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EXISTENCE, UNIQUENESS AND APPROXIMATION OF A
STOCHASTIC SCHRÖDINGER EQUATION: THE DIFFUSIVE CASE
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Recent developments in quantum physics make heavy use of so-called
“quantum trajectories.” Mathematically, this theory gives rise to “stochastic
Schrödinger equations,” that is, perturbation of Schrödinger-type equations
under the form of stochastic differential equations. But such equations are in
general not of the usual type as considered in the literature. They pose a seri-
ous problem in terms of justifying the existence and uniqueness of a solution,
justifying the physical pertinence of the equations. In this article we concen-
trate on a particular case: the diffusive case, for a two-level system. We prove
existence and uniqueness of the associated stochastic Schrödinger equation.
We physically justify the equations by proving that they are a continuous-time
limit of a concrete physical procedure for obtaining a quantum trajectory.

1. Introduction. Belavkin equations (also called stochastic Schrödinger
equations) are classical stochastic differential equations describing the evolution
of an open quantum system undergoing a continuous quantum measurement. The
solutions of such equations are called quantum trajectories and describe the time
evolution of the state of the system. The random nature of the result of quantum
measurement is at the origin of the stochastic character of the evolution.

The first rigorous description of a state undergoing a continuous measurement
is due to Davies in [4]. It describes in quantum optics, the behavior of an atom
from which we observe the photon emission. This is the so-called “resonance flu-
orescence” experiment (see [6] and [2]).

In the literature, essentially two kinds of Belavkin equations are considered:
they are driven either by a Brownian motion or by a counting process. But the
kind of equations which are obtained this way are of nonusual type compared
to the usual theory of stochastic differential equations. In particular there is no
reference in physics nor in mathematics, where the existence and the uniqueness of
the solution of such equations are discussed. Furthermore, the physical justification
of the apparition of these equations requires in general a quite heavy mathematical
framework (Von Neumann algebra, conditional expectation, filtering, etc.). The
high technology of such tools contrasts with the simplicity and the intuition of the
physical model.
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An approach to such equations, which is physically very intuitive, is the one of
repeated quantum interactions. The setup is the following. The continuous mea-
surement model is obtained as a limit of discrete models. This discrete model is a
naive approach to the interaction of a simple system interacting with a field. The
field is represented as a chain of independent copies of small pieces of environ-
ment. The simple system interacts, for a time interval h, with one piece of the
environment. After that interaction an observable of the piece of environment is
measured. The random result of the measurement induces a random new state for
the small system. The small system then interacts again with another piece of the
environment for a time interval h. A measurement of the same observable of this
second copy is performed. And so on.

This experiment gives rise to a discrete evolution of the state of the small sys-
tem, which is a Markov chain. The continuous-time limit (h → 0) of this evolution
should give rise to the quantum trajectories.

Repeated quantum interactions have been considered by Attal and Pautrat in [1]
and by Gough in [5]. The continuous limit of repeated quantum interactions is rig-
orously shown to converge to a quantum stochastic differential equation in [1]. The
setup of measuring an observable of the chain after each interaction is considered
in [5], but the continuous limit, the existence and the uniqueness of the solutions
are not all treated rigorously in this reference.

The aim of this article is to study the diffusive Belavkin equation, to show exis-
tence and uniqueness of the solution, to show its approximation by repeated quan-
tum interaction models. The same results for the equation concerning the counting
process are developed in another article [11].

This article is structured as follows: In Section 1, we present the mathematical
model of repeated quantum interactions with measurement. We define discrete-
time quantum trajectories and focus on their probabilistic properties. In particular,
it is shown that these processes are classical Markov chains. Finally we deal with
the model of a two-level atom in interaction with a spin chain and we describe the
discrete stochastic evolution equations in this setting.

Section 2 is devoted to the continuous model. We present the two different types
of Belavkin equations whose solutions are continuous-time quantum trajectories.
We then prove existence and uniqueness of solutions in the diffusive case.

The link between discrete and continuous models is provided in Section 3. It is
shown that particular discrete quantum trajectories (for a two-level model) satisfy
stochastic equations which are discrete-time diffusive equations. We use result of
weak convergence of stochastic integrals in order to prove that solutions of diffu-
sive Belavkin stochastic equations are obtained as a limit of discrete trajectories.

2. Discrete quantum trajectories. We make here precise the mathematical
framework to describe the model of discrete quantum trajectories.
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2.1. Repeated quantum measurements. The physical setup is the one of a
small quantum system, represented by a Hilbert space H0, coupled to a field mod-
eled by an infinite chain of identical independent quantum systems. Each piece
of the field is represented by a Hilbert space H . Each space is equipped with
a positive, trace-class operator with trace 1. This operator is called a “state” or
“a density matrix.” In this section, we present the random character of repeated
measurements.

The discrete model of interaction is called “quantum repeated interactions.”
Each copy H of the environment interacts with H0, one after the other, during
a time interval of length h. Information on the evolution of the small system is
obtained by performing a measurement of H after each interaction.

For the first interaction, the compound system is described by the tensor product
H0 ⊗ H and the interaction is characterized by a total Hamiltonian Htot which is
a self-adjoint operator on H0 ⊗ H . Its general form is

Htot = H0 ⊗ I + I ⊗ H + Hint,(2.1)

where H0 and H are the free Hamiltonians of each system and Hint is the interac-
tion Hamiltonian. The operator

U = eihHtot

describes the first interaction as follows. In the Schrödinger picture, if ρ denotes
any state on the tensor product, the evolution is given by

ρ �→ UρU�.

After this first interaction, a second copy of H interacts with H0 in the same way.
And so on.

