Let Pt be the diffusion semigroup generated by L := �+∇V on a com-
plete connected Riemannian manifold with Ric ≥ −(σ 2ρ2

o +c) for some con-
stants σ, c > 0 and ρo the Riemannian distance to a fixed point. It is shown
that Pt is hypercontractive, or the log-Sobolev inequality holds for the asso-
ciated Dirichlet form, provided −HessV ≥ δ holds outside of a compact set
for some constant δ > (1 + √

2)σ
√

d − 1. This indicates, at least in finite di-
mensions, that Ric and −HessV play quite different roles for the log-Sobolev
inequality to hold. The supercontractivity and the ultracontractivity are also
studied.

1. Introduction. Let M be a d-dimensional completed connected noncom-
pact Riemannian manifold and V ∈ C2(M) such that

Z :=
∫
M

eV (x) dx < ∞,(1.1)

where dx is the volume measure on M . Let μ(dx) = Z−1eV (x) dx. Under (1.1)
it is easy to see that H

2,1
0 (μ) = W 2,1(μ), where H

2,1
0 (μ) is the completion of

C1
0(M) under the Sobolev norm ‖f ‖2,1 := μ(f 2 + |∇f |2)1/2, and W 2,1(μ) is the

completion of the class {f ∈ C1(M) :f + |∇f | ∈ L2(μ)} under ‖ · ‖2,1. Then the
L-diffusion process is nonexplosive and its semigroup Pt is uniquely determined.
Moreover, Pt is symmetric in L2(μ) so that μ is Pt -invariant. It is well known by
the Bakry–Emery criterion (see [4]) that

Ric−HessV ≥ K(1.2)

for some constant K > 0 implies the Gross log-Sobolev inequality [14],

μ(f 2 logf 2) :=
∫
M

f 2 logf 2 dμ ≤ Cμ(|∇f |2),
(1.3)

μ(f 2) = 1, f ∈ C1(M)
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for C = 2/K. This result was extended by Chen and the author [9] to the situa-
tion that Ric−HessV is uniformly positive outside a compact set. In the case that
Ric−HessV is bounded below, sufficient concentration conditions of μ for (1.3)
to hold are presented in [1, 19, 20]. Obviously, in a condition on Ric−HessV the
Ricci curvature and −HessV play the same role.

What can we do when Ric−HessV is unbounded below? It seems very hard
to confirm the log-Sobolev inequality with the unbounded below condition of
Ric−HessV . Therefore, in this paper we try to clarify the roles of Ric and −HessV

in the study of the log-Sobolev inequality. Let us first recall the gradient estimate
of Pt , which is a key point in the above references to prove the log-Sobolev in-
equality.

Let xt be the L-diffusion process starting at x, and let v ∈ TxM . Due to
Bismut [6] and Elworthy–Li [11], under a reasonable lower bound condition of
Ric−HessV , one has

〈∇Ptf, v〉 = E〈∇f (xt ), vt 〉, t > 0, f ∈ C1
b(M),

where vt ∈ Txt M solves the equation

Dtvt := //−1
t→0

d

dt
//t→0vt = −(Ric−HessV )#(vt )

for //t→0 :Txt M → TxM the associated stochastic parallel displacement, and
(Ric−HessV )#(vt ) ∈ Txt M with

〈(Ric−HessV )#(vt ),X〉 := (Ric−HessV )(vt ,X), X ∈ Txt M.

Thus, for the gradient of Pt , which is a short distance behavior of the diffusion
process, a condition on Ric−HessV appears naturally.

On the other hand, however, Ric and −HessV play very different roles for long
distance behaviors. For instance, Let ρo be the Riemannian distance function to
a fixed point o ∈ M. If Ric ≥ −k and −HessV ≥ δ for some k ≥ 0, δ ∈ R, the
Laplacian comparison theorem implies

Lρo ≤ √
k(d − 1) coth

[√
k/(d − 1)ρo

] − δρo.

Therefore, for large ρo, the Ric lower bound leads to a bounded term while that of
−HessV provides a linear term. The same phenomena appears in the formula on
distance of coupling by parallel displacement (cf. [3], (2.3), (2.4)), which implies
the above Bismut–Elworthy–Li formula by letting the initial distance tend to zero
(cf. [15]). Here, k ≥ 0 is essential for our framework, since the manifold has to be
compact, if Ric is bounded below by a positive constant.

Since the log-Sobolev inequality is always available on bounded regular do-
mains, it is more likely a long-distance property of the diffusion process. So,
Ric and −HessV should take different roles in the study of the log-Sobolev in-
equality. Indeed, it has been observed by the author [20] that (1.3) holds for some
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C > 0, provided Ric is bounded below and −HessV is uniformly positive outside
a compact set. This indicates that for the log-Sobolev inequality, the positivity of
−HessV is a dominative condition, which allows the Ricci curvature to be bounded
below by an arbitrary negative constant, and hence, allows Ric−HessV to be glob-
ally negative on M .

The first aim of this paper is to search for the weakest possibility of curvature
lower bound for the log-Sobolev inequality to hold under the condition

−HessV ≥ δ outside a compact set(1.4)

for some constant δ > 0. This condition is reasonable as the log-Sobolev inequality
implies μ(eλρ2

o ) < ∞ for some λ > 0 (see, e.g., [2, 17]).
According to the following Theorem 1.1 and Example 1.1, we conclude that

under (1.4) the optimal curvature lower bound condition for (1.3) to hold is

inf
M

{Ric+σ 2ρ2
o} > −∞(1.5)

for some constant σ > 0, such that δ > (1 + √
2)σ

√
d − 1. More precisely,

let θ0 > 0 be the smallest positive constant, such that for any connected com-
plete noncompact Riemannian manifold M and V ∈ C2(M), such that Z :=∫
M eV (x) dx < ∞, the conditions (1.4) and (1.5) with δ > σθ0

√
d − 1, im-

plies (1.3) for some C > 0. Due to Theorem 1.1 and Example 1.1 below, we
conclude that

θ0 ∈ [
1,1 + √

2
]
.