As the field is supposed to be an infinite chain, the whole sequence of successive
interactions is described by the state space

� = H0 ⊗ ⊗
k≥1

Hk,(2.2)

where Hk designs the kth copy of H . The countable tensor product
⊗

k≥1 Hk is
defined as follows. We consider that H is finite dimensional and that {X0,X1, . . . ,

Xn} is a fixed orthonormal basis of H . The orthogonal projector onto CX0 is
denoted by |X0〉〈X0| (this is the braket notation in mathematical physics; see the
remark below). This is the ground state (or vacuum state) of H . The tensor product
is taken with respect to X0 (for details, see [1]), that is, we define an orthonormal
basis of

⊗
k≥1 Hk with respect to this vector. It is described as follows.

Let P be the set of finite subset A of the form A = {(n1, i1), . . . , (nk, ik)} of
N

� × {1, . . . , n} such that the ni’s are two-by-two disjoint. The orthonormal basis
of

⊗
k≥1 Hk with respect to X0 is the family

{XA,A ∈ P },
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where for A = {(n1, i1), . . . , (nk, ik)}, we define XA as the vector

X0 ⊗ · · · ⊗ Xi1 ⊗ X0 ⊗ · · · ⊗ X0 ⊗ Xi2 ⊗ · · · ,
of

⊗
k≥1 Hk , where Xij appears in the copy number nj of H . The infinite tensor

product allows us to work in a single space but the structure of Hilbert space does
not appear explicitly in the rest of the paper.

REMARK. A vector Y in a Hilbert space H is represented by the application
|Y 〉 from C to H which acts with the following way: |Y 〉(λ) = |λY 〉. The linear
form on H is represented by the operators 〈Z| which act on the vector |Y 〉 by
〈Z||Y 〉 = 〈Z,Y 〉, where 〈·, ·〉 denotes the scalar product of H .

The unitary evolution describing the kth interaction is given by the operator Uk

which acts as U on H0 ⊗ Hk , whereas it acts as the identity operator on the other
copies of H . If ρ is a state on �, the effect of the kth interaction is

ρ �→ UkρU�
k .

Hence the result of the k first interactions is described by the operator Vk on B(�)

defined by the recursive formula{
Vk+1 = Uk+1Vk,

V0 = I,
(2.3)

and the evolution of states is then given, in the Schrödinger picture, by

ρ �→ VkρV �
k .(2.4)

We present now the indirect measurement principle. The idea is to perform a mea-
surement of an observable of the field after each interaction.

A measurement of an observable of Hk is modeled as follows. Let A be any
observable on H , with spectral decomposition A = ∑p

j=1 λjPj . We consider its
natural ampliation on �:

Ak :=
k−1⊗
j=0

I ⊗ A ⊗ ⊗
j≥k+1

I.(2.5)

The result of the measurement of Ak is random; the accessible data are its eigen-
values. If ρ denotes the reference state of �, the observation of λi is obtained with
probability

P [to observe λj ] = Tr[ρP k
j ], j ∈ {1, . . . , p},

where P k
i is the ampliation of Pi in the same way as (2.5). If we have observed the

eigenvalue λj , the “projection postulate” called “wave packet reduction” imposes
that the state after measurement is

ρj = P k
j ρP k

j

Tr[ρP k
j ] .
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REMARK. This corresponds to the new reference state depending on the result
of the observation. Another measurement of the observable Ak (with respect to this
new state) would give P [to observe λj ] = 1 (for PiPj = 0 if i 	= j ). This means
that only one measurement after each interaction gives significant information.
This justifies the principle of repeated interactions.

The repeated quantum measurements are the combination of the previous de-
scription and the successive interactions (2.4). After each interaction, the measure-
ment procedure involves a random modification of the system. It defines namely a
sequence of random states which is called “discrete quantum trajectory.”

The initial state on � is chosen to be

μ = ρ ⊗ ⊗
j≥1

βj

where ρ is any state on H0 and each βi = β is a fixed state on H . We denote by
μk the new state after k interactions, that is,

μk = VkμV �
k .

The probability space describing the experience of repeated measurements is
�N

�
where � = {1, . . . , p}. The integers i correspond to the indexes of the eigen-

values of A. We endow �N
�

with the cylinder σ -algebra generated by the sets:

	i1,...,ik = {ω ∈ �N
�

/ω1 = i1, . . . ,ωk = ik}.
Note that for all j , the unitary operator Uj commutes with all P k , for k < j . For
any set {i1, . . . , ik}, we can define the following nonnormalized state:

μ̃(i1, . . . , ik) = (I ⊗ Pi1 ⊗ · · · ⊗ Pik ⊗ I · · ·)μk(I ⊗ Pi1 ⊗ · · · ⊗ Pik ⊗ I · · ·)
= (P k

ik
· · ·P 1

i1
)μk(P

1
i1

· · ·P k
ik
).

It is the nonnormalized state which corresponds to the successive observation of
the eigenvalues λi1, . . . , λik during the k first measurements. The probability to
observe these eigenvalues is

P [	i1,...,ik ] = P [to observe (λi1, . . . , λik )] = Tr[μ̃(i1, . . . , ik)].
This way, we define a probability measure on the cylinder sets of �N

�
which satis-

fies the Kolmogorov Consistency Criterion. Hence it defines a unique probability
measure on �N

�
. The discrete quantum trajectory on � is then given by the fol-

lowing random sequence of states:

ρ̃k : �N
� −→ B(�),

ω �−→ ρ̃k(ω1, . . . ,ωk) = μ̃(ω1, . . . ,ωk)

Tr[μ̃(ω1, . . . ,ωk)] .
From the construction and the remarks above, the following is immediate.
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PROPOSITION 2.1. Let (ρ̃k) be the above random sequence of states; we have
for all ω ∈ �N

�
:

ρ̃k+1(ω) = P k+1
ωk+1

Uk+1ρ̃k(ω)U�
k+1P

k+1
ωk+1

Tr[ρ̃k(ω)U�
k+1P

k+1
ωk+1Uk+1]

.

The following theorem is an easy consequence of the previous proposition.