The exact value of θ0 is however unknown.

THEOREM 1.1. Assume that (1.4) and (1.5) hold for some constants c, δ,

σ > 0 with δ > (1 + √
2)σ

√
d − 1. Then (1.3) holds for some C > 0.

EXAMPLE 1.1. Let M = R
2 be equipped with the rotationally symmetric met-

ric

ds2 = dr2 + {rekr2}2 dθ2,

under the polar coordinates (r, θ) ∈ [0,∞) × S
1 at 0, where k > 0 is a constant,

then (see, e.g., [13])

Ric = −(d2/dr2)(rekr2
)

rekr2 = −4k − 4k2r2.

Thus, (1.5) holds for σ = 2k. Next, take V = −kρ2
o −λ(ρ2

o +1)1/2 for some λ > 0.
By the Hessian comparison theorem and the negativity of the sectional curvature,
we obtain (1.4) for δ = 2k. Since d = 2 and

eV (x) dx = re−λ(1+r2)1/2
dr dθ,(1.6)
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one has Z < ∞ and δ = 2k = σ
√

d − 1. But the log-Sobolev inequality is not
valid since by Herbst’s inequality it implies μ(erρ2

o ) < ∞ for some r > 0, which
is, however, not the case due to (1.6). Since in this example one has δ > σθ

√
d − 1

for any θ < 1, according to the definition of θ0, we conclude that θ0 ≥ 1.

Following the line of [19, 20], the key point in the proof of Theorem 1.1 will be
a proper Harnack inequality of type

(Ptf (x))α ≤ Cα(t, x, y)Ptf
α(y), t > 0, x, y ∈ M,

for any nonnegative f ∈ Cb(M), where α > 1 is a constant and Cα ∈ C((0,∞),

M2) is a positive function. Such an inequality was established in [19] for
Ric−HessV bounded below and extended in [3] to a more general situation with
Ric satisfying (1.5).

The Harnack inequality presented in [3] contains a leading term exp[ρ(x, y)4],
which is, however, too large to be integrability w.r.t. μ × μ under our conditions.
So, to prove Theorem 1.1, we shall present a sharper Harnack inequality in Sec-
tion 3 by refining the coupling method introduced in [3] (see Proposition 3.1
below). This inequality, together with the concentration of μ ensured by (1.4)
and (1.5), will imply the hypercontractivity of Pt . To establish this new Harnack
inequality, some necessary preparations are presented in Section 2.

Finally, in the same spirit of Theorem 1.1, the supercontractivity and ultra-
contractivity of Pt are studied in Section 4 under explicit conditions on Ric and
−HessV .

2. Preparations. We first study the concentration of μ by using (1.4)
and (1.5), for which we need to estimate Lρo from above according to [5] and
references within.

LEMMA 2.1. If (1.4) and (1.5) hold, then there exists a constant C1 > 0 such
that

Lρ2
o ≤ C1(1 + ρo) − 2

(
δ − σ

√
d − 1

)
ρ2

o(2.1)

holds outside cut(o), the cut-locus of o. If moreover δ > σ
√

d − 1 then Z < ∞
and μ(eλρ2

o ) < ∞ for all λ < 1
2(δ − σ

√
d − 1).

PROOF. By (1.5) we have Ric ≥ −(c+σ 2ρ2
o) for some constant c > 0. By the

Laplacian comparison theorem this implies that

�ρo ≤
√

(c + σ 2ρ2
o)(d − 1) coth

[√
(c + σ 2ρ2

o)/(d − 1) ρo

]
holds outside cut(o). Thus, outside cut(o) one has

�ρ2
o ≤ 2ρo

√
(c + σ 2ρ2

o)(d − 1) coth
[√

(c + σ 2ρ2
o)/(d − 1) ρo

] + 2
(2.2)

≤ 2d + 2ρo

√
(c + σ 2ρ2

o)(d − 1),
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where the second inequality follows from the fact that

r cosh r ≤ (1 + r) sinh r, r ≥ 0.

On the other hand, for x /∈ cut(o) and U the unit tangent vector along the unique
minimal geodesic 	 form o to x, by (1.4) there exists a constant c1 > 0 independent
of x such that

〈∇V,∇ρo〉(x) = 〈∇V,U〉(o) +
∫ ρo(x)

0
HessV (U,U)(	s)ds ≤ c1 − δρo(x).

Combining this with (2.2) we prove (2.1).
Finally, let δ > σ

√
d − 1 and 0 < λ < 1

2(δ − σ
√

d − 1). By (2.1) we have

Leλρ2
o ≤ λeλρ2

o
(
C1(1 + ρo) − 2

(
δ − σ

√
d − 1

)
ρ2

o + 4λρ2
o

)

≤ c2 − c3ρ
2
oeλρ2

o

for some constants c2, c3 > 0. By [5], Proposition 3.2, this implies Z < ∞ and∫
M

ρ2
oeλρ2

o dμ ≤ c2

c3
< ∞. �

LEMMA 2.2. Let xt be the L-diffusion process with x0 = x ∈ M. If (1.4)
and (1.5) hold with δ > σ

√
d − 1, then for any δ0 ∈ (σ

√
d − 1, δ) there exists

a constant C2 > 0 such that

E exp
[
(δ0 − σ

√
d − 1)2

4

∫ T

0
ρo(xt )

2 dt

]

≤ exp
[
C2T + 1

4

(
δ0 − σ

√
d − 1

)
ρo(x)2

]
, T > 0, x ∈ M.

PROOF. By Lemma 2.1, we have

Lρ2
o ≤ C − 2

(
δ0 − σ

√
d − 1

)
ρ2

o

outside cut(o) for some constant C > 0. Then the Itô formula for ρo(xt ) due to
Kendall [16] implies that

dρ2
o(xt ) ≤ 2

√
2ρo(xt )dbt + [

C − 2
(
δ0 − σ

√
d − 1

)
ρ2

o(xt )
]
dt(2.3)

holds for some Brownian motion bt on R. This implies that the L-diffusion process
is nonexplosive so that

Tn := inf{t ≥ 0 :ρo(xt ) ≥ n} → ∞
as n → ∞. Indeed, (2.3) implies that

nP(Tn ≤ t) ≤ Eρo(xt∧Tn)
2 ≤ ρo(x)2 + Ct, n ≥ 1, t > 0.
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Hence, P(Tn ≤ t) → 0 as n → ∞ for any t > 0. This implies limn→∞ Tn = ∞ a.s.
For any λ > 0 and n ≥ 1, it follows from (2.3) that

E exp
[
2λ

(
δ0 − σ

√
d − 1

) ∫ T ∧Tn

0
ρ2

o(xt )dt

]

≤ eλρ2
o (x)+CλT

E exp
[
2
√

2λ

∫ T ∧Tn

0
ρo(xt )dbt

]

≤ eλρ2
o (x)+CλT

(
E exp

[
16λ2

∫ T ∧Tn

0
ρ2

o(xt )dt

])1/2

,

where in the last step we have used the inequality

EeMt ≤ (
Ee2〈M〉t )1/2

for Mt = 2
√

2λ
∫ t∧Tn

0 ρo(Xs)dbs . This follows immediately from the Schwartz
inequality and the fact that exp[2Mt − 2〈M〉t ] is a martingale. Thus, taking

λ = 1
8

(
δ0 − σ

√
d − 1

)
,

we obtain

E exp
[

1

4

(
δ0 − σ

√
d − 1

)2
∫ T ∧Tn

0
ρ2

o(xt )dt

]

≤ exp
[

1

4

(
δ0 − σ

√
d − 1

)
ρ2

o(x) + C2T

]

for some C2 > 0. Then the proof is completed by letting n → ∞. �

Finally, we recall the coupling argument introduced in [3] for establishing the
Harnack inequality of Pt .

Let T > 0 and x = y ∈ M be fixed. Then the L-diffusion process starting from x

can be constructed by solving the following Itô stochastic differential equation:

dI xt = √
2
t dBt + ∇V (xt )dt, x0 = x,

where dI is the Itô differential on manifolds introduced in [12] (see also [3]), Bt

is the d-dimensional Brownian motion, and 
t is the horizontal lift of xt onto the
orthonormal frame bundle O(M).

To construct another diffusion process yt starting from y such that xT = yT ,
as in [3], we add an additional drift term to the equation (as explained in [3],
Section 3, we may and do assume that the cut-locus of M is empty)

dI yt = √
2Pxt ,yt 
t dBt + ∇V (yt )dt + ξtU(xt , yt )1{t<τ } dt, y0 = y,
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where Pxt ,yt is the parallel transformation along the unique minimal geodesic 	

from xt to yt , U(xt , yt ) is the unit tangent vector of 	 at yt , ξt ≥ 0 is a smooth
function of xt to be determined, and

τ := inf{t ≥ 0 :xt = yt }
is the coupling time. Since all terms involved in the equation are regular enough,
there exists a unique solution yt . Furthermore, since the additional term containing
1{t<τ } vanishes from the coupling time on, one has xt = yt for t ≥ τ due to the
uniqueness of solutions.

LEMMA 2.3. Assume that (1.4) and (1.5) hold with δ ≥ 2σ
√

d − 1. Then
there exists a constant C3 > 0 independent of x, y and T such that xT = yT holds
for ξt := C3 + 2σ

√
d − 1ρo(xt ) + ρ(x,y)

T
.

PROOF. According to Section 2 in [3], we have

dρ(xt , yt ) = {I (xt , yt ) + 〈∇V,∇ρ(·, yt )〉(xt )
(2.4)

+ 〈∇V,∇ρ(xt , ·)〉(yt ) − ξt }dt, t < τ,

where

IZ(xt , yt ) =
d−1∑
i=1

∫ ρ(xt ,yt )

0

(|∇UJi |2 − 〈R(U,Ji)U,Ji〉)(	s)ds

for R the Riemann curvature tensor, U the unit tangent vector of the minimal
geodesic 	 : [0, ρ(xt , yt )] → M from xt to yt , and {Ji}d−1

i=1 the Jacobi fields along 	,
which, together with U , consist of an orthonormal basis of the tangent space at xt

and yt and satisfy

Ji(yt ) = Pxt ,yt Ji(xt ), i = 1, . . . , d − 1.