THEOREM 2.1. The discrete quantum trajectory (ρ̃n)n is a Markov chain,
with values on the set of states of H0

⊗
i≥1 Hi . It is described as follows:

P [ρ̃n+1 = μ/ρ̃n = θn, . . . , ρ̃0 = θ0] = P [ρ̃n+1 = μ/ρ̃n = θn].
If ρ̃n = θn, the random state ρ̃n+1 takes one of the values:

P n+1
i (Un+1(θn ⊗ β)U�

n+1)P
n+1
i

Tr[(Un+1(θn ⊗ β)U�
n+1)P

n+1
i ] , i = 1, . . . , p,

with probability Tr[(Un+1(θn ⊗ β)U�
n+1)P

n+1
i ].

In general, one is more interested in the reduced state on the small system H0
only. This state is given by taking a partial trace on H0. Let us recall what partial
trace is. If H is any Hilbert space, we denote by TrH [W ] the trace of a trace-class
operator W on H .

DEFINITION 2.1. Let H and K be two Hilbert spaces. If α is a state on a ten-
sor product H ⊗K , then there exists a unique state η on H which is characterized
by the property

TrH [ηX] = TrH⊗K [α(X ⊗ I )]
for all X ∈ B(H). This unique state η is called the partial trace of α on H with
respect to K .

Let E0(α) denote the partial trace on H0 with respect to
⊗

k≥1 Hk of any state α

on �. We define a random sequence of states on H0 as follows. For all ω in �N
�
,

define the discrete quantum trajectory on H0

ρn(ω) = E0[ρ̃n(ω)].(2.6)

An immediate consequence of Theorem 2.1 is the following result.

THEOREM 2.2. The quantum trajectory (ρn)n defined by formula (2.6) is a
Markov chain with values in the set of states on H0. If ρn = χn, then ρn+1 takes
one of the values:

E0

[
(I ⊗ Pi)U(χn ⊗ β)U�(I ⊗ Pi)

Tr[U(χn ⊗ β)U�(I ⊗ Pi)]
]
, i = 1, . . . , p,

with probability Tr[U(χn ⊗ β)U�(I ⊗ Pi)].
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REMARK 1. Let us stress that

(I ⊗ Pi)U(χn ⊗ β)U�(I ⊗ Pi)

Tr[U(χn ⊗ β)U�(I ⊗ Pi)]
is a state on H0 ⊗ H . In this situation, the notation E0 denotes the partial trace
on H0 with respect to H . The infinite tensor product � is just needed to have
a clear description of the repeated interactions and the probability space �N

�
.

The next section is devoted to the particular case of a two-level atom in contact
with a photon stream. Because of physical considerations, this case is often the
central case in the literature concerning continuous measurement.

2.2. A two-level atom. The Hilbert spaces describing the physical situation are
now H0 = H = C

2.
In this section, we establish a discrete quantum evolution equation for (ρn)

which is a discrete approximation of the Belavkin equation.
The main goal of this section is to obtain a formula of the following form:

ρk+1 = f (ρk,Xk+1),(2.7)

where (Xk)k is a sequence of random variables. Such a formula is obtained from
the description of Theorem 2.2 and the computation of the partial trace operation.

The state ρk can be considered as an initial state (according to the Markov prop-
erty of Theorem 2.2). Thus we can consider a single interaction with a system
(H , β) [actually this is the (k + 1)st copy]. We consider an observable of the form
A = λ0P0 + λ1P1 and the unitary operator describing the interaction is a unitary
4 × 4 unitary matrix.

In order to compute the state given by the projection postulate and the partial
trace, we choose a suitable basis. If (X0 = �,X1 = X) is an orthonormal basis
of C

2, for the space H0 ⊗H we consider the following basis: �⊗�,X ⊗�,�⊗
X,X ⊗ X. In this basis, the unitary operator U can be written by blocks in the
following way:

U =
(

L00 L01
L10 L11

)

where each Lij is an operator on H0. For β we choose

β = |�〉〈�|.
As a consequence, the state after the interaction is

μk+1 = U(ρk ⊗ β)U� =
(

L00ρkL
�
00 L00ρkL

�
10

L10ρkL
�
00 L10ρkL

�
10

)
.(2.8)



THE DIFFUSIVE CASE 2339

Thanks to the description of Theorem 2.2, we define the two possible nonnor-
malized states

L0(ρk) = E0[I ⊗ P0(μk+1)I ⊗ P0],(2.9)

L1(ρk) = E0[I ⊗ P1(μk+1)I ⊗ P1].(2.10)

These are operators on H0; the nonnormalized state L0(ρk) appears with proba-
bility pk+1 = Tr[L0(ρk)] and L1(ρk) with probability qk+1 = Tr[L1(ρk)].

Let us define the random variable νk+1 on {0,1}:{
νk+1(0) = 0, with probability pk+1,
νk+1(1) = 1, with probability qk+1.

With these notation, the discrete quantum trajectory can be described as follows.
For all ω ∈ �N

�
, we have

ρk+1(ω) = L0(ρk(ω))

pk+1(ω)

(
1 − νk+1(ω)

) + L1(ρk(ω))

qk+1(ω)
νk+1(ω).(2.11)

In order to obtain the final discrete quantum evolution equation, we consider the
centered and normalized random variable

Xk+1 = νk+1 − qk+1√
qk+1pk+1

.

We define the associated filtration on {0,1}N�
:

Fk = σ(Xi, i ≤ k).

By construction, we have E[Xk+1/Fk] = 0 and E[X2
k+1/Fk] = 1. Thus we can

write the discrete evolution equation for the quantum trajectory in terms of the
random variables (Xk):

ρk+1 = L0(ρk) + L1(ρk) +
[
−

√
qk+1

pk+1
L0(ρk) +

√
pk+1

qk+1
L1(ρk)

]
Xk+1.(2.12)

The above equation can be considered in a general way and the unique solu-
tion starting from ρ0 is the discrete quantum trajectory described in Theorem 2.2.
Let us stress that this sequence depends on the length of time of interaction. This
dependence will allow us to prove a continuous-time approximation result in Sec-
tion 3. For the moment, the next section is devoted to describing continuous-time
quantum trajectories.

3. Belavkin equations. As was announced in the Introduction, it is com-
monly assumed that the evolution of a system undergoing a continuous measure-
ment is described by stochastic differential equations. A model of interaction can
be provided to describe an atom in contact with a continuous field. In this setting,
the description of the principle of indirect measurement needs highly technical
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tools in order to obtain rigorous statements. Such theories are not the purpose of
this article. We just give the physical setup in order to introduce the Belavkin sto-
chastic differential equations.

Consider a two-level system, described by C
2, in interaction with an environ-

ment (classically described by a Fock space). The time evolution is given by a
unitary process (Ut ) which satisfies a quantum stochastic differential equation
(cf. [10]). Without measurement the evolution of the small system is given by
a norm-continuous semigroup {Tt }t≥0. The Linblad generator of (Tt ) is denoted
by L and we have the “Master equation”:

dρt

dt
= L(ρt ) = −i[H0, ρt ] − 1

2
{CC�,ρt} + CρtC

�,

where C is any operator on C
2 and H0 is the Hamiltonian of the atom.

In the theory of time-continuous measurement L is decomposed as the sum
of L + J where J represents the instantaneous state change taking place when
detecting a photon, and L describes the smooth state variation in between these
instants. These operators are defined by

L(ρ) = −i[H0, ρ] − 1
2{CC�,ρ},

J(ρ) = CρC�.

Thanks to the work of Davies in [4], two types of stochastic differential equa-
tions can be derived. The solutions of these equations are then called “continuous-
time quantum trajectories”:

1. The “diffusive equation” (homodyne detection experiment) is given by

dρt = L(ρt ) dt + [
ρtC

� + Cρt − Tr
(
ρt (C + C�)

)
ρt

]
dWt,(3.1)

where Wt describes a one-dimensional Brownian motion.
2. The “jump equation” (resonance fluorescence experiment) is

dρt = L(ρt ) dt +
[

J(ρt )

Tr[J(ρt )] − ρt

](
dÑt − Tr[J(ρt )]dt

)
,(3.2)

where Ñt is a counting process with stochastic intensity
∫ t

0 Tr[J(ρs)]ds.

A physical justification of (3.1) as limit of discrete quantum trajectories is given
in Section 3. For the moment, we shall focus on the general problem of existence
and uniqueness of a solution of (3.1). The jump equation and all the convergence
theorems referring to this case are treated in detail in [11] with different techniques.

3.1. Existence and uniqueness. Let ρ0 be any state; we aim to show existence
and uniqueness for the stochastic differential equation

ρt = ρ0 +
∫ t

0
L(ρs) ds +

∫ t

0

[
ρsC

� + Cρs − Tr
(
ρs(C + C�)

)
ρs

]
dWs.(3.3)
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Classical theorems concerning existence and uniqueness for SDE cannot be ap-
plied directly here for the coefficients of (3.3) are not Lipschitz. Furthermore, even
if there exists a solution, one must show that the solution takes values in the set
of states. Actually this property and the questions of existence and uniqueness are
linked.

Concerning the property of being valued in the set of states, an important feature
of the differential (3.3) is that it preserves the property to be a pure state (in quan-
tum theory, a pure state is a one-dimensional projector). This idea is expressed in
the following proposition.

PROPOSITION 3.1. Let (Wt) be a standard Brownian motion on (�,F ,Ft ,

P ) and let |ψ0〉 be any norm-1 vector in C
2. Let νt = 1

2〈ψt, (C + C�)ψt 〉 where C

is any operator on C
2.

If the following stochastic equation

d|ψt 〉 = (C − νt I )|ψt 〉dWt + (−iH0 − 1
2(C�C − 2νtC + ν2

t I )
)|ψt 〉dt(3.4)

admits a solution (|ψt 〉), then almost surely we have ‖ψt‖ = 1 for all t .
Furthermore the process (|ψt 〉〈ψt |) takes values in the set of pure states and it

is a solution of the diffusive Belavkin equation (3.3).

PROOF. Let |ψ0〉 be any vector in C
2 and let (|ψt 〉) be a solution of (3.4). Let

us prove that ‖ψt‖2 = 1. Using the Itô formulas and the fact that H is self-adjoint,
a straightforward computation shows that

d‖ψt‖2 = d〈ψt,ψt 〉 = 〈dψt ,ψt 〉 + 〈ψt, dψt 〉 + 〈dψt , dψt 〉
= 〈(C − νt I )ψt ,ψt 〉dWt

+ 〈(−iH0 − 1
2(C�C − 2νtC + ν2

t I )
)
ψt,ψt

〉
dt

+ 〈ψt, (C − νt I )ψt 〉dWt

+ 〈
ψt,

(−iH0 − 1
2(C�C − 2νtC + ν2

t I )
)
ψt

〉
dt

+ 〈(C − νt I )ψt , (C − νt I )ψt 〉dt

= (2νt − 2νt 〈ψt,ψt 〉) dWt .

If ‖ψ0‖2 = 1, this implies that almost surely

‖ψt‖2 = ‖ψ0‖2 = 1

for all t ≥ 0. Define the process ρt = |ψt 〉〈ψt |. It is valued in the set of pure states.
As ‖ψt‖ = 1, we have for all y ∈ C

2

ρt |y〉 = 〈ψt, y〉|ψt 〉.
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Hence we can compute dρt |y〉 by the Itô formula:

dρt |y〉 = 〈dψt , y〉|ψt 〉 + 〈ψt, y〉d|ψt 〉 + 〈dψt , y〉d|ψt 〉
= 〈(C − νt )ψt , y〉|ψt 〉dWt

+ 〈(−iH0 − 1
2(C�C − 2νtC + ν2

t )
)
ψt, y

〉|ψt 〉dt

+ 〈ψt, y〉(C − νt )|ψt 〉dWt

+ 〈ψt, y〉(−iH0 − 1
2(C�C − 2νtC + ν2

t )
)|ψt 〉dt

+ 〈(C − νt )ψt , y〉(C − νt )|ψt 〉dt.