By (1.5) we take a constant c ≥ 0 such that Ric ≥ −(c + σ 2ρ2
o). Letting

K(xt , yt ) = sup
	([0,ρ(xt ,yt )])

{c + σ 2ρ2
o},

we obtain from Wang [21], Theorem 2.14 (see also [7, 8]), that

I (xt , yt ) ≤ 2
√

K(xt , yt )(d − 1) tanh
[
ρ(xt , yt )

2

√
K(xt , yt )/(d − 1)

]
.(2.5)

Moreover, by (1.4) there exist two constants r0, r1 > 0 such that −HessV ≥ δ

outside B(o, r0) but ≤ r1 on B(o, r0), where B(o, r0) is the closed geodesic ball
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at o with radius r0. Since the length of 	 contained in B(o, r0) is less than 2r0, we
conclude that

〈∇V,∇ρ(·, yt )〉(xt ) + 〈∇V,∇ρ(xt , ·)〉(yt )

=
∫ ρ(xt ,yt )

0
HessV (U,U)(	s)ds ≤ 2r0r1 − (

ρ(xt , yt ) − 2r0
)+

δ

≤ c1 − δρ(xt , yt )

for some constant c1 > 0. Combining this with (2.4), (2.5) and

ξt = C3 + 2σ
√

d − 1 ρo(xt ) + ρ(x, y)

T
,

we arrive at

dρ(xt , yt ) ≤
{

2
√

K(xt , yt )(d − 1) + c1 − δρ(xt , yt )

− C3 − 2σ
√

d − 1ρo(xt ) − ρ(x, y)

T

}
dt

for t < τ. Noting that√
K(xt , yt ) ≤ (

c + σ 2[ρo(xt ) + ρ(xt , yt )]2)1/2

≤ √
c + σ [ρo(xt ) + ρ(xt , yt )],

and δ ≥ 2σ
√

d − 1, one has

2
√

K(xt , yt )(d − 1) − δρ(xt , yt ) − 2σ
√

d − 1ρo(xt ) ≤ 2
√

c(d − 1).

Thus, when C3 ≥ c1 + 2
√

c(d − 1) we have

dρ(xt , yt ) ≤ −ρ(x, y)

T
dt, t < τ,

so that

0 = ρ(xτ , yτ ) ≤ ρ(x, y) −
∫ τ

0

ρ(x, y)

T
dt = T − τ

T
ρ(x, y),

which implies that τ ≤ T and hence, xT = yT . �

3. Harnack inequality and proof of Theorem 1.1. We first prove the fol-
lowing Harnack inequality using results in Section 2.

PROPOSITION 3.1. Assume that (1.4) and (1.5) hold with δ > (1 + √
2)σ ×√

d − 1. Then there exist C > 0 and α > 1 such that

(PT f (y))α ≤ (PT f α(x)) exp
[
C

T
ρ(x, y)2 + C

(
T + ρo(x)2)]

(3.1)

holds for all x, y ∈ M,T > 0 and nonnegative f ∈ Cb(M).
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PROOF. According to Lemma 2.3, we take

ξt = C3 + 2σ
√

d − 1ρo(xt ) + ρ(x, y)

T
,

such that τ ≤ T and xT = yT . Obviously, yt solves the equation

dI yt = √
2
̃t dB̃t + ∇V (yt )dt

for 
̃t := Pxt ,yt 
t being the horizontal lift of yt , and B̃t solving the equation

dB̃t = dBt + 1√
2

̃−1

t ξtU(xt , yt )1{t<τ } dt.

By the Girsanov theorem and the fact that τ ≤ T , the process {B̃t : t ∈ [0, T ]} is
a d-dimensional Brownian motion under the probability measure RP for

R := exp
[
− 1√

2

∫ τ

0
〈Pxt ,yt 
t dBt, ξtU(xt , yt )〉 − 1

4

∫ τ

0
ξ2
t dt

]
.

Thus, under this probability measure {yt : t ∈ [0, T ]} is generated by L. In particu-
lar, PT f (y) = E[f (yT )R]. Combining this with the Hölder inequality and noting
that xT = yT , we obtain

PT f (y) = E[f (yT )R] = E[f (xT )R]
≤ (PT f α(x))1/α(

ERα/(α−1))(α−1)/α
.

That is,

(PT f (y))α ≤ (PT f α(x))
(
ERα/(α−1))α−1

.(3.2)

Since for any continuous exponential integrable martingale Mt and any β,p > 1,

the process exp[βpMt − p2β2

2 〈M〉t ] is a martingale, by the Hölder inequality one
has

EeβMt−(β/2)〈M〉t = E
[
eβMt−(β2p/2)〈M〉t · e(β(βp−1)/2)〈M〉t ]

(3.3)
≤ E

(
e(βp(βp−1)/(2(p−1)))〈M〉t )(p−1)/p

.

By taking β = α/(α − 1) we obtain(
ERα/(α−1))α−1

(3.4)

≤
{
E exp

[
pα(pα − α + 1)

8(p − 1)(α − 1)2

∫ T

0
ξ2
t dt

]}(α−1)(p−1)/p

, p > 1.

Since δ > (1 + √
2)σ

√
d − 1, we may take δ0 ∈ ((1 + √

2)σ
√

d − 1, δ), small
ε′ > 0 and large C4 > 0, independent of T ,x and y, such that

ξ2
t =

(
C3 + 2σ

√
d − 1ρo(xt ) + ρ(x, y)

T

)2

≤ (1 − ε′)
[
C4 + C4ρ(x, y)2

T 2 + 2
(
δ0 − σ

√
d − 1

)2
ρo(xt )

2
]
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holds. Moreover, since

lim
p↓1

lim
α↑∞

pα(pα − α + 1)

8(p − 1)(α − 1)2 = 1

8
,(3.5)

there exist p,α > 1 such that

pα(pα − α + 1)

8(p − 1)(α − 1)2

∫ T

0
ξ2
t dt

≤ C4T + C4ρ(x, y)2

T
+ (δ0 − σ

√
d − 1)2

4

∫ T

0
ρo(xt )

2 dt.

Combining this with (3.4) and Lemma 2.2, we obtain

(
ERα/(α−1))α−1 ≤ exp

[
C5T + C5ρ(x, y)

T
+ C5ρo(x)2

]
, T > 0, x ∈ M,

for some constant C5 > 0. This completes the proof by (3.2). �

PROOF OF THEOREM 1.1. By Proposition 3.1, let α > 1 and C > 0 such
that (3.1) holds. Since δ > σ

√
d − 1, we may take T > 0 such that

C

T
≤ ε := 1

8

(
δ − σ

√
d − 1

)
.

Then for any nonnegative f ∈ Cb(M) with μ(f α) = 1, since μ is PT -invariant, it
follows from (3.1) that

1 =
∫
M

PT f α(x)μ(dx) ≥ (PT f (y))α
∫
M

e−ερ(x,y)2−C(1+ρo(x)2)μ(dx)

≥ (PT f (y))α
∫
{ρo≤1}

e−ε(1+ρo(y))2−2Cμ(dx)

≥ ε′(PT f (y))α exp[−2ερo(y)2], y ∈ M,

for some constant ε′ > 0. Thus,
∫
M

(PT f (y))2αμ(dy) ≤ 1

ε′
∫
M

e4ερo(y)2
μ(dy) < ∞,

according to Lemma 2.1. This implies that

‖PT ‖Lα(μ)→L2α(μ) < ∞.

Therefore, the log-Sobolev inequality (1.3) holds for some constant C > 0, due to
the uniformly positively improving property of Pt (see [20], proof of Theorem 1.1,
and [1]). �
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4. Supercontractivity and ultracontractivity. Recall that Pt is called super-
contractive if ‖Pt‖2→4 < ∞ for all t > 0 while ultracontractive if ‖Pt‖2→∞ < ∞
for all t > 0 (see [10]). In the present framework these two properties are stronger
than the hypercontractivity: ‖Pt‖2→4 ≤ 1 for some t > 0, which is equivalent
to (1.3) due to Gross [14].

PROPOSITION 4.1. Under (1.4) and (1.5), Pt is supercontractive if and only
if μ(exp[λρ2

o ]) < ∞ for all λ > 0, while it is ultracontractive if and only if
‖Pt exp[λρ2

o ]‖∞ < ∞ for all t, λ > 0.

PROOF. The proof is similar to that of [18], Theorem 2.3. Let f ∈ L2(μ) with
μ(f 2) = 1. By (3.1) for α = 2 and noting that μ is Pt -invariant, we obtain

1 ≥ (PT f (y))2
∫
M

exp
[
−C

T
ρ(x, y)2 − C

(
T + ρo(x)2)]

μ(dx)

≥ (PT f (y))2 exp
[
−2C

T

(
ρo(y)2 + 1

) − C(T + 1)

]
μ(B(o,1)).

Hence, for any T > 0 there exists a constant λT > 0 such that

|PT f | ≤ exp[λT (1 + ρ2
o)], T > 0,μ(f 2) = 1.(4.1)

(1) If μ(eλρ2
o ) < ∞ for any λ > 0, (4.1) yields that

‖PT ‖4
2→4 ≤ μ

(
e4λT (1+ρ2

o )) < ∞, T > 0.

Conversely, if Pt is supercontractive then the super log-Sobolev inequality
(cf. [10])

μ(f 2 logf 2) ≤ rμ(|∇f |2) + β(r), r > 0,μ(f 2) = 1,

holds for some β : (0,∞) → (0,∞). By [2] (see also [17, 18]), this inequality
implies μ(eλρ2

o ) < ∞ for all λ > 0.

(2) By (4.1) and the semigroup property,

‖PT ‖2→∞ ≤ ∥∥PT/2eλT/2(1+ρ2
o )

∥∥∞ < ∞, T > 0,

provided ‖Pteλρ2
o ‖∞ < ∞ for any t, λ > 0. Conversely, since the ultracontractivity

is stronger than the supercontractivity, it implies that eλρ2
o ∈ L2(μ) for any λ > 0

as explained above. Therefore,

‖Pte
λρ2

o ‖∞ ≤ ‖Pt‖2→∞‖eλρ2
o ‖2 < ∞, λ > 0.
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Then the proof is completed. �

To derive explicit conditions for the supercontractivity and ultracontractivity,
we consider the following stronger version of (1.4):

−HessV ≥ 
 ◦ ρo holds outside a compact subset of M(4.2)

for a positive increasing function 
 with 
(r) ↑ ∞ as r ↑ ∞. We then aim to
search for reasonable conditions on positive increasing function � such that

Ric ≥ −� ◦ ρo(4.3)

implies the supercontractivity and/or ultracontractivity.

THEOREM 4.2. If (4.3) and (4.2) hold for some increasing positive functions

 and � such that

lim
r→∞
(r) = lim

r→∞
(
∫ r

0 
(s)ds)2


(r)
= ∞,(4.4)

√
�(r + t)(d − 1)

(4.5)

≤ θ

∫ r

0

(s)ds + 1

2

∫ t/2

0

(s)ds + C, r, t ≥ 0,

for some constants θ ∈ (0,1/(1 + √
2)) and C > 0. Then Pt is supercontractive.