Let us show that this corresponds to (3.3). It is clear that νt = 1
2〈ψt, (C + C�)ψt 〉

corresponds to the term 1
2 Tr[|ψt 〉〈ψt |(C + C�)]. As a consequence the term in

front of the Brownian motion becomes

〈(C − νt )ψt , y〉|ψt 〉 + 〈ψt, y〉(C − νt )|ψt 〉
= (

C|ψt 〉〈ψt | + |ψt 〉〈ψt |C� − Tr[|ψt 〉〈ψt |(C + C�)]|ψt 〉〈ψt |)|y〉.
A similar computation shows that the term in front of dt is

L(|ψt 〉〈ψt |)|y〉.
Hence we recover the expression of Belavkin equation (3.3) and the proposition is
proved. �

As a consequence, we can express an existence and uniqueness theorem
for (3.3). In what follows, we use the notion of “wave function.” A wave func-
tion is a norm-1 vector which defines a pure state.

THEOREM 3.1. Let (�,F ,Ft , P ) be a probability space which supports a
standard Brownian motion (Wt) and let ρ0 be any state on C

2.
The stochastic differential equation

ρt = ρ0 +
∫ t

0
L(ρs) ds +

∫ t

0

[
ρsC

� + Cρs − Tr
[(

ρs(C + C�)
)
ρs

]]
dWs

admits a unique solution (ρt ). The solution takes values in the set of states and is
defined for all t ≥ 0.

Furthermore, if the initial condition is a pure state, the solution takes values
in the set of pure states. The corresponding stochastic differential equation for a
wave function is then given by

d|ψt 〉 = (C − νt )|ψt 〉dWt + (−iH0 − 1
2(C�C − 2νtC + ν2

t )
)|ψt 〉dt

where νt = 1
2〈ψt, (C + C�)ψt 〉.
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PROOF. As the coefficients of (3.3) are not Lipschitz, we cannot apply directly
the usual existence and uniqueness theorems for SDE. However, the coefficients
are C∞, hence locally Lipschitz. We can use a truncature method. Equation (3.3)
is of the following form:

dρt = L(ρt ) dt + �(ρt) dWt(3.5)

where � is C∞ and �(A) = AC� + CA − Tr[A(C + C�)]A. Let k > 1 be an
integer; we define the truncation function ϕk from R to R defined by

ϕk(x) =
⎧⎨
⎩

−k, if x ≤ −k,
x, if −k ≤ x ≤ k,
k, if −k ≤ x ≤ k.

For a matrix A = (aij ), we define by extension ϕ̃k(A) = ϕk(Re(aij )) +
iϕk(Im(aij )). Thus the function � ◦ ϕ̃k is Lipschitz. Now we consider the trun-
cated equation:

dρk,t = L ◦ ϕ̃k(ρk,t ) dt + � ◦ ϕ̃k(ρk,t ) dWt .

The Cauchy–Lipschitz theorem concerning stochastic differential equations can
be applied; there exists a unique solution t �→ ρk,t defined for all t . Besides the
solution is continuous in time.

Define the random stopping times

Tk = inf{t,∃(ij)/|Re(aij (ρk,t ))| = k or | Im(aij (ρk,t ))| = k}.
As ρ0 is a state, we have ‖ρ0‖ ≤ 1. Thanks to continuity, if k is chosen large
enough, we have Tk > 0 and for all t ≤ Tk we have ϕ̃k(ρk,t ) = ρk,t . Thus t �→ ρk,t

is the unique solution of (3.3) (without truncation) on [0, Tk]. The usual method
for solving an equation with non-Lipschitz coefficients is to put T = limk Tk and
to show that T = ∞.

In addition to the proof of existence of a solution, we must prove that the process
is valued in the set of states. If ν is any state, we have ‖ν‖ ≤ 1, so |ν(ij)| ≤ 1.
Hence if we prove that on [0, T2] the process (ρ2,t ) is valued on a set of states, this
would prove that T2 = ∞ a.s. and we would have proved that there exists a unique
solution valued in the set of states. Let us prove this fact.

In the proof of the existence and uniqueness of a solution in the case of Cauchy–
Lipschitz coefficients, the solution is obtained as the limit of the sequence⎧⎨

⎩ρn+1(t) = ρn(0) +
∫ t

0
L ◦ ϕ̃k(ρn(s)) ds +

∫ t

0
� ◦ ϕ̃k(ρn(s)) dWs,

ρ0(t) = ρ.

(3.6)

With our definition of � and L, if ρ0 is a state, it is clear that this sequence is
self-adjoint with trace 1. These conditions are closed and at the limit the process is
self-adjoint with trace 1. But the condition of positivity does not follow from such
arguments. We shall prove it by other means.
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Consider the random time

T 0 = inf{t ≤ T2/∃X ∈ C2/〈X,ρ2,tX〉 = 0}.(3.7)

We have 〈X,ρ0X〉 ≥ 0 for all X, so by continuity we have 〈X,ρ2,tX〉 ≥ 0 on
[0, T 0] which implies that ρ2,t is a state for all t ≤ T 0.

If T 0 = T2 a.s., the result is proved. Otherwise, if we have T 0 < T2, then by
continuity there exists X such that 〈X,ρ2,T 0X〉 = 0 and for all Y 〈Y,ρ2,T 0Y 〉 ≥ 0.
This implies that ρ2,T 0 is a pure state because we work in dimension 2. Let us
denote by ψT 0 a vector of norm 1 such that ρ2,T 0 = |ψT 0〉〈ψT 0 |. Consider the
equation

d|ψt 〉 = (C − νt )|ψt 〉dWt + (−iH0 − 1
2(C�C − 2νtC + ν2

t )
)|ψt 〉dt

with ψT 0 as initial condition. The problem of existence and uniqueness for this
equation is solved by a truncation method also. The fact that, if we have a solution,
it is of norm 1 shows that the solution obtained by truncation (defined for all t) is
actually the solution of (3.4). Proposition 2.1 and the uniqueness of ρ2,t on [T 0, T2]
show that the solution of (3.4) which satisfies

|ψt 〉 = |ψT 0〉 +
∫ t

T 0
(C − νs)|ψs〉dWs + (−iH0 − 1

2(C�C − 2νsC + ν2
s )