Furthermore, if

∫ ∞
1

ds
√

s
∫ √

r

0 
(u)du
< ∞,(4.6)

then Pt is ultracontractive. More precisely, for

�1(r) := 1√
r

∫ √
r

0

(s)ds, �2(r) :=

∫ ∞
r

ds
√

s
∫ √

s

0 
(u)du
, r > 0,

(4.6) implies

‖Pt‖2→∞ ≤ exp
[
c + c

t

(
1 + �−1

1 (c/t) + �−1
2 (t/c)

)]
< ∞, t > 0,(4.7)

for some constant c > 0 and

�−1
1 (s) := inf{t ≥ 0 :�1(t) ≥ s}, s ≥ 0.
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PROOF. (a) Replacing c + ρ2
o by � ◦ ρo and noting that HessV ≤ −
 ◦ ρo for

large ρo, the proof of Lemma 2.1 implies

Lρ2
o ≤ c1(1 + ρo) − 2ρo

(∫ ρo

0

(s)ds − √

� ◦ ρo(d − 1)

)
(4.8)

for some constant c1 > 0. Combining this with (4.5) and noting that 1
ρ o

×∫ ρo

0 
(s)ds → ∞ as ρo → ∞, we conclude that for any λ > 0,

Leλρ2
o ≤ C − 2λρo

√
2

1 + √
2

eλρ2
o

∫ ρo

0

(s)ds + 4λ2ρ2

oeλρ2
o

(4.9)
≤ C + C(λ) − λρoeλρ2

o

∫ ρo

0

(s)ds,

where C > 0 is a universal constant and

C(λ) := sup
r>0

reλr2
{

4λ2r − λ

(1 + √
2)2

∫ r

0

(s)ds

}

= sup
r2≤�−1

1 (4(1+√
2)2λ)

reλr2
{

4λ2r − λ

(1 + √
2)2

∫ r

0

(s)ds

}

(4.10)
≤ 4λ2�−1

1

(
4
(
1 + √

2
)2

λ
)

exp
[
λ�−1

1

(
4
(
1 + √

2
)2

λ
)]

≤ exp
[
4λ + 2λ�−1

1

(
4
(
1 + √

2
)2

λ
)]

< ∞.

Therefore, (1.1) holds and

μ(eλρ2
o ) < ∞, λ > 0.(4.11)

(b) By (4.5), (4.8) and Kendall’s Itô formula [16] as in the proof of Lemma 2.2,
we have

dρ2
o(xt ) ≤ 2

√
2ρo(xt )dbt +

(
C1 − 2

√
2ρo(xt )(1 + ε)

1 + √
2

∫ ρo(xt )

0

(s)ds

)
dt

for some constants ε,C1 > 0, where xt and bt are in the proof of Lemma 2.2. Let

ϕ(r) =
∫ r

0

ds√
s

∫ √
s

0

(u)du, r ≥ 0.(4.12)

We arrive at

dϕ ◦ ρ2
o(xt ) ≤ 2

√
2ρo(xt )ϕ

′ ◦ ρ2
o(xt )dbt + 4ρ2

o(xt )ϕ
′′ ◦ ρ2

o(xt )dt

+ ϕ′ ◦ ρ2
o(xt )

(
C1 − 2

√
2ρo(xt )(1 + ε)

1 + √
2

∫ ρo(xt )

0

(s)ds

)
dt.
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From (4.4) we see that

ρoϕ
′′ ◦ ρ2

o

ϕ′ ◦ ρ2
o

∫ ρo

0 
(s)ds
≤ 
 ◦ ρo

2(
∫ ρo

0 
(s)ds)2
,

which goes to zero as ρo → ∞. Then there exists a constant C2 > C1 such that

dϕ ◦ ρ2
o(xt ) ≤ 2

√
2
(∫ ρo(xt )

0

(s)ds

)
dbt

+ C2 dt − 2
√

2

1 + √
2

(∫ ρo(xt )

0

(s)ds

)2

dt.

This implies that for any λ > 0,

E exp
[

2
√

2 λ

1 + √
2

∫ T

0

(∫ ρo(xt )

0

(s)ds

)2

dt

]

≤ eC2λT +λϕ◦ρ2
o (x)

E exp
[
2
√

2λ

∫ T

0

(∫ ρo(xt )

0

(s)ds

)
dbt

]

≤ eC2λT +λϕ◦ρ2
o (x)

(
E exp

[
16λ2

∫ T

0

(∫ ρo(xt )

0

(s)ds

)2

dt

])1/2

.

Taking

λ =
√

2

8(1 + √
2)

,

we arrive at

E exp
[

1

2(1 + √
2)2

∫ T

0

(∫ ρo(xt )

0

(s)ds

)2

dt

]

(4.13)
≤ e2C2T +ϕ◦ρ2

o (x)
√

2/8(1+√
2).

(c) Let γ : [0, ρ(xt , yt )] → M be the minimal geodesic from xt to yt , and U its
tangent unit vector. By (4.2), there exists a constant C3 > 0 such that

〈∇V,∇ρ(·, yt )〉(xt ) + 〈∇V,∇ρ(xt , ·)〉(yt )
(4.14)

=
∫ ρ(xt ,yt )

0
HessV (Us,Us)ds ≤ C3 −

∫ ρ(xt ,yt )/2

0

(s)ds.

To understand the last inequality, we assume, for instance, that ρo(xt ) ≥ ρo(yt ) so
that by the triangle inequality,

ρo(γs) ≥ ρo(xt ) − s ≥ ρ(xt , yt )/2 − s, s ∈ [0, ρ(xt , yt )/2].
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For the coupling constructed in Section 3, one concludes from (4.14) and the
proof of Lemma 2.3 that

dρ(xt , yt ) ≤
{

2
√

K(xt , yt )(d − 1) + C4

(4.15)

−
∫ ρ(xt ,yt )/2

0

(s)ds − ξt

}
dt, t < τ,

holds for some constant C4 > 0, where

K(xt , yt ) := sup
	([0,ρ(xt ,yt )])

� ◦ ρo ≤ �
(
ρo(xt ) + ρ(xt , yt )

)
,

and 	 is the minimal geodesic from xt to yt . Combining (4.5) and (4.15), we obtain

dρ(xt , yt ) ≤
{
C4 + 2θ

∫ ρo(xt )

0

(s)ds − ξt

}
dt, t < τ.

So, taking

ξt = C4 + 2θ

∫ ρo(xt )

0

(s)ds + ρ(x, y)

T
,

we arrive at

dρ(xt , yt ) ≤ −ρ(x, y)

T
dt, t < τ.

This implies τ ≤ T , and hence xT = yT a.s.
Combining (4.5) with (3.4) and (3.5) we conclude that for the present choice

of ξt there exist α,p,C5 > 1 such that

(
ERα/(α−1))p/(p−1) ≤ E exp

[
1

2(1 + √
2)2

∫ T

0

(∫ ρ(xt )

0

(s)ds

)2

dt

+ C5T + C5

T
ρ(x, y)2

]
.

Combining this with (4.13) and (3.2) we obtain

(PT f (y))α ≤ (PT f α(x)) exp
[
CT + C

T
ρ(x, y)2 + Cϕ ◦ ρ2(x)

]
(4.16)

holds for some α,C > 1, any positive f ∈ Cb(M) and all x, y ∈ M,T > 0.

(d) For any positive f ∈ Cb(M) with μ(f α) = 1, (4.16) implies that

(PT f (y))α
∫
B(o,1)

exp
[
−CT − C

T
ρ(x, y)2 − Cϕ2(x)

]
μ(dx) ≤ 1.

Therefore, there exists a constant C′ > 0 such that

(PT f (y))α ≤ exp
[
C′(1 + T ) + C′

T
ρ(y)2

]
, y ∈ M,T > 0.(4.17)



1602 F.-Y. WANG

Combining this with (4.11) we obtain

‖PT ‖α→pα < ∞, T > 0,p > 1.

This is equivalent to the supercontactivity by the Riesz–Thorin interpolation theo-
rem and ‖Pt‖1→1 = 1. Thus, the first assertion holds.

(e) To prove (4.7), it suffices to consider t ∈ (0,1] since ‖Pt‖2→∞ is decreasing
in t > 0. So, below we assume that T ≤ 1. By (4.17) and the fact that (P2T f )α ≤
PT (PT f )α, we have

‖P2T ‖α→∞ ≤ ‖PT e2C′ρ2
o/T ‖∞eC′(1+T ), T > 0.(4.18)

Therefore, by the Riesz–Thorin interpolation theorem and ‖Pt‖1→1 = 1, for the
ultracontractivity it suffices to show that

‖PT eλρ2
o ‖∞ < ∞, λ, T > 0.(4.19)

Since 
 is increasing, it is easy to check that

η(r) := √
r

∫ √
r

0

(s)ds, r ≥ 0,

is convex, and so is s �→ sη(
log s
λ

) for λ > 0. Thus, it follows from (4.9) and the
Jensen inequality that

hλ,x(t) := Eeλρ2
o (xt ) < ∞, x0 = x ∈ M,λ, t > 0,

and

d+

dt
hλ,x(t) ≤ C + C(λ) − λhλ,x(t)η(λ−1 loghλ,x(t)), t > 0.

This implies (4.19), provided (4.6) holds. This can be done by considering the
following two situations:

(1) Since hλ,x(t) is decreasing provided λhλ,x(t)η(λ−1 loghλ,x(t)) > C +
C(λ), if

λhλ,x(0)η(λ−1 loghλ,x(0)) ≤ 2C + 2C(λ),

then

hλ,x(t) ≤ sup{r ≥ 1 :λrη(λ−1 log r) ≤ 2C + 2C(λ)} ≤ 1

λ

(
2C + 2C(λ)

) + C′′

for some constant C′′ > 0.

(2) If λhλ,x(0)η(λ−1 loghλ,x(0)) > 2C + 2C(λ), then hλ,x(t) is decreasing
in t up to

tλ := inf{t ≥ 0 :λhλ,x(t)η(λ−1 loghλ,x(t)) ≤ 2C + 2C(λ)}.
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Indeed,

d+

dt
hλ,x(t) ≤ −λ

2
hλ,x(t)η(λ−1 loghλ,x(t)), t ≤ tλ.

Thus, ∫ ∞
hλ,x(T ∧tλ)

dr

rη(λ−1 log r)
≥ λ

2
(T ∧ tλ).

This is equivalent to

�2
(
λ−1 loghλ,x(T ∧ tλ)

) ≥ 1
2(T ∧ tλ).

Hence,

hλ,x(T ∧ tλ) ≤ exp
[
λ�−1

2

(1
2(T ∧ tλ)

)]
.

Since it is reduced to case (1) if T > tλ by regarding tλ as the initial time, in
conclusion we have

sup
x∈M

hλ,x(T ) ≤ max
{

exp[λ�−1
2 (T /2)], C ′′ + 1

λ

(
2C + 2C(λ)

)}
.

Therefore, (4.7) follows from (4.18), (4.10) with λ = 2C′/T , and the Riesz inter-
polation theorem. �

Finally, we note that a simple example for conditions in Theorem 4.2 to hold is


(s) = sα−1, �(s) = εs2α

for α > 1 and small enough ε > 0. In this case Pt is ultracontractive with

‖Pt‖2→∞ ≤ exp
[
c
(
1 + t−(α+1)/(α−1))], t > 0,

for some c > 0.

Acknowledgments. The author would like to thank the referees for their care-
ful reading and valuable comments on an earlier version of the paper.