)|ψs〉ds

defines a process (|ψt 〉〈ψt |) equal to ρ2,t on [T 0, T2]. Hence the process obtained
by truncation is valued on set of states and the theorem is proved. �

3.2. Change of measure. At this stage, it must be said that the stochastic dif-
ferential equation usually appearing in the literature is of the following form:

ρt = ρ0 +
∫ t

0
L(ρs) ds +

∫ t

0

[
ρsC

� + Cρs − Tr[ρs(C + C�)]]dW̃s,(3.8)

where

W̃t = Wt −
∫ t

0
Tr[ρs(C + C�)]ds.(3.9)

Hence it seems to be rather different from (3.3). Actually the link between the
two different equations is given by Girsanov’s theorem (see [12]).

THEOREM 3.2. Let (Wt) be a standard Brownian motion on (�,F ,Ft , P )

and let H be a càdlàg process. Let

Xt =
∫ t

0
Hs ds + Wt(3.10)

and define a new probability by

dQ

dP
= exp

(
−

∫ T

0
Hs dWs − 1

2

∫ T

0
H 2

s ds

)
for some T > 0. Then under Q, the process (Xt) is a standard Brownian motion
for 0 ≤ t ≤ T .
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The link between the two equations (3.3) and (3.8) is then obvious. Let (ρt ) be
the solution of (3.3) given by Theorem 3.1 on (�,F ,Ft , P ). For some T > 0,
define the probability measure Q by

dQ

dP
= exp

(∫ T

0
Tr[ρt(C + C�)]dWs − 1

2

∫ T

0
Tr[ρt(C + C�)]2 ds

)
.(3.11)

The above theorem claims that W̃t is a standard Brownian motion under Q for
0 ≤ t ≤ T . Hence (3.8) is the same equation as (3.3) up to a change of measure. In
the following section, we show that the solution of (3.3) can be obtained as limit
of discrete quantum trajectories.

4. Approximation and convergence.

4.1. The discrete approximation. In this section, we present a way to obtain
the solution of the diffusive Belavkin equation (3.3) as a limit of concrete discrete
quantum trajectories. Let us show that these discrete trajectories satisfy evolution
equations which appear as approximations of stochastic differential equations.

In Section 1, we had the discrete quantum trajectories satisfying

ρk+1 = L0(ρk) + L1(ρk) +
[
−

√
qk+1

pk+1
L0(ρk) +

√
pk+1

qk+1
L1(ρk)

]
Xk+1.(4.1)

Hence, we have

ρk+1 − ρ0 =
k∑

i=0

[ρi+1 − ρi]

=
k∑

i=0

[L0(ρi) + L1(ρi) − ρi](4.2)

+
k∑

i=0

[
−

√
qi+1

pi+1
L0(ρi) +

√
pi+1

qi+1
L1(ρi)

]
Xi+1.

Let us introduce a time discretization. Consider a partition of [0, T ] in subinter-
vals of equal size 1/n. The time of interaction is supposed now to be h = 1/n; the
unitary operator depends then on the time interaction:

U(n) =
(

L00(n) L01(n)

L10(n) L11(n)

)
.

In [1], Attal and Pautrat have shown that the asymptotic of the coeffi-
cients Lij (n) must be properly rescaled in order to obtain a nontrivial limit when n

goes to infinity. Indeed they have shown that V[nt] = U[nt](n) . . .U1(n), which
represents the discrete dynamic of quantum repeated interactions, converges to a
process Vt solution of a quantum Langevin equation only if the coefficients Lij
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obey certain normalizations. When translated to our context, the results of [1] show
that we should consider

L00(n) = I + 1

n

(
−iH0 − 1

2
CC�

)
+ o

(
1

n

)
,(4.3)

L10(n) = 1√
n
C + o

(
1

n

)
.(4.4)

Remember that the unitary operator is given by

U(n) = exp
(
i
1

n
Htot

)
.

The corresponding Hamiltonian Htot which gives the expression U(n) is of the
following form:

Htot = H0 ⊗ I + I ⊗
(

1 0
0 0

)
+ 1√

n

[
C ⊗

(
0 0
1 0

)
+ C� ⊗

(
0 1
0 0

)]
+ o

(
1

n

)
,

where H0 is the Hamiltonian of the small system and C is any operator on C
2.

With the time discretization we then obtain

ρk+1(n) = L0(n)(ρk(n)) + L1(n)(ρk(n))(4.5)

+
[
−

√
qk+1(n)

pk+1(n)
L0(n)(ρk(n)) +

√
pk+1(n)

qk+1(n)
L1(n)(ρk(n))

]
(4.6)

× Xk+1(n).

Remember that the sequence of random variables (Xk(n)) is defined through
the two probabilities: {

pk+1 = Tr[L0(ρk)],
qk+1 = Tr[L1(ρk)].(4.7)

By definition of (Xk) we have

Xk(n)(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
√

qk+1(n)

pk+1(n)
, with probability pk+1(n) if i = 0,

√
pk+1(n)

qk+1(n)
, with probability qk+1(n) if i = 1.

(4.8)

Each probability depends on the expression of Li , which depends on the mea-
sured observable A = λ0P0 + λ1P1. At the limit, the diffusive behavior of ρ[nt](n)

is depending on the comportment of (Xk), that is, on the observable:
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1. If the observable is of the form A = λ0
(1 0
0 0

) + λ1
(0 0
0 1

)
, we obtain the follow-

ing asymptotic for the probabilities:

pk+1(n) = 1 − 1

n
Tr[J(ρk(n))] + o

(
1

n

)
,

qk+1(n) = 1

n
Tr[J(ρk(n))] + o

(
1

n

)
.

The discrete equation then becomes

ρk+1(n) − ρk(n)

= 1

n
L(ρk(n)) + o

(
1

n

)
+

[
J(ρk(n))

Tr[J(ρk(n))] − ρk(n) + o(1)

]

×
√

qk+1(n)pk+1(n)Xk+1(n).

2. If the observable A is nondiagonal in the basis (�,X), for the eigenprojectors,
put P0 = (p00 p01

p10 p11

)
and P1 = (q00 q01

q10 q11

)
; we have

pk+1 = p00 + 1√
n

Tr[ρk(p01C + p10C
�)] + 1

n
Tr[ρkp00(C + C�)] + o

(
1

n

)
,

qk+1 = q00 + 1√
n

Tr[ρk(q01C + q10C
�)] + 1

n
Tr[ρkq00(C + C�)] + o

(
1

n

)
.

The discrete equation here becomes

ρk+1 − ρk = 1

n
L(ρk) + o

(
1

n

)
(4.9)

+ [
eiθCρk + e−iθρkC

�

(4.10)

− Tr[ρk(e
iθC + e−iθC�)]ρk + o(1)

] 1√
n
Xk+1.

In this expression, the parameter θ represents a kind of phase. It is real and
depends on the coefficients of the eigenprojectors. If we put Cθ = eiθC, the
discrete (4.9) becomes

ρk+1 − ρk = 1

n
L(ρk) + o

(
1

n

)

+ [
Cθρk + ρkC

�
θ − Tr[ρk(Cθ + C�

θ )]ρk + o(1)
] 1√

n
Xk+1.

For each θ , we have similar expressions for discrete equations with different
operators Cθ . Let us stress that this parameter does not modify the expression
of L. In the following, we deal with θ = 0.
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In [11], it is shown that the case where A is diagonal gives rise to the jump-
Belavkin equation at a continuous limit. In the following section, we show that the
diffusive case is obtained as the limit of the discrete process which comes from the
measurement of a nondiagonal observable.

4.2. Convergence theorems. Before presenting the main theorem concerning
the convergence of discrete quantum trajectories, we show a first result concerning
the average of the processes. In order to avoid confusion between the discrete-
time process (ρk) and the continuous-time process (ρt ) we write the discrete
process (ρk) with the index on the top.

THEOREM 4.1. Let (�,X) be any orthonormal basis of C
2. For all nondi-

agonal observable A, the deterministic function t �→→ E[ρ[nt](n)] converges in
L∞([0, T ]), when n goes to infinity, to the function t �→→ E[ρt ]. That is,

sup
0<s<T

∥∥E
[
ρ[ns](n)

] − E[ρs]
∥∥ −→

n→∞ 0.

Furthermore the function t �→→ E[ρt ] is the solution of the Master equation

dνt = L(νt ) dt.

PROOF. First of all, we show the second part of the theorem. We can con-
sider the function t �→→ E[ρt ] because we have existence and uniqueness of the
solution of (3.3). The process (ρt ) is integrable (because ρt is a state for all t).
It is obvious that this function takes also values in the set of states. As ρ0 is a
deterministic state we must show

E[ρt ] = ρ0 +
∫ t

0
L(E[ρs]) ds.(4.11)

We know that the process (ρt ) satisfies

ρt = ρ0 +
∫ t

0
L(ρs) ds +

∫ t

0

[
ρsC

� + Cρs − Tr
(
ρs(C + C�)

)
ρs

]
dWs.

As (Wt) is a martingale and the process (ρt ) is predictable (for it is continuous),
the properties of stochastic integral give

E
[∫ t

0

[
ρsC

� + Cρs − Tr
(
ρs(C + C�)

)
ρs

]
dWs

]
= 0.

Hence, we have, by linearity of L,

E[ρt ] = ρ0 +
∫ t

0
E[L(ρs)]ds

= ρ0 +
∫ t

0
L(E[ρs]) ds.
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We then have the integral form of the solution of the Master equation and the
second part is proved.

Let us show now the first part of the theorem. We shall now compare E[ρ[nt](n)]
with E[ρt ]. As in the continuous case, the martingale argument is replaced by the
fact that the process (Xk) is centered. Remember that we have

E[Xk+1] = E
[
E[Xk+1/Fk]] = 0.

As a consequence, considering k = [nt] and taking expectation in the discrete
equation, we have

E
[
ρ[nt](n)

] − ρ0 =
[nt]−1∑
i=0

1

n
L(E[ρk(n)]) + o

(
1

n

)
.

This is a kind of Euler scheme and we can conclude by a discrete Gronwall lemma
argument that we have

sup
0<s<t

∥∥E
[
ρ[ns](n)

] − E[ρs]
∥∥ −→

n→∞ 0. �

The average of the discrete process is then an approximation of the average
of ρt . In [1], this result was shown in the case of repeated interactions without
measurement. It is a consequence of the asymptotic of the unitary-operator coeffi-
cients, so it justifies our choice of the coefficients.

Concerning the convergence of the processes, the discrete process which is the
candidate to converge to the diffusive quantum trajectory satisfies for k = [nt]

ρ[nt] − ρ0 =
[nt]−1∑
i=0

1

n
L(ρk(n)) + o

(
1

n

)
+

[nt]−1∑
i=0

[�(ρk) + o(1)] 1√
n
Xi+1.

Thanks to this equation we can define the processes:

Wn(t) = 1√
n

[nt]∑
k=1

Xk(n),

Vn(t) = [nt]
n

,

(4.12)
ρn(t) = ρ[nt](n),

εn(t) =
[nt]−1∑
i=0

o

(
1

n

)
+

[nt]−1∑
i=0

o(1)
1√
n
Xi+1.

By observing that these four processes are piecewise constant, we can write the
process (ρn(t))t≥0 as a solution of a stochastic differential equation in the follow-
ing way:

ρn(t) = ρ0 + εn(t) +
∫ t

0
L(ρn(s−)) dVn(s) +

∫ t

0
�(ρn(s−)) dWn(s).(4.13)
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We now use a theorem of Kurtz and Protter (cf. [8]) to prove the convergence.
Let us first fix some notation.