REFERENCES

[1] AIDA, S. (1998). Uniform positivity improving property, Sobolev inequalities, and spectral
gaps. J. Funct. Anal. 158 152–185. MR1641566

[2] AIDA, S., MASUDA, T. and SHIGEKAWA, I. (1994). Logarithmic Sobolev inequalities and
exponential integrability. J. Funct. Anal. 126 83–101. MR1305064

[3] ARNAUDON, M., THALMAIER, A. and WANG, F.-Y. (2006). Harnack inequality and heat
kernel estimates on manifolds with curvature unbounded below. Bull. Sci. Math. 130 223–
233. MR2215664

[4] BAKRY, D. and ÉMERY, M. (1984). Hypercontractivité de semi-groupes de diffusion. C. R.
Acad. Sci. Paris Sér. I Math. 299 775–778. MR772092

http://www.ams.org/mathscinet-getitem?mr=1641566
http://www.ams.org/mathscinet-getitem?mr=1305064
http://www.ams.org/mathscinet-getitem?mr=2215664
http://www.ams.org/mathscinet-getitem?mr=772092


1604 F.-Y. WANG

[5] BOGACHEV, V. I., RÖCKNER, M. and WANG, F.-Y. (2001). Elliptic equations for invariant
measures on finite and infinite dimensional manifolds. J. Math. Pures Appl. 80 177–221.
MR1815741

[6] BISMUT, J.-M. (1984). Large Deviations and the Malliavin Calculus. Progress in Mathematics
45. Birkhäuser Boston, Boston, MA. MR755001

[7] CHEN, M.-F. and WANG, F.-Y. (1994). Application of coupling method to the first eigenvalue
on manifold. Sci. China Ser. A 37 1–14. MR1308707

[8] CRANSTON, M. (1991). Gradient estimates on manifolds using coupling. J. Funct. Anal. 99
110–124. MR1120916

[9] CHEN, M.-F. and WANG, F.-Y. (1997). Estimates of logarithmic Sobolev constant: An im-
provement of Bakry–Emery criterion. J. Funct. Anal. 144 287–300. MR1432586

[10] DAVIES, E. B. and SIMON, B. (1984). Ultracontractivity and the heat kernel for Schrödinger
operators and Dirichlet Laplacians. J. Funct. Anal. 59 335–395. MR766493

[11] ELWORTHY, K. D. and LI, X.-M. (1994). Formulae for the derivatives of heat semigroups.
J. Funct. Anal. 125 252–286. MR1297021

[12] ÉMERY, M. (1989). Stochastic Calculus in Manifolds. Springer, Berlin. MR1030543
[13] GREENE, R. E. and WU, H. (1979). Function Theory on Manifolds Which Possess a Pole.

Lecture Notes in Math. 699. Springer, Berlin. MR521983
[14] GROSS, L. (1975). Logarithmic Sobolev inequalities. Amer. J. Math. 97 1061–1083.

MR0420249
[15] HSU, E. P. (1997). Logarithmic Sobolev inequalities on path spaces over Riemannian mani-

folds. Comm. Math. Phys. 189 9–16. MR1478528
[16] KENDALL, W. S. (1987). The radial part of Brownian motion on a manifold: A semimartingale

property. Ann. Probab. 15 1491–1500. MR905343
[17] LEDOUX, M. (1999). Concentration of measure and logarithmic Sobolev inequalities. In Sémi-

naire de Probabilités, XXXIII. Lecture Notes in Math. 1709 120–216. Springer, Berlin.
MR1767995

[18] RÖCKNER, M. and WANG, F.-Y. (2003). Supercontractivity and ultracontractivity for (non-
symmetric) diffusion semigroups on manifolds. Forum Math. 15 893–921. MR2010284

[19] WANG, F.-Y. (1997). Logarithmic Sobolev inequalities on noncompact Riemannian manifolds.
Probab. Theory Related Fields 109 417–424. MR1481127

[20] WANG, F.-Y. (2001). Logarithmic Sobolev inequalities: Conditions and counterexamples.
J. Operator Theory 46 183–197. MR1862186

[21] WANG, F.-Y. (2005). Functional Inequalities, Markov Properties, and Spectral Theory. Sci-
ence Press, Beijing.

SCHOOL OF MATHEMATICS

BEIJING NORMAL UNIVERSITY

BEIJING 100875
CHINA

AND

SWANSEA UNIVERSITY

SINGLETON PARK

SWANSEA, SA2 8PP
UNITED KINGDOM

E-MAIL: wangfy@bnu.edu.cn

http://www.ams.org/mathscinet-getitem?mr=1815741
http://www.ams.org/mathscinet-getitem?mr=755001
http://www.ams.org/mathscinet-getitem?mr=1308707
http://www.ams.org/mathscinet-getitem?mr=1120916
http://www.ams.org/mathscinet-getitem?mr=1432586
http://www.ams.org/mathscinet-getitem?mr=766493
http://www.ams.org/mathscinet-getitem?mr=1297021
http://www.ams.org/mathscinet-getitem?mr=1030543
http://www.ams.org/mathscinet-getitem?mr=521983
http://www.ams.org/mathscinet-getitem?mr=0420249
http://www.ams.org/mathscinet-getitem?mr=1478528
http://www.ams.org/mathscinet-getitem?mr=905343
http://www.ams.org/mathscinet-getitem?mr=1767995
http://www.ams.org/mathscinet-getitem?mr=2010284
http://www.ams.org/mathscinet-getitem?mr=1481127
http://www.ams.org/mathscinet-getitem?mr=1862186
mailto:wangfy@bnu.edu.cn

	Introduction
	Preparations
	Harnack inequality and proof of Theorem 1.1
	Supercontractivity and ultracontractivity
	Acknowledgments
	References
	Author's Addresses