Recall that the square-bracket [X,X] is defined for a semimartingale by the
formula

[X,X]t = X2
t − 2

∫ t

0
Xs− dXs.

We shall denote by Tt (V ) the total variation of a finite-variation process V on the
interval [0, t]. The theorem of Kurtz and Protter [8] (see [7]) that we use is the
following.

THEOREM 4.2. Let Wn be a martingale and let Vn be a finite variation
process. Consider the process Xn defined by

Xn(t) = ρ0 + εn(t) +
∫ t

0
L(Xn(s−)) dVn(s) +

∫ t

0
�(Xn(s−)) dWn(s).

Assume that for each t ≥ 0,

sup
n

E[[Wn,Wn]t ] < ∞,

sup
n

E[Tt(Vn)] < ∞,

and that (Wn,Vn, εn) converges in distribution to (W,V,0) where W is a standard
Brownian motion and V (t) = t for all t . Suppose that X satisfies

Xt = X0 +
∫ t

0
L(Xs) ds +

∫ t

0
�(Xs) dWs

and that the solution of this stochastic differential equation is unique. Then Xn

converges in distribution to X.

We wish to apply this theorem to the process (ρn(t)) [(4.13)]. The first step is
the convergence of Wn in (4.12) to a Brownian motion. We need the following
theorem (cf. [3, 9]) which is a generalization of the Donsker theorem.

THEOREM 4.3. Let (Mn) be a sequence of martingales. Suppose that

lim
n→∞ E

[
sup
s≤t

|Mn(s) − Mn(s−)|
]

= 0

and

[Mn,Mn]t −→
n→∞ t.

Then Mn converges in distribution to a standard Brownian motion. The conclusion
is the same if we just have

lim
n→∞ E

[|[Mn,Mn]t − t |] = 0.
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Back to our process Wn, consider the filtration

F n
t = σ(Xi, i ≤ [nt]).

PROPOSITION 4.1. Let (Wn,Vn, εn) be the processes defined in (4.12). We
have that (Wn(t)) is a F n

t -martingale. The process (Wn) converges to a standard
Brownian motion W when n goes to infinity. Furthermore we have

sup
n

E[[Wn,Wn]t ] < ∞.

Finally, we have the convergence in distribution for the processes (Wn,Vn, εn),
when n goes to infinity, to (W,V,0).

PROOF. Thanks to the definition of the random variable Xk , we have
E[Xi+1/F

n
i ] = 0 which implies E[ 1

n

∑[nt]
i=[ns]+1 Xi/F

n
s ] = 0 for t > s. Thus if

t > s, we have the martingale property

E[Wn(t)/F
n
s ] = Wn(s) + E

[
1√
n

[nt]∑
i=[ns]+1

Xi/F
n
s

]
= Wn(s).

By definition of [Y,Y ] for a stochastic process we have

[Wn,Wn]t = Wn(t)
2 − 2

∫ t

0
Wn(s−) dWn(s) = 1

n

[nt]∑
i=1

X2
i .

Thus we have

E[[Wn,Wn]t ] = 1

n

[nt]∑
i=1

E[X2
i ] = 1

n

[nt]∑
i=1

E
[
E[X2

i /σ {Xl, l < i}]]

= 1

n

[nt]∑
i=1

1 = [nt]
n

.

Hence we have

sup
n

E[[Wn,Wn]t ] ≤ t < ∞.

Let us prove the convergence of (Wn) to (W). According to Theorem 4.3 we
must prove that

lim
n→∞ E

[|[Mn,Mn]t − t |] = 0.

Actually we prove an L2 convergence:

lim
n→∞ E

[|[Mn,Mn]t − t |2] = 0,
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which implies the L1 convergence. In order to show this convergence, we use the
following property:

E[X2
i ] = E

[
E[X2

i /σ {Xl, l < i}]] = 1,

and if i < j ,

E[(X2
i − 1)(X2

j − 1)] = E
[
E[(X2

i − 1)(X2
j − 1)/σ {Xl, l < j}]]

= E[(X2
i − 1)]E[(X2

j − 1)]
= 0.

This gives

E
[(

[Wn,Wn]t − [nt]
n

)2]
= 1

n2

[nt]∑
i=1

E[(X2
i − 1)2] + 1

n2

∑
i<j

E[(X2
i − 1)(X2

j − 1)]

= 1

n2

[nt]∑
i=1

E[(X2
i − 1)2].

Thanks to the fact that p00 and q00 are not equal to zero (because the observable A

is not diagonal!) the terms E[(X2
i − 1)2] are bounded uniformly in i so we have

lim
n→∞ E

[(
[Wn,Wn]t − [nt]

n

)2]
= 0.

As [nt]
n

−→ t in L2 we have the desired convergence. Finally, the convergence in
distribution of (Wn) and (Vn) implies the convergence of (εn) to 0. �

We can now express the final theorem.

THEOREM 4.4. Let (�,X) be any orthonormal basis of C
2 and let A be

any nondiagonal observable (in this basis). Let ρ0 be any initial state on C
2. Let

(ρ[nt](n)) be the discrete quantum trajectory obtained from the quantum repeated
measurement principle with respect to A. The process (ρ[nt](n)) then satisfies

ρ[nt](n) = ρ0 +
[nt]−1∑
i=0

1

n
L(ρk(n)) + o

(
1

n

)
+

[nt]−1∑
i=0

[�(ρk) + o(1)] 1√
n
Xi+1.

Let (ρt ) be the solution of the diffusive Belavkin equation (3.3) which satisfies

ρt = ρ0 +
∫ t

0
L(ρs) ds +

∫ t

0
�(ρs) dWs.

Then we have the convergence in distribution(
ρ[nt](n)

) D−→
n→∞(ρt ).

PROOF. It is a simple compilation of Theorems 4.2, Proposition 4.1 and exis-
tence and uniqueness of Theorem 3.1. �
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